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1. Introduction

In this paper we consider once again the construction of an e�ective Hamiltonian

for a particle described by a periodic Hamiltonian and subject also to a magnetic

�eld that will be considered bounded and smooth but neither periodic nor slowly

varying. Our aim is to use some of the ideas in [4, 8] in conjunction with the

magnetic pseudodi�erential calculus developed in [17, 12, 13, 19] and obtain the

following improvements:

(1) consider magnetic �elds that are neither constant nor slowly varying, to work

in a manifestly covariant form and obtain results that clearly depend only on

the magnetic �eld;

(2) give up the adiabatic hypothesis (slowly varying �elds) and consider only the

intensity of the magnetic �eld as a small parameter;

(3) cover also the case of pseudodi�erential operators, as for example the rela-

tivistic Schrödinger operators with principal symbol h�i WD .1C j�j2/1=2.

Let us point out from the beginning, that as in [8] we construct an e�ective Hamil-

tonian associated to any compact interval of the energy spectrum but its signi�-

cance concerns only the description of the real spectrum as a subset of R. In a

forthcoming paper our covariant magnetic pseudodi�erential calculus will be used

in order to construct an e�ective dynamics associated to any spectral band of the

periodic Hamiltonian. Let us mention here that the magnetic pseudodi�erential

calculus has been used in the Peierls–Onsager problem in [5] where some im-

provements of the results in [23] are obtained but still in an adiabatic setting.

Finally let us also point out here that an essential ingredient in the method

elaborated in [8] is a necessary and su�cient criterion for a tempered distribution

to belong to some given Hilbert spaces (Propositions 3.2 and 3.6 in [8]). In our

“magnetic” setting some similar criteria have to be proved and this obliges us to

some di�erent formulations with respect to those in [8, 6].

Let us very brie�y describe the content of our paper. �e Introduction contains

a very brief formulation of the problem and the main results we obtain together

with some notions concerning the Floquet representation and the localized Wan-

nier functions that we shall need further. Section 2 contains the proofs of our

main results based on some extensions of the magnetic pseudodi�erential calcu-

lus ([17, 12, 13]) discussed in the Appendices and on some ideas from [4, 8, 10, 11].

Some particular cases, where more complete results can be obtained, are discussed

in Section 3. Let us mention here that a large number of standard pseudodi�eren-

tial techniques are used without detailed presentations in order to limit the dimen-
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sion of our paper, but a complete and detailed version of our paper can be found

on web ([14]).

1.1. �e problem. We use the notation X � R
d , its dual X� being canonically

isomorphic to R
d ; let

h�; �i W X� � X �! R

denote the duality relation. We de�ne

„ WD X � X�;

as a symplectic space with the canonical symplectic form

�.X; Y / WD h�; yi � h�; xi;

and

x„ WD X� � X:

We shall consider a discrete subgroup � � X described as a lattice

� WD
d

M

j D1

Zej ;

with ¹e1; : : : ; edº an algebraic basis of Rd . We consider the quotient group R
d=�

that is canonically isomorphic to the d -dimensional torus T. Let us consider an

elementary cell

E D
°

y D
d

X

j D1

tj ej 2 R
d W 0 � tj < 1; for all j 2 ¹1; : : : ; dº

±

;

having the interior locally homeomorphic to its projection on T. �e dual lattice

of � is de�ned as

�� WD ¹
� 2 X� W h
�; 
i 2 .2�/Z; for all 
 2 �º:

Considering the dual basis ¹e�
1 ; : : : ; e

�
d

º � X� of ¹e1; : : : ; edº, de�ned by

he�
j ; eki D .2�/ıjk;

we have evidently that

�� WD
d

M

j D1

Ze�
j :
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By de�nition, we have that �� � X� is the polar of � � X. We de�ne

T� WD X�=��

and E�, and note that T� is isomorphic to the dual group of �.

Let us recall the usual periodic Schrödinger Hamiltonian

H0;V WD ��C V.y/; V 2 BC1.X;R/; � � periodic; (1.1)

that describes the evolution of an electron in a periodic crystal without external

�elds. �e above operator has a self-adjoint extension in L2.X/ that commutes

with the translations �
 for any 
 2 �. By the Floquet–Bloch theory for any

� 2 X� we can de�ne the operator

H0;V .�/ WD .Dy C �/2 C V.y/

that has a self-adjoint extension in L2.T/ that has compact resolvent. �us its

spectrum consists in a growing sequence of �nite multiplicity eigenvalues

�1.�/ � �2.�/ � : : :

that are continuous and ��-periodic functions of �. �us, if we set

Jk WD �k.T�/;

we can write

�.H0;V / D
1
[

kD1

Jk ;

and it follows that this spectrum is absolutely continuous. �e above analysis

implies the following statement that can be considered as the spectral form of the

Onsager–Peierls substitution in a trivial situation (with 0 magnetic �eld):

� 2 �.H0;V / H) there exists k � 1 such that 0 2 �.� � �k.D//; (1.2)

where �k.D/ is the Weyl quantization of the symbol�k and thus de�nes a bounded

self-adjoint operator on L2.X/.

�e problem we are interested in, consists in superposing a magnetic �eld B

in the above situation; let us �rst consider a constant magnetic �eld

B D .Bjk/1�j;k�d ; with Bjk D �Bkj .

Let us recall that using the transversal gauge one can de�ne the following vector

potential A D .Aj /1�j �d given by

Aj .x/ WD �
1

2

X

1�k�d

Bjkxk:
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�en the associated magnetic Hamiltonian is de�ned as

HA;V WD .D C A/2 C V.y/;

that has also a self-adjoint extension in L2.X/. �e structure of the spectrum of

this operator may be very di�erent of the structure of �.H0;V / (for example it may

be pure point with in�nite multiplicity!), but one expects that modulo some small

correction (depending on B), for small jBj the property 1.2 with D replaced by

D C A should still be true. More precisely it is conjectured that there exists a

symbol rk.x; �IB; �/ (in fact a BC1.„/ function) such that

lim
jBj!0

rk.x; �IB; �/ D 0 in BC1.„/,

and for � in a compact neighborhood of Jk and for small jBj we have that

� 2 �.HA;V / () 0 2 �.� � �k.D C A.x//C rk.x;D C A.x/IB; �//; (1.3)

where rk.x;D C A.x/IB; �/ is the Weyl quantization of rk.x; � C A.x/IB; �/.

�e �rst rigorous proof of such a result appeared in [21] for a simple spectral

band (i.e. �k.�/ is a non-degenerated eigenvalue of H0;V .�/ for any � 2 X� and

Jk \ Jl D ;, for all l ¤ k). In [10] the authors study this case of a simple spectral

band but also the general case, by using Wannier functions. In these references the

operator appearing on the right hand side of the equivalence (1.3) is considered

to act in the Hilbert space Œl2.�/�N (with N D 1 for the simple spectral band).

In fact we shall prove that for a simple spectral band one can replace l2.�/ with

L2.X/.

In [8] the authors consider the evolution of an electron (ignoring the spin)

in a periodic crystal under the action of exterior non-constant, slowly varying,

magnetic and electric �elds. More precisely the magnetic �eld B is de�ned as

B D dA;

with a vector potential A D .A1; : : : ; Ad /; Aj 2 C1.XIR/, satisfying

@˛Aj 2 BC1.X/; for all j˛j � 1;

and the electric potential is described by

� 2 BC1.XIR/:
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�e Hamiltonian is taken to be

PA;� D
X

1�j �d

.Dyj
C Aj .�y//

2 C V.y/C �.�y/;

with � > 0 small enough; this de�nes also a self-adjoint operator in L2.X/.

In this situation, in order to de�ne an e�ective Hamiltonian, the authors apply

an idea of Buslaev [4] (see also [9]); this idea consists in “doubling” the number

of variables and separating the periodic part (that is also “rapidly varying”) from

the non-periodic part (that is also “slowly varying”). In order to de�ne an e�ec-

tive Hamiltonian to describe the spectrum of PA;� (in fact of some Hamiltonians

generalizing this one), in [8] the authors bring together three important ideas from

the literature on the subject.

(1) First, the idea introduced in [4, 9] of “doubling the variables.”

(2) �en, following an idea from [4], one uses an operator valued pseudodi�er-

ential calculus, as the one developped in [3].

(3) �e formulation of a Grushin type problem, as proposed in [10].

Let us note that if one would like to consider also non-constant magnetic �elds,

then the above Weyl quantization ofA.x/-dependent symbols (as used in [8]) gives

operators that are not gauge covariant and thus unsuitable for a physical interpre-

tation.

1.2. Summary of our results. Let us brie�y comment upon our hypothesis.

Hypothesis H.1. �e magnetic �eld B� is a closed 2-form with components de-

pending on a real parameter

Œ��0; �0� 3 � 7�! B�;jk 2 BC1.XIR/; for some �0 > 0,

and verifying

lim
�!0

B�;jk D 0 in BC1.XIR/.

Using the transversal gauge we can de�ne a family of vector potentials A�,

A�;j .x/ WD �
X

1�k�d

xk

1
Z

0

B�;jk.sx/s ds: (1.4)
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�e symbols we are considering are also functions of a real parameter

Œ��0; �0� 3 � 7�! p� 2 C1.X � X � X�/

satisfying conditions of type Sm
1 with m > 0 uniformly in � 2 Œ��0; �0�. In fact,

the “physical” symbols we are really interested in are just usual symbols on „,

but as we shall use the procedure of “doubling” the space variables, as proposed

by Buslaev, we prefer to consider from the beginning this larger class of symbols

having in view also some other possible applications of our results (see also the

comments in [8]).

Hypothesis H.2. We shall denote by Sm
1 .X � X/ the space of C1 functions on

X �„ (with the natural Fréchet topology) such that there exists m > 0, such that

for all . Q̨ ; ˇ/ 2 N
2d � N

d , there exists C Q̨ˇ > 0 such that

j.@ Q̨
x;y@

ˇ
�p�/.x; y; �/j � C Q̨ˇ h�im�jˇ j;

for all .x; y; �/ 2 X � X � X�, and all � 2 Œ��0; �0�.

Hypothesis H.3. lim
�!0

p� D p0 in Sm
1 .X � X/.

Hypothesis H.4. For all ˛ 2 N
d with j˛j � 1,

lim
�!0

.@˛
xp�/ D 0

in Sm
1 .X � X/.

Hypothesis H.5. p� is an elliptic symbol uniformly in � 2 Œ��0; �0�, i.e. there exist

C > 0 and R > 0 such that

p�.x; y; �/ � C j�jm;

for all .x; y; �/ 2 X � X � X� with j�j � R, and all � 2 Œ��0; �0�.

Hypothesis H.6. p� is �-periodic with respect to the second variable, i.e.

p�.x; y C 
; �/ D p�.x; y; �/;

for all 
 2 �, .x; y; �/ 2 X � X � X�, and � 2 Œ��0; �0�.

Let us remark here that Hypotheses H.3 and H.4 imply that the limit p0 only

depends on the second and third variables (.y; �/ 2 „) and thus we can write

p�.x; y; �/ WD p0.y; �/C r�.x; y; �/ and lim
�!0

r�.x; y; �/ D 0

in Sm
1 .X � X/.
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Let us also note that our Hypothesis H.3 is not satis�ed if we consider a pertur-

bation of the form (adiabatic electric �eld) �.�y/ but is veri�ed for a perturbation

of the form ��.y/. One can consider a weaker hypothesis, allowing also for the

adiabatic electric �eld perturbation, without losing the general construction of the

e�ective Hamiltonian, but some consequences that we shall prove would no longer

be true.

We associate to our symbols the two types of symbols proposed in [8]:

Vp�.y; �/ WD p�.y; y; �/; Qp�.x; y; �; �/ WD p�.x; y; � C �/: (1.5)

We shall use the magnetic pseudodi�erential calculus as developped in [17, 12, 13];

let us just recall the de�nition of the magnetic 2-cocycle

!A� .x; y/ WD exp

²

� i

Z

Œx;y�

A�

³

(here Œx; y� denotes the closed interval with boundary points x and y) and the

magnetic Weyl operators de�ned by the oscillating integrals

ŒOpA�.p/u�.x/

WD .2�/�d

Z

„

eih�;x�yi!A�.x; y/p
�x C y

2
; �

�

u.y/ dy d�; for all x 2 X:

(1.6)

�e operator we want to study is

P� WD OpA�. Vp�/: (1.7)

�e auxiliary operator is de�ned as in Appendix 4.2 by

zP� WD OpA� .q�/; q�.x; �/ WD Op. Qp�.x; �; �; �//: (1.8)

Let us note that in particular all the above hypothesis are satis�ed if we take

B� WD �B;

with B a magnetic �eld with components of class BC1.X/,

A� D �A;
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with A a vector potential associated to B by (1.4), and P� one of the possible

Schrödinger operators

P� D
X

1�j �d

.Dyj
C �Aj .y//

2 C V.y/C ��.y/; (1.9)

P� D Op�A.h�i/C V.y/C ��.y/; (1.10)

P� D
q

Op�A.j�j2/C 1C V.y/C ��.y/; (1.11)

where V satis�es 1.1 and � 2 BC1.XIR/.

In order to de�ne an e�ective Hamiltonian forP� we shall apply the same ideas

as in [8] with the important remark that the operator valued pseudodi�erential

calculus we use is not a semi classical calculus but the “magnetic” calculus so

that all our constructions are explicitly gauge covariant. �is fact obliges us to a

lot of new technical lemmas in order to deal with this new calculus. Our main

result is the following theorem.

�eorem 1.1. We assume Hypotheses H.1–H.6. For any compact interval I � R

there exist �0 > 0 and N 2 N
� such that for all � 2 I and for all � 2 Œ��0; �0�

there exists a bounded self-adjoint operator

E�C.�; �/ WD OpA�.E�C
�;�
/

acting in ŒV0�
N (see De�nition 2.36), where E�C

�;�
2 BC1.„IB.CN // uniformly

in .�; �/ 2 Œ��0; �0� � I and is ��-periodic in the variable � 2 X�, for which the

following equivalence is true:

� 2 �.P�/ () 0 2 �.E�C.�; �//: (1.12)

�e symbol E�C
�;�

is a perturbation of the one at zero magnetic �eld E�C
0;�

that

is de�ned in terms of a family of quasi-Bloch functions associated to the energy

interval I . Moreover, if I is an isolated band with su�ciently regular Bloch eigen-

values and associated eigenvectors, then this principal symbol can be written ex-

plicitly in terms of quantizations of the Bloch eigenvalues. �e case of a single

spectral band is presented in Proposition 1.4 and the general case will be treated

in a forthcoming paper.

A direct consequence of the above theorem is a stability property for the spec-

tral gaps of the operator P� of the same type as that obtained in [2, 20, 1] for the

Schrödinger operator.
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Corollary 1.2. Under Hypothesis H.1–H.6, for any compact interval K � R dis-

joint from �.P0/, there exists �0 > 0 such that for all � 2 Œ��0; �0� the interval K

is disjoint from �.P�/.

In fact we obtain a much stronger result, giving the optimal regularity property

but only for � D 0 i.e. at vanishing magnetic �eld.

Proposition 1.3. We denote by dH .F1; F2/ the Hausdor� distance between the

two closed subsets F1 and F2 of R. �en, under Hypotheses H.1–H.7 (see lower

on this page for Hypotheses H.7) and I.1–I.3 (see the end of Section 2), there exists

a strictly positive constant C such that

dH .�.P�/ \ I; �.P0/ \ I / � C�; for all � 2 Œ��0; �0�: (1.13)

Let us consider now the case of a simple spectral band and study the result we

discussed previously in this case. By hypothesis we have that �
P0 D P0�
 , for

all 
 2 � and we can apply the Floquet–Bloch theory. We denote by

�1.�/ � �2.�/ � : : :

the eigenvalues of the operators

P0;� WD Op.p0.�; � C �//

that are self-adjoint in L2.T/; they are continuous functions on the torus

T� WD X�=��

(and they are even C1 in the case of a simple spectral band). �us

�.P0/ D
d

[

j D1

Jj ;

with

Jj WD �j .T�/:

Let us consider now the following new hypothesis.

Hypothesis H.7. �ere exists k � 1 such that Jk is a simple spectral band for

P0, i.e., for all � 2 T�, �k.�/ is a non-degenerate eigenvalue of P0;� and for any

l ¤ k we have that Jl \ Jk D ;.
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Proposition 1.4. Assume that Hypotheses H.1–H.7 are true and that moreover we

have that p0.y;��/ D p0.y; �/, for all .y; �/ 2 „. Let I � R be a compact

neighborhood of Jk disjoint from
S

l¤k Jl . �en there exists �0 > 0 such that for

all .�; �/ 2 Œ��0; �0� � I in �eorem 1.1 we can take N D 1 and

E�C
�;�
.x; �/ D � � �k.�/C r�;�.x; �/; (1.14)

with

lim
�!0

r�;� D 0; in BC1.„/; uniformly in � 2 I:

In the case of a constant magnetic �eld, under some more assumptions on the

symbolp� we can have even more information concerning the operatorE�C.�; �/.

Proposition 1.5. Assume that Hypotheses H.1–H.7 are true and that B� are con-

stant magnetic �elds (for any �) and that the symbols p� do not depend on the �rst

variable (x 2 X). �en we can complete the conclusion of �eorem 1.1 with the

following statements:

(1) E�C.�; �/ is a bounded self-adjoint operator in ŒL2.X/�N ;

(2) the symbol E�C
�;�

is independent of the �rst variable (y 2 X) and is ��-peri-

odic in the second variable (� 2 X�).

1.3. Overview of periodic pseudodi�erential operators. We shall denote by

S0
�.X/ the space of �-periodic distributions on X and by

S.T/ WD C1.T/;

with the usual Fréchet topology; S0.T/ is the dual of S.T/ and we denote by h�; �iT
the duality relation on S0.T/�S.T/ and by .�; �/T the sesquilinear map obtained by

extending the scalar product from L2.T/. It is well known that the spaces S0
�.X/

and S0.T/ have a natural identi�cation. We shall denote by Sm
� .T/ the Hörmander

type symbols of class Sm
� .X/ that are �-periodic and thus may be considered as

symbols on the torus.

For any distribution u 2 S0
�.X/ Š S0.T/ we have the Fourier series decompo-

sition

u D
X


�2��

Ou.
�/�
� ; Ou.
�/ WD jEj�1hu; ��
�iT; (1.15)

where

�
�.y/ WD eih
�;yi;

for all y 2 T and all 
� 2 �� and the series converges as tempered distribution.
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For any s 2 R and any 
� 2 �� we have

hDis�
� D h
�is�
� ;

and we deduce that hDis induces on S0.T/ Š S0
�.X/ a well-de�ned operator, de-

noted by hD�is . For any � 2 „,

hD� C �isu WD
X


�2��

h
� C �is Ou.
�/�
� ; for all u 2 S0.T/: (1.16)

De�nition 1.6. Given any s 2 R we de�ne the complex linear space

Hs.T/ WD ¹u 2 S0.T/ W hD�isu 2 L2.T/º

endowed with the Hilbertian norm

kukHs.T/ WD khD�isukL2.T/;

for which it becomes a Hilbert space.

�e following statements are well known and easy to be proven.

Lemma 1.7. Let p 2 Sm
1 .X/ and let us set

P WD Op.p/:

�en, for any s 2 R and for any u 2 HsCm
loc .X/ \ S0.X/,

Pu 2 Hs
loc.X/ \ S0.X/:

Corollary 1.8. �e space Hs.T/ can be identi�ed with the usual Sobolev space

of order s on the torus that is de�ned as Hs
loc.X/ \ S0

�.X/.

De�nition 1.9. We de�ne the complex linear space

Ks;� WD ¹u 2 S0.T/ W hD� C �isu 2 L2.T/º; (1.17)

endowed with the norm

kuk2
Ks;�

WD jhD� C �isuk2
L2.T/

D jEj�1
X


�2��

h
� C �i2s j Ou.
�/j2

that de�nes a structure of Hilbert space on it.
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It is clear that Ks;� D Hs.T/ as complex vector spaces and for � D 0 even as

Hilbert spaces. Similar arguments to those in Example 4.4 show that the family

¹Ks;�º�2X� has temperate variation (see De�nition 4.3).

Coming back to Corollary 1.8 we can consider the elements of Ks;� as distri-

butions from Hs
loc.X/ \ S0

�.X/ and we can de�ne the spaces

Fs;� WD ¹u 2 S0.X/ W ���u 2 Ks;�º: (1.18)

It is a Hilbert space isometrically isomorphic to Ks;� with the norm

kukFs;�
WD k���ukKs;�

:

Remark 1.10. Let us �x some � 2 X�.

(1) Let us set

S0
�.X/ WD ¹u 2 S0.X/ W ��
u D eih�;
iu; for all 
 2 �º:

(2) We can write

F0;� D ¹u 2 S0.X/ W ���u 2 L2
loc.X/ \ S0

�.X/º D S0
�.X/ \ L2

loc.X/

and conclude that we can identify F0;� with L2.E/ and note that we have the

equality of the norms kukF0;�
D kukL2.E/.

(3) We observe

hD C �is D ���hDis�� :

�us

Fs;� D ¹u 2 S0
�.X/ W hDisu 2 F0;�º; kukFs;�

D khDisukF0;�
:

1.3.1. Periodic symbols

Lemma 1.11. Under the hypothesis of Proposition 4.13, for any a 2 X we have

the equality

�aOpA.p/ D Op�aA..�a ˝ id/p/�a: (1.19)

Proof. It is enough to use formula (1.6) and to note that

Z

Œx�a;y�a�

A D �

�

.x � y/;

1
Z

0

A..1� s/x C sy � a/ ds

�

:
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Lemma 1.12. For any symbol p 2 Sm
1 .T/ (see De�nition 4.9) the pseudodi�er-

ential operator

P WD Op.p/

induces on T an operator

P� 2 B.KsCm;0IKs;0/ for any s 2 R,

and the application

Sm
1 .T/ 3 p 7�! P� 2 B.KsCm;0IKs;0/

is continuous.

Proof. By equality (1.19) with A D 0 and observing that .�
 ˝ id/p D p, for

all 
 2 � we deduce that P leaves S0
�.X/ invariant and thus induces a linear and

continuous operator

P� W S0.T/ �! S0.T/:

If u 2 KsCm;0 D HsCm.T/, then

kP�ukKs;0
D khD�isP�ukL2.T/

D khDisPukL2.E/

D khDisP hDi�s�mhDisCmukL2.E/:

From the Weyl calculus we know that

hDisP hDi�s�m D Op.q/

for a well de�ned symbol q 2 S0
1 .X/ and the map

Sm
1 .T/ 3 p 7�! q 2 S0

1 .X/

is continuous; by Lemma 1.7 we can �nd a strictly positive constant C 0
0.p/ (one

of the de�ning seminorms for the topology of Sm
1 .T/) and a number N 2 N (that

does not depend on p) such that

khDisP hDi�s�mvkL2.E/ � C 0
0.p/kvkL2.F /; for all v 2 L2

loc.X/ \ S0.X/,

where

F WD
[


2�N

�
E;
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and

�N WD ¹
 2 � W j
 j � N º:

Let us consider now

v D hDisCmu 2 L2
loc.X/ \ S0

�.X/:

We have

kvk2
L2.F /

D
X

j
 j�N

Z

�
 E

jv.x/j2 dx � C 2
N kvk2

L2.E/

D C 2
N khDisCmuk2

L2.E/

D C 2
N kuk2

KsCm;0
;

and we conclude that

kP�ukKs;0
� CNC

0
0.p/kukKsCm;0

:

Remark 1.13. For any symbol p 2 Sm
1 .T/ and for any point � 2 X� we know that

.id ˝���/p 2 Sm
1 .T/, and, due to Lemma 1.12, the operator

P� WD Op..id ˝���/p/

induces on T a well de�ned operator

P�;� 2 B.KsCm;0IKs;0/

for any s 2 R. By the same lemma we deduce that the application

X� 3 � 7�! P�;� 2 B.KsCm;0IKs;0/

is continuous and, noticing that

@˛
�P� D Op..id ˝��
 /.id ˝@˛/p/;

this application is in fact of class C1.

From now on we shall consider P D Op.p/ with p 2 Sm
1 .T/ a real elliptic

symbol. We know the P has a self-adjoint realization as operator acting in L2.X/

with the domain Hm.X/ (the usual Sobolev space of orderm). By Lemma 1.11, we

obtain that �
P D P�
 , for all 
 2 � and thus we can use the Floquet theory in

order to study the spectrum of the operator P .
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1.3.2. �e Floquet transformation. In this subsection we very brie�y recall the

main results of the Bloch-Floquet theory in order to �x some precise statements

to be referred in the arguments that follow. For the long history of this subject and

the main references concerning its development we send to [22, 24].

We shall consider the spaces

S0
�.„/ WD ¹v 2 S0.„/ W v.y C 
; �/ D eih�;
iv.y; �/;

for all 
 2 �; such that v.y; �C 
�/ D v.y; �/;

and all 
 2 ��º;

(1.20)

endowed with the topology induced by S0.„/,

F0.„/ WD ¹v 2 S0
�.„/ W v 2 L2.E �E�/º; (1.21)

endowed with the norm

kvkF0.„/ WD

�

jE�j�1

Z

E

Z

E�

jv.x; �/j2 dx d�

�1=2

;

and

Fs.„/ WD ¹v 2 S0
�.„/ W .hDis ˝ id/v 2 F0.„/º; for all s 2 R; (1.22)

endowed with the norm

kvkFs.„/ WD k.hDis ˝ id/vkF0.„/:

We have

Fm;� D Fm;�C
� ; for all 
� 2 ��,

and

Fm.„/ D

Z̊

T�

Fm;� d�

(see [7]).

Lemma 1.14. �e operator

U� W L2.X/ �! F0.„/

de�ned by

.U�u/.x; �/ WD
X


2�

eih�;
iu.x � 
/; for all .x; �/ 2 „,

is a unitary operator with inverse denoted W� .



�e Peierls–Onsager e�ective Hamiltonian 461

Lemma 1.15. With the above notations the following statements are true.

(1) �e operator
yP WD P ˝ id

leaves invariant the subspace S0
�.„/.

(2) Considered as an unbounded operator in the Hilbert space F0.„/, the oper-

ator yP is self-adjoint and lower semi-bounded on the domain Fm.„/ and is

unitarily equivalent to the operator P .

Taking into account the Remark 4.12 we note that for any � 2 X� the operatorP

induces on the Hilbert space F0;� a self-adjoint operator with domain Fm;� that we

shall denote by yP .�/; we evidently have the periodicity yP.�C
�/ D yP .�/ for any


� 2 ��. If we identify K0 with L2
loc \ S0

�.„/ � L2.E/, the same Remark 4.12

implies that the operator yP .�/ is unitarily equivalent with the operator {P.�/ that

is induced by Op..id ˝���/p/ on the space K0; this is a self-adjoint lower semi-

bounded operator on the domain Km;� (identi�ed with Hm
loc.X/\ S0

�.X/, with the

norm khD C �im � kL2.E/). More precisely,

{P .�/ D ���
yP .�/�� ; for all � 2 X�:

Lemma 1.16. For any

z 2 C n
[

�2X�

�. {P.�//:

the application

X� 3 � 7�! . {P .�/ � z/�1 2 B.K0/

is of class C1.X�/.

Remark 1.17. Let us note that Km;� is compactly embedded into K0 and thus,

the operator {P .�/ has compact resolvent for any � 2 X�; it is clearly lower semi-

bounded uniformly with respect to � 2 X�, taking into account that

{P .� C 
�/ D ��
� {P .�/�
� ; for all 
� 2 ��:

We deduce that

�. yP.�// D �. {P .�// D ¹�j .�/ºj �1;

where for any � 2 X� and any j � 1, �j .�/ is a real �nitely degenerated eigenvalue

and

lim
j !1

�j .�/ D 1; for all � 2 X�I
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we can always renumber the eigenvalues and suppose that �j .�/ � �j C1.�/ for

any j � 1 and for any � 2 X�. Due to the ��-periodicity of yP .�/ we have that

�j .�C 
�/ D �j .�/ for any j � 1, for any � 2 X� and for any 
� 2 ��. �ese are

the Bloch bands of the operator yP .

�e following lemma is a consequence of semi-boundedness and the min-max

principle.

Lemma 1.18. For each j � 1 the function

T� 3 � 7�! �j .�/ 2 R

is continuous on T� uniformly in j � 1.

It is obvious that

OP D

Z̊

T�

OP� d�;

and then standard arguments allow us to prove the following proposition.

Proposition 1.19. We have the following spectral decomposition

�.P / D �. yP / D
1
[

kD1

Jk

with

Jk WD �k.T�/

a compact interval in R.

Standard arguments concerning the direct integrals of self-adjoint operators

(see [24]) imply the following statement. We shall need this result only in the

special case of the constant magnetic �eld (see subsection 3.2).

Proposition 1.20. Considering zP� as operator acting in S0.X2/we shall denote by
zP 0

� the self-adjoint operator that it induces in L2.X2/ with domain zHm
A�
.X2/, as in

Proposition 2.9, and by zP 00
� the self-adjoint operator that it induces in L2.X �T/

with domain Km
� .X

2/ (as in Proposition 2.23). �en we have the equality

�. zP 0
�/ D �. zP 00

� /: (1.23)
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1.3.3. �e localized quasi-Bloch functions. �e operator P WD Op.p/ de�ned

above has also a self-adjoint realization in L2.T/ with domain Km;0 being also

lower semibounded. We shall very brie�y recall the main steps for the construction

of a �nite dimensional system of linearly independent localized vectors associated

to a given compact energy interval (the localized quasi-Bloch functions) following

[10, 11, 8]).

Lemma 1.21. �ere exist N 2 N
�, C > 0, and a linear independent family

¹�1; : : : ; �N º � S.T/, such that

.P�u; u/L2.T/ � C�1kuk2
Km=2;0

� C
N

X

j D1

j.u; �j /L2.T/j
2; for all u 2 Km;0:

(1.24)

Remark 1.22. From Remark 4.12 we know that for any � 2 X� the operator

P�;� is self-adjoint and lower semibounded in L2.T/ on the domain Km;� . If we

identify Km;� with Hm
loc.X/ \ S0

�.X/ endowed with the norm khD C �imukL2.E/,

we deduce that the operator P� is self-adjoint in L2
loc.X/\S0

�.X/ with the domain

Km;� . Noticing that P D ��P���� and �� W Ks;� ! Fs;� is a unitary operator for

any s 2 R and any � 2 X�, it follows that P generates in F0;� a self-adjoint lower

semibounded operator on the domain Fm;� .

Lemma 1.23. Suppose given a compact interval I � R. �en, there exist a con-

stant C > 0, a natural integer N 2 N, and the family of functions ¹ 1; : : : ;  N º
having the following properties.

a)  j 2 C1.„/ (due to the smoothness of our symbols).

b) For all .y; �/ 2 „, 
� 2 ��, and 1 � j � N ,

 j .y; �C 
�/ D  j .y; �/:

c) ¹ j .�; �/º1�j �N is an orthonormal system in F0;� for any � 2 X�. We denote

by T� the complex linear space generated by the family ¹ j .�; �/º1�j �N in

F0;� and by T?
�

its orthogonal complement in the same Hilbert space.

d) For all u 2 Fm;� \ T?
�

, � 2 X�, and � 2 I;

..P � �/u; u/F0;�
� Ckuk2

F0;�
: (1.25)
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Lemma 1.24. Under the assumptions of Lemma 1.23 we denote by …� the or-

thogonal projection on T� in the Hilbert space F0;� and by S.�; �/ the unbounded

operator in T?
�

de�ned on the domain Fm;� \T?
�

by the action of .1�…�/.P ��/.
�en,

a) the operatorS.�; �/ is self-adjoint and invertible and S.�; �/�1 2 B.T?
�

IT?
�
/

uniformly with respect to .�; �/ 2 T� � I ;

b) the operator S.�; �/�1 also belongs to B.T?
�

IFm;�/ uniformly with respect to

.�; �/ 2 T� � I .

We de�ne now the family of N functions

�j .x; �/ WD e�ih�;xi j .x; �/; for all .x; �/ 2 „; 1 � j � N; (1.26)

with the family ¹ j º1�j �N de�ned in Lemma 1.23. One can prove that

Lemma 1.25. �e functions ¹�j º1�j �N de�ned in (1.26) have the following prop-

erties:

a) �j 2 C1.„/;

b) for all .x; �/ 2 „ and all 
 2 �,

�j .x C 
; �/ D �j .x; �/I

c) for all .x; �/ 2 „ and all 
� 2 ��,

�j .x; � C 
�/ D e�ih
�;xi�j .x; �/;

d) For any ˛ 2 Nd and any s 2 R there exists a strictly positive constant C˛;s

such that, for all � 2 X�,

k.@˛
� �j /.�; �/kKs;�

� C˛;s : (1.27)

2. Proof of �eorem 1.1

Let us consider given a family ¹B�º�2Œ��0;�0� of magnetic �elds on X satisfying

Hypothesis H.1 and ¹A�º�2Œ��0;�0� an associated family of vector potentials (we

shall always work with the vector potentials given by formula (1.4)). Let us also

consider a given family of symbols ¹p�º�2Œ��0;�0� that satisfy Hypotheses H.2–H.6.
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We shall use the notations (1.5). It is evident that with the above hypothesis and

notations we have that Vp� 2 Sm
1 .X/ and is elliptic, both properties being uniform

in � 2 Œ��0; �0�. �en our results in [12] imply that the operator P� WD OpA�. Vp�/,

the main operator we are interested in, is self-adjoint and lower semi-bounded in

L2.X/ having the domainHm
A�
.X/ (the magnetic Sobolev space of orderm de�ned

in De�nition 2.5 below); moreover, with the choice of vector potential that we

made, it is essentially self-adjoint on the space of Schwartz test functions S.X/.

We use the notations from the Appendices. From example 1.6 it follows that

¹ Qp�ºj�j��0
2 Sm

1;�.X
2/ so that by de�ning

q�.X/ WD Op. Qp�.X; �//;

for all s 2 R,

¹q�ºj�j��0
2 S0

0;�.XIB.HsCm
� .X/IHs

�.X///:

We can then de�ne the auxiliary operator

zP� WD OpA�.q�/:

Proposition 4.13 and Example 4.14 imply the following statement.

Lemma 2.1. With the above notations and under Hypotheses H.1–H.6,

(1) For any s 2 R,

zP� 2 B.S.XIHsCm.X//I S.XIHs.X///

\ B.S0.XIHsCm.X//I S0.XIHs.X///;

uniformly in � 2 Œ��0; �0�;

(2) zP� 2 B.S.X2/I S.X2// \ B.S0.X2/I S0.X2//, uniformly in � 2 Œ��0; �0�;

(3) zP� considered as unbounded operator in L2.X2/ with domain S.X2/ is sym-

metric for any � 2 Œ��0; �0�.

We consider the isomorphisms

 W X2 �! X2;

.x; y/ 7�! .x; x � y/;
(2.1)

such that

 �1 D  ;
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and

� W X2 �! X2;

.x; y/ 7�! .x C y; y/;
(2.2)

such that

��1.x; y/ D .x � y; y/:

�e operators � and�� that they induce onL2.X2/ ( �u WD uı ) are evidently

unitary.

Lemma 2.2. For any u 2 S.X2/, the image zP�umay be written in any of the three

equivalent forms

. zP�u/.x; y/ D .2�/�d

Z

X

Z

X�

eih�;y� Qyi!A�.x; x C Qy � y/

p�

�

x � y C
.y C Qy/

2
;
.y C Qy/

2
; �

�

u.x C Qy � y; Qy/ d Qy d�;

(2.3)

. � zP� 
�u/.x; y/ D ŒOpA� ...id ˝�y ˝ id/p�/

ı/u.�; y/�.x/; (2.4)

and

.�� zP�.�
�/�1u/.x; y/ D ŒOp.��xA�/...�x ˝ id ˝ id/p�/

ı/u.x; �/�.y/: (2.5)

Proof. Let us �x u 2 S.X2/. Starting from the de�nitions of zP� and q� and using

oscillating integral techniques, we get

. zP�u/.x; y/ D .2�/�d

Z

X

Z

X�

eih�;x� Qxi!A�.x; Qx/Œq�..x C Qx/=2; �/u. Qx; �/�.y/ d Qx d�

D .2�/�2d

Z

X

Z

X

Z

X�

eih�;y� Qyi!A� .x; Qx/p�

�.x C Qx/

2
;
.y C Qy/

2
; �

�

� Z

X�

eih�;x� Qx�yC Qyi d�

�

u. Qx; Qy/ d Qx d Qy d�:

By the Fourier inversion theorem the inner oscillating integral is in fact

.2�/d Œ�x�yC Qyı0�. Qx/;

and we obtain (2.3). In order to prove (2.4), we apply (2.3) to  �u. Formula (2.5)

can be easily obtained in a similar way, starting with (2.3) applied to .��/�1u.
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We end the proof of (2.5) by observing that

!A� .x C y; x C Qy/ D exp

²

� i

Z

ŒxCy;xC Qy�

A�

³

D exp

²

i

�

y � Qy;

1
Z

0

A�..1� s/.x C y/C s.x C Qy// ds

�³

D exp

²

i

�

y � Qy;

1
Z

0

.��xA�/..1� s/y C s Qy/ ds

�³

D exp

²

� i

Z

Œy; Qy�

.��xA�/

³

D !.��xA�/.y; Qy/:

Corollary 2.3. We have the following relations between the operators zP� and P�:

(1) for any v 2 S0.X/,

.�� zP�.�
�/�1.ı0 ˝ v// D ı0 ˝ .P�v/; (2.6)

and

. � zP� 
�.v ˝ ı0// D .P�v/˝ ı0I (2.7)

(2) if p� does not depend on its second variable y 2 X, then

 � zP� 
� D P� ˝ id : (2.8)

�e idea of the proof of our �eorem 1.1 follows the main lines of the proof

in [8] modi�ed in order to �t with the use of the magnetic pseudodi�erential cal-

culus. �e main steps of the proof are the following. We start with the “auxiliary

operator” zP� de�ned in (1.8) and use a Floquet transformation with respect to

the second variable (with respect to which it is �-periodic). �is transformation

puts into evidence a family of pseudodi�erential operators on a torus and a fam-

ily of Wannier functions, similar to those above, is obtained. With these Wannier

functions we de�ne a Grushin type problem similar to the one de�ned in [8] but

with magnetic pseudodi�erential operators. Now come the important technical

steps. First one extends the magnetic pseudodi�erential operators to some spaces

of tempered distributions in two variables and proves that the inversion formula

remains true with a magnetic pseudodi�erential operator as inverse. In order to
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make use of Corollary 2.3 that connects our main Hamiltonian with the “auxil-

iary” operator we have to put into evidence a Hilbert space L0. �e idea is to

restrict our Grushin problem to the direct sum of this Hilbert space with a second

Hilbert space V0 and prove that the inversion relation still holds true. �e control

of the continuity of the operators appearing in the Grushin problem restricted to

these new Hilbert spaces is achieved through a non-trivial group of results based

on the technical results in Lemmata 4.1, 4.2, 2.37, and 2.38 that allow to prove the

criteria in Propositions 2.39, 2.42, and 2.44 that replace the criteria proposed in

[8]. Once these technical facts clari�ed, Corollary 2.3 easily allow us to �nish the

proof of �eorem 1.1.

Let us recall from [12] some facts about magnetic Sobolev spaces.

Remark 2.4. As in [13] one can de�ne a family of symbols ¹qs;�º.s;�/2R�Œ��0;�0�

such that

(1) qs;� 2 S s
1.X/ uniformly with respect to � 2 Œ��0; �0�;

(2) qs;�]
B�q�s;� D 1;

(3) for all s > 0,

qs;�.x; �/ D h�is C �;

for some su�ciently large � > 0 and q0;� D 1.

Evidently that for any Hilbert space A, using the de�nitions introduced in

subsection 4.2 we can identify the symbol qs;� with the operator-valued symbol

qs;� idA and thus we may consider that qs;� 2 S s
1.XIB.A// uniformly with respect

to � 2 Œ��0; �0�. We shall use the notations

Qs;� WD OpA� .qs;�/

and

Q0
s;� WD Qs;� ˝ id :

Let us still set

zQs;� WD  �Q0
s;� 

�;

with  from (2.1) and let us note that due to Corollary 2.3 (2) the operators zQs;�

and Qs;� are in the same relation as the pair zP� and P�.
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De�nition 2.5. For magnetic �elds ¹B�º�2Œ��0;�0� verifying Hypothesis H.1 and

for choices of vector potentials given by (1.4) we de�ne the following spaces.

(1) �e magnetic Sobolev space of order s 2 R is the space

Hs
A�
.X/ WD ¹u 2 S0.X/ W Qs;�u 2 L2.X/º

endowed with the following natural quadratic norm

kukHs
A�

.X/ WD kQs;�ukL2.X/;

for all u 2 Hs
A�
.X/. Hs

A�
.X/ a Hilbert space containing S.X/ as a dense

subspace.

(2) We shall de�ne also

H1
A�
.X/ WD

\

s2R

Hs
A�
.X/;

with the projective limit topology.

(3) For s 2 R we consider also the spaces

zHs
A�
.X2/ WD ¹u 2 S0.X2/ W zQs;�u 2 L2.X2/º

endowed with the following natural quadratic norm

kuk zHs
A�

.X2/ WD k zQs;�ukL2.X2/;

for all u 2 zHs
A�
.X2/. zHs

A�
.X2/ is a Hilbert space containing S.X2/ as a dense

subspace.

Remark 2.6.  � is a unitary operator from zHs
A�
.X2/ onto Hs

A�
.X/˝ L2.X/.

Lemma 2.7. For any s 2 R we have that zP� 2 B. zHsCm
A�

.X2/I zHs
A�
.X2// uniformly

for � 2 Œ��0; �0�.

Remark 2.8. Suppose given r 2 Sm
1 .X

2/. �en evidently r.�; y; �/ 2 Sm
1 .X/

uniformly for y 2 X. If B is a magnetic �eld on X with components of class

BC1.X/ andA an associated vector potential having components of classC1
pol.X/

we de�ne the magnetic pseudodi�erential operator with parameter y 2 X

.Ru/.x; y/ WD .2�/�d

Z

X

Z

X�

eih�;x� Qxi!A.x; Qx/r..x C Qx/=2; y; �/u. Qx; y/ d Qx d�;

(2.9)

for all u 2 S.X2/ and all .x; y/ 2 X2.
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A straightforward modi�cation of the arguments from [12], and denoting by

R� the operator de�ned as above in (2.9) with a vector potential A�, allows to

prove that

R� 2 B.S.X2/I S.X2// \ B.HsCm
A�

.X/˝ L2.X/IHs
A�
.X/˝ L2.X//; (2.10)

for all s 2 R. Moreover, if r is elliptic, then for any u 2 L2.X2/ and any s 2 R we

have the equivalence relation

u 2 HsCm
A�

.X/˝ L2.X/ () R�u 2 Hs
A�
.X/˝ L2.X/: (2.11)

Proposition 2.9. zP� is a self-adjoint operator in L2.X2/ with domain zHm
A�
.X2/.

It is essentially self-adjoint on S.X2/.

2.1. �e Grushin problem. We consider the Floquet transformation acting on

the second variable of L2.X � X/.

De�nition 2.10. We set

S0
�.X

2 � X�/ WD
®

v 2 S0.X2 � X�/ W

v.x; y C 
; �/ D eih�;
iv.x; y; �/ for all 
 2 �,

v.x; y; � C 
�/ D v.x; y; �/ for all 
� 2 ��

¯

,

endowed with the topology induced by S0.X2 � X�/.

De�nition 2.11. We set

F0.X
2 � X�/ WD S0

�.X
2 � X�/ \ L2

loc.X
2 � X�/ \ L2.X �E � E�/

endowed with the norm

kvkF0
WD

v

u

u

t
jE�j�1

Z

X

Z

E

Z

E�

jv.x; y; �/j2 dx dy d�; for all v 2 F0.X
2 � X�/;

(2.12)

that makes F0.X
2 � X�/ into a Hilbert space.

Lemma 2.12. �e map

.zU�u/.x; y; �/ WD
X


2�

eih�;
iu.x; y � 
/

de�ned on S.X2/, extends as a unitary operator

zU� W L2.X2/ �! F0.X
2 � X�/:
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Lemma 2.13. Let zP� be the operator de�ned in (1.8) and

zP�;� WD zP� ˝ id;

as a linear continuous operator in S0
�.X

2 � X�/. �en

zU�
zP� D zP�;�

zU� on S0.X2/:

De�nition 2.14. We de�ne the operator

zQs;�;� WD zQs;� ˝ id on S0
�.X

2 � X�/:

De�nition 2.15. For any s 2 R we de�ne

Fs;�.X
2 � X�/ WD ¹v 2 S0

�.X
2 � X�/ W zQs;�;�v 2 F0.X

2 � X�/º;

that is evidently a Hilbert space for the norm

kvkFs;� WD k zQs;�;�vkF0
:

Lemma 2.16. �e operator

zU� W zHs
A�
.X2/ �! Fs;�.X

2 � X�/

is unitary.

Lemma 2.17. �e operator zP�;� de�ned on Fm;�.X
2 � X�/ is self-adjoint in the

space F0.X
2 � X�/.

De�nition 2.18. Let � 2 X� and s 2 R.

(1) We de�ne

S0
�.X

2/ WD ¹u 2 S0.X2/ W .id ˝��
 /u D eih�;
iu for all 
 2 �º;

with the topology induced by S0.X2/.

(2) Further, we de�ne

Hs
�;�.X

2/ WD ¹u 2 S0
� .X

2/ W zQs;�u 2 L2.X � E/º;

endowed with the norm

kukHs
�;�

WD k zQs;�ukL2.X�E/:

(3) Finally, we de�ne

Ks
�.X

2/ WD Hs
0;�.X

2/:
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Remark 2.19. As already noted in the proof of Lemma 2.13, for any u 2 S0.X2/

we have

.id ˝��
 / zP�u D zP�.id ˝��
 /u; for all 
 2 �.

It follows that the operators zP� and zQs;� leave the space S0
�
.X2/ invariant.

We note that

S0
0.X

2/ � S0
�.X

2/:

Let us also note that for s D 0 the spaces de�ned in (2) and (3) above do not

depend on � and will be denoted by H� .X
2/ and respectively by K.X2/; this last

one may be identi�ed with L2.X � T/.

Lemma 2.20. Let us consider the map de�ned by (2.1). �en for any s 2 R the

adjoint  � is a unitary operator

Ks
�.X

2/ �! Hs
A�
.X/˝ L2.T/:

In particular Ks
�.X

2/ is a Hilbert space having S.X � T/ as a dense subspace.

Lemma 2.21. For any � 2 X� and s 2 R the operator

‡� W S.X2/ �! S.X2/

de�ned by

.‡�u/.x; y/ WD eih�;x�yiu.x; y/;

induces a unitary operator

Hs
�;�.X

2/ �! Ks
�.X

2/:

In particular, Hs
�;�
.X2/ is a Hilbert space containing

S� .X
2/ WD ‡�1

� ŒS.X � T/�

as a dense subspace.

Proof. Let us prove �rst that for any � 2 X� we have the equality zP�‡� D ‡�
zP�,

on S0.X2/. It is clearly enough to prove it on S.X2/; this is a direct consequence

of (2.3), because .xC Qy�y/� Qy D x�y. �en we also have that zQs;�‡� D ‡�
zQs;�

on S0.X2/. We note further that ‡� takes the space S0
�
.X2/ into the space S0

�.X
2/,

while the operator zQs;� leaves invariant both spaces S0
�
.X2/ and S0

�.X
2/. It is then

easy to see that for u 2 S0
�
.X2/we have the equivalence relation u 2 Hs

�;�
.X2/ (

) ‡�u 2 Ks
�.X

2/ and the equality k‡�ukKs
�

D kukHs
�;�

. �e last statement is

obvious by Lemma 2.20.
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Lemma 2.22. For any s 2 R we have that zP� 2 B.KsCm
� .X2/IKs

�.X
2// uniformly

for � 2 Œ��0; �0�.

Proof. We use the fact that � W Ks
�.X

2/ ! Hs
A�
.X/˝L2.T/ is a unitary operator

leaving S.X � T/ invariant.

Proposition 2.23. zP� is a self-adjoint operator in K.X2/ � L2.X � T/ with

domain Km
� .X

2/; it is essentially self-adjoint on S.X � T/.

As we have already noted in Remark 4.8, the symbol p0.x; y; �/ at � D 0 does

not depend on the �rst variable x 2 X; thus if we set

p0.y; �/ WD p0.0; y; �/

and

r�.x; y; �/ WD p�.x; y; �/� p0.y; �/;

and we note that p0 2 Sm
1 .T/ is real and elliptic, we can write

p� D p0 C r�; lim
�!0

r� D 0; in Sm
1 .X � T/: (2.13)

We apply the construction of the Wannier functions (Subsection 1.3.3) to the op-

erator P0 WD Op.p0/. We set

K0 WD K0;0 � L2.T/ � L2.E/;

and, for any � 2 X�, we de�ne the linear operators P0;� as in Remark 1.13 and

RC.�/u WD ¹.u; �j /K0
º1�j �N ; for all u 2 K0; (2.14)

and

R�.�/u WD
X

1�j �N

uj�j .�; �/; for all u 2 C
N : (2.15)

We evidently have that RC.�/ 2 B.K0ICN /, R�.�/ 2 B.CN IK0/ and, by (1.27),

both are BC1 functions of � 2 X�. With these operators we can now de�ne the

Grushin type operator

P0.�; �/ WD

�

P0;� � � R�.�/

RC.�/ 0

�

2 B.Km;� � C
N IK0 � C

N /; (2.16)

for all .�; �/ 2 X� � I .
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Proposition 2.24. With the above notations,

a) as a function of .�; �/ 2 X� � I ,

P0 2 C1.X� � I IB.Km;0 � C
N IK0 � C

N //

and for, any ˛ 2 N
d and any k 2 N,

.@˛
� @

k
�P0/.�; �/ 2 B.Km;� � C

N IK0 � C
N /

uniformly in .�; �/ 2 X� � I ;

b) if we consider P0.�; �/ as an unbounded operator in K0 � C
N with domain

Km;� � C
N , then, for any .�; �/ 2 X� � I , P0.�; �/ is self-adjoint;

c) the operator P0.�; �/ has an inverse

E0.�; �/ WD

�

E0.�; �/ E0
C.�; �/

E0
�.�; �/ E0

�;C.�; �/

�

2 B.K0 � C
N IKm;� � C

N /; (2.17)

uniformly bounded with respect to .�; �/ 2 X� � I ;

d) as a function of .�; �/ 2 X� � I ,

E0 2 C1.X� � I IB.K0 � C
N IKm;0 � C

N //;

and, for any ˛ 2 N
d and any k 2 N,

.@˛
� @

k
�E0/.�; �/ 2 B.K0 � C

N IKm;� � C
N /

uniformly in .�; �/ 2 X� � I .

Proof. We need to make the change of representation

U.�/ WD

�

�� 0

0 1

�

W Ks;� � C
N �! Fs;� � C

N ; (2.18)

Q.�; �/ D U.�/P0.�; �/U.�/
�1 W Fm;� � C

N �! F0;� � C
N ; (2.19)

for all .�; �/ 2 X� � I , and note that

Q.�; �/ WD

�

P0 � � zR�.�/
zRC.�/ 0

�

; (2.20)



�e Peierls–Onsager e�ective Hamiltonian 475

where, with the family of functions ¹ j º1�j �N introduced above (see Subsec-

tion 1.3.3), we de�ne, for any � 2 T�,

zRC.�/u WD ¹.u;  j .�; �//F0;�
º1�j �N 2 C

N ; for all u 2 F0;� ; (2.21)

and

zR�.�/u WD
N

X

j D1

uj j .�; �/ 2 F0;� ; for all u WD ¹u1; : : : ; uN º 2 C
N : (2.22)

Evidently we have that for all � 2 T�, zRC.�/ 2 B.F0;� ICN / and all zR�.�/ 2
B.CN IF0;�/. It is then easy to see that for any values of .�; �/ 2 T��I the operator

Q.�; �/ acting as an unbounded linear operator in the Hilbert space F0;� � C
N is

self-adjoint on the domain Fm;� � C
N . Moreover, using Lemma 1.24, one can

prove that the operator Q.�; �/ de�ned in (2.20) is bijective and has an inverse

Q.�; �/�1 2 B.F0;� �C
N IFm;� �C

N / uniformly with respect to .�; �/ 2 T� � I .

�e proposition follows then easily.

In particular, we observe that

P0.�; �/ 2 S0
0 .XIB.Km;� � C

N IK0 � C
N //; (2.23)

and

E0.�; �/ 2 S0
0 .XIB.K0 � C

N IKm;� � C
N //; (2.24)

uniformly for � 2 I .

Let us consider now the operator

P�.x; �; �/ WD

�

q�.x; �/ � � R�.�/

RC.�/ 0

�

; � 2 I; � 2 Œ��0; �0�; .x; �/ 2 „;

(2.25)

where we recall that q�.x; �/ WD Op. Qp�.x; �; �; �//, Qp�.x; y; �; �/ WD p�.x; y; �C�/.
Taking into account Proposition 4.10 from the Appendices we observe that q� 2
S0

0 .XIB.Km;� IK0// uniformly in � 2 Œ��0; �0�; thus

P�.x; �; �/ 2 S0
0 .XIB.Km;� � C

N IK0 � C
N //; (2.26)

uniformly with respect to .�; �/ 2 I � Œ��0; �0�.
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Lemma 2.25. �e operator

P�;� WD OpA� .P�.�; �; �//

belongs to B.Km
� .X

2/ � L2.XICN /IK.X2/ � L2.XICN // uniformly with respect

to .�; �/ 2 I � Œ��0; �0�. Moreover, considering P�;� as an unbounded linear

operator in the Hilbert spaceK.X2/�L2.XICN / it de�nes a self-adjoint operator

on the domain Km
� .X

2/ � L2.XICN /.

Proof. If we set

R�;� WD OpA�.R�.�//;

then we can write

P�;� D

� zP� � � R�;�

RC;� 0

�

: (2.27)

Taking into account Lemma 2.22 we may conclude that zP� 2 B.Km
� .X

2/IK.X2//

uniformly with respect to � 2 Œ��0; �0�. Noticing that R�.�/ D RC.�/
� and be-

longs to S0
0 .XIB.CN IK0//, Proposition 4.17 implies that

R�;� D R�
C;� 2 B.L2.XICN /IK.X2//

uniformly with respect to � 2 Œ��0; �0�. �is gives us the �rst part of the state-

ment of the lemma. �e self-adjointness follows from the self-adjointness of zP�

in K.X2/ on the domain Km
� .X

2/ and this follows by Proposition 2.23.

Lemma 2.26. �e operator

E0;�;� WD OpA� .E0.�; �//

belongs to B.K.X2/ � L2.XICN /IKm
� .X

2/ � L2.XICN // uniformly with respect

to .�; �/ 2 I � Œ��0; �0�.

Proof. We can write

E0;�;� D

�

E0
�;�

E0
C;�;�

E0
�;�;�

E0
�C;�;�

�

; (2.28)

with

E0
�;� WD OpA�.E0.�; �//;

E0
˙;�;� WD OpA�.E0

˙.�; �//;

E0
�C;�;� WD OpA�.E0

�C.�; �//:
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By (2.24), it follows that E0.�; �/ 2 S0
0 .XIB.K0 �C

N IK0 �C
N // uniformly with

respect to � 2 I . In order to prove the boundedness result in the lemma it is

enough to show that

�

zQm;� 0

0 1

�

E0;�;� 2 B.K.X2/ � L2.XICN /IK.X2/ � L2.XICN //; (2.29)

uniformly with respect to .�; �/ 2 I�Œ��0; �0�; here zQm;� is de�ned before De�ni-

tion 2.5, with some suitable identi�cations. In that De�nition we also argued that

the operator zQm;� corresponds to the operatorQm;� from Remark 2.4 transformed

by doubling the variables starting from the operator valued symbol qm;� . We may

thus conclude that zQm;� is obtained by the OpA� quantization of a symbol from

S0
0 .XIB.Km;� IK0//. Taking into account that E0.�; �/ 2 S0

0 .XIB.K0IKm;�//

and E0
C.�; �/ 2 S0

0 .XIB.CN IKm;�//, the property (2.29) follows by the Compo-

sition �eorem 4.15 a) and by Proposition 4.17.

�eorem 2.27. For a su�ciently small �0 > 0, for .�; �/ 2 I � Œ��0; �0� the

operator P�;� from Lemma 2.25 has an inverse

E�;� WD

�

E.�; �/ EC.�; �/

E�.�; �/ E�C.�; �/

�

2 B.K.X2/ � L2.XICN /IKm
� .X

2/ � L2.XICN //;

(2.30)

uniformly with respect to .�; �/ 2 Œ��0; �0� � I . Moreover,

E�;� D E0;�;� C R�;�;

R�;� D OpA� .��;�/;

and

lim
�!0

��;� D 0 in S0
0 .XIB.K0 � C

N IKm;� � C
N //:

In particular,

E�C.�; �/ D OpA�.E�C
�;�
/; lim

�!0
E�C

�;�
D E0

�C.�; �/ in S0
0 .XIB.CN ICN //;

(2.31)

uniformly with respect to � 2 I .
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Proof. �e symbols E0.�; �/ and P0.�; �/ appearing in Lemma 2.25 and resp. in

Lemma 2.26 do not depend on x 2 X and on � 2 Œ��0; �0�. We can thus consider

that

E0.�; �/ 2 S0
0;�.XIB.K0 � C

N IKm;� � C
N //

and

P0.�; �/ 2 S0
0;�.XIB.Km;� � C

N IK0 � C
N //

uniformly for � 2 I . By (2.13), (2.16), and (2.25),

P�.x; �; �/ � P0.�; �/ D

�

q0
�.x; �/ 0

0 0

�

;

where

q0
�.x; �/ WD Op. Qr�.x; �; �; �//

and

Qr�.x; y; �; �/ WD r�.x; y; � C �/:

By Proposition 4.10 we conclude that

lim
�!0

ŒP�.x; �; �/ � P0.�; �/� D 0

in S0
0 .XIB.Km;� � C

N IK0 � C
N // uniformly with respect to � 2 I .

Let us set

P0
�;� WD OpA�.P0.�; �//:

We can write that

P�;�E0;�;� D P0
�;�E0;�;� C .P�;� � P0

�;�/E0;�;�

in B.K.X2/ � L2.X W CN /IK.X2/ � L2.XICN //. Using the Composition �eo-

rem 4.15 and the above remarks, we conclude that

P�;�E0;�;� D 1 C OpA�.s�;�/

in B.K.X2/ � L2.XICN /IK.X2/ � L2.XICN //, where

lim
�!0

s�;� D 0;

in S0
0 .XIB.K0 � C

N IK0 � C
N // uniformly with respect to � 2 I . It follows by

Proposition 4.18 that for �0 > 0 small enough, the operator1COpA�.s�;�/ is invert-

ible in B.K.X2/�L2.XICN /IK.X2/�L2.XICN // for any .�; �/ 2 Œ��0; �0�� I
and it exists a symbol t�;� such that

lim
�!0

t�;� D 0;
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in S0
0 .XIB.K0 � C

N IK0 � C
N // uniformly with respect to � 2 I and

Œ1 C OpA�.s�;�/�
�1 D 1 C OpA� .t�;�/: (2.32)

Let us de�ne

E�;� WD E0;�;�Œ1 C OpA� .t�;�/�

and let us note that it is a right inverse for P�;�. As the operator P�;� is self-adjoint,

it follows that E�;� de�ned above is also a left inverse for it. �e other properties

in the statement of the theorem are evident now.

Remark 2.28. �e operator E�C.�; �/ de�ned in (2.31) is the e�ective Hamil-

tonian associated to the Hamiltonian P� and the interval I . Its importance will

partially be explained in the following Corollary (proved in [8]).

Corollary 2.29. Under the assumptions of �eorem 2.27, for any � 2 I and any

� 2 Œ��0; �0�,

� 2 �. zP�/ () 0 2 �.E�C.�; �//: (2.33)

We shall need further the following commutation property.

Lemma 2.30. Let 
� 2 ��. �en, for all .�; �/ 2 Œ��0; �0� � I ,

�

‡
� 0

0 �
�

�

P�;� D P�;�

�

‡
� 0

0 �
�

�

; (2.34)

as operators on S.X � T/ � S.XICN / (identifying the test functions on the torus

with the associated periodic distributions).

Remark 2.31. Of course the inverse of the operator P�;� veri�es a commutation

equation similar to (2.34) on S.X�T/�S.XICN / and for any .�; �/ 2 Œ��0; �0��I .

2.2. �e auxiliary Hilbert spaces V0 and L0

De�nition 2.32. For any s 2 R and any � 2 Œ��0; �0�, we de�ne the subspace of

tempered distributions (the map  de�ned in (2.1))

Ls.�/ WD
°

w 2 S0.X2/ W

there exist v 2 Hs
A�
.X/ such that w � wv D

X


2�

 �.v ˝ ı�
 /
±

;

endowed with the quadratic norm

kwvkLs.�/ WD kvkHs
A�

.X/:
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Lemma 2.33. Ls.�/ is a Hilbert space and is embedded continuously into S0.X2/.

L0 does not depend on �.

It is easy to show that the previous de�nition is meaningful, the series appear-

ing in the de�nition of the spaceLs.�/ being convergent as tempered distributions.

Remark 2.34. For any w 2 Ls.�/ we have the identity

.id ˝�˛/w D w; for all ˛ 2 �.

Lemma 2.35. For any � 2 Œ��0; �0�,

(1) zP� 2 B.Lm.�/IL0/ uniformly in � 2 Œ��0; �0�;

(2) the operator zP� considered as an unbounded operator in the Hilbert space

L0 de�nes a self-adjoint operator zP 000
� having domain Lm.�/ and this self-

adjoint operator is unitarily equivalent with P�.

Proof. 1. Let us choose two test functions v and ' from S.X/. Using formula (2.4),

we obtain that, for all .x; y/ 2 X2,

Œ. � zP� 
�/.v ˝ '/�.x; y/ D ŒOpA� .Œ.id ˝�y ˝ id/p��

ı/v�.x/'.y/:

In this equality we insert

'.y/ � '�.y/ WD ��d�
�y C 


�

�

for some .�; 
/ 2 R
�
C�� and for any y 2 X, where we denoted by � a test function

of class C1
0 .X/ that satis�es the condition

Z

X

�.y/dy D 1:

With this choice we consider the limit for � & 0 as tempered distribution on X2.

Taking into account that for � & 0 we have that '� converges in S0.X/ to ı�
 and

using Hypothesis H.6, we conclude that

. � zP� 
�/.v ˝ ı�
 / D .P�v/˝ ı�
 ; for all v 2 S.X/; 
 2 �:

Extending by continuity we can write the equality

. � zP� 
�/.v ˝ ı�
 / D .P�v/˝ ı�
 ; for all v 2 S0.X/; 
 2 �: (2.35)
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We conclude that for any u 2 Lm.�/ of the form

u � uv WD
X


2�

 �.v ˝ ı�
 /

for some v 2 Hm
A�
.X/ we can write

zP�u D  �
�

X


2�

. � zP� 
�/.v ˝ ı�
 /

�

D
X


2�

 �..P�v/˝ ı�
 /:

�e �rst statement follows now from the fact that P� 2 B.Hm
A�
.X/IL2.X// uni-

formly with respect to � 2 Œ��0; �0�.

2. We observe that the linear operator

U s
� W Hs

A�
.X/ �! Ls.�/

de�ned by

U s
� v WD

X


2�

 �.v ˝ ı�
 /

is in fact a unitary operator for any pair .s; �/ 2 R� Œ��0; �0�. Following the argu-

ments from the proof of the �rst point of the lemma, zP�U
s
� D U s

� P� on Hm
A�
.X/

(the domain of self-adjointness of P�).

De�nition 2.36. We use the notation

ı
 WD �
ı;

with ı the Dirac distribution of mass 1 supported in ¹0º and 
 2 �, and we de�ne

V0 WD
°

w 2 S0.X/ W there exists f 2 l2.�/ such that w D
X


2�

f
ı�


±

;

endowed with the norm

kwkV0
WD

s

X


2�

jf
 j2;

for all w 2 V0.

It is evident that V0 is a Hilbert space and is canonically unitarily equivalent

with l2.�/. �e Hilbert space V0 has a “good comparison property” with respect

to the scale of magnetic Sobolev spaces. Let us choose vector potentials ¹A�ºj�j��0

having components of class C1
pol.X/ and de�ning the magnetic �elds ¹B�ºj�j��0

satisfying Hypothesis H.1.
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Lemma 2.37. For any s > d and for any � 2 Œ��0; �0� we have the algebraic and

topological inclusion

V0 ,�! H�s
A�
.X/;

uniformly with respect to � 2 Œ��0; �0�.

Proof. Let

u D
X


2�

f
ı�
 2 V0:

�en

g WD Q�s;�u D
X


2�

f
Q�s;�ı�
 :

Computing in S0.X/ for s > d we see that Q�s;�ı�
 belongs in fact to C.X/ (as

Fourier transform of an integrable function) and, moreover,

.Q�s;�ı�
 /.x/ D .2�/�d

Z

X�

eih�;xC
i!A�.x;�
/q�s;�

�x � 


2
; �

�

d�:

�us for all N 2 N there exists CN > 0 such that for any � 2 Œ��0; �0� and x 2 X,

we have

j.Q�s;�ı�
 /.x/j � CN hx C 
i�N :

Choosing N > d we note that, for any x 2 X,

jg.x/j � CN

X


2�

jf
 jhx C 
i�N

� CN

�

X


2�

jf
 j2hx C 
i�N
�1=2�

X


2�

hx C 
i�N
�1=2

:

�us g 2 L2.X/ and kgkL2.X/ � CN kukV0
. Finally this is equivalent with the

fact that Qs;�g 2 H�s
A�
.X/ and there exists a strictly positive constant C such that

kukH�s
A�

.X/ � CkukV0
; for all u 2 V0; � 2 Œ��0; �0�: (2.36)
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We shall need a property characterizing the elements from V0 (replacing the

property proposed in [8] that is not easy to generalize to our situation).

Lemma 2.38. For any s > d there exists Cs > 0 such that

X


2�

ju.
/j2 � Cskuk2
Hs

A�
.X/
; for all u 2 S.X/; � 2 Œ��0; �0�: (2.37)

Proof. For any �xed u 2 S.X/ let us de�ne

v WD Qs;�u 2 S.X/:

�en u D Q�s;�v and thus for any N 2 N and for any x 2 X we can write that

u.x/ D

Z

„

eih�;x�yihx�yi�2N!A� .x; y/
h

.1���/
N q�s;�

�x C y

2
; �

�i

v.y/ dy µ�:

�us there exist C and C 0 such that for any � 2 Œ��0; �0� and for any x 2 X one

has

ju.x/j2 � C 2

� Z

X

hx � yi�2N dy

�� Z

X

hx � yi�2N jv.y/j2 dy

�

� C 0

Z

X

hx � yi�2N jv.y/j2 dy:

We choose now N 2 N large enough and note that

X


2�

ju.
/j2 � C 0

Z

X

�

X


2�

h
 � yi�2N
�

jv.v/j2 dy

� C 00kvk2
L2.X/

� Cskuk2
Hs

A�
.X/
:

Proposition 2.39. a) Given any u 2 V0 there exists u0 2 H1
A�
.X/ such that

u D
X


�2��

�
�u0:

Moreover the map

V0 3 u 7�! u0 2 H1
A�
.X/

is continuous uniformly with respect to � 2 Œ��0; �0�.
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b) Given any u0 2 H1
A�
.X/, the series

X


�2��

�
�u0

converges in S0.X/ and its sum denoted by u belongs in fact to V0. Moreover

the map

H1
A�
.X/ 3 u0 7�! u 2 V0

is continuous uniformly with respect to � 2 Œ��0; �0�.

Proof. We shall use the notation

u
� WD �
�u0;

for any 
� 2 �� and for any tempered distribution u0 2 S0.X/.

a) Lemma 2.37 implies that for any s > d and any � 2 Œ��0; �0� we have that

V0 � H�s
A�
.X/ and there exists a strictly positive constant Cs > 0, independent

of �, such that

kukH�s
A�

.X/ � CskukV0
:

Let us choose a real function � 2 C1
0 .X�/ such that

X


�2��

�
�� D 1 on X�.

For any distribution u 2 V0 we de�ne

u0 WD OpA�.�/u:

Due to the fact that � 2 S�1
1 .X/, it follows by the properties of magnetic Sobolev

spaces (see [12]) that u0 2 H1
A�
.X/ and the map

V0 3 u 7�! u0 2 H1
A�
.X/

is continuous uniformly with respect to � 2 Œ��0; �0�. We de�ne

g
� WD Q�s;��
�u0 D �
�OpA� ..id ˝��
�/q�s;�/u0

where we have used the arguments in the proof of Proposition 4.6 for the last

equality. We note that the family ¹h
�is.id ˝��
�/q�s;�ºj�j��0;
�2��
is bounded

as subset of S s
1.„/ and thus there exists a constant C > 0 such that

kg
�kL2.X/ � C h
�i�sku0kHs
A�

.X/; for all � 2 Œ��0; �0�, 

� 2 ��.
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We conclude that it exists an element g 2 L2.X/ such that

X


�2��

g
� D g in L2.X/

and we have the estimation

kgkL2.X/ � C 0ku0kHs
A�

.X/ for any � 2 Œ��0; �0�.

Due to the properties of the magnetic pseudodi�erential calculus (see [12]) it fol-

lows that the series
P


�2�� u
� converges in H�s
A�
.X/ to an element v 2 H�s

A�
.X/

and

kvkH�s
A�

.X/ � Cku0kHs
A�

.X/

uniformly with respect to � 2 Œ��0; �0�. We still have to show that v D u as

tempered distributions. Let us �x a test function ' 2 S.X/ and compute

hv; 'i D
X


�2��

h�
�OpA�.�/u; 'i

D
X


�2��

hOpA� .��
��/�
�u; 'i

D
X


�2��

hu;OpA� .��
��/'i

where we have used the relation �
�u D u veri�ed by all the elements from V0.

Let us also note that, for any s > d ,

X


�2��

��
�� D 1 in S s
1.„/,

so that we can write that

' D
X


�2��

OpA� .��
��/' in S.X/.

We conclude that

hv; 'i D hu; 'i for any ' 2 S.X/,

and thus v D u.
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b) During the proof of point (a) we have shown that for any s > d there exists

a constant Cs > 0 such that for any u0 2 H1
A�
.X/ and for any � 2 Œ��0; �0� the

series
P


�2��

u
� converges in H�s
A�
.X/ to an element u 2 H�s

A�
.X/ and

kukH�s
A�

.X/ � Csku0kHs
A�

.X/; for all u0 2 H1
A�
.X/; � 2 Œ��0; �0�: (2.38)

Let us recall the Poisson formula

X


�2��

�
� D
.2�/d

jE�j

X


2�

ı�
 ; in S0.X/: (2.39)

Let us �rst suppose that u0 2 S.X/. Multiplying in the equality (2.39) with u0

we obtain

u D
.2�/d

jE�j

X


2�

u0.�
/ı�
 ; in S0.X/: (2.40)

Lemma 2.38 implies that u 2 V0 and, for any s > d ,

kukV0
� Csku0kHs

A�
.X/; for all u0 2 S.X/; � 2 Œ��0; �0�: (2.41)

We come now to the general case u0 2 H1
A�
.X/. Let us �x some � 2 Œ��0; �0�

and some s > d . Using the fact that S.X/ is dense in Hs
A�
.X/ we can choose a

sequence ¹uk
0ºk2N� � S.X/ such that

u0 D lim
k%1

uk
0 in Hs

A�
.X/.

For each element uk
0 we can associate, as we proved above, an element uk 2 V0

such that

kukkV0
� Cskuk

0kHs
A�

.X/; for all k 2 N
�;

and

kuk � ulkV0
� Cskuk

0 � ul
0kHs

A�
.X/; for all .k; l/ 2 ŒN��2:

It follows that there exists v 2 V0 such that

v D lim
k%1

uk in V0

and

kvkV0
� Csku0kHs

A�
.X/:
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We know that

uk D
X


�2��

�
�uk
0

so that by (2.38) we deduce

kuk � ukH�s
A�

.X/ � Cskuk
0 � u0kHs

A�
.X/ �!

k%1
0:

In conclusion

uk �!
k%1

u in H�s
A�
.X/,

and

uk �!
k%1

v in V0.

But Lemma 2.37 implies that V0 is continuously embedded in H�s
A�
.X/ and we

conclude that v D u.

�e following lemma can be proved similarly to Lemma 2.37

Lemma 2.40. For any s > d and any � 2 Œ��0; �0� we have a continuous embed-

ding

L0 ,�! H�s
A�
.X/˝ L2.T/

uniformly with respect to � 2 Œ��0; �0�.

We shall obtain a characterization of the space L0 that is similar to our Propo-

sition 2.39. We use the notation

H1
A�
.X/˝ L2.T/ WD

\

s2R

.Hs
A�
.X/˝ L2.T//;

with the natural projective limit topology and need the following technical lemma.

Lemma 2.41. Suppose given some u0 2 H1
A�
.X/˝ L2.T/ and for any 
� 2 ��,

let us de�ne

u
� WD ‡
�u0:

For any s > d there exists Cs > 0 such that the series
P


�2�� u
� converges in

H�s
A�
.X/˝ L2.T/ and the sum denoted by v 2 H�s

A�
.X/˝ L2.T/ satis�es

kvkH�s
A�

.X/˝L2.T/ � Csku0kHs
A�

.X/˝L2.T/; (2.42)

for all u0 2 H1
A�
.X/˝ L2.T/ and all � 2 Œ��0; �0�.
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Proof. From the proof of Proposition 4.6, it follows that on S.X/ we have the

equality

Q�s;��
� D �
�OpA� ..id ˝��
�/q�s;�/;

so that �nally

.Q�s;� ˝ id/u
� D ‡
� ŒOpA� ..id ˝��
�/q�s;�/˝ id�u0: (2.43)

Taking into account that the family ¹h
�is.id ˝��
�/q�s;�º.�;
�/2Œ��0;�0���� is a

bounded subset of S s.X/, it follows the existence of a constant C > 0 such that

for any � 2 Œ��0; �0� one has

k.Q�s;� ˝ id/u
�kL2.X/˝L2.T/ � C h
�i�sku0kHs
A�

.X/˝L2.T/; (2.44)

for all u0 2 H1
A�
.X/˝ L2.T/. It follows that the series

X


�2��

.Q�s;� ˝ id/u
�

converges in L2.X/ ˝ L2.T/ uniformly for � 2 Œ��0; �0�. �e stated inequality

follows now by summing up the estimation (2.44) over all ��.

Proposition 2.42. For any u 2 L0 there exists a vector u0 2 H1
A�
.X/ ˝ L2.T/

such that

u D
X


�2��

‡
�u0; in S0.X2/: (2.45)

Moreover, the application

L0 3 u 7�! u0 2 H1
A�
.X/˝ L2.T/

is continuous uniformly with respect to � 2 Œ��0; �0�.

Proof. We recall the notation u
� WD ‡�

u0 and, as in the proof of point (a) of

Proposition 2.39 we �x some real function � 2 C1
0 .X/ satisfying the identity

X


�2��

�
�� D 1 on X.

For any u 2 L0 let set

u0 WD .OpA�.�/˝ id/u:
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We note that � 2 S�1
1 .X/; thus, by Lemma 2.40, u0 2 H1

A�
.X/ ˝ L2.T/, and

the continuity property at the end of the proposition is clearly true. We still have

to verify (2.45). Following the streamline of the proof of Lemma 2.41, the series
P


�2�� u
� converges in S0.X2/. An argument similar to that in the proof of

Proposition 2.39 a) proves that on S.X2/ we have the equality

X


�2��

OpA� .��
��/˝ id D id : (2.46)

From the proof of Proposition 4.6 we have that

OpA� .��
��/ D ��
�OpA�.�/�
� :

For any u 2 L0, there exists v 2 L2.X/ such that

u D
X


2�

 �.v ˝ ı�
 /I

thus, for any 
� 2 ��,

‡
� �.v ˝ ı�
 / D  �..id ˝�
�/.v ˝ ı�
 // D  �.v ˝ ı�
 /;

and we conclude that ‡
�u D u. Using these results we deduce that, for any

u 2 L0,

ŒOpA� .��
��/˝ id�u D ‡�
�.OpA� .�/˝ id/u D ‡�
�u0 D u�
� :

We apply now equality (2.46) to the vector u 2 L0 in order to obtain that u D
P


�2��u
� , as tempered distributions.

In order to prove the reciprocal statement of Proposition 2.42 we need a tech-

nical lemma similar to Lemma2.38.

Lemma 2.43. For any s > d there exists Cs > 0 such that

v

u

u

t

Z

X

ju.x; x/j2dx � CskukHs
A�

.X/˝L2.T/; (2.47)

for all u 2 S.X � T/ and all � 2 Œ��0; �0�.
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Proof. Let us �x some u 2 S.X � T/ and � 2 Œ��0; �0�, and let us de�ne

v WD .Qs;� ˝ id/u 2 S.X � T/:

It follows that u D .Q�s;� ˝ id/v and we deduce that for any N 2 N (that we shall

choose su�ciently large),

u.x; y/ D

Z

„

hx � zi�2N eih�;x�zi!A� .x; z/

h

..id ���/
Nq�s;�/

�x C z

2
; �

�i

v.z; y/ dz µ �; for all .x; y/ 2 X2:

We deduce that there exist the strictly positive constants CN ; C
0
N ; : : :, such that

ju.x; y/j � CN

Z

X

hx � zi�2N jv.z; y/j dz;

and

ju.x; y/j2 � C 0
N

Z

X

hx � zi�2N jv.z; y/j2 dz:

In conclusion,
Z

X

ju.x; x/j2dx D
X


2�

Z

E

ju.x C 
; x/j2 dx

� C 0
N

X


2�

Z

E

Z

X

hz � 
i�2N jv.z; x/j2 dz dx

� C 00
N

Z

E

Z

X

jv.z; x/j2 dz dx

D C 00
N kvk2

L2.X�T/

� C 2
s kuk2

Hs
A�

.X/˝L2.T/
:

We come now to the reciprocal statement of Proposition 2.42.

Proposition 2.44. Suppose given u0 2 H1
A�
.X/˝L2.T/ and for any 
� 2 �� let

us consider

u
� WD ‡
�u0:

�en the series
P


�2�� u
� converges in S0.X2/ to an element u 2 L0. Moreover,

the application

H1
A�
.X/˝ L2.T/ 3 u0 7�! u 2 L0

is continuous uniformly with respect to � 2 Œ��0; �0�.



�e Peierls–Onsager e�ective Hamiltonian 491

Proof. For any s > d and any u0 2 H1
A�
.X/˝ L2.T/, Lemma 2.41 implies that

P


�2�� u
� converges in H�s
A�
.X/˝ L2.T/ to an element u 2 H�s

A�
.X/˝ L2.T/

and there exists Cs > 0 such that

kukH�s
A�

.X/˝L2.T/ � Csku0kHs
A�

.X/˝L2.T/; (2.48)

for all u0 2 Hs
A�
.X/˝ L2.T/ and all � 2 Œ��0; �0�.

We still have to prove that u 2 L0 and that the continuity property stated above

is true. As in the proof of Proposition 2.39 b) we make use of the Poisson for-

mula (2.39). Once we note that

 �.id ˝�
�/ D ‡
� ;

we conclude that, for any u0 2 S.X2/,

X


�

u
� D
.2�/d

jE�j

h

X


2�

 �.id ˝ı�
 /
i

u0: (2.49)

But we note that
P


2�  
�.id ˝ı�
 / belongs to S0.X�T/ and we deduce that the

identity (2.49) also holds for u0 2 S.X � T/. In this case,  �.id ˝ı�
 / � u0 also

belongs to S0.X2/ and, for any ' 2 S.X2/,

h �.id ˝ı�
 / � u0; 'i D h �.id ˝ı�
 /; u0'i

D hid ˝ı�
 ; 
�.u0'/i

D

Z

X

'.x; x C 
/u0.x; x/ dx:

Let us set

v0.x/ WD u0.x; x/;

so that we obtain a test function v0 2 S.X/ such that

 �.id ˝ı�
 / � u0 D  �.v0 ˝ ı�
 /:

Let us further set

v WD ..2�/d=jE�j/v0 2 S.X/ � L2.X/:

If we use this equality into (2.49), then we obtain

u WD
X


�2��

u
� D
X


2�

 �.v ˝ ı�
 / 2 L0: (2.50)
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Let us verify now the continuity property. Take both u0 2 H1
A�
.X/ ˝ L2.T/

and ¹u0;kºk2N� � S.X � T/, as well as some s > d such that

u0 D lim
k%1

u0;k in Hs
A�
.X/˝ L2.T/.

We introduce the notations

vk.x/ WD
.2�/d

jE�j
u0;k.x; x/; for all x 2 X

and

uk WD
X


2�

 �.vk ˝ ı�
 / 2 L0:

By Lemma 2.43, we deduce that there exists a strictly positive constantCs such

that, for any � 2 Œ��0; �0� and for any pair of indices .k; l/ 2 ŒN��2,

kuk � ulkL0
WD kvk � vlkL2.X/ � Csku0;k � u0;lkHs

A�
.X/˝L2.T/; (2.51a)

and

kukkL0
� Csku0;kkHs

A�
.X/˝L2.T/: (2.51b)

By (2.51), we deduce that there exists v 2 L2.X/ limit of the sequence ¹vkºk2N�

in L2.X/ such that

kvkL2.X/ � Csku0kHs
A�

.X/˝L2.T/; for all � 2 Œ��0; �0�: (2.52)

Let us de�ne

Qu WD
X


2�

 �.v ˝ ı�
 / 2 L0:

By (2.52), we deduce that

k QukL0
� Csku0kHs

A�
.X/˝L2.T/; for all � 2 Œ��0; �0�: (2.53)

In order to end the proof we have to show that

Qu D u WD
X


�2��

u
� in H�s
A�
.X/˝ L2.T/.

If we use now inequality (2.48) with u0 replaced by u0;k � u0, we obtain

kuk � ukH�s
A�

.X/˝L2.T/ � Csku0;k � u0kHs
A�

.X/˝L2.T/:

We deduce that u D lim
k%1

uk in H�s
A�
.X/˝ L2.T/. But, by (2.51), Qu D lim

k%1
uk in

L0 and thus, due to Lemma 2.40, also in H�s
A�
.X/˝ L2.T/. In conclusion Qu D u

and the proof is �nished.
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Lemma 2.45. We have

Ls.�/ D ¹w 2 S0.X2/ W zQs;�w 2 L0º

and its de�nition norm is equivalent with the norm

kwk0
Ls.�/ WD k zQs;�wkL0

:

If s � 0, then Ls.�/ is continuously embedded into L0, uniformly with respect to

� 2 Œ��0; �0�.

Proof. Let

w � wv D
X


2�

 �.v ˝ ı�
 / for some v 2 Hs
A�
.X/.

�en, by de�nition, Qs;�v 2 L2.X/, so that we deduce that

zQs;�wv D  �.Qs;� ˝ id/ �wv 2 L0:

Reciprocally let w 2 S0.X2/ be such that zQs;�w belongs to L0. By the de�nition

of this last space it follows that there exists f 2 L2.X/ such that

zQs;�w D
X


2�

 �.f ˝ ı�
 /:

It follows that

w D
X


2�

 �..Q�s;�f /˝ ı�
 /:

But then we have that

v D Q�s;�f 2 Hs
A�
.X/;

and in conclusionw belongs toLs.�/. �e result concerning the norm follows from

the Closed Graph �eorem and the last statement from the continuous embedding

of Hs
A�
.X/ into L2.X/ for any s � 0 uniformly for � 2 Œ��0; �0�.

Lemma 2.46. For anym 2 RC and for any � 2 Œ��0; �0�, we have the topological

embedding

Lm.�/ ,�! S0.XIHm.T//; (2.54)

uniformly with respect to � 2 Œ��0; �0�.

Proof. By Lemmata 2.45 and 2.40 it follows that we have the topological embed-

ding

Lm.�/ ,�! S0.XIL2.T//

uniformly with respect to � 2 Œ��0; �0�. From here on we proceed as in the proof

of the second inclusion in Lemma 4.2.
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We shall study now the e�ective Hamiltonian E�C.�; �/, that we de�ned in

�eorem 2.27. �e following two technical results will be used in proving the

boundedness and self-adjointness of E�C.�; �/ in VN
0 .

Lemma 2.47. Suppose given an operator-valued symbol q 2 S0
0 .XIB.CN // that

is Hermitian (i.e. q.x; �/� D q.x; �/, for all .x; �/ 2 „) and veri�es the invariance

property

.id ˝�
�/q D q; for all 
� 2 ��:

�en, for any � 2 Œ��0; �0� the operator OpA� .q/ belongs to B.VN
0 / uniformly

with respect to � 2 Œ��0; �0� and is self-adjoint. �e application

S0
0 .XIB.CN // 3 q 7�! OpA� .q/ 2 B.VN

0 /

is continuous uniformly with respect to � 2 Œ��0; �0�.

Proof. �e invariance with respect to translations from �� assumed in the state-

ment implies that the operator-valued symbol q is in fact a ��-periodic function

with respect to the second variable � 2 X� and thus can be decomposed in a

Fourier series (as tempered distributions in S0.„IB.CN //)

q.x; �/ D
X

˛2�

Oq˛.x/e
ih�;˛i; Oq˛.x/ WD jE�j�1

Z

E�

e�ih�;˛iq.x; �/d�: (2.55)

Due to the regularity of the symbol functions we deduce that for any ˇ 2 N
d and

for any k 2 N there exists a strictly positive constant Cˇ;k such that

j.@ˇ
x Oq˛/.x/j � Cˇ;kh˛i�k ; for all x 2 X; ˛ 2 �; (2.56)

and we conclude that the series in (2.55) converges in fact in BC1.„IB.CN // �
S0

0 .XIB.CN //. By (2.55), we deduce that

.OpA� .q/u/.x/ D
X

˛2�

.Q˛u/.x/; for all x 2 X; u 2 S.XICN /; (2.57)

where Q˛ is the linear operator de�ned on S.XICN / by the oscillating integral

.Q˛u/.x/ WD

Z

„

eih�;x�yC˛i!A�.x; y/Oq˛

�x C y

2

�

u.y/ dy µ�

D !A�.x; x C ˛/Oq˛

�

x C
˛

2

�

.��˛u/.x/:

(2.58)
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Both (2.57) and (2.58) may be extended by continuity to any u 2 S0.XICN /.

Let us consider

u � uf D
X


2�

f


ı�
 2 VN

0 ;

for some f 2 Œl2.�/�N . We can write

Q˛u D
X


2�

!A� .�
 � ˛;�
/Oq˛

�

� 
 �
˛

2

�

f


ı�˛�


D
X


2�

!A� .�
; ˛ � 
/Oq˛

�

� 
 C
˛

2

�

f

�˛

ı�
 :

(2.59)

By (2.59) in (2.57),

OpA�.q/u D
X


2�

Qf
ı�
 ; (2.60)

and

Qf
 WD
X

˛2�

!A�.�
; ˛ � 
/Oq˛

�

� 
 C
˛

2

�

f

�˛

D
X

˛2�

!A� .�
;�˛/Oq
�˛

�

�

 C ˛

2

�

f
˛
:

(2.61)

Let us verify that Qf 2 Œl2.�/�N . By (2.56) and (2.61) it follows that for any k 2 N

(su�ciently large) there exists Ck > 0 such that

j Qf
 j � Ck

X

˛2�

h
 � ˛i�k jf
˛
j

� Ck

s

X

˛2�

h
 � ˛i�k

s

X

˛2�

h
 � ˛i�k jf
˛
j2;

so that we have the estimation

k Qf k2
Œl2.�/�N

D
X


2�

j Qf
 j2 � C 0
X

˛2�

jf
˛
j2 D C 0kf k2

Œl2.�/�N
: (2.62)

By (2.60) and (2.62),OpA�.q/ 2 B.VN
0 / uniformly with respect to � 2 Œ��0; �0�

and the continuity of the application

S0
0 .XIB.CN // 3 q 7�! OpA� .q/ 2 B.VN

0 /

uniformly with respect to � 2 Œ��0; �0� clearly follows by (2.61) and (2.55).
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In order to prove the self-adjointness of OpA� .q/ we �x v 2 VN
0 of the form

v � vg D
X


2�

g


ı�
 for some g 2 Œl2.�/�N .

�en we note that

8

ˆ

ˆ

<

ˆ

ˆ

:

OpA�.q/v D
X


2�

Qg
ı�
 ;

Qg
 D
X

˛2�

!A�.�
;�˛/Oq
�˛

�

�

 C ˛

2

�

g
˛
:

(2.63)

Let us point out the obvious equalities

ŒOq˛.x/�
� D Oq�˛.x/I !A�.�
;�˛/ D !A� .�˛;�
/ (2.64)

in order to deduce that

.OpA� .q/u; v/
V

N
0

D
X


2�

. Qf
 ; g

/CN

D
X

.˛;
/2�2

�

!A� .�
;�˛/Oq
�˛

�

�

 C ˛

2

�

f
˛
; g




�

CN

D
X

.˛;
/2�2

�

f
˛
; !A�.�˛;�
/Oq˛�


�

�

 C ˛

2

�

g



�

CN

D
X

˛2�

.f
˛
; Qg˛/CN

D .u;OpA� .q/v/
V

N
0
:

Remark 2.48. Let us point out that a shorter proof of the boundedness ofOpA� .q/

on VN
0 may be obtained by using the Proposition 2.39 characterizing the distribu-

tions from V0. �e proof we have given has the advantage of giving the explicit

form of the operator OpA� .q/ when we identify VN
0 with Œl2.�/�N (see (2.60)

and (2.61)). Moreover, the self-adjointness is a very easy consequence of these

formulae.

In order to prove that the e�ective Hamiltonian E�C.�; �/ satis�es the hy-

pothesis of the Lemma 2.47 we shall need the commutation properties stated in

Lemma 2.30 and Remark 2.31, that we now recall in the following lemma.
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Lemma 2.49. With the notations introduced in Lemma 2.30 and Remark 2.31, for

any 
� 2 �� and for any .�; �/ 2 Œ��0; �0� � I ,

8

<

:

R�;��
� D ‡
�R�;�;

RC;�‡
� D �
�RC;�;
(2.65)

and

8

<

:

E.�; �/‡
� D ‡
�E.�; �/;

E�C.�; �/�
� D �
�E�C.�; �/;

8

<

:

EC.�; �/�
� D ‡
�EC.�; �/;

E�.�; �/‡
� D �
�E�.�; �/:

(2.66)

Lemma 2.50. Under the hypothesis of �eorem 2.27, E�C.�; �/ 2 B.VN
0 / uni-

formly with respect to .�; �/ 2 Œ��0; �0� � I and is self-adjoint on the Hilbert

space VN
0 .

Proof. We recall that E�C.�; �/ WD OpA� .E
�;C
�;�

/ where E
�;C
�;�

2 S0
0 .XIB.CN //.

In order to use Lemma 2.47 we show that E
�;C
�;�

is Hermitian and ��-periodic in

the second variable � 2 X�. In order to prove the symmetry we use the fact that

the operator E�;� is self-adjoint on K.X2/�L2.XICN / and deduce that E�C.�; �/

is self-adjoint on the Hilbert space L2.XICN /. �us we have the equality

ŒE�C.�; �/�
� D E�C.�; �/;

from which we deduce that

OpA� .ŒE
�;C
�;�

�� �E�;C
�;�

/ D 0:

As the application

OpA� W S0.„/ �! B.S.X/I S0.X//

is an isomorphism (see [17]) it follows the symmetry relation

ŒE
�;C
�;�

�� D E
�;C
�;�

:

For the��-periodicity we use one of the equalities in (2.66) that can also be written

as

��
�E�C.�; �/�
� D E�C.�; �/:
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Considering now the arguments in the proof of Proposition 4.6 for the OpA� quan-

tization, we can write

��
�E�C.�; �/�
� D OpA� ..id ˝��
�/E�C
�;�
/:

We repeat the above argument based on the injectivity of the quantization map

(cf. [17]) to get

.id ˝��
�/E�C
�;�

D E�C
�;�
;

for all 
� 2 ��.

Lemma 2.51. RC;� 2 B.L0IVN
0 / uniformly with respect to � 2 Œ��0; �0�.

Proof. Let us recall that RC;� D OpA� .RC/ with RC 2 S0
0 .XIB.K0ICN // so

that �nally we deduce that RC;� 2 B.S0.XIK0/I S0.XICN //. By Proposition 4.17,

for any s 2 R we get RC;� 2 B.Hs
A�
.X/˝K0I ŒHs

A�
.X/�N / uniformly with respect

to � 2 Œ��0; �0�. Suppose �xed some u 2 L0; by Proposition 2.42 we deduce the

existence of u0 2 H1
A�
.X/˝ K0 � H1

A�
.X/˝ L2.T/ such that

u D
X


�

‡
�u0;

with convergence in S0.X2/. In fact Lemma 2.41 implies the convergence of the

above series in S0.XIK0/. Using now also the second equation in (2.65) we can

write that

RC;�u D
X


�

RC;�‡
�u0 D
X


�

�
�RC;�u0:

But we have seen that RC;�u0 2 ŒH1
A�
.X/�N and thus Proposition 2.39 b) implies

that RC;�u 2 VN
0 . �e fact that RC;� 2 B.L0IVN

0 / uniformly with respect to

� 2 Œ��0; �0� follows now using the following three facts:

(1) the above mentioned continuity property of RC;� that follows by Proposi-

tion 4.17;

(2) the uniform continuity of the application

L0 3 u 7�! u0 2 H1
A�
.X/˝ K0

with respect to � 2 Œ��0; �0�, that follows by Proposition 2.42;

(3) the uniform continuity of the application

H1
A�
.X/ 3 RC;�u0 7�! RC;�u 2 VN

0

with respect to � 2 Œ��0; �0�, that follows by Proposition 2.39 b).
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Lemma 2.52. E�.�; �/ 2 B.L0IVN
0 / uniformly with respect to the pair .�; �/ 2

Œ��0; �0� � I .

Proof. Let us recall that E�.�; �/ D OpA� .E�
�;�
/ with E�

�;�
2 S0

0 .XIB.K0ICN //

uniformly with respect to the pair .�; �/ 2 Œ��0; �0� � I . We continue as in the

above proof of Lemma 2.51.

Lemma 2.53. EC.�; �/2 B.VN
0 ILm.�// uniformly with respect to the pair .�; �/2

Œ��0; �0� � I .

Proof. Let us recall thatEC.�; �/ D OpA� .EC
�;�
/withEC

�;�
2 S0

0 .XIB.CN IKm;�//

uniformly with respect to .�; �/ 2 Œ��0; �0� � I . We conclude that EC.�; �/ 2
B.S0.XICN /I S0.XIKm;0//. Noticing that by Lemma 2.37 the space VN

0 embeds

continuously into S0.XICN / we conclude that EC.�; �/ 2 B.VN
0 I S0.XIKm;0//

uniformly with respect to .�; �/ 2 Œ��0; �0� � I . Fix now u 2 VN
0 . By Proposi-

tion 2.39, there exists an element u0 2 ŒH1
A�
.X/�N such that

u D
X


�2��

�
�u0

converging as tempered distribution and such that the application

VN
0 3 u 7�! u0 2 ŒH1

A�
.X/�N

is continuous uniformly with respect to � 2 Œ��0; �0�. Using this result and the

second equation in (2.66) we obtain that

EC.�; �/u D
X


�2��

EC.�; �/�
�u0 D
X


�2��

‡
�.EC.�; �/u0/:

Using now Lemma 2.45, in order to prove that EC.�; �/u 2 Lm.�/ all we have to

prove is that zQm;�EC.�; �/u 2 L0. In order to do that we shall need two of the

properties of the operator zQm;� that we have proved in the previous sections.

First we know that

zQm;�‡
� D ‡
� zQm;�; for all 
� 2 ��:
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Secondly, at the end of the proof of Lemma 2.26 we have shown that

zQm;� D OpA� .Qqm;�/

with Qqm;� 2 S0
0 .XIB.Km;� IK0// uniformly with respect to � 2 Œ��0; �0�. If we

use the Composition �eorem 4.15 we note that Qqm;�]
B�EC

�;�
2 S0

0 .XIB.CN IK0//

uniformly with respect to .�; �/ 2 Œ��0; �0� � I . Applying then Proposition 4.17

gives that zQm;�EC.�; �/ 2 B.ŒH1
A�
.X/�N IH1

A�
.X/˝ K0/ uniformly with respect

to .�; �/ 2 Œ��0; �0� � I . We conclude that

zQm;�EC.�; �/u D
X


�2��

‡
� zQm;�.EC.�; �/u0/;

and this last element belongs to L0 as implied by Proposition 2.44. �e conclusion

of the lemma follows now from the following remarks.

(1) �e application

VN
0 3 u 7�! u0 2 ŒH1

A�
.X/�N

is continuous uniformly with respect to .�; �/ 2 Œ��0; �0� � I , as proved in

Proposition 2.39 a).

(2) �e application

H1
A�
.X/˝ K0 3 zQm;�EC.�; �/u0 7�! zQm;�EC.�; �/u 2 L0

is continuous uniformly with respect to .�; �/ 2 Œ��0; �0� � I , as proved in

Proposition 2.44.

Lemma 2.54. R�;� 2 B.VN
0 ILm.�//uniformly with respect to � 2 Œ��0; �0�.

Proof. Let us recall that R�;� D OpA� .R�/ with R� 2 S0
0 .XIB.CN IKm;�// as

implied by its de�nition and (1.27). Using now the �rst equality in (2.65), we

observe that

R���
� D ‡
�R�;�; for all 
� 2 ��,

and the arguments from the proof of Lemma 2.53 may be repeated and one obtains

the desired conclusion of the lemma.

Lemma 2.55. E.�; �/ 2 B.L0ILm.�// uniformly with respect to the pair .�; �/ 2
Œ��0; �0� � I .



�e Peierls–Onsager e�ective Hamiltonian 501

Proof. Let us recall that E.�; �/ D OpA�.E�;�/ with E�;� 2 S0
0 .XIB.K0IKm;�//

uniformly with respect to .�; �/ 2 Œ��0; �0� � I . As magnetic pseudodi�erential

operator we can then extend it to E.�; �/ 2 B.S0.XIK0/I S0.XIKm;0//. Recalling

that we have a continuous embedding L0 ,! S0.XIK0/ we deduce that E.�; �/ 2
B.L0I S0.XIKm;0//. We use now Proposition 2.42 and the �rst equality in (2.66)

and write that for any u 2 L0 there exists u0 2 H1
A�
.X/˝ K0 such that

E.�; �/u D
X


�2��

E.�; �/‡
�u0 D
X


�2��

‡
�.E.�; �/u0/;

with convergence in the sense of tempered distributions on X2. We deduce by

Proposition 2.42 that the application

L0 3 u 7�! u0 2 H1
A�
.X/˝ K0

is continuous uniformly with respect to � 2 Œ��0; �0� and from the Composition

�eorem 4.15 we deduce that Qqm;�]
B�E�;� 2 S0

0 .XIB.K0// and the proof of the

lemma ends exactly as the proof of Lemma 2.53.

Now we shall prove a variant of �eorem 2.27 in the frame of the Hilbert spaces

V0 and L0.

�eorem 2.56. We suppose veri�ed the hypothesis of �eorem 2.27 and use the

same notations; then we have that

P�;� 2 B.Lm.�/ � VN
0 IL0 � VN

0 /; E�;� 2 B.L0 � VN
0 ILm.�/ � VN

0 /; (2.67)

uniformly with respect to .�; �/ 2 Œ��0; �0� � I . Moreover, for any pair .�; �/ 2
Œ��0; �0� � I the operator P�;� is invertible and its inverse is E�;�.

Proof. �e boundedness properties in (2.67) follow by Lemmata 2.35 (a), 2.50,

2.51, 2.52, 2.53, 2.54, and 2.55. Concerning the invertibility of P�;� let us re-

call that in �eorem 2.27 we have proved that the operator P�;� considered as

operator in B.Km
� .X

2/ � L2.XICN /IK.X2/ � L2.XICN // is invertible and its

inverse is E�;� 2 B.K.X2/ � L2.XICN /IKm
� .X

2/ � L2.XICN //. By (2.26) we

recall that P�;� is a magnetic pseudodi�erential operator with symbol P� of class

S0
0 .XIB.Km;� � CN IK0 � CN // uniformly with respect to .�; �/ 2 Œ��0; �0� � I .

Applying Proposition 4.13 we deduce that

P�;� 2 B.S.XIKm;0/ � S.XICN /I S.XIK0/ � S.XICN //; (2.68)

and extending by continuity we also have that

P�;� 2 B.S0.XIKm;0/ � S0.XICN /I S0.XIK0/ � S0.XICN //: (2.69)
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Similarly, the operator E�;� appearing in �eorem 2.27 has a symbol of class

S0
0 .XIB.K0 � C

N IKm;� � C
N // and thus de�nes �rst an operator of the form

E�;� 2 B.S.XIK0/ � S.XICN /I S.XIKm;0/ � S.XICN //; (2.70)

and extending by continuity we also have that

E�;� 2 B.S0.XIK0/ � S0.XICN /I S0.XIKm;0/ � S0.XICN //: (2.71)

By the �rst inclusion in Lemma 4.2, S.XIKm;0/ ,! Km
� .X

2/, so that from the

invertibility implied by �eorem 2.27 (see above in this proof), it also follows that

the operator P�;� appearing in (2.68) is invertible and its inverse is the operator

E�;� appearing in (2.70). As both operatorsP�;� andE�;� are symmetric, by duality

we deduce that also the operators appearing in (2.69) and (2.71) are the inverse of

one another. �is property, together with the embeddings Lm.�/ ,! S0.XIKm;0/

given by Lemma 2.46, L0 ,! S0.XIKo/ given by Lemma 2.40 and V0 ,! S0.X/

given by Lemma 2.37 allow us to end the proof of the theorem.

We come now to the proof of the main result of this paper.

Proof of �eorem 1.1. We proceed exactly as in the proof of Corollary 2.29. We

start from the equality P�;�E�;� D id
L0˚V

N
0

and use the fact that zP 000
� is a self-

adjoint operator in L0 that is unitarily equivalent with P� (by Lemma 2.35) so that

we deduce that �. zP 000
� / D �.P�/. �en we can write that

0 … �.E�C.�; �// H)

� … �. zP 000
� /; and

. zP 000
� � �/�1 D E.�; �/ � EC;�.�; �/E�C.�; �/

�1E�;�.�; �/;

(2.72)

and

� … �. zP 000
� / H)

0 … �.E�C.�; �//; and

E�C.�; �/
�1 D �RC;�. zP 000

� � �/�1R�;�:

(2.73)

In conclusion we have obtained that � 2 �. zP 000
� / () 0 2 �.E�C.�; �// and this

implies that � 2 �.P�/ () 0 2 �.E�C.�; �//.
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Proof of Corollary 1.2. We apply �eorem 1.1 and the arguments from its proof

above, taking I D K and �0 > 0 su�ciently small. Knowing that

dist.K; �.P0// > 0;

we deduce that we also have

dist.K; �. zP 000
0 // > 0

and thus

sup
�2K

k. zP 000
0 � �/�1kB.L0/ < 1:

By (2.73),

� 2 K H)

0 … �.E�C.0; �// and

E�C.0; �/
�1 D �RC;0. zP 000

0 � �/�1R�;0;

and thus

sup
�2K

kE�C.0; �/
�1k

B.VN
0

/ < 1:

By �eorem 2.27, for any .�; �/ 2 Œ��0; �0� �K,

E�C.�; �/ D E�C.0; �/C S�C.�; �/; S�C.�; �/ WD OpA� .S�C
�;�
/; (2.74)

and

lim
�!0

S�C
�;�

D 0 in S0.XIB.CN //,

uniformly with respect to � 2 K. We note that the symbol S�C
�;�
.x; �/ is ��-

periodic in the second variable � 2 X�, so that by Lemma (2.47) we deduce that

lim
�!0

kS�C.�; �/kB.VN
0 / D 0;

uniformly with respect to � 2 K. We conclude that for �0 > 0 su�ciently small,

the magnetic pseudodi�erential operator E�C.�; �/ is invertible in B.V0/ for any

.�; �/ 2 Œ��0; �0��K; in conclusion 0 … �.E�C.�; �// and thus � … �.P�/ for any

.�; �/ 2 Œ��0; �0� �K.

�e arguments elaborated in the proof of Corollary 1.2 allow to obtain an in-

teresting relation between the spectra of the operators P� and P0, under some

stronger hypotheses.



504 V. Iftimie and R. Purice

Hypothesis I.1. Under the conditions of Hypothesis H.1 we suppose further that

for any pair .j; k/ of indices between 1 and d the families ¹��1B�;jkº0<j�j��0
are

bounded subsets of BC1.X/.

Hypothesis I.2. We suppose that

p�.x; y; �/ D p0.y; �/C r�.x; y; �/

where p0 is a real valued symbol from Sm
1 .T/ with m > 0 and ¹��1r�º0<j�j��0

is

a bounded subset of Sm
1 .X � T/, each symbol r� being real valued.

Hypothesis I.3. �e symbol p0 is elliptic; i.e. there exist C > 0 and R > 0 such

that

p0.y; �/ � C j�jm for any .y; �/ 2 „ with j�j � R.

Remark 2.57. If we come back to the proofs of �eorem 2.27, �eorem 4.15

and Proposition 4.18 and suppose Hypotheses I.1–I.3 to be true, we can prove the

following fact that extends our property (2.31):

for all I � R compact interval, there exist �0 > 0;N 2 N; such that
8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

E�C.�; �/ D E�C.0; �/C S�C.�; �/;

S�C.�; �/ WD OpA� .S�C
�;�
/; for all .�; �/ 2 Œ��0; �0� � I;

the family ¹��1S�C
�;�

º.j�j;�/2.0;�0��I is a bounded subset of S0.XIB.CN //:

(2.75)

Once again we note the ��-periodicity of the symbol S�C
�;�
.x; �/ with respect

to the variable � 2 X� and by Lemma 2.47 we deduce that there exists a strictly

positive constant C1 such that

kS�C.�; �/kB.VN
0

/ � C1�; for all .�; �/ 2 Œ��0; �0� � I: (2.76)

Using Lemmata 2.51 and 2.54 we conclude that there exists a strictly positive

constant C2 such that

kRC;�k
B.L0IVN

0 / C kR�;�k
B.VN

0 ILm.�// � C2; for all � 2 Œ��0; �0�: (2.77)
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Proof of Proposition 1.3. For M � R and ı > 0 we use the notation

Mı WD ¹t 2 R W dist.t;M/ � ıº:

�en we have to prove the inclusions

�.P�/ \ I � �.P0/C� \ I; for all � 2 Œ0; �0�: (2.78)

and

�.P0/ \ I � �.P�/C� \ I; for all � 2 Œ0; �0�: (2.79)

Suppose there exists � 2 I such that dist.�; �.P0// > C�. By Lemma 2.35 we

know that �.P0/ D �. zP 000
0 / so that we deduce that dist.�; �. zP 000

0 // > C� and

conclude that

k. zP 000
0 � �/�1kB.L0/ � .C�/�1: (2.80)

By (2.73),

0 … �.E�C.0; �// and E�C.0; �/
�1 D �RC;0. zP 000

0 � �/�1R�;0:

Using these facts together with (2.77) and (2.80) we obtain the estimation

kE�C.0; �/
�1k

B.VN
0 / � C 2

2 .C�/
�1: (2.81)

Using (2.76) and (2.81) we also obtain

kE�C.0; �/
�1k

B.VN
0

/ � kS�C.�; �/kB.VN
0

/ � C1C
2
2C

�1; for all � 2 Œ��0; �0�:

(2.82)

If we choose now C > 0 such that C > C1C
2
2 , we note that the operator

E�C.�; �/ D E�C.0; �/C S�C.�; �/

is invertible in B.VN
0 / and thus we deduce that 0 … �.E�C.�; �//. It follows then

that � … �.P�/ for any � 2 Œ��0; �0� and inclusion (2.78) follows.

Let us suppose that for some � with j�j 2 .0; �0� there exists � 2 I such that

dist.�; �.P�// > C�:

Recalling that �.P�/ D �. zP 000
� / we deduce that

dist.�; �. zP 000
� // > C�

and thus

k. zP 000
� � �/�1kB.L0/ � .C�/�1: (2.83)
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We also deduce that

0 … �.E�C.�; �// and E�C.�; �/
�1 D �RC;�. zP 000

� � �/�1R�;�:

Using these facts together with (2.77) and (2.80) we obtain

kE�C.�; �/
�1k

B.VN
0 / � C 2

2 .C�/
�1: (2.84)

It follows like above that the operator E�C.0; �/ D E�C.�; �/ � S�C.�; �/ is

invertible in B.VN
0 / and thus we deduce that 0 … �.E�C.0; �//. It follows then

that � … �.P0/ and the inclusion (2.79) follows.

Remark 2.58. �e relations (2.78) and (2.79) clearly imply that the boundaries

of the spectral gaps of the operator P� are Lipschitz functions of � in � D 0.

3. Some particular situations

3.1. �e simple spectral band. In this subsection we shall �nd some explicit

forms for the principal part of the e�ective Hamiltonian E�C.�; �/. We shall sup-

pose Hypotheses H.1–H.6 to be satis�ed. If we suppose that Hypothesis H.7 is

satis�ed, i.e. there exists k � 1 such that Jk is a simple spectral band for P0, then

we have some more regularity for the Floquet eigenvalue �k.�/.

Lemma 3.1. Under Hypothesis H.7, if Jk is a simple spectral band for P0, then

the function �k.�/ is of class C1.T�/.

Proof. Let us �x a circle C in the complex plane having its center on the real axis

and such that Jk is contained in the open interior domain delimited by C and all

the other spectral bands Jl with l ¤ k are contained in the exterior open domain

delimited by C (that is unbounded). �en d.C; �. {P0// > 0 and we de�ne

…k.�/ WD
i

2�

I

C

. {P0.�/ � z/�1dz; for all � 2 X�: (3.1)

It de�nes a function in C1.X�IB.K0// with values one-dimensional orthogonal

projections. Let us �x some point �0 2 X� and some vector �.�0/ in the range of

…k.�0/ having norm 1. We can �nd a su�ciently small open neighborhood V0 of

�0 in X� such that

k…k.�/�.�0/kK0
� .1=2/; for all � 2 V0.
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We de�ne

�.�/ WD k…k.�/�.�0/k
�1
K0
…k.�/�.�0/; for all � 2 V0,

and we note that

.�k.�/ � c/�1 D .. {P0.�/ � c id/�1�.�/; �.�//K0
:

Lemma 1.16 implies that �k 2 C1.V0/ and also there exists C > 0 such that

C � �1.�/ � 1, for all � 2 X�.

Lemma 3.2. With the above de�nitions and notations,

(1) for any .s; �/ 2 R � X� the Hilbert spaces Ks;� and Fs;� are stable under

complex conjugation;

(2) for all � 2 X� and all 
� 2 ��,

{P0.� C 
�/ D ��
� {P0.�/�
�

and

�j .� C 
�/ D �j .�/; for any j � 1I

(3) if the symbol p0 veri�es the property

p0.x;��/ D p0.x; �/; (3.2)

then

{P0.�/u D {P0.��/ Nu; for all u 2 Km;� ; � 2 X�;

�j .��/ D �j .�/; for all j � 1;

…k.�/u D …k.��/ Nu; for all u 2 K0; � 2 X�;

for any simple spectral band Jk of P0.

Proof. �e �rst statement follows by De�nitions (1.17) and (1.18), while the sec-

ond follows by Remark 1.17. As we know that {P0.�/ is induced by

P0;� WD Op..id ˝���/p/

on the Hilbert space K0, it is enough to prove that

P0;�u D P0;�� Nu for all u 2 S.X/,
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but this follows easily by the pseudodi�erential calculus. Let us �x now some point

� 2 X� and some vector u 2 Km;� ; it follows that the vector u is an eigenvector

of {P0.�/ for the eigenvalue �j .�/ if and only if Nu is eigenvector of {P0.��/ for the

eigenvalue �j .�/. We deduce that ¹�j .��/ºj �1 D ¹�j .�/ºj �1; as both sequences

are monotonous we conclude that �j .��/ D �j .�/, for all j � 1.

�e next lemma (see [10]) is important for the construction in the Grushin

problem under Hypothesis H.7.

Lemma 3.3. Supposing that Hypothesis H.7 is also satis�ed and supposing that

p0.y;��/ D p0.y; �/ for any .y; �/ 2 „, we can construct a function � having

the following properties:

(1) � 2 C1.X�IKlm;0/, for any l 2 N;

(2) �.y C 
; �/ D �.y; �/; for all .y; �/ 2 „; and all 
 2 �;

(3) �.y; �C 
�/ D e�ih
�;yi�.y; �/, for all .y; �/ 2 „, and all 
� 2 ��;

(4) k�.�; �/kK0
D 1, for all � 2 X�;

(5) �.y; �/ D �.y;��/, for all .y; �/ 2 „;

(6) �.�; �/ 2 Nk.�/ D ker. {P0.�/ � �k.�//, for all � 2 X�.

Remark 3.4. By the argument used in the proof of Lemma 1.25 and proper-

ties (1)–(3) of Lemma 3.3, we deduce that for any ˛ 2 N
d and for any s 2 R

there exists a constant C˛;s > 0 such that

k.@˛
� �/.�; �/kKs;�

� C˛;s; for all � 2 X�: (3.3)

Proof of Proposition 1.4. We repeat the construction of the Grushin operator de-

�ned in (2.16) under the Hypothesis of Proposition 1.4. We prove that in this case

we can take N D 1 and �1.x; �/ D �.x; �/ the function obtained in Lemma 3.3.

Due to Lemma 3.3 and Remark 3.4 this function has all the properties needed in

Lemma 1.25. It is thus possible to obtain the operator P0.�; �/ and the essential

problem is to prove its invertibility in order to obtain a result similar to Proposi-

tion 2.24. From that point the proof of Proposition 1.4 just repeats the arguments

of Subsection 2.1.

3.2. �e constant magnetic �eld. In this subsection we prove Proposition 1.5.

�us we suppose that the symbols p� do not depend on the �rst argument and the

magnetic �eld has constant components:

B� D
1

2

X

1�j;k�d

Bjk.�/dxj ^ dxk ; Bjk.�/ D �Bkj .�/ 2 R; lim
�!0

Bjk.�/ D 0:

(3.4)
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Using the transversal gauge (1.4) we associate some vector potentials

A� WD .A�;1; : : : ; A�;d /

satisfying

A�;j .x/ D
1

2

X

1�k�d

Bjk.�/xk : (3.5)

Proof of Proposition 1.5 (1). We use formula (2.5) by Lemma 2.2 noticing that the

linearity of the functions A�;j and the de�nition of !A imply that

!��xA� .y; Qy/ D !A�.y; Qy/eihA�.x/;y� Qyi D !A�CA�.x/.y; Qy/:

We deduce that for any u 2 S.X2/ and for any .x; y/ 2 X2 we have that

.�� zP�.�
�/�1u/.x; y/ D Œ.id ˝�A.x//.id ˝P�/.id ˝��A.x//u�.x; y/: (3.6)

It follows that the operator zP�, that is an unbounded self-adjoint operator inL2.X2/

denoted in Proposition 1.20 by zP 0
� , is unitarily equivalent with the operator id ˝P�

with P� self-adjoint unbounded operator in L2.X/. It follows that �. zP 0
�/ D �.P�/.

By Proposition 1.20, �. zP 0
�/ D �. zP 00

� / where zP 00
� is the self-adjoint realization of

zP� in the space L2.X � T/. Finally, by Corollary 2.29, we deduce that for any

.�; �/ 2 I � Œ��0; �0� we have the equivalence relation

� 2 �. zP 00
� / () 0 2 �.E�C.�; �//;

where E�C.�; �/ is considered as a bounded self-adjoint operator on ŒL2.X/�N .

In order to prove the second point of Proposition 1.5 we shall use the mag-

netic translations T�;a WD �A�.a/�a for any a 2 X, that de�ne a family of unitary

operators in L2.X/.

Lemma 3.5. For any two families of Hilbert spaces with temperate variation

¹A�º�2X� and ¹B�º�2X� and any operator-valued symbol q 2 S0
0 .XIB.A�IB�//,

T�;aOpA�.q/ D OpA� ..�a ˝ id/q/T�;a; for all a 2 X: (3.7)

Proof. By Lemma 1.11, it follows that

�aOpA�.q/ D Op�aA�..�a ˝ id/q/�a;

while �aA� D A� � A�.a/, implies that

�aOpA�.q/ D Op.A��A�.a//..�a ˝ id/q/�a:
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�en, for any u 2 S.XIA0/ and for any x 2 X,

.��A�.a/OpA�.q/�A�.a/u/.x/

D .2�/�d

Z

„

eih�;x�yie�ihA�.a/;x�yi!A�.x; y/q
�x C y

2
; �

�

u.y/ dy d�:

Noticing that

hA�.a/; x � yi D �

Z

Œx;y�

A�.a/;

the last formula implies that

OpA� .q/�A�.a/ D �A�.a/Op.A��A�.a//.q/:

We conclude that

T�;aOpA� .q/ D �A�.a/Op.A��A�.a//..�a ˝ id/q/�a

D OpA� ..�a ˝ id/q/�A�.a/�a

D OpA� ..�a ˝ id/q/T�;a:

Proof of Proposition 1.5 (2). �e operator

P�;� WD Op.P�.�; �; �//

from �eorem 2.27 has its symbol de�ned in (2.25). Under our hypothesis nei-

ther the operator-valued symbol P� will not depend on the �rst variable. By

Lemma 3.5, the operator

P�;� W S.XIKm;0 � C
N / �! S.XIK0 � C

N /

commutes with the family ¹T�;a ˝ idK0�CN ºa2X. �en its inverse E�;� appearing

in �eorem 2.27 also commutes with the family ¹T�;a ˝ idK0�CN ºa2X. By this

property we deduce that also the operator

E�C.�; �/ W L
2.XICN / �! L2.XICN /

commutes with the family ¹T�;a ˝ idCN ºa2X. Using Lemma 3.5 once again we

deduce that

OpA�.E�C
�;�
/ D E�C.�; �/

D ŒT�;a ˝ idCN �E�C.�; �/ŒT�;a ˝ idCN ��1

D OpA� ..�a ˝ id/E�C
�;�
/; for all a 2 X:
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We conclude that

E�C
�;�
.x; �/ D E�C

�;�
.x � a; �/ for any .x; �/ 2 „, a 2 X.

It follows that

E�C
�;�
.x; �/ D E�C

�;�
.0; �/ for any .x; �/ 2 „.

�e ��-periodicity follows as in the general case (see the proof of Lemma 2.50).

4. Appendices

4.1. Study of the distributions in K
s
�
.X2/. We shall prove a result giving a

connection between the spaces: Ks
�.X

2/, S.XIHs.T// and S0.XIHs.T//.

Lemma 4.1. Let B be a magnetic �eld with components of class BC1.X/ and A

an associated vector potential with components of class C1
pol. Let us consider a

symbol q 2 S s
1.X/ for some s 2 R. We set

Q WD OpA.q/;

Q0 WD Q˝ id;

and

zQ WD  �Q0 �;

where  is de�ned by (2.1). �en we have that

zQ 2 B.S.XIHs.T//I S.XIL2.T///

uniformly for q varying in bounded subsets of S s
1.X/ and forB varying in bounded

subsets of BC1.X/.

Proof. On S.XIHs.T// we shall use the family of seminorms

jujs;l WD sup
j˛j�l

� Z

X

hxi2l k.@˛
xu/.x; �/k

2
Hs.T/ dx

�1=2

; l 2 N; u 2 S.XIHs.T//:

(4.1)

Using (2.3) and (2.8), or a straightforward computation, we obtain that, for any

u 2 S.X � T/,

. zQu/.x; y/ D .2�/�d

Z

X

Z

X�

eih�;y� Qyi!A.x; x � y C Qy/

q
�

x C
Qy � y

2
; �

�

u.x � y C Qy; Qy/ d Qy d�:

(4.2)
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In particular we obtain that zQu 2 S.X � T/. For �xed x; y; Qy in X and � in X�,

we consider the function of the argument t 2 X

ˆ.t/ WD !A.x; x � y C t /q
�

x C
t � y

2
; �

�

u.x � y C t; Qy/: (4.3)

We use in (4.2) its Taylor expansion in t D Qy with integral rest of order n > d C s

and eliminate the monomials . Qy � y/˛ by integration by parts using the identity

. Qy � y/˛eih�; Qy�yi D .�D˛
� /e

ih�; Qy�yi:

We get

. zQu/.x; y/ D
X

j˛j<n

X

ˇ�˛

f˛ˇ .x/.T˛ˇu/.x; y/C
X

j˛jDn

X

ˇ�˛

1
Z

0

.R˛ˇ .�/u/.x; y/d�;

(4.4)

where

.T˛ˇu/.x; y/ WD .2�/�d

Z

X

Z

X�

eih�;y� Qyit˛ˇ .x; �/.@
ˇ
xu/.x; Qy/ d Qy d�; (4.5)

and

.R˛ˇ .�/u/.x; y/ WD .2�/�d

Z

X

Z

X�

eih�;y� Qyih�;˛;ˇ .x; y � Qy/

r˛ˇ

�

x C .1 � �/
Qy � y

2
; �

�

.@ˇ
xu/

.x � .1� �/.y � Qy/; Qy/ d Qy d�;

(4.6)

and where f˛ˇ 2 C1
pol.X/, t˛ˇ 2 S

s�j˛j
1 .X/, r˛ˇ 2 S s�n

1 .X/, and �nally h�;˛;ˇ 2
C1
pol.X � X/ uniformly for � 2 Œ0; 1�.

Let us use Lemma 1.12. Starting from (4.5) and considering x 2 X as a param-

eter we conclude that there exists a semi-norm c˛ˇ .q/ of q 2 S s
1.X/ such that

k.T˛ˇu/.x; �/k
2
L2.T/

� c˛ˇ .q/
2k.@ˇ

xu/.x; �/k
2
Hs.T/; for all x 2 X; u 2 S.X � T/:

(4.7)

Due to our hypothesis, there exists a constant C.B/ (bounded when the com-

ponents of the magnetic �eld B take values in bounded subsets of BC1.X/) and

there exists a 2 Z such that

jh�;˛;ˇ .x; y � Qy/j � C.B/hxiahy � Qyia; for all .x; y; Qy/ 2 X3; � 2 Œ0; 1�: (4.8)

We integrate by parts in (4.6), using the identity

eih�;y� Qyi D hy � Qyi�2N .1���/
N eih�;y� Qyi:
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�is allows us to conclude that there exists a seminorm c0
˛;ˇ;N

.p/ of the symbol

p 2 S s
1.„/ for which

j.R˛ˇ .�/u/.x; y/j

� C.B/c0
˛;ˇ;N .p/hxia

Z

X�

h�is�nd�

Z

X

hzia�2N j.@ˇ
xu/.x � .1 � �/z; y � z/j dz;

(4.9)

for any .x; y/ 2 X2 and any � 2 Œ0; 1�.

We recall our choice s � n < �d , we choose further 2N � a C 2d and we

estimate the last integral by using the Cauchy–Schwartz inequality. We take the

square of the inequality (4.9) and integrate with respect to y 2 E. We conclude

that for any �-periodic function v 2 L2
loc.X/ and for any z 2 X we have that for

any k 2 N there exists Ck > 0 such that, for any � 2 Œ0; 1�,

Z

X

hxi2kk.R˛ˇ .�/u/.x; �/k
2
L2.T/

� CkC.B/
2c0

˛;ˇ;N .p/
2

Z

X

hxi2aC2kk.@˛
xu/.x; �/k

2
L2.T/

dx:

(4.10)

For the derivatives @
�
x .T˛ˇu/.x; �/ and @

�
x .R˛ˇ .�/u/.x; �/ (for any � 2 N

d ) we

obtain in a similar way estimations of the same form.

Lemma 4.2. We have the topological embeddings (uniformly in � 2 Œ��0; �0�)

S.XIHm.T// ,�! Km
� .X � X/ ,�! S0.XIHm.T//: (4.11)

Proof. In order to prove the �rst embedding we take into account the density of

S.X � T/ into S.XIHm.T// and the De�nition 2.18 (c) of the space Km
� .X � X/

and we use Lemma 4.1 with the symbol qm de�ning the Sobolev spaces.

For the second embedding let us note that the canonical sesquilinear map on

S0.XIHm.T//� S.XIHm.T// is just a continuous extension of the scalar product

.u; v/m WD

Z

X

.u.x; �/; v.x; �//Hm.T/ dx; (4.12)

for all .u; v/ 2 S.XIHm.T// � S.XIHm.T//.
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Due to the density of S.X � T/ into Km
� .X � X/, this amounts to prove that it

exists a continuous seminorm j � jm;l on S.XIHm.T// such that we have that

j.u; v/mj � kukKm
�

� jvjm;l ; (4.13)

for all .u; v/ 2 S.XIHm.T// � S.XIHm.T//, where

kukKm
�

D k zQm;�ukL2.X�T/:

Let us note that

.u; v/m D .u; .1˝ hD�i2m/v/L2.X�T/

D . zQm;�u; zQ�m;�.1˝ hD�i2m/v/L2.X�T/:

We set

v� WD .1˝ hD�i2m/v 2 S.X � T/

and we observe that we have the inequality

j.u; v/mj � k zQm;�ukL2.X�T/k zQ�m;�v�kL2.X�T/: (4.14)

We conclude thus that the inequality (4.13) follows if we can prove that there exists

a seminorm j � jm;l on S.XIHm.T// such that

k zQ�m;�v�kL2.X�T/ � C jvjm;l ; for all v 2 S.X � T/: (4.15)

By Lemma 4.1, we conclude that there exists a seminorm j � j�m;l on S.X�T/ such

that

k zQ�m;�v�kL2.X�T/ � C jv� j�m;l ; for all v 2 S.X � T/: (4.16)

Now (4.15) follows by (4.16) once we note that jv� j�m;l D jvjm;l .

4.2. Pseudodi�erential operators with operator-valued symbols

De�nition 4.3. A family of Hilbert spaces ¹A�º�2X� (indexed by the points in

the momentum space) is said to have temperate variation when it veri�es the two

conditions:

(1) A� D A� as complex vector spaces for all .�; �/ 2 ŒX��2;

(2) there exist C > 0 and M � 0 such that, for all u 2 A0,

kukA�
� C h� � �iM kukA� ; for all .�; �/ 2 ŒX��2: (4.17)
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Example 4.4. We can take

A� D Hs.X/;

with any s 2 R endowed with the �-dependent norm

kukA�
WD

� Z

X

h� C �i2s j Ou.�/j2d�

�1=2

;

for all u 2 Hs.X/ and all � 2 X�. Inequality (4.17) clearly follows by the well

known inequality

h� C �i2s � Csh� C �i2sh� � �i2jsj; for all .�; �; �/ 2 ŒX��3; (4.18)

where the constant Cs only depends on s 2 R. For this speci�c family we shall

use the shorter notation A� � Hs
�
.X/.

De�nition 4.5. Suppose given two families of Hilbert spaces with tempered vari-

ation ¹A�º�2X� and ¹B�º�2X�; suppose also givenm 2 R, � 2 Œ0; 1� and Y a �nite

dimensional real vector space. A function p 2 C1.Y � X�IB.A0IB0// is called

an operator-valued symbol of class Sm
� .YIB.A�IB�// when it veri�es

for all ˛ 2 N
dimY; ˇ 2 N

d ; there exists C˛;ˇ > 0 such that

k.@˛
y@

ˇ

�
p/.y; �/kB.A� IB�/ � C˛;ˇ h�im��jˇ j; for all .y; �/ 2 Y � X�:

(4.19)

�e space Sm
� .YIB.A�IB�// endowed with the family of seminorms �˛;ˇ de-

�ned as being the smallest constants C˛;ˇ that satisfy the de�ning property (4.19)

is a metrizable locally convex linear topological space. In case we have for any

� 2 X� that A� D A0 and B� D B0 as algebraic and topological structures, then

we use the notation Sm
� .YIB.A0IB0//. If moreover we have that A0 D B0 D C,

then we use the simple notation Sm
� .Y/.

Proposition 4.6. If p 2 Sm
1 .X/ and if for any � 2 X�, we set

p� WD .id ˝���/p;

P� WD Op.p�/;

and we denote by p the application

„ 3 .x; �/ 7�! P� 2 B.HsCm
�

.X/IHs
�.X//;

for some s 2 R, we can prove that p is an operator valued symbol of class

S0
0 .XIB.HsCm

� .X/IHs
�.X///. Moreover the map

Sm
1 .X/ 3 p 7�! p 2 S0

0 .XIB.HsCm
� .X/IHs

�.X///

is continuous.
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Proof. In fact, let us recall that for any � 2 X� we have denoted by �� the multipli-

cation operator with the function eih�;�i on the space S0.X/. �en, for any u 2 S.X/

and for any � 2 X� we have that u 2 HsCm
�

.X/ and we can write

.���P0��u/.x/ D .2�/�d

Z

„

eih���;x�yip
�x C y

2
; �

�

u.y/ dy d�

D .2�/�d

Z

„

eih�;x�yip
�x C y

2
; �C �

�

u.y/ dy d�

D .P�u/.x/;

and we conclude that

P� D ���P0�� ; for all � 2 X�.

On the other side, for any � 2 X� we note that p� is a symbol of class Sm
1 .X/

and thus, the usual Weyl calculus implies that P� 2 B.HsCm.X/IHs.X// for any

s 2 R. We note easily that for any multi-index ˇ 2 N
d we can write

@
ˇ

�
P� D Op.@

ˇ

�
p�/;

and we conclude that P� 2 C1.„IB.HsCm.X/IHs.X/// (constant with respect

to the variable x 2 X) for any s 2 R. Let us further note that, for all u 2 S.X/ and

all � 2 X�,

b��u D �� Ou;

and

k���uk2
Hs

�
.X/ D

Z

X�

h� C �i2s j Ou.� C �/j2 d� D kuk2
Hs.X/: (4.20)

Using these results we deduce that, for any u 2 S.X/ and any � 2 X�,

kP�uk2
Hs

�
.X/ D kP0��uk2

Hs.X/ � Csk��uk2
HsCm.X/

D Cskuk2

H
sCm
�

.X/
;

and we obtain similar estimations for the derivatives of P� . Finally we conclude

that p 2 S0
0 .XIB.HsCm

� .X/IHs
�.X/// and we have the continuity of the map

Sm
1 .X/ 3 p 7�! p 2 S0

0 .XIB.HsCm
� .X/IHs

�.X///:



�e Peierls–Onsager e�ective Hamiltonian 517

De�nition 4.7. We denote by Sm
�;�.X

2IB.A�IB�// the linear space of families

¹p�ºj�j��0
satisfying the following conditions:

(1) for all � 2 Œ��0; �0�; p� 2 Sm
� .X

2IB.A�IB�// uniformly with respect to

� 2 Œ��0; �0�;

(2) lim
�!0

p� D p0 in Sm
� .X

2IB.A�IB�//;

(3) denoting the variable in X2 by .x; y/, for any multi-index ˛ 2 N
d with

j˛j � 1,

lim
�!0

@˛
xp� D 0 in Sm

� .X
2IB.A�IB�//.

Sm
�;�.X

2IB.A�IB�// is endowed with the natural locally convex topology of sym-

bols of Hörmander type.

As in the case of De�nition 4.5, in case we have for any � 2 X� that A� D A0

and B� D B0 as algebraic and topological structures, then we use the notation

Sm
�;�.X

2IB.A0IB0//. If, moreover,A0 D B0 D C, then we use the simple notation

Sm
�;�.X

2/. For the families of symbols of type Sm
�;�.X

2IB.A�IB�// that do not

depend on the �rst variable x in X2 we shall use the notation Sm
�;�.XIB.A�IB�//.

Let us also consider the following canonical injection

Sm
� .XIB.A�IB�// 3 p 7�! id ˝p 2 Sm

�;�.X
2IB.A�IB�//

as a constant family.

Remark 4.8. A symbol p belongs to Sm
�;�.X

2IB.A�IB�// if and only if

p�.x; y; �/ D p0.y; �/C r�.x; y; �/;

with p0 2 Sm
� .XIB.A�IB�//, r� 2 Sm

� .X
2IB.A�IB�//, r0 D 0, and lim

�!0
r� D 0 in

Sm
� .X

2IB.A�IB�//. Evidently we have

p0.y; �/ WD p0.0; y; �/:

4.2.1. Periodic operator valued symbols

De�nition 4.9. We shall denote by Sm
� .X � TIB.A�IB�// the space of symbols

p 2 Sm
� .X

2IB.A�IB�// that are �-periodic with respect to the second variable,

i.e.

p.x; y C 
; �/ D p.x; y; �/; for all .x; y/ 2 X2, � 2 X�, 
 2 �.

In a similar way we de�ne the spaces Sm
� .TIB.A�IB�//, S

m
� .X � TIB.A0IB0//,

Sm
� .TIB.A0IB0//, S

m
� .X� T/, Sm

�;�.X� TIB.A�IB�//, S
m
�;�.X� TIB.A0IB0//,

Sm
�;�.X � T/.
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Let us note that we have an evident identi�cation of Sm
�;�.XIB.A�IB�// with a

subspace of Sm
�;�.X � TIB.A�IB�//.

Proposition 4.10. For any s 2 R and any p 2 Sm
1 .T/, with the notations in

Remark 1.13,

P�;� 2 S0
0 .TIB.KsCm;� IKs;�//;

and the application

Sm
1 .T/ 3 p 7�! P�;� 2 S0

0 .TIB.KsCm;� IKs;�//

is continuous.

Proof. �ese two last statements will follow once we have proved that for any

˛ 2 N
d there exists c˛.p/ de�ning seminorm of the topology of Sm

1 .T/, such that

k@˛
�P�;�kB.KsCm;� IKs;�/ � c˛.p/; for all � 2 X�:

It is clearly enough to prove the case ˛ D 0. We deduce that for any u 2 KsCm;�

we have that

kP�;�ukKs;�
D khD C �is���P��ukL2.E/

D khDisP hDi�s�m��hD C �isCmukL2.E/:

As in the proof of Lemma 1.12 we deduce that

khDisP hDi�s�mvkL2.E/ � C 0
0.p/kvkL2.F /; for any v 2 L2

loc.X/ \ S0.X/.

We consider

w WD hD C �isCmu 2 L2
loc.X/ \ S0

�.X/

and

v WD ��w;

and obtain

kvk2
L2.F /

D kwk2
L2.F /

� C 2
N kwk2

L2.E/

D C 2
N khD C �isCmuk2

L2.E/

D C 2
N kuk2

KsCm;�
:

�is gives us the desired estimation with c0.p/ D CNC
0
0.p/.
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Lemma 4.11. Let p 2 Sm
1 .T/ be a real elliptic symbol (i.e. there exist C > 0 and

R > 0 such that p.y; �/ � C j�jm for any .y; �/ 2 „ with j�j � R), with m > 0.

�en the operator P� de�ned in Lemma 1.12 is self-adjoint on the domain Km;0.

Moreover, P� is lower semi-bounded and its graph-norm on Km;0 gives a norm

equivalent to the de�ning norm of Km;0.

Proof. Let us �rst verify the symmetry of P� on Km;0. Due to the density of

S.T/ in Km;0 and to the fact that P� 2 B.Km;0IL2.T//, it is enough to verify

the symmetry of P� on S.T/. Let u and v belong to S.T/. Identifying S.T/ with

E.X/ \ S0
�.X/ and using the de�nition of the operator P on the space S0.X/ one

easily veri�es that Pu also belongs to E.X/\S0
�.X/ and is explicitly given by the

oscillating integral (for all x 2 X)

.Pu/.x/ D .2�/�d

Z

„

eih�;x�yip
�x C y

2
; �

�

u.y/ dy d�

.2�/�d
X


2�

Z

�
 E

Z

X�

eih�;x�yip
�x C y

2
; �

�

u.y/ dy d�

D .2�/�d
X


2�

Z

E

Z

X�

eih�;x�yC
ip
�x C y � 


2
; �

�

u.y/ dy d�;

(4.21)

the series converging in E.X/. Using the �-periodicity of p we obtain that

.Pu; v/L2.E/

D

Z

E

.Pu/.x/v.x/ dx

D .2�/�d
X


2�

Z

E

Z

E

Z

X�

eih�;x�yC
ip
�x C y � 


2
; �

�

u.y/v.x/ dx dy d�

D .2�/�d

Z

E

u.y/

�

X


2�

Z

E

Z

X�

eih�;y�x�
ip
�x C y C 


2
; �

�

v.x/ dx d�

�

dy

D

Z

E

u.y/.P v/.y/ dy

D .u; P v/L2.E/:
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In order to prove the self-adjointness of P� let us choose some vector u 2
D.P �

� /; thus it exists f 2 L2.T/ such that

.P�'; u/L2.T/ D .'; f /L2.T/; for all ' 2 S.T/.

Using now the facts that S.T/ is dense in S0.T/ and P� is symmetric on S.T/, we

deduce that

.'; f /T D .P�'; u/T D .'; P�u/T; for all ' 2 S.T/,

and thus we obtain the equality

P�u D f in S0.T/.

By hypothesisP� is an elliptic pseudodi�erential operator of strictly positive order

m, on the compact manifold T, so that the usual regularity results imply that u 2
Km;0 D D.P�/. In conclusion P� is self-adjoint on the domain Km;0. �e lower

semiboundedness property follows by the Gårding inequality and the equivalence

of the norms stated as the last point of the lemma follows by the Closed Graph

�eorem.

Remark 4.12. Under the Hypothesis of Lemma 4.11, the same proof also shows

that for any � 2 X�, the operator P�;� from Remark 1.22 is self-adjoint and lower

semibounded on L2.T/ on the domain Km;� . As in Remark 1.10 we can identify

Km;� with Hm
loc.X/ \ S0

�.X/ (endowed with the norm khD C �imukL2.E/) and

thus we can deduce that the operator P� is a self-adjoint operator in the space

L2
loc.X/ \ S0

�.X/ on the domain Km;� . We know that

P D ��P����

and we also know that

�� W Ks;� �! Fs;�

is a unitary operator for any s 2 R and for any � 2 X� and we conclude that the

operator induced by P in F0;� is unitarily equivalent with the operator induced by

P� in K0;� Š L2
loc. X/\ S0

�.X/. It follows that the operator P acting in F0;� with

domain Fm;� is self-adjoint and lower semibounded.

4.2.2. Magnetic pseudodi�erential operators with operator-valued symbols.

We shall consider now magnetic pseudodi�erential operators associated to oper-

ator-valued symbols and refer to the results in [17, 12, 13].
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Proposition 4.13. Let us consider p 2 Sm
� .XI .A�IB�//, a magnetic �eld B with

components of class BC1.X/ and a vector potential A with components of class

C1
pol.X/.

(1) �e integral in (1.6) exists for any u 2 S.XIA0/ and any x 2 X as oscillating

Bochner integral and de�nes a function OpA.p/u 2 S.XIB0/.

(2) �e map

OpA.p/ W S.XIA0/ �! S.XIB0/

de�ned by (1.6) and point (1) above is linear and continuous.

(3) �e formal adjoint

ŒOpA.p/�� W S.XIB0/ �! S.XIA0/

of the linear continuous operator de�ned in (2) above is equal to OpA.p�/

where p� 2 Sm0

� .XIB.B�IA�// where

m0 D mC 2.MA CMB/ and p�.x; �/ WD Œp.x; �/��

(the adjoint in B.A0IB0/).

(4) �e operator OpA.p/ extends in a natural way to a linear continuous oper-

ator

S0.XIA0/ �! S0.XIB0/;

that we denote in the same way.

Proof. Fix some u 2 S.XIA0/ and for the beginning let us suppose that p.y; �/ D
0 for j�j � R, with some R > 0. �en, for any x 2 X, the integral in (1.6) exists

as a B0-valued Bochner integral. Let us note that in this case we can integrate by

parts in (1.6) and use the identities

eih�;x�yi D hx � yi�2N1 Œ.id ���/
N1eih�;x�yi�;

and

e�ih�;yi D h�i�2N2 Œ.id ��y/
N2e�ih�;yi�:

We deduce that there exist C.N1; N2/ > 0 and k.N2/ 2 N such that for any l 2 N

we have

kŒOpA.p/u�.x/kB0

� C

� Z

„

hx � yi�2N1 h�i�2N2.hxi C hyi/k.N2/h�imCMBCMAhyi�l dy d�

�

sup
j˛j�2N2

sup
y2X

hyil k.@˛u/.y/kA0
;
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where MA and MB are the constants from (4.17) with respect to each of the two

families ¹A�º�2X� and ¹B�º�2X�. We choose

2N2 � mCMA CMB C d;

l D 2N1 C k.N2/C d C 1;

2N1 � k.N2/;

and we obtain that

kŒOpA.p/u�.x/kB0
� C.N1/hxi�2N1Ck.N2/ sup

j˛j�2N2

sup
y2X

hyil k.@˛u/.y/kA0
;

(4.22)

for all x 2 X.

Similar estimations may be obtained for the derivatives @
ˇ
xOpA.p/u and this

�nishes the proof of the �rst two points of the Proposition for the “compact sup-

port” case. �e general case follows by a usual cut-o� and Dominated Conver-

gence procedure. �e proof of the last two points of the statement of the proposi-

tion is standard.

Example 4.14. Let us consider a family ¹p�ºj�j��0
of class Sm

1;�.X
2/ and let us

de�ne, as in Subsection 1.2,

Qp�.x; y; �; �/ WD p�.x; y; � C �/;

and

q�.x; �/ WD Op. Qp�.x; �; �; �//:

�en

(1) ¹q�ºj�j��0
2 S0

0;�.XIB.HsCm
� .X/IHs

�.X// for any s 2 R and

(2) if the family of magnetic �elds ¹B�ºj�j��0
satis�es Hypothesis H.1 and if the

associated vector potentials are choosen as in (1.4), then we have that

OpA� .q�/ 2 B.S.XIHsCm.X//I S.XIHs.X///

\ B.S0.XIHsCm.X//I S0.XIHs.X///; for all s 2 R;

(4.23)

and

OpA� .q�/ 2 B.S.X2/I S.X2// \ B.S0.X2/I S0.X2//; (4.24)

and all the continuities are uniform with respect to � 2 Œ��0; �0�.
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Proof. (1) By similar arguments as in Proposition 4.6 we prove that for any � 2
Œ��0; �0� and s 2 R we have that q� 2 S0

0 .XIB.HsCm
� .X/IHs

�.X/// uniformly with

respect to � 2 Œ��0; �0� and the application

Sm
1 .X

2/ 3 p� 7! q� 2 S0
0 .XIB.HsCm

� .X/IHs
�.X//

is continuous for all s 2 R, uniformly with respect to � 2 Œ��0; �0�. Point (1)

follows then clearly.

(2) Let us note that (4.23) and the uniformity with respect to � 2 Œ��0; �0�

follow easily by Proposition 4.13 and its proof. In order to prove (4.24) let us note

that

Qp0
�.x; �; �; �/ WD h�i�jmj Qp�.x; �; �; �/

de�nes a symbol of class Sm
0 .X/ uniformly with respect to ..x; �/; �/ 2 „ �

Œ��0; �0� and we can view the element Qp0
� as a function in BC1.„ISm

0 .X//. �en,

the operator-valued symbol

q0
�.x; �/ WD h�i�jmjq�.x; �/

has the property

.@˛
x@

ˇ

�
q0

�/.x; �/ 2 B.S.X//;

for all .˛; ˇ/ 2 ŒNd �2, uniformly with respect to ..x; �/; �/ 2 „ � Œ��0; �0�. De-

noting

ss.x; �/ WD h�is ; for any s 2 R,

and writing

OpA�.q�/ D OpA�.sjmjq
0/;

the proof of Proposition 4.13 implies (4.24) uniformly with respect to � 2 Œ��0; �0�.

�eorem 4.15. Take three families of Hilbert spaces with temperate variation

¹A�º�2X� , ¹B�º�2X� , and ¹C�º�2X� , and two families of symbols ¹p�ºj�j��0
2

Sm
�;�.XIB.B�IC�// and ¹q�ºj�j��0

2 Sm0

�;�.XIB.A�IB�//, and a family of magnetic

�elds ¹B�ºj�j��0
satisfying Hypothesis H.1 with an associated family of vector po-

tentials ¹A�ºj�j��0
given by (1.4). �en

(1) �ere exist a family of symbols

¹p�]
B�q�ºj�j��0

2 SmCm0

�;� .XIB.A�IC�//;

such that

OpA� .p�/OpA�.q�/ D OpA� .p�]
B�q�/I
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(2) the application

Sm
� .XIB.B�IC�// � Sm0

� .XIB.A�IB�// 3 .p�; q�/

7�! p�]
B�q� 2 SmCm0

� .XIB.A�IC�//

is continuous uniformly with respect to � 2 Œ��0; �0�I

(3) there exists a family of symbols ¹r�ºj�j��0
2 S

mCm0��
�;� .XIB.A�IC�// having

the properties

lim
�!0

r� D 0 in SmCm0��
� .XIB.A�IC�// (4.25)

and

p�]
B�q� D p� � q� C r�; for all � 2 Œ��0; �0�: (4.26)

Proof. As in the proof of Proposition 4.13 we reduce the problem to the case of

symbols with compact support in both arguments .x; �/ 2 „. A direct computa-

tion using Stokes formula and the fact that dB� D 0 for any � 2 Œ��0; �0� shows

that for point (1) of the theorem we may take the de�nition of the composition

operation to be the following well de�ned integral formula

.p�]
B�q�/.X/ D ��2d

Z

„

Z

„

e�2iJY;ZK!B� .x; y; z/p�.X � Y /q�.X � Z/ dY dZ;

(4.27)

where we used the notation

X WD .x; �/; Y WD .y; �/; Z WD .z; �/;

JY;ZK WD h�; zi � h�; yi;

and

!B� .x; y; z/ WD e�iF�.x;y;z/;

where

F�.x; y; z/ WD

Z

hx�yCz;x�y�z;xCy�zi

B�;

with ha; b; ci the triangle with vertices a 2 X, b 2 X and c 2 X. A direct compu-

tation (see for example Lemma 1.1 in [12]) shows that all the vectors rxF� , ryF�

and rzF� have the form

C�.x; y; z/y CD�.x; y; z/z;
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with C� and D� functions of class BC1.X3IB.X// satisfying the conditions

lim
�!0

C� D lim
�!0

D� D 0 in BC1.X3IB.X//.

It follows easily then that the derivatives of!B� .x; y; z/ of order at least 1 are �nite

linear combinations of terms of the form

C.˛;ˇ/I�y
˛zˇ!B� .x; y; z/;

with C.˛;ˇ/I� 2 BC1.X3/ satisfying the property

lim
�!0

C.˛;ˇ/I� D 0 in BC1.X3/.

Applying the usual integrations by parts with respect to the variables ¹y; z; �; �º,
we obtain (for some C > 0 and any N 2 N)

k.p�]
B�q�/.X/kB.A� IC�/

� C max
j˛j;jˇ j;j
 j;jıj�N

Z

„

Z

„

h�i�2N1 h�i�2N2hyi�2N3 hzi�2N4

k@˛
x@

ˇ

�
p�.X � Y /kB.B� IC� /

k@

x@

ı
�q�.X �Z/kB.A� IB� / µY µZ;

(4.28)

for any � 2 Œ��0; �0�. We use now (4.17) and (4.19) and obtain the following

estimations valid for any � 2 Œ��0; �0�:

k@˛
x@

ˇ

�
p�.X � Y /kB.B� IC�/

� C h�i2M k@˛
x@

ˇ

�
p�.X � Y /kB.B���IC���/

� C h�i2M h� � �im��jˇ j. sup
Z2„

h�i�mC�jˇ jk.@˛
z@

ˇ

�
p�/.Z/kB.B� IC�//:

(4.29)

Repeating the same computations for the derivatives of q� and choosing suitable

large exponentsNj (1 � j � 4) in (4.28) we deduce the existence of two de�ning

seminorms j � jn1
and respectively j � jn2

on the Fréchet space Sm
� .XIB.B�IC�//

and respectively on Sm0

� .XIB.A�IB�// such that

sup
X2„

h�i�.mCm0/k.p�]
B�q�/.X/kB.A� IC�/ � jp�jn1

jq�jn2
; for all � 2 Œ��0; �0�:

(4.30)

�e derivatives of p�]
B�q� can be estimated in a similar way in order to conclude

that p�]
B�q� 2 SmCm0

� .XIB.A�IC�// uniformly with respect to � 2 Œ��0; �0� and

that property (2) is valid. Hypotheses (2) and (3) from the De�nition 4.7 follow
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easily by (4.25) and (4.26). In conclusion there is only point (3) that remains to

be proved. By the same arguments as above we can once again assume that the

symbols p� and q� have compact support. We begin by using in (4.27) the equality

p�.X � Y /q�.X � Z/

D p�.X/q�.X/ �

1
Z

0

ŒhY;rXp�.X � tY /iq�.X � tZ/

C p�.X � tY /hZ;rXq�.X � tZ/i� dt:

(4.31)

�e �rst term on the right side of equality (4.31) will produce the term p�q� in

equality (4.26) (see also Lemma 2.1 in [12]). Let us study now the term obtained

by replacing the last term from (4.31) into (4.27). We eliminate Y and Z by inte-

gration by parts as in the beginning of this proof. �ese operations will produce

derivatives of p� and q� with respect to x 2 X, that go to 0 for � ! 0 in their

symbol spaces topology and derivatives of F� with respect to y and z; but these

derivatives may be once again transformed by integrations by parts into factors of

the form C� 2 BC1.X3/ having limit 0 for � ! 0 as elements from BC1.X3/.

�us, the estimations proved in the �rst part of the proof imply that equality (4.26)

holds with

r� D

1
Z

0

s�.t /dt;

where

s�.t / 2 SmCm0��
� .XIB.A�IC�//

uniformly with respect to .�; t / 2 Œ��0; �0� � Œ0; 1� and

lim
�!0

s�.t / D 0 in SmCm0��
� .XIB.A�IC�//

uniformly with respect to t 2 Œ0; 1�. We conclude that r� has the properties stated

in the theorem.

Remark 4.16. �e proof of �eorem 4.15 also implies the following fact: the

operation ]B� is well de�ned also as operation

Sm
� .XIB.B�IC�// � Sm0

� .XIB.A�IB�// �! SmCm0

� .XIB.A�IC�//

being bilinear and continuous uniformly with respect to � 2 Œ��0; �0�.
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Proposition 4.17. Given two Hilbert spaces A and B and, for any � 2 Œ��0; �0�, a

symbol p� 2 Sm
0 .XIB.AIB//, uniformly in � 2 Œ��0; �0�, then, for any s 2 R, the

operatorOpA� .p�/ belongs to the spaceB.HsCm
A�

.X/˝AIHs
A�
.X/˝B/ uniformly

with respect to � 2 Œ��0; �0�. Moreover, the norm ofOpA� .p�/ in the above Banach

space is bounded from above by a seminorm of p� in Sm
0 .XIB.AIB//, uniformly

with respect to � 2 Œ��0; �0�.

Proof. For m D s D 0 the proposition may be proved by the same arguments

as in the scalar case: A D B D C (see for example [12]). Also using the results

from [12] we can see that for any t 2 R the operator Qs;� belongs to the space

B.HtCs
A�

.X/IHt
A�
.X// uniformly with respect to � 2 Œ��0; �0�. �e proof of the

general case follows now by the identity

OpA�.p�/ D Q�s;�Qs;�OpA� .p�/Q�.sCm/;�QsCm;�

and the fact that qs;�]
B�p�]

B�q�.sCm/;� is a symbol of class S0
0 .XIB.AIB// uni-

formly with respect to � 2 Œ��0; �0� (as implied by the Remark 4.16).

Standard arguments allow us to prove the following statement.

Proposition 4.18. Suppose given a Hilbert space A and a bounded subset

¹p�ºj�j��0
� S0

� .XIB.A//

such that

lim
�!0

p� D 0

in this space of symbols. �en, for su�ciently small�0 > 0,

(1) id COpA�.p�/ is invertible in B.L2.X/˝ A/ for any � 2 Œ��0; �0� and

(2) it exists a bounded subset of symbols ¹q�ºj�j��0
from S0

� .XIB.A// such that

lim
�!0

q� D 0 in S0
� .XIB.A//

and

Œid COpA� .p�/�
�1 D id COpA�.q�/:

4.3. Relativistic Hamiltonians. We shall close this subsection with the study of

a property that connects the two relativistic Schrödinger Hamiltonians OpA� .hR/

and ŒOpA� .hNR/�
1=2 with

hR.x; �/ WD h�i �
p

1C j�j2
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and

hNR.x; �/ WD 1C j�j2 � h�i2:

We shall use some arguments presented in §6.3 of [13]. �e following proposition

allows to prove that the operator in (1.11) veri�es the hypothesis in Subsection 1.2.

Proposition 4.19. �ere exists a bounded subset ¹q�ºj�j��0
of symbols from S0

1 .X/

such that lim
�!0

q� D 0 in S0
1 .X/ and

ŒOpA� .hNR/�
1=2 D OpA�.hR/C OpA� .q�/: (4.32)

Proof. Following [13], if we denote by p� the inverse of the symbolp with respect

to the composition ]B� ,

ŒOpA� .hNR/�
1=2 D OpA�.hNR/OpA�

�

�
1

2�i

i1
Z

�i1

z�1=2.h�i2 � z/�dz

�

: (4.33)

Recalling the proof of point (3) in �eorem 4.15 we can easily prove that

.h�i2 � z/]B�.h�i2 � z/�1 D 1C r�;z (4.34)

where hzir�;z 2 S0
1 .X/ uniformly for .�; z/ 2 Œ��0; �0� � iR and

lim
�!0

hzir�;z D 0 in S0
1 .X/

uniformly with respect to z 2 iR. Following the proof of Proposition 4.18, for

�0 > 0 su�ciently small there exists a symbol f�;z such that hzif�;z 2 S0
1 .X/

uniformly with respect to .�; z/ 2 Œ��0; �0� � iR,

lim
�!0

hzif�;z D 0 in S0
1 .X/

uniformly with respect to z 2 iR and we also have

.1C r�;z/
� D 1C f�;z:

By (4.33) and the properties of the symbol r�;z, it follows that we can de�ne

.h�i2 � z/� WD .h�i2 � z/�1]B� .1C f�;z/ D .h�i2 � z/�1 C .h�i2 � z/�1]B�f�;z:

(4.35)
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Using (4.35) in (4.33) we note that the term .h�i2 �z/�1 produces by magnetic

quantization a term of the form

OpA�.hNR/OpA�.h�1
R /;

and using �eorem 4.15 this operator may be put in the form

OpA�.hR/C OpA� .q0
�/;

where q0
� 2 S0

1 .X/ uniformly with respect to � 2 Œ��0; �0� with

lim
�!0

q0
� D 0 in S0

1 .X/.

If we note that hNR]
B� .hNR � z/�1 2 S0

1 .X/ uniformly with respect to .�; z/ 2
Œ��0; �0�� iR, then we can see that the last term of (4.35) gives in (4.33) by mag-

netic quantization an expression of the form OpA� .q00
� /with q00

� 2 S0
1 .X/ uniformly

with respect to � 2 Œ��0; �0� and such that

lim
�!0

q00
� D 0 in S0

1 .X/.
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