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1. Introduction

In this paper we consider once again the construction of an effective Hamiltonian
for a particle described by a periodic Hamiltonian and subject also to a magnetic
field that will be considered bounded and smooth but neither periodic nor slowly
varying. Our aim is to use some of the ideas in [4, 8] in conjunction with the
magnetic pseudodifferential calculus developed in [17, 12, 13, 19] and obtain the
following improvements:

(1) consider magnetic fields that are neither constant nor slowly varying, to work
in a manifestly covariant form and obtain results that clearly depend only on
the magnetic field;

(2) give up the adiabatic hypothesis (slowly varying fields) and consider only the
intensity of the magnetic field as a small parameter;

(3) cover also the case of pseudodifferential operators, as for example the rela-
tivistic Schrodinger operators with principal symbol () := (1 + |7]?)/2.

Let us point out from the beginning, that as in [8] we construct an effective Hamil-
tonian associated to any compact interval of the energy spectrum but its signifi-
cance concerns only the description of the real spectrum as a subset of R. In a
forthcoming paper our covariant magnetic pseudodifferential calculus will be used
in order to construct an effective dynamics associated to any spectral band of the
periodic Hamiltonian. Let us mention here that the magnetic pseudodifferential
calculus has been used in the Peierls—Onsager problem in [5] where some im-
provements of the results in [23] are obtained but still in an adiabatic setting.

Finally let us also point out here that an essential ingredient in the method
elaborated in [8] is a necessary and sufficient criterion for a tempered distribution
to belong to some given Hilbert spaces (Propositions 3.2 and 3.6 in [8]). In our
“magnetic” setting some similar criteria have to be proved and this obliges us to
some different formulations with respect to those in [8, 6].

Let us very briefly describe the content of our paper. The Introduction contains
a very brief formulation of the problem and the main results we obtain together
with some notions concerning the Floquet representation and the localized Wan-
nier functions that we shall need further. Section 2 contains the proofs of our
main results based on some extensions of the magnetic pseudodifferential calcu-
lus ([17, 12, 13]) discussed in the Appendices and on some ideas from [4, 8, 10, 11].
Some particular cases, where more complete results can be obtained, are discussed
in Section 3. Let us mention here that a large number of standard pseudodifferen-
tial techniques are used without detailed presentations in order to limit the dimen-
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sion of our paper, but a complete and detailed version of our paper can be found
on web ([14]).

1.1. The problem. We use the notation X = R¥, its dual X* being canonically
isomorphic to RY; let
(,):X*xX — R

denote the duality relation. We define
E =X xX*
as a symplectic space with the canonical symplectic form
o(X.Y) = (§.y) — (n.x),
and
E:=X*xX.

We shall consider a discrete subgroup I' C X described as a lattice

d
Ir:= @Zej,
j=1

with {ey, ..., ey} an algebraic basis of R¢. We consider the quotient group R4/ T
that is canonically isomorphic to the d-dimensional torus T. Let us consider an
elementary cell

d
E:{y:Z[jej eRd:O§tj < 1, forall j e{l,...,d}},
j=1

having the interior locally homeomorphic to its projection on T. The dual lattice
of I is defined as

Te:={y*eX*: (y*.y) € Qn)Z, forall y € T'}.
Considering the dual basis {e},...,eJ} C X* of {e1,...,eq}, defined by
(ef, ex) = (2m)Sjk,

we have evidently that

d
Iy = @Ze}k.
j=1
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By definition, we have that ', C X* is the polar of I' C X. We define

and E., and note that T is isomorphic to the dual group of I'.
Let us recall the usual periodic Schrodinger Hamiltonian

Hoy :=—A+V(y), Ve BC>®X,R),T — periodic, (1.1)

that describes the evolution of an electron in a periodic crystal without external
fields. The above operator has a self-adjoint extension in L?(X) that commutes
with the translations 7, for any y € I'. By the Floquet-Bloch theory for any
& € X* we can define the operator

Hov(§) :== (Dy + £ + V()

that has a self-adjoint extension in L?(T) that has compact resolvent. Thus its
spectrum consists in a growing sequence of finite multiplicity eigenvalues

A1(§) <X <...
that are continuous and I'*-periodic functions of &. Thus, if we set
Ji = A (Ty),
we can write

o
o(How) = | 7.
k=1

and it follows that this spectrum is absolutely continuous. The above analysis
implies the following statement that can be considered as the spectral form of the
Onsager—Peierls substitution in a trivial situation (with O magnetic field):

A € o(Hy,y) = thereexists k > 1 suchthat 0 € 6 (A — Ax (D)), (1.2)

where Ax (D) is the Weyl quantization of the symbol A, and thus defines a bounded
self-adjoint operator on L?(X).

The problem we are interested in, consists in superposing a magnetic field B
in the above situation; let us first consider a constant magnetic field

B = (Bjk)i1<jk<a. With Bjx = —By;.
Let us recall that using the transversal gauge one can define the following vector

potential A = (Aj)1<j<q given by

1
A‘,-(x) = —5 Z Bikxk.
1<k<d
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Then the associated magnetic Hamiltonian is defined as
Hyy := (D + A+ V(y),

that has also a self-adjoint extension in L2(X). The structure of the spectrum of
this operator may be very different of the structure of o (Ho,y) (for example it may
be pure point with infinite multiplicity!), but one expects that modulo some small
correction (depending on B), for small | B| the property 1.2 with D replaced by
D + A should still be true. More precisely it is conjectured that there exists a
symbol ri(x, &; B, A) (in fact a BC°°(E) function) such that

|11?i|m re(x,6; B,A) =0 in BC®(E),
—0

and for A in a compact neighborhood of J; and for small | B| we have that
Aeo(Hyy) < 0e€o(A—Ax(D + A(x)) + r(x, D + A(x); B, A)), (1.3)

where ri(x, D + A(x); B, 1) is the Weyl quantization of ri(x, § + A(x); B, ).

The first rigorous proof of such a result appeared in [21] for a simple spectral
band (i.e. A (£) is a non-degenerated eigenvalue of Ho y (£) for any £ € X* and
Jr N J; =@, foralll # k). In [10] the authors study this case of a simple spectral
band but also the general case, by using Wannier functions. In these references the
operator appearing on the right hand side of the equivalence (1.3) is considered
to act in the Hilbert space [/?(T")]Y (with N = 1 for the simple spectral band).
In fact we shall prove that for a simple spectral band one can replace [?(I") with
L%(X).

In [8] the authors consider the evolution of an electron (ignoring the spin)
in a periodic crystal under the action of exterior non-constant, slowly varying,
magnetic and electric fields. More precisely the magnetic field B is defined as

B =dA,
with a vector potential A = (A4;,...,45), Aj € C®(X;R), satisfying
0“4 € BC®(X), forall|a|>1,
and the electric potential is described by

¢ € BC®(X; R).
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The Hamiltonian is taken to be

Pag= > (Dy, + Aj(ey)* + V(y) + ¢(ey),
1<j=<d

with € > 0 small enough; this defines also a self-adjoint operator in L2(X).

In this situation, in order to define an effective Hamiltonian, the authors apply
an idea of Buslaev [4] (see also [9]); this idea consists in “doubling” the number
of variables and separating the periodic part (that is also “rapidly varying”) from
the non-periodic part (that is also “slowly varying”). In order to define an effec-
tive Hamiltonian to describe the spectrum of P4 4 (in fact of some Hamiltonians
generalizing this one), in [8] the authors bring together three important ideas from
the literature on the subject.

(1) First, the idea introduced in [4, 9] of “doubling the variables.”

(2) Then, following an idea from [4], one uses an operator valued pseudodiffer-
ential calculus, as the one developped in [3].

(3) The formulation of a Grushin type problem, as proposed in [10].

Let us note that if one would like to consider also non-constant magnetic fields,
then the above Weyl quantization of A(x)-dependent symbols (as used in [8]) gives
operators that are not gauge covariant and thus unsuitable for a physical interpre-
tation.

1.2. Summary of our results. Let us briefly comment upon our hypothesis.

Hypothesis H.1. The magnetic field B¢ is a closed 2-form with components de-
pending on a real parameter

[—€0.€0] € —> B¢ jk € BC®(X;R), for some €y > 0,
and verifying
lin})Be,J-k =0 in BC®(X;R).
€—>
Using the transversal gauge we can define a family of vector potentials A,

1
A j(x) = — Z Xk | Be ji(sx)sds. (1.4)
1<k<d 0
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The symbols we are considering are also functions of a real parameter
[—€0.€0] 2 € —> pe € C®(X x X x X¥)

satisfying conditions of type S{* with m > 0 uniformly in € € [—¢o, €o]. In fact,
the “physical” symbols we are really interested in are just usual symbols on E,
but as we shall use the procedure of “doubling” the space variables, as proposed
by Buslaev, we prefer to consider from the beginning this larger class of symbols
having in view also some other possible applications of our results (see also the
comments in [8]).

Hypothesis H.2. We shall denote by S{"(X x X) the space of C* functions on
X x E (with the natural Fréchet topology) such that there exists m > 0, such that
forall (@, B) € N*? x N4, there exists Cap > 0 such that

(3553 P Cx. v )| = Cagn)" .

forall (x,y,n) € X x X x X*, and all € € [—¢y, €.

Hypothesis H.3. lin}) Pe = po in ST (X x X).
€e—

Hypothesis H.4. Forall o € IN? with || > 1,
. o _
lim (3% pe) = 0
in S7"(X x X).

Hypothesis H.5. p. is an elliptic symbol uniformly in € € [—e¢q, €], i.e. there exist
C > 0and R > 0 such that

pe(x.y.m) = Cnl™,
SJorall (x,y,n) € X x X x X* with |n| > R, and all € € [—¢y, €).
Hypothesis H.6. p. is I'-periodic with respect to the second variable, i.e.
pe(x.y +v.1m) = pe(x, y. 1),
forally €T, (x,y,n) € X x X x X*, and € € [—¢y, €q].

Let us remark here that Hypotheses H.3 and H.4 imply that the limit py only
depends on the second and third variables ((y, ) € E) and thus we can write

Pe(x,y.1m) := po(y,n) +re(x,y,n) and elig%re(x,y,n)=0

in $™(X x X).
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Let us also note that our Hypothesis H.3 is not satisfied if we consider a pertur-
bation of the form (adiabatic electric field) ¢ (ey) but is verified for a perturbation
of the form €¢(y). One can consider a weaker hypothesis, allowing also for the
adiabatic electric field perturbation, without losing the general construction of the
effective Hamiltonian, but some consequences that we shall prove would no longer
be true.

We associate to our symbols the two types of symbols proposed in [8]:

Pe(y.m) = pe(y.y.m), Pe(x,y.61m) = pe(x.y. £ +1). (1.5)

We shall use the magnetic pseudodifferential calculus as developped in [17, 12, 13];
let us just recall the definition of the magnetic 2-cocycle

w4, (x,y) :=exp { —i / Ae}
[x,¥]

(here [x, y] denotes the closed interval with boundary points x and y) and the
magnetic Weyl operators defined by the oscillating integrals

[Op™(p)ul(x)

= (2n)7¢ / ei("’x_y)a)Aé(x,y)p<m, n)u(y) dydn, forall x € X.

J 2
il (1.6)
The operator we want to study is
P, := OpAe(Pe). (1.7)
The auxiliary operator is defined as in Appendix 4.2 by
Pe = Opte(qe).  9e(x.8) 1= Op(Pe(x. . £.). (1.8)

Let us note that in particular all the above hypothesis are satisfied if we take
B. :=€B,
with B a magnetic field with components of class BC*°(X),

Ac = €A,
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with A a vector potential associated to B by (1.4), and P, one of the possible
Schrodinger operators

Pe= Y (Dy, +€A;(0)) +V(y) +ep(y), (1.9)
1<j=d
Pe = Opt((m) + V(») + ep (), (1.10)

Pe = \JOp (1) + 1+ V() + €p(»), (1.1

where V satisfies 1.1 and ¢ € BC*°(X; R).

In order to define an effective Hamiltonian for P, we shall apply the same ideas
as in [8] with the important remark that the operator valued pseudodifferential
calculus we use is not a semi classical calculus but the “magnetic” calculus so
that all our constructions are explicitly gauge covariant. This fact obliges us to a
lot of new technical lemmas in order to deal with this new calculus. Our main
result is the following theorem.

Theorem 1.1. We assume Hypotheses H1-H.6. For any compact interval I C R
there exist €g > 0 and N € IN* such that for all A € I and for all € € [—¢y, €0]
there exists a bounded self-adjoint operator

E_i(e.2) = Op*(EC])

acting in [Vo]" (see Definition 2.36), where EG_)T € BC%(E;B(CY)) uniformly
in (e,1) € [—€o, €0] x I and is T'*-periodic in the variable £ € X*, for which the
Jfollowing equivalence is true:

Aeo(P) < 0eca(E_i(e,1)). (1.12)

The symbol E;’lF is a perturbation of the one at zero magnetic field £ 1’ that
is defined in terms of a family of quasi-Bloch functions associated to the energy
interval /. Moreover, if / is an isolated band with sufficiently regular Bloch eigen-
values and associated eigenvectors, then this principal symbol can be written ex-
plicitly in terms of quantizations of the Bloch eigenvalues. The case of a single
spectral band is presented in Proposition 1.4 and the general case will be treated
in a forthcoming paper.

A direct consequence of the above theorem is a stability property for the spec-
tral gaps of the operator P, of the same type as that obtained in [2, 20, 1] for the
Schrodinger operator.
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Corollary 1.2. Under Hypothesis H.1-H.6, for any compact interval K C R dis-
joint from o (Py), there exists €9 > 0 such that for all € € [—ey, €¢] the interval K
is disjoint from o (Pe).

In fact we obtain a much stronger result, giving the optimal regularity property
but only for € = 0 i.e. at vanishing magnetic field.

Proposition 1.3. We denote by 0y (F1, F>) the Hausdorff distance between the
two closed subsets Fi and F» of R. Then, under Hypotheses H1-H.7 (see lower
on this page for Hypotheses H.7) and 1.1-1.3 (see the end of Section 2), there exists
a strictly positive constant C such that

Vp(a(P)NI,o(Py)NI)<Ce, foralle e[—ep,eo] (1.13)

Let us consider now the case of a simple spectral band and study the result we
discussed previously in this case. By hypothesis we have that t, Py = Pyt,, for
all y € I and we can apply the Floquet-Bloch theory. We denote by

r(E) <128 =< ...
the eigenvalues of the operators
Pog := Op(po(-§ + )
that are self-adjoint in L2(T); they are continuous functions on the torus
Ty :=X*/Tx

(and they are even C*° in the case of a simple spectral band). Thus

d
o(Po) = U Jjs
j=1
with
J j = A j (T*)
Let us consider now the following new hypothesis.
Hypothesis H.7. There exists k > 1 such that Jy is a simple spectral band for

Py, i.e., for all § € Ty, Ax(§) is a non-degenerate eigenvalue of Py ¢ and for any
| # k we have that J; N Ji = 0.
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Proposition 1.4. Assume that Hypotheses H.1-H.7 are true and that moreover we
have that po(y,—n) = po(y,n), for all (y,n) € E. Let I C R be a compact
neighborhood of Jy disjoint from | J 1k J1. Then there exists € > 0 such that for

all (e, X) € [—€o, €0] X I in Theorem 1.1 we can take N = 1 and

EZF (x.8) = A= 4 (€) + realx. £), (1.14)

with
lin})re,,x =0, in BC*®(E), uniformlyin ) € I.
€—>
In the case of a constant magnetic field, under some more assumptions on the
symbol p. we can have even more information concerning the operator E _ (¢, 1).

Proposition 1.5. Assume that Hypotheses H.1-H.7 are true and that B are con-
stant magnetic fields (for any €) and that the symbols pe do not depend on the first
variable (x € X). Then we can complete the conclusion of Theorem 1.1 with the
following statements:

(1) E_y (e, ]) is a bounded self-adjoint operator in [L*(X)]V;

(2) the symbol E;‘lF is independent of the first variable (y € X) and is Tx-peri-
odic in the second variable (§ € X*).

1.3. Overview of periodic pseudodifferential operators. We shall denote by
81 (X) the space of T'-periodic distributions on X and by

8(T) := C*(T),

with the usual Fréchet topology; 8'(T) is the dual of $(T) and we denote by (-, -)
the duality relation on 8'(T) x 8(T) and by (-, -)1 the sesquilinear map obtained by
extending the scalar product from L?(T). It is well known that the spaces 81.(X)
and 8'(T) have a natural identification. We shall denote by S7*(T) the Hérmander
type symbols of class S;*(X) that are I'-periodic and thus may be considered as
symbols on the torus.
For any distribution u € 8.(X) = 8'(T) we have the Fourier series decompo-
sition
u= Y A4(yMoys, AQ*) = E[7 (0o, (1.15)
y*elx
where
oy (y) 1= e ),

for all y € T and all y* € T, and the series converges as tempered distribution.
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For any s € R and any y* € T'x we have
(DY oy= = (y*) oy=,

and we deduce that (D)* induces on 8'(T) = 81(X) a well-defined operator, de-
noted by (Dr)*. Forany § € E,

(Dr+ &) u:= > (y*+& ("o, forallu e 8 (T). (1.16)

y*ely
Definition 1.6. Given any s € R we define the complex linear space
FH(T) := {u € 8'(T): (Dr)*u € L*(T)}
endowed with the Hilbertian norm
[l 3es (ry == (D) ull L2 (1)

for which it becomes a Hilbert space.
The following statements are well known and easy to be proven.

Lemma 1.7. Let p € S7(X) and let us set

P = Op(p).

Then, for any s € R and for any u € 3™ (X) N 8'(X),

loc

Pu € 3 (X) N 8'(X).

s
loc

Corollary 1.8. The space H*(T) can be identified with the usual Sobolev space
of order s on the torus that is defined as I _(X) N 8L.(X).

loc
Definition 1.9. We define the complex linear space
Kg:={u € 8(T): (Dr + £)*u € L*(T)}, (1.17)
endowed with the norm

lellZ, . == D + &) °ulf2py = EITH D (v + 6701
y*elx

that defines a structure of Hilbert space on it.
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It is clear that K¢ = H*(T) as complex vector spaces and for § = 0 even as
Hilbert spaces. Similar arguments to those in Example 4.4 show that the family
{XKs,£ beex+ has temperate variation (see Definition 4.3).

Coming back to Corollary 1.8 we can consider the elements of X ¢ as distri-
butions from H; (X) N 8.(X) and we can define the spaces

loc
Fsg:=1{u € 8(X): o_gu € Ky} (1.18)

It is a Hilbert space isometrically isomorphic to X ¢ with the norm

lulls, e = llo—gullx, .-

Remark 1.10. Let us fix some £ € X*.
(1) Letus set

S¢(X) :={u € 8'(X): Tyu = 'y forall y € T}

(2) We can write

Foe = {u € 8'(0): o_gu € L3 (X) N SH(X)} = 84(X) N L2, (X)

2
loc loc

and conclude that we can identify Fo ¢ with L?(E) and note that we have the
equality of the norms [ul|s, . = |[ull 2(g)-

(3) We observe
(D +£)° =0_¢g(D) 0.

Thus
Tsg = u € 8:(X): (D)Yu € Foe},  ulg, . = I1{D)ullz,-
1.3.1. Periodic symbols

Lemma 1.11. Under the hypothesis of Proposition 4.13, for any a € X we have
the equality

2 9p?(p) = Op™* (7, ® id) p) 7o (1.19)

Proof. It is enough to use formula (1.6) and to note that

1
/ A= —<(x — y),/A((l —S8)X + sy —a) ds>. O
0

[x—a,y—a]
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Lemma 1.12. For any symbol p € ST*(T) (see Definition 4.9) the pseudodiffer-
ential operator

P :=9Op(p)
induces on T an operator
Pr € B(Ks4m,0;Ks0) foranys e R,
and the application
STUT) > p+— Pr € B(Ks4m,0; Ks,0)

IS continuous.

Proof. By equality (1.19) with A = 0 and observing that (r, ® id)p = p, for
all y € T' we deduce that P leaves 81.(X) invariant and thus induces a linear and

continuous operator
Pr: 8/(T) —s 8/(T).

If u € Kyymo = HT™(T), then
| Prullsc, o = I{Dr)* Prull L2

= (D)’ Pull2(&)

= (D) P(D)™* "™ (D)* ™ ull (k).
From the Weyl calculus we know that

(DY P(D)™™" = Op(q)
for a well defined symbol ¢ € S?(X) and the map

ST (T) > p—q € SY(X)

is continuous; by Lemma 1.7 we can find a strictly positive constant C;(p) (one
of the defining seminorms for the topology of S7*(T)) and a number N € IN (that
does not depend on p) such that

loc

I(D)* (D)l 2k) = Co(P)IVllL2qr), forall v e L (X) N8'(2),

where

F = U T E,

veln
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and
'y :={yel:|y| <N}

Let us consider now

v = (D)t e LE.(X) N 8-(X).

loc

We have

o2y = 3 [ WP dx < Cllolage
|V|SN.[VE

2 2
= CN ” <D>s+mu”L2(E)
2 2
= CN||u||9<s+m!0’
and we conclude that

IPrulls, o < CnCo(P)ltllscsspmo- 0

Remark 1.13. For any symbol p € S7*(T) and for any point £ € X* we know that
(id®t—¢)p € ST*(T), and, due to Lemma 1.12, the operator

Pe = Op((id ®7_¢) p)
induces on T a well defined operator

Prg € B(Ks4+m,0: Ks,0)
for any s € R. By the same lemma we deduce that the application

X* 23 & — Prg € B(Kstm,0: Ks,0)
is continuous and, noticing that
0% Pe = Op((id ®7_,)(id ®9%) ),

this application is in fact of class C*°.

From now on we shall consider P = Op(p) with p € S*(T) a real elliptic
symbol. We know the P has a self-adjoint realization as operator acting in L2(XX)
with the domain H" (X) (the usual Sobolev space of order m). By Lemma 1.11, we
obtain that t, P = P, for all y € I" and thus we can use the Floquet theory in
order to study the spectrum of the operator P.
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1.3.2. The Floquet transformation. In this subsection we very briefly recall the
main results of the Bloch-Floquet theory in order to fix some precise statements
to be referred in the arguments that follow. For the long history of this subject and

the main references concerning its development we send to [22, 24].
We shall consider the spaces

H(E) = {v e S(E): v(y +y.m) = vy, ),
forall y € T, such thatv(y,n+ y*) = v(y,n),
and all y € 'y},

endowed with the topology induced by 8'(E),
Fo(B) :={v € SR(B): v € L*(E x Ey)},
endowed with the norm

1/2
Mm@:oaﬁffwmmwwg |

E E«

and
Fs(B) :={v € 8L(E): ((D)* ®id)v € Fo(E)}, foralls € R,
endowed with the norm

vllzs@) = 1((D)* ®id)vllzy(z)-

We have
Fmg = Fmgry=, forally* e Ly,
and
®
Tn() = [ T dt
T«
(see [7]).

Lemma 1.14. The operator
Ur: L2(X) — Fo(B)
defined by
(Uru)(x.§) ==Y e'Eu(x —y), forall (x.§) € E,

yel

is a unitary operator with inverse denoted Wr-.

(1.20)

(1.21)

(1.22)
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Lemma 1.15. With the above notations the following statements are true.

(1) The operator
P:=PQid

leaves invariant the subspace 8.(E).

(2) Considered as an unbounded operator in the Hilbert space Fo(Z), the oper-
ator P is self-adjoint and lower semi-bounded on the domain 5,,(2) and is
unitarily equivalent to the operator P.

Taking into account the Remark 4.12 we note that for any & € X* the operator P
induces on the Hilbert space JF ¢ a self-adjoint operator with domain F,,, ¢ that we
shall denote by P (&£); we evidently have the periodicity P E+y*) = P (&) for any
y* € T*. If we identify Ko with L2 N SL(E) = L?(E), the same Remark 4.12
implies that the operator P(§) is unitarily equivalent with the operator P (£) that
is induced by Op((id ®7_¢) p) on the space Ko; this is a self-adjoint lower semi-
bounded operator on the domain X, ¢ (identified with H[? (X) N 8. (X), with the

loc
norm [[(D + &)™ - || 2(g))- More precisely,
P(§) = 0_¢ P(§)og, forall £ € X*.

Lemma 1.16. For any

zeC\ (J o(P ).

EeX*
the application
X* 3 & (P(§)—2)7! € B(Ko)

is of class C*°(X*).

Remark 1.17. Let us note that X, ¢ is compactly embedded into Xy and thus,
the operator P (£) has compact resolvent for any & € X*; it is clearly lower semi-
bounded uniformly with respect to § € X*, taking into account that

P(E+y*) =o0_yP(£)o,«, forall y* e I'*,
We deduce that
o(P(§) =0a(P§) ={1;E)}j>1.

where forany £ € X* andany j > 1, A, (&) is areal finitely degenerated eigenvalue
and

lim A;(§) = oo, forall & € X*;
j—o0
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we can always renumber the eigenvalues and suppose that A4;(§) < Aj11(§) for
any j > 1 and for any £ € X*. Due to the I'*-periodicity of P (§) we have that
Aj(E+y*)=Aj(§) forany j > 1, for any £ € X* and for any y* € I'*. These are
the Bloch bands of the operator P.

The following lemma is a consequence of semi-boundedness and the min-max
principle.

Lemma 1.18. For each j > 1 the function
Ti3&—1;(¢) eR
is continuous on Ty uniformly in j > 1.

It is obvious that
®

ﬁ:/&&,
T

and then standard arguments allow us to prove the following proposition.
Proposition 1.19. We have the following spectral decomposition
o
o(P)=o(P)= | Jk
k=1
with

Jk = A (Ts)

a compact interval in R.

Standard arguments concerning the direct integrals of self-adjoint operators
(see [24]) imply the following statement. We shall need this result only in the
special case of the constant magnetic field (see subsection 3.2).

Proposition 1.20. Considering P. as operator acting in 8'(X?) we shall denote by
ﬁe’ the self-adjoint operator that it induces in L*(X?) with domain H A (X?), as in
Proposition 2.9, and by ﬁé/ the self-adjoint operator that it induces in L>(X x T)
with domain X™(X?) (as in Proposition 2.23). Then we have the equality

o(P!)y =a(P)). (1.23)
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1.3.3. The localized quasi-Bloch functions. The operator P := Op(p) defined
above has also a self-adjoint realization in L2(T) with domain X, ¢ being also
lower semibounded. We shall very briefly recall the main steps for the construction
of a finite dimensional system of linearly independent localized vectors associated
to a given compact energy interval (the localized quasi-Bloch functions) following
[10, 11, 8]).

Lemma 1.21. There exist N € N*, C > 0, and a linear independent family
{1,...,¢0n} C S(T), such that

N
(Pru,w)amy = CHul%,, » o — C D10t @) 2y for allu € Ko,
j=1

(1.24)

Remark 1.22. From Remark 4.12 we know that for any £ € X* the operator
Pr is self-adjoint and lower semibounded in L?(T) on the domain X, ¢. If we
identify J,n,¢ with H(X) N 8.(X) endowed with the norm [[(D + &)™ ul|;2(g),

we deduce that the operator P; is self-adjoint in L2 _(X) N 81 (X) with the domain

loc

Kom,e. Noticing that P = og Pro_g and og: K ¢ — T ¢ is a unitary operator for
any s € R and any & € X*, it follows that P generates in J ¢ a self-adjoint lower
semibounded operator on the domain J,,, ¢.

Lemma 1.23. Suppose given a compact interval I C R. Then, there exist a con-
stant C > 0, a natural integer N € N, and the family of functions {{1, ..., YN}
having the following properties.

a) ¥; € C*®(E) (due to the smoothness of our symbols).

b) Forall (y,n) € E,y* €'x,and1 < j <N,
Ui+ y*) =vi(v.n).

¢) {V;(-.§)}i<j<n is an orthonormal system in Fg ¢ for any § € X*. We denote
by Tg the complex linear space generated by the family {y;(-,§)}1<j<n in
Fo,e and by ’J’g- its orthogonal complement in the same Hilbert space.

d) Forallu € 3, ¢ O‘J'g-, EeX* and X € 1,

(P = Du,u)go, = ClullZ, .- (1.25)
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Lemma 1.24. Under the assumptions of Lemma 1.23 we denote by Ilg the or-
thogonal projection on T¢ in the Hilbert space Fy ¢ and by S(§, A) the unbounded
operator in ‘J’g- defined on the domain J,, ¢ N ‘J’;- by the action of (1 —Tlg)(P —A).
Then,

a) the operator S(€, L) is self-adjoint and invertible and S(£, 1) ™' € B(TZ; ‘J'g-)
uniformly with respect to (§,1) € Ty x I;

b) the operator S(£, 1)~! also belongs to B(TZ; Fm,g) uniformly with respect to
(E,A)eTyexI.

We define now the family of N functions
¢ (x, &) = e ¥y (x,£), forall (x,6) €&, 1</ <N, (1.26)
with the family {y; }1<;<n defined in Lemma 1.23. One can prove that

Lemma 1.25. The functions {¢;}1<;<n defined in (1.26) have the following prop-
erties:

a) ¢; € C®(E);
b) forall (x,§) € E andall y € T,

¢ (x + v, 8) = ¢;(x,8);

c) forall (x,&) € E and all y* € Ty,
¢ (. & +y") = eI (x, 8);

d) Forany « € N¢ and any s € R there exists a strictly positive constant Cy
such that, for all £ € X*,

1@ Ol e < Cas. (1.27)

2. Proof of Theorem 1.1

Let us consider given a family {Be}ee[—c,,¢,] Of magnetic fields on X satisfying
Hypothesis H.1 and {A¢}ee[—e,,¢,] an associated family of vector potentials (we
shall always work with the vector potentials given by formula (1.4)). Let us also
consider a given family of symbols { pe }ee[—¢,¢,] that satisfy Hypotheses H.2—H.6.
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We shall use the notations (1.5). It is evident that with the above hypothesis and
notations we have that p. € S™(X) and is elliptic, both properties being uniform
in € € [—€o. €o]. Then our results in [12] imply that the operator P, := Op“<(p,),
the main operator we are interested in, is self-adjoint and lower semi-bounded in
L?(X) having the domain 4 (X) (the magnetic Sobolev space of order m defined
in Definition 2.5 below); moreover, with the choice of vector potential that we
made, it is essentially self-adjoint on the space of Schwartz test functions S§(X).

We use the notations from the Appendices. From example 1.6 it follows that
{Pe}lel<eo € ST"(X?) so that by defining

qe(X) 1= Op(pe(X, ).
forall s € R,
{ae}elzeo € S0, (X BT (X0): HIX))).

We can then define the auxiliary operator
P 1= Op?e(qo).
Proposition 4.13 and Example 4.14 imply the following statement.

Lemma 2.1. With the above notations and under Hypotheses H.1-H.6,
(1) Foranys € R,
Pe € B(S(X; 3™ (20)); S(X; 35 (X))
N B(S (2 FEF™(X0)); 8(X; 3 (X)),
uniformly in € € [—eg, €o];
(2) Pe € B(S(X?); 8(X2)) N B(S'(X?): 8'(X2)), uniformly in € € [—eq, €o);

(3) P. considered as unbounded operator in L*(X?) with domain $(X?) is sym-
metric for any € € [—¢y, €g].

We consider the isomorphisms
X% — X7,
4 (2.1)
(x7y) [ (x,x - y)’

such that
v li=9,
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and

x: X — X2 22)
(x,y) —> (x + .y, '

such that
X y) = (x—y.p).

The operators ¥* and x* that they induce on L2(X?) (¢ *u := uo) are evidently
unitary.

Lemma 2.2. Foranyu € 8(X?), the image Peu may be written in any of the three
equivalent forms

(Pau)(x.y) = (27) / / Iy (x5 - y)

X Xx*

p€<x_y+(y42ry)’(y;ry)’n) (2.3)
ulx +y—y.y)dydn,
¥ Py u)(x, y) = [Op* ([ ®7, ® id) pe)*)u:, )](x), (2.4)

and

(X Pex) ) (x, y) = [0p 49 (12 @ 1d @id) po)u(x, )](»).  (2.5)

Proof. Let us fix u € $(X2). Starting from the definitions of P, and q. and using
oscillating integral techniques, we get

(Peu)(x, y) = (271)_‘1//ei(é’x_’?)wAg(x,i)[qe((x +X)/2,9u(x, )(y)dxdg

X x*

(x+%) (y+)) 77)
2 2
[/ei(é,x—fc—y-l-f/) dg}u(yc,y)dfc dy dn.

x*

=2 [ [ [Ty 0
X X X*

By the Fourier inversion theorem the inner oscillating integral is in fact

(2m)? [Ty + 580 (),

and we obtain (2.3). In order to prove (2.4), we apply (2.3) to ¥ *u. Formula (2.5)
can be easily obtained in a similar way, starting with (2.3) applied to (x*)™'u.
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We end the proof of (2.5) by observing that

w4 (x +, X+y)—eXp{ e}
[x+y, x+y]
=em{{ A(a—nu+qo+wx+y»m»
= { <y Vs /(r—x (1 —s)y +s5Y) dS>}
= exp { —1i (r_er)}
[yé]
= O@_ a0 (V. 7). O

Corollary 2.3. We have the following relations between the operators P, and Pe:
(1) forany v € 8'(X),

(X*Pe(x*) ™ (80 ® v)) = 8o ® (Pev), (2.6)

and
(W Pey*(v ® 89)) = (Pev) ® So: 2.7)

(2) if pe does not depend on its second variable y € X, then
Y*Py* =P ®id. (2.8)

The idea of the proof of our Theorem 1.1 follows the main lines of the proof
in [8] modified in order to fit with the use of the magnetic pseudodifferential cal-
culus. The main steps of the proof are the following. We start with the “auxiliary
operator” P, defined in (1.8) and use a Floquet transformation with respect to
the second variable (with respect to which it is I'-periodic). This transformation
puts into evidence a family of pseudodifferential operators on a torus and a fam-
ily of Wannier functions, similar to those above, is obtained. With these Wannier
functions we define a Grushin type problem similar to the one defined in [8] but
with magnetic pseudodifferential operators. Now come the important technical
steps. First one extends the magnetic pseudodifferential operators to some spaces
of tempered distributions in two variables and proves that the inversion formula
remains true with a magnetic pseudodifferential operator as inverse. In order to
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make use of Corollary 2.3 that connects our main Hamiltonian with the “auxil-
iary” operator we have to put into evidence a Hilbert space £9. The idea is to
restrict our Grushin problem to the direct sum of this Hilbert space with a second
Hilbert space 2, and prove that the inversion relation still holds true. The control
of the continuity of the operators appearing in the Grushin problem restricted to
these new Hilbert spaces is achieved through a non-trivial group of results based
on the technical results in Lemmata 4.1, 4.2, 2.37, and 2.38 that allow to prove the
criteria in Propositions 2.39, 2.42, and 2.44 that replace the criteria proposed in
[8]. Once these technical facts clarified, Corollary 2.3 easily allow us to finish the
proof of Theorem 1.1.

Let us recall from [12] some facts about magnetic Sobolev spaces.

Remark 2.4. As in [13] one can define a family of symbols {¢s.¢} (s,e)eRx[—eo,¢0]
such that
(1) gs,e € S7(X) uniformly with respect to € € [—eg, €o];
2) qs,eHBEq—s,e =1;
(3) foralls > 0,
gs,e(x, &) = ()" + u,
for some sufficiently large u > 0 and goc = 1.

Evidently that for any Hilbert space A, using the definitions introduced in

subsection 4.2 we can identify the symbol ¢, ¢ with the operator-valued symbol

qs,e id 4 and thus we may consider that g5 . € S7(X; B(A)) uniformly with respect
to € € [—€g, €0]. We shall use the notations

Ose = DPAE (4s.¢)

and

Qs = 0se®id.
Let us still set

Ose =V9*0, V",

with ¢ from (2.1) and let us note that due to Corollary 2.3 (2) the operators Q~s,e
and Qj ¢ are in the same relation as the pair P and Pe.
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Definition 2.5. For magnetic fields {Be}ee[—e,¢o) Verifying Hypothesis H.I and
for choices of vector potentials given by (1.4) we define the following spaces.

(1) The magnetic Sobolev space of order s € R is the space
3, (X0) :={u € 8'(X): Qs.eu e L*(X)}
endowed with the following natural quadratic norm

lellges, o := [1Qs.eullL2cxy.
for all u € 35 (X). 5 _(X) a Hilbert space containing S(X) as a dense
subspace.

(2) We shall define also

B2 (X0) = ()9, (0,
seR

with the projective limit topology.
(3) For s € R we consider also the spaces
5 (X?) = {u € 8'(X?): Oyeu € LA(X?)}
endowed with the following natural quadratic norm
Iz, 2 = 10s.ctllaaen.

forall u € ﬂtfjlg (X?). J~{f4€ (X?) is a Hilbert space containing §(X?) as a dense
subspace.

Remark 2.6. ¢* is a unitary operator from ﬂffjlg (%) onto Hy, (O ® L%(X).

Lemma 2.7. Foranys € R we have that P, € IB(ijj:'m (2?); ﬂtfjlg (X?)) uniformly
for € € [—e¢y, €o].

Remark 2.8. Suppose given r € S7(X?). Then evidently r(-, y,-) € SI"(X)
uniformly for y € X. If B is a magnetic field on X with components of class
BC>(X) and A an associated vector potential having components of class Cg’;’l (X)
we define the magnetic pseudodifferential operator with parameter y € X

Q) (x. y) = )~ / / HEF) 4 (o, D) (x + 5)/20 v, Eu(E. y) d % dE,

X o
(2.9

for all u € $(X?) and all (x, y) € X2.
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A straightforward modification of the arguments from [12], and denoting by
R the operator defined as above in (2.9) with a vector potential A, allows to
prove that

Re € B(S(X?); $(X?)) N B(HG™(X) ® L2(X); 3y, (X) @ L*(X)),  (2.10)

for all s € R. Moreover, if r is elliptic, then for any u € L?(X?) and any s € R we
have the equivalence relation

u € HT(X0) ® LA(X) <= Reu € Ky (X) ® L*(X). (2.11)

Proposition 2.9. P is a self-adjoint operator in L2(X?) with domain ﬁfﬁ”é (2?).
It is essentially self-adjoint on $(X?).

2.1. The Grushin problem. We consider the Floquet transformation acting on
the second variable of L2(X x X).

Definition 2.10. We set
8L (X% x X*) == {v € §/(X* x X*):
v(x,y+7,0) =% y(x, y,0) forall y €T,
v(x,y,0 +y*) =v(x,y,0)forall y* € I},
endowed with the topology induced by 8'(X(? x X*).
Definition 2.11. We set
Fo(X? x X*) 1= 8L (X% x X*) N LE(X* x X*) N L*(X x E x Ey)

endowed with the norm

|vllg, = |E*|—1///|v(x,y,0)|2dxdyd9, for all v € Fo(X? x X*),
X E Ex
(2.12)

that makes Fo(X? x X*) into a Hilbert space.

Lemma 2.12. The map

Urw)(x,y,0) =y e u(x,y —y)
yel

defined on $(X?), extends as a unitary operator

Ur: L2(02) — Fo(X2 x X*).
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Lemma 2.13. Let P, be the operator defined in (1.8) and
ﬁe,p = P, ®id,
as a linear continuous operator in 8. (X% x X*). Then
UrP, = P.rUr on 8'(X?).

Definition 2.14. We define the operator

Oser =05 ®id  on8H(X? x X*).
Definition 2.15. For any s € R we define

Fy (X2 x X*) := {v € $H(X% x X*): Oserv € Fo(X2 x X*)},
that is evidently a Hilbert space for the norm
llz, . == Qs.e,rvllo-
Lemma 2.16. The operator
Ur: T (X?) —> Fye(X% x X*)

is unitary.

Lemma 2.17. The operator f’e,p defined on Fp, (X% x X*) is self-adjoint in the
space Fo(X? x X*).

Definition 2.18. Let § € X* and s € R.
(1) We define
8,(X?) := {u € 8'(X?): (id®@t_y)u = ey forall y € T},

with the topology induced by 8'(X?).
(2) Further, we define

5 (X?) = {u € $p(X?): Oseu € L*(X x E)},
endowed with the norm
||7«l||9fg).E = ||Qs,eu||L2(xXE)-

(3) Finally, we define
5 (X2) = 3G L (XP).
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Remark 2.19. As already noted in the proof of Lemma 2.13, for any u € 8'(X?)
we have
(id ®7_y) Pet = Pc(id®7_y)u, forally eT.

It follows that the operators f’e and Q s,e leave the space 8/9(362) invariant.
We note that

$5(X%) = S (X3).
Let us also note that for s = 0 the spaces defined in (2) and (3) above do not

depend on € and will be denoted by F(g(X?) and respectively by J(X?); this last
one may be identified with L2(X x T).

Lemma 2.20. Let us consider the map ¥ defined by (2.1). Then for any s € R the
adjoint ¥* is a unitary operator

KE(X?) — H, (X) ® L>(T).
In particular X$(X?) is a Hilbert space having 8(X x T) as a dense subspace.

Lemma 2.21. For any 6 € X* and s € R the operator
Yo: 8(X?) — 8$(X?)
defined by
(You)(x, y) := & u(x, y),
induces a unitary operator
5. () —> KX
In particular, 9{5’ . (X?) is a Hilbert space containing
80(X?) := Y5 [S(X x T)]
as a dense subspace.
Proof. Let us prove first that for any § € X* we have the equality P, Yy = Yy Pe,
on 8'(X?). It is clearly enough to prove it on 8(X?); this is a direct consequence
of (2.3), because (x+y—y)—y = x—y. Then we also have that Qs Yo = Vg Os.e
on 8'(X?). We note further that Yy takes the space 8}, (X?) into the space 8[.(X?),
while the operator Q; ¢ leaves invariant both spaces &, (X?) and Sk (X?). It is then
easy to see that for u € 8, (%) we have the equivalence relation u € ﬂ-(g, . (X?) <

= You € K5(X?) and the equality [Youlxs = ||u||%(3 .- The last statement is
obvious by Lemma 2.20. ’ O



The Peierls—Onsager effective Hamiltonian 473

Lemma 2.22. Forany s € R we have that P, € B(XET™(X?); KS(X?)) uniformly
for € € [—e¢y, €o].

Proof. We use the fact that ¢*: K5(X?) — Hy, O ® L?(T) is a unitary operator
leaving 8(X x T) invariant. U

Proposition 2.23. P, is a self-adjoint operator in K(X?) = L2(X x T) with
domain K™ (X?); it is essentially self-adjoint on (X x T).

As we have already noted in Remark 4.8, the symbol po(x, y, n) ate = 0 does
not depend on the first variable x € X; thus if we set

po(y.n) = po(0,y.1n)
and

re(x,y,n) := pe(x,y,1) —po(y,n),

and we note that po € S7"(T) is real and elliptic, we can write
DPe = Po + e, lin})re =0, in S7"(X x T). (2.13)
e—

We apply the construction of the Wannier functions (Subsection 1.3.3) to the op-
erator Py := Op(po). We set

Ko := Koo = L*(T) = L*(E),

and, for any £ € X*, we define the linear operators P ¢ as in Remark 1.13 and

Ri(®u :={(u,dj)x,1<j<n., Torallu e Ko, (2.14)
and
Ro(®u:= Y u;j;(-.&). foralluccCV. (2.15)
1<j=<N

We evidently have that R (£) € B(Xo: CV), R_(£) € B(CY;Xy) and, by (1.27),
both are BC* functions of £ € X*. With these operators we can now define the
Grushin type operator

Pog—4 R-(§)
R (§) 0

for all (£,1) € X* x I.

Po(E,X) 1= ( ) € B(Kpme x CV; Ko x CV), (2.16)
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Proposition 2.24. With the above notations,
a) as a function of (E,1) € X* x I,
Po € C®(X* x I B(Kpm,0 x CV: Ko x CV))
and for, any a € N¢ and any k € NN,
(005Po) (5. 1) € B(Kmg x CV: Ko x CV)
uniformly in (§,1) € X* x I;

b) if we consider Po(£, L) as an unbounded operator in Ko x CN with domain
Kom,e ¥ CN, then, for any (£, 1) € X* x I, Po(&, L) is self-adjoint;

¢) the operator Py(€, A) has an inverse

E°E2)  ELG.A)

Eo(6. 1) = (Eg(g, A ECL ()

) € B(Xo x CV; K, e x CN), (2.17)

uniformly bounded with respect to (§,1) € X* x I
d) as a function of (§,1) € X* x I,
€0 € CO(X* x I;B(Ko x CN; Km0 x CVY),
and, for any o € N? and any k € NN,
(005 E0)(E, 1) € B(Ko x CV; Ky g x CV)
uniformly in (£, 1) € X* x I.

Proof. We need to make the change of representation

U(E) := (‘If ]?) Ky x OV —> Fye x OV, (2.18)
QL) = UE)Po(E. MUE) ™" : Fpg x CV — Foe x OV, (2.19)

for all (¢§,1) € X* x I, and note that

Po—2 ﬁ‘@)), (2.20)

o =(F g
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where, with the family of functions {y;}i1<,;<n introduced above (see Subsec-
tion 1.3.3), we define, for any & € T\,

Ry :={(u. ¥ (. E)) 7o 1<j<n € CN, forallu € Fopg, (2.21)

and
B N
R_(&)u := Zgjw,-(-,s) € Joe, forallu:={u,,...,uy} € eV, 22
j=1

Evidently we have that for all § € T, R4 (§) € B(Fpe: CV) and all R_(§) €
B(CV; Fo,¢). Itis then easy to see that for any values of (§,A) € T, x [ the operator
Q(, A) acting as an unbounded linear operator in the Hilbert space T ¢ x C¥ is
self-adjoint on the domain F, ¢ x CN. Moreover, using Lemma 1.24, one can
prove that the operator Q (&, A) defined in (2.20) is bijective and has an inverse
Q(&, 1)~ € B(Fpe x CV; Fpp e x CN) uniformly with respect to (£, 1) € Ty x I.
The proposition follows then easily. O

In particular, we observe that

Po(-, A) € S B(K e x CV; Ko x CVY), (2.23)
and

Eo(-A) € SA(X; B(Ko x CV; Kppe x CVY), (2.24)

uniformly for A € 7.
Let us consider now the operator

Ge(x.§) =4 R-(§)

Te(x’é’”::( Ri®) 0

), Ael, € €—¢€p, €], (x,6) €B,
(2.25)

where we recall that qc(x, §) := Op(pe(x, -, &,°)), Pe(x, ¥, &, 1n) := pe(x, y, E+1).
Taking into account Proposition 4.10 from the Appendices we observe that q. €
STC; B(Km,g; Ko)) uniformly in € € [—€o, €o]; thus

Pe(x. £, 1) € SYX: B(Kme x CV1 %o x CV)), (2.26)

uniformly with respect to (A,€) € I x [—¢p, €o].
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Lemma 2.25. The operator
(Pe,k = DpAe (:PE(" B A’))

belongs to B(X™(X?) x L2(X; CN); K(X?) x L2(X; CN)) uniformly with respect
to (A,€) € I x [—€q,€9]. Moreover, considering P, as an unbounded linear
operator in the Hilbert space K(X?) x L?(X; CN) it defines a self-adjoint operator
on the domain K™ (X?) x L2(X; CN).

Proof. If we set
Rz = Ope (R=(6)).

P.—)\ R_
P = ¢ <. 2.27
A (9%+,e 0 ) (2.27)

Taking into account Lemma 2.22 we may conclude that P, € B(X"(X2); K(X?))
uniformly with respect to € € [—¢g, €¢]. Noticing that R_(§) = R4+ (£)* and be-
longs to SJ(X; B(CY; X)), Proposition 4.17 implies that

then we can write

R_e = NL € BLA(XGCV): K(X2))

uniformly with respect to € € [—eg, €9]. This gives us the first part of the state-
ment of the lemma. The self-adjointness follows from the self-adjointness of P
in K(X?) on the domain X" (X?) and this follows by Proposition 2.23. O

Lemma 2.26. The operator
Eo.e 1= Ope(E0(, 1))

belongs to B(K(X?) x L2(X; CN); K™(X?) x L2(X; CN)) uniformly with respect
to (A, €) € I X [—e€p, €.

Proof. We can write

0 oy
€0 = (@05 A &0 et ) (2.28)
A —+,6,A

with
€2, 1= Ope(E°(, 1)),
€L 5 = Op? (EL(. 1)),

€ = Op(EL, (L 1),
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By (2.24), it follows that Eo(-, 1) € SJ(X; B(Ko x CV; Ko x CV)) uniformly with
respect to A € 1. In order to prove the boundedness result in the lemma it is
enough to show that

(Qg ’ ]?)80,5,1 € BI(X?) x L2 CV): K(X?) x L2 CY)). (2.29)

uniformly with respectto (A, €) € I x[—¢y, €0]; here Q~m,e is defined before Defini-
tion 2.5, with some suitable identifications. In that Definition we also argued that
the operator Q~m,e corresponds to the operator Q, ¢ from Remark 2.4 transformed
by doubling the variables starting from the operator valued symbol g, .. We may
thus conclude that Q~m,e is obtained by the Op“¢ quantization of a symbol from
SI(X; B(Kpm.g:Ko)). Taking into account that E®(£,1) € SJ(; B(Ko; Ko .£))
and E9 (§,1) € SJ(X;: B(CY:; K ¢)), the property (2.29) follows by the Compo-
sition Theorem 4.15 a) and by Proposition 4.17. U

Theorem 2.27. For a sufficiently small ¢9 > 0, for (A,€) € I X [—¢€g, €o] the
operator P ; from Lemma 2.25 has an inverse

: ._(e(e,x) e+(e,A))
“ATN\el(e,l) E_i(eN)

€ B(K(X?) x L*(X; CN); KM (X%) x L2(X; ¢V)),

(2.30)

uniformly with respect to (¢, L) € [—€g, €0] X 1. Moreover,

86,/1 = 80,6,/1 + :RE,),’

Res = Ope(pen),

and
liﬂ})pe,,x =0 inSJ(X;B(Ko x cN: Kome X cMy).
€—>
In particular,
E_i(e, 1) = Ope(E_T), lirréEe_j = E% (- A)in SJ(X; B(CN; CN)),
’ €—> ’

(2.31)
uniformly with respectto A € I.
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Proof. The symbols ¢ (&, A) and Py (&, A) appearing in Lemma 2.25 and resp. in
Lemma 2.26 do not depend on x € X and on € € [—¢p, €9]. We can thus consider
that

€o(E. 1) € Sg (X B(Ko x CN; XK g x CV))
and

Po(£.2) € S§ (X B(Kpme x CV: Ko x CV))
uniformly for A € /. By (2.13), (2.16), and (2.25),

qc(x.§) 0)’

fPe(x,s,A)—fPo(s,A)=( L

where
q.(x. §) 1= Op(Fe(x, . £.-)
and
Fe(x,y.6.m) = re(x,y.§ +1).
By Proposition 4.10 we conclude that
lm[Pe(x. £, 4) = Po(§. )] = 0

in SQ(X; B(XK e x CV; Ko x CV)) uniformly with respectto A € 1.
Let us set
Pe s 1= Opte(Po(§. 1))
We can write that
TG,AEO,G,A = TS’AEO,E,A + (Te,/l - TS,A)EO,G,A

in B(K(X?) x L2(X : CV); K(X?) x L*(X;CV)). Using the Composition Theo-
rem 4.15 and the above remarks, we conclude that

?e,kgo,e,k =1+ DpAé (se,/l)
in B(K(X?) x L2(X; CN); K(X?) x L2(X; CN)), where
Elg)r(l)sé,), = 0’
in SJ(%; B(Ko x CN; Ko x €V)) uniformly with respect to A € I. It follows by
Proposition 4.18 that for €p > 0 small enough, the operator 1 +OpAe (Se,2) is invert-
ible in B(K(X?) x L2(X; CN); K(X?) x L2(X; CN)) for any (e, A) € [—ep, €] x I
and it exists a symbol 7 , such that

limz 4 =0,
e—0
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in SQ(X; B(Xo x CV; Ko x CV)) uniformly with respect to A € I and
[1+Ope(se)] ™ = 1+ Ope(ze,). (2.32)

Let us define
86,)& = 80,6,)&[]l + DpAé (te,/l)]

and let us note that it is a right inverse for P ;. As the operator P ; is self-adjoint,
it follows that £, , defined above is also a left inverse for it. The other properties
in the statement of the theorem are evident now. O

Remark 2.28. The operator €_, (e, A) defined in (2.31) is the effective Hamil-
tonian associated to the Hamiltonian P, and the interval /. Its importance will
partially be explained in the following Corollary (proved in [8]).

Corollary 2.29. Under the assumptions of Theorem 2.27, for any A € I and any
€ € [—ep, €],
Leoa(P) < 0¢ca(E_i(e N)). (2.33)

We shall need further the following commutation property.

Lemma 2.30. Let y* € T*. Then, for all (¢, A) € [—¢o, €o] X 1,

(TV* 0 )fPe,A _ fPe,A(TV* 0 ) (2.34)

as operators on $(X x T) x 8(X; CV) (identifying the test functions on the torus
with the associated periodic distributions).

Remark 2.31. Of course the inverse of the operator P, , verifies a commutation
equation similar to (2.34) on §(Xx T) x8(X; CV) and for any (e, 1) € [—eg, o] X 1.

2.2. The auxiliary Hilbert spaces 25 and £

Definition 2.32. For any s € R and any € € [—¢y, €g], we define the subspace of
tempered distributions (the map ¥ defined in (2.1))

5(e) 1= {w € 8'(X?):

there exist v € 9}_(X) such that w = w, = Y ¥* (v ® 6_,)}.
yel

endowed with the quadratic norm

lwoll ey = lvllaes -
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Lemma 2.33. £(¢) is a Hilbert space and is embedded continuously into 8'(X?).
Lo does not depend on €.

It is easy to show that the previous definition is meaningful, the series appear-
ing in the definition of the space £;(¢) being convergent as tempered distributions.

Remark 2.34. For any w € £;(¢) we have the identity
(d®ty)w =w, foralla eT.

Lemma 2.35. For any € € [—¢, €],

(1) P. € B(Em(e€): Lo) uniformly in € € [—eo, €o);

(2) the operator P, considered as an unbounded operator in the Hilbert space
Lo defines a self-adjoint operator P! having domain £,,(¢) and this self-
adjoint operator is unitarily equivalent with Pe.

Proof. 1. Letus choose two test functions v and ¢ from 8(X). Using formula (2.4),
we obtain that, for all (x, y) € X2,

[(F* Py ™) (v ® p)](x, y) = [Dp*e([([d @7y ® id) pe])0](x) ().
In this equality we insert
—dp(Y TV
o(y) = ¢a(y) == A dG(T)

for some (A, y) € R} xI" and forany y € X, where we denoted by 6 a test function
of class C5°(X) that satisfies the condition

/G(y)dy = 1.
X

With this choice we consider the limit for A N\ 0 as tempered distribution on X2.
Taking into account that for A \ 0 we have that ¢, converges in 8'(X) to §_, and
using Hypothesis H.6, we conclude that

WPy 8_y) =(Pev)®6_,, forallvedX),yel.
Extending by continuity we can write the equality

W* Py (v ®6_y) = (Pev) ®5_,, forallves(X).yel.  (2.35)
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We conclude that for any u € £,,(¢) of the form

U= Uy = ZVI*(U ® 6—y)
yel
for some v € HY (X) we can write
Pa=y* (X Py v ®5-,)) = Y ¥ (Pev) ®5-,).

yel yel

The first statement follows now from the fact that P € B(FH} (X): L?(X)) uni-
formly with respect to € € [—¢o, €0].

2. We observe that the linear operator
U 3 (X)) —> £4(e)

defined by
Ufv = Zlﬁ*(v ®38-y)

yel

is in fact a unitary operator for any pair (s, €) € R x [—¢y, €p]. Following the argu-
ments from the proof of the first point of the lemma, P.U} = U P. on J{Z’E (X)
(the domain of self-adjointness of Pe). O

Definition 2.36. We use the notation
3y 1= 1,0,
with § the Dirac distribution of mass 1 supported in {0} and y € I', and we define

Wy := {w € §'(X): there exists £ € [>(T") such thatw = Y f,6_, |.

yel
lwllwo := Y 112,
yel

It is evident that 2, is a Hilbert space and is canonically unitarily equivalent
with /2(T"). The Hilbert space % has a “good comparison property” with respect
to the scale of magnetic Sobolev spaces. Let us choose vector potentials { A¢ }je|<e,
having components of class C;’;’I(DC) and defining the magnetic fields {B¢}|e|<c,
satisfying Hypothesis H.1.

endowed with the norm

for all w € Y.
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Lemma 2.37. Foranys > d and for any € € [—¢g, €o] we have the algebraic and
topological inclusion

Yo — Hy (X),

uniformly with respect to € € [—e¢g, €g).

Proof. Let
u=>y_ f,8, Vo

yel
Then
g = Q_seu = ny Q—S,GS—)/-

yel

Computing in 8'(X) for s > d we see that Q_; (56—, belongs in fact to C(X) (as
Fourier transform of an integrable function) and, moreover,
- i X —
(0-se8p) ) = @) [ 00 (2. =y ) .
:x:*

Thus for all N € N there exists Cy > 0 such that for any € € [—¢g, €9] and x € X,
we have

|(Q—S,68—y)(-x)| <Cpn{x+ ]/)_N.

Choosing N > d we note that, for any x € X,

gl =y Y1l + 7)™

yel
<on(YIAP G+ V>_N)I/Z(Z<x + V)_N)l/z'
yel yel

Thus g € L?(X) and lgllz2¢x) < Cnllullg,- Finally this is equivalent with the
fact that Qs.cg € H 7 (X) and there exists a strictly positive constant C such that

||u||g{25(x) < Cllullg,, forallu € By, € € [—€p, €] (2.36)
O
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We shall need a property characterizing the elements from 2, (replacing the
property proposed in [8] that is not easy to generalize to our situation).

Lemma 2.38. Forany s > d there exists Cs > 0 such that

D uP < Cllullfey y Jorallu € 8(X). € € [~eo. co. (2.37)
yel

Proof. For any fixed u € §(X) let us define
vi= Qs et € 8(X).
Then u = Q_; v and thus for any N € IN and for any x € X we can write that

u(w) = [ &y Ve, (x4 A gee(SF ) o) dv

©
[

Thus there exist C and C’ such that for any € € [—¢¢, €¢] and for any x € X one

has
(o) < cz( [ dy) ( [~ y>—2N|v(y)|2dy)
x be

= ¢ [t Mo .
X
We choose now N € IN large enough and note that
P < [ (St =072V )P ay
yel x yel
< Co)220
< Cs”””?}(ilé(x)- U

Proposition 2.39.  a) Given any u € Uy there exists ug € Hg (X) such that

u= E Oy*Ug.

yrel'*

Moreover the map
DINER = J—Cfl‘;(DC)

is continuous uniformly with respect to € € [—¢g, €o].



484 V. Iftimie and R. Purice

b) Given any ug € HZ (X), the series

yrel*

converges in 8'(X) and its sum denoted by u belongs in fact to $0y. Moreover
the map
HE(X) 3 up > u € Vo

is continuous uniformly with respect to € € [—¢g, €o].
Proof. We shall use the notation
Uy 1= Oy*lUy,
for any y* € T'* and for any tempered distribution ug € 8'(X).

a) Lemma 2.37 implies that for any s > d and any € € [—¢g, €9] we have that
Yo C H;*(X) and there exists a strictly positive constant Cs > 0, independent
of €, such that

lellscgs oy < Callullw:

Let us choose a real function y € C$°(X*) such that

Z Ty =1 onX*

y*el'*
For any distribution u € U, we define
ug := Ope(yu.

Due to the fact that y € §7°°(X), it follows by the properties of magnetic Sobolev
spaces (see [12]) that ug € ?Cf;‘; (X) and the map

Yo 3 u —> up € Hg (X)
is continuous uniformly with respect to € € [—¢y, €9]. We define
gy* = Q—5,0pxUp = Uy*DpAé ((d ®T—y*)¢]—s,e)u0

where we have used the arguments in the proof of Proposition 4.6 for the last
equality. We note that the family {(y*)*(id ®T_y*)g—s.e}|e|<eo,y*er, iS bounded
as subset of S7(E) and thus there exists a constant C > 0 such that

lgy* L2y < C()’*)_S||u0||:}{§1€(x), for all € € [—eg, €], y* € T™.
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We conclude that it exists an element g € L?(X) such that

Y gy =g inL*(X)

yrel'*

and we have the estimation

lglz2cx) < C/||U0||9c§,€(x) for any € € [—eo, €o].

Due to the properties of the magnetic pseudodifferential calculus (see [12]) it fol-
lows that the series ) «cp« uy+ converges in 3{*(X) to an element v € H;*(X)
and

lolsczen < Clluollscy, e

uniformly with respect to € € [—¢p, €9]. We still have to show that v = u as
tempered distributions. Let us fix a test function ¢ € 8§(X) and compute

(v.0) = Y (o Op*(u, 9)

yrel*

= Y (Op*(ty  x)oyu. @)

yrel*

= > (w.Op (1 1)o)

yrel*

where we have used the relation o), +u = u verified by all the elements from 2.
Let us also note that, for any s > d,

Z T_yxx =1 1in S7(E),

yrel*

so that we can write that

=Y Opt(r e inS).
y*EF*

We conclude that
(v,9) = (u,p) forany ¢ € $(X),

and thus v = u.
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b) During the proof of point (a) we have shown that for any s > d there exists
a constant Cy > 0 such that for any uo € F (X) and for any € € [—€o, €o] the
series ) u,* converges in 2 (X) to an element u € 3,7 (X) and

y*el'*

||M||}(Z:(x) < CS””‘)”%L(X)’ for all ug € ﬂ-(fﬁ (X), € € [—€o, €0]. (2.38)

Let us recall the Poisson formula

d
Y oy = (@) Y 8o, in8(). (2.39)

y*el'* |E*| yel

Let us first suppose that uo € $(X). Multiplying in the equality (2.39) with uq
we obtain
(2m)
U= —
|E*|

> ug(=y)s—y. in 8'(X). (2.40)
yel

Lemma 2.38 implies that u € U, and, for any s > d,
||u||Q30 < Cs”u()”f}{ig(x), for all ug € 8§(X), ¢ € [—60, 60]. (2.41)

We come now to the general case ug € Hg (X). Let us fix some € € [—eo, €]
and some s > d. Using the fact that 3(X) is dense in J(3 (X) we can choose a

sequence {ulg teemw+ C S(X) such that
. k.
Uy = kl;ngouo in 3C5_(20).

For each element u¥ we can associate, as we proved above, an element u* € U,
such that

[u* g, < Csllulgllg(;;e(x), for all k € N*,
and
u* — ! |y < Csllug —ubllses,_coy. forall (k, 1) € [N*].

It follows that there exists v € Yg such that

v = limu* in Yo
k /o0

and

lvllswg < Cslluollses (-
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We know that

uk = Z opruk

y*el'*
so that by (2.38) we deduce

k k
[® = ullsezs o) = Csllug = uollaes_ o) fyd 0.

In conclusion

k . —s
u* — u  in H;(X),
k /o0 AE( )
and
uk — in Y.
k /o0

But Lemma 2.37 implies that Uy is continuously embedded in J(;*(X) and we
conclude that v = u. O

The following lemma can be proved similarly to Lemma 2.37

Lemma 2.40. Foranys > d and any € € [—¢¢, €g] we have a continuous embed-
ding
Lo — HZ(X)® L*(T)

uniformly with respect to € € [—¢g, €g).

We shall obtain a characterization of the space £y that is similar to our Propo-
sition 2.39. We use the notation

HE(X) ® L(T) := ()3, (X) ® LA(T)),
SER
with the natural projective limit topology and need the following technical lemma.
Lemma 2.41. Suppose given some ugy € HEX) ® L*(T) and for any y* € T*,

let us define
Uy 1= Tyxuyg.

For any s > d there exists Cs > 0 such that the series ) «cp« Uy* converges in
H;5(X) ® L*(T) and the sum denoted by v € 3(;*(X) ® L*(T) satisfies

Ivllscscoerzay = Cslluollse, er2m): (2.42)

Jor all ug € HP (X) ® L*(T) and all € € [—¢y, €.
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Proof. From the proof of Proposition 4.6, it follows that on $(X) we have the
equality
05,0y = OV*DPAG ((id ®T—y*)q-s,¢),

so that finally
(O—s.c ® id)uys = Tp=[OpAe ((id ®7_y+)g—s.c) ® id]uo. (2.43)

Taking into account that the family {(y*)*(id ®T_y*)q—s.e}(e,y*)e[—c0,e0]xT* 1S @
bounded subset of S*(X), it follows the existence of a constant C > 0 such that
for any € € [—¢p, €¢] one has

[(Q=s.e ® id)uy*|12(x)r2(1) = C(V*)_s”uo||9{§16(DC)®L2(T)7 (2.44)

for all ug € HP (X) ® L?(T). It follows that the series
D (05 ®idyuy
y*el*
converges in L?(X) ® L?(T) uniformly for € € [—eg, €9]. The stated inequality

follows now by summing up the estimation (2.44) over all I'*. O

Proposition 2.42. For any u € £ there exists a vector ug € H*(X) ® L?(T)
such that

u= Y Ty=uo, in8'(X?. (2.45)

yrel'*
Moreover, the application
Lo 3 u+— ug € HP(X) ® L*(T)

is continuous uniformly with respect to € € [—¢g, €o].

Proof. We recall the notation u,« := YJuo and, as in the proof of point (a) of
Proposition 2.39 we fix some real function y € C§°(X) satisfying the identity

Z Trx =1 onX.

y*el'*

For any u € £ let set
up := (Op“e(y) ® idu.
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We note that y € S7°°(X); thus, by Lemma 2.40, ug € HZ (X) ® L?(T), and
the continuity property at the end of the proposition is clearly true. We still have
to verify (2.45). Following the streamline of the proof of Lemma 2.41, the series
D xer= Uy* converges in &' (X?). An argument similar to that in the proof of
Proposition 2.39 a) proves that on $(X?) we have the equality

D Opt (e ®id=id. (2.46)

prel'*
From the proof of Proposition 4.6 we have that

Ope (T x) = U—y*DpAE (Voy=.
For any u € £, there exists v € L?(X) such that

U=y PV,

yel

thus, for any y* € T'*,
Ty ™ (v ®6-y) = P ((I[d®0y=)(v ® 6-y)) = ¥ (v ® Iy,

and we conclude that Y,,«u = u. Using these results we deduce that, for any
u e 20,

[P (1 1) ® idJu = Yoy (Dp () @ idu = Yyeug = Uy

We apply now equality (2.46) to the vector u € £y in order to obtain that u =
> +er+Uy*, as tempered distributions. O

In order to prove the reciprocal statement of Proposition 2.42 we need a tech-
nical lemma similar to Lemma2.38.

Lemma 2.43. Forany s > d there exists Cs > 0 such that

/|M(X,X)|2dx < Cs||u||g{i€(x)®L2(T), (247)
X

Jorallu € 8(X x T) and all € € [—¢y, €0].
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Proof. Letus fix some u € §(X x T) and € € [—¢, €p], and let us define
V= (Qs,e ®id)u € S(X x T).

It follows that u = (Q—s,¢ ® id)v and we deduce that for any N € IN (that we shall
choose sufficiently large),

u(x, y) = / (x — 2) 2N 6x2)0, (1, 2)

: [((id—Ag)Nq_s,e)(xT“,;)]v(z,y)dzdg, for all (x, y) € X2.

We deduce that there exist the strictly positive constants Cyy, Cy, .. ., such that

(. )| < CN/<x—z>—2N|v(z,y)|dz,
X
and

e )P = G [ tx =22 oGz )Pz
x
In conclusion,

/ lu(x, x)|>dx = Z/ lu(x + v, x)|* dx
X

yEFE
< C{\,Z//(z—y)_2N|v(Z,x)|2dzdx
yeFE x
5C§//|v(z,x)|2dzdx
E X

2
= CI/\/’ || v ||L2(3CXT)
< C7lull? : O
= T Wllaes_(oeL2(m
We come now to the reciprocal statement of Proposition 2.42.
Proposition 2.44. Suppose given ug € H (X) ® L*(T) and for any y* € T* let
us consider
Uy 1= Tyxug.

Then the series ), «cp« Uy converges in &' (X?) to an element u € £y. Moreover,
the application
HE (D) ® L*(T) 3 ug —> u € £

is continuous uniformly with respect to € € [—¢g, €.
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Proof. For any s > d and any up € HP (X) ® L?*(T), Lemma 2.41 implies that
> er+ Uy converges in 3(;*(X) ® L*(T) to an element u € H*(X) ® L*(T)
and there exists Cy > 0 such that

lullsess ooz = Cslluollae,_ oLz (2.48)

for all ug € 34 _(X) ® L*(T) and all € € [—¢o, €.

We still have to prove that u € £¢ and that the continuity property stated above
is true. As in the proof of Proposition 2.39 b) we make use of the Poisson for-
mula (2.39). Once we note that

]/I*(id ®O'y*) = Ty*,

we conclude that, for any ug € $(X?),

d
>y = (27) [Z@/,*(id ®5_y)]u0. (2.49)
~

|E¥|
yel

But we note that ZyEF ¥*(id ®5-,) belongs to 8'(X x T) and we deduce that the
identity (2.49) also holds for ug € 8(X x T). In this case, ¥ *(id ®5_,) - ug also
belongs to 8'(X?) and, for any ¢ € §(X?),

('/,*(ld ®8—]/) *Uo, QD) = ('/,*(ld ®8—V)’ uo‘/’)
= (i[d®3—y, ¥ (uop))

= /go(x,x + Y)ug(x, x)dx.
X

Let us set
vo(x) 1= uo(x, x),

so that we obtain a test function vy € §(X) such that
YA ®5_y) -uo = ¥ (vo ® 8—y).
Let us further set
vi= () /|E«vo € 8(X) C LA(X).
If we use this equality into (2.49), then we obtain

wi= Y up =y YU, € L. (2.50)

y*el* yel
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Let us verify now the continuity property. Take both ug € HZ (X) ® L*(T)
and {ug k }rew+ C S(X x T), as well as some s > d such that

up = limugy in 3¢5 (X) ® L*(T).
k /o0 €

We introduce the notations

2m)¢
|E*|

v (x) = ugr(x,x), forallx e X

and

U = Zl/l*(vk ® 8_y) € £o.

yel

By Lemma 2.43, we deduce that there exists a strictly positive constant Cy such
that, for any € € [—¢o, €o] and for any pair of indices (k, ) € [IN*]?,

luk —uilleo := llok = villL2@ey = Cslluox —woillse,_er2m:  (2.512)
and
luklleo = Cslluokllaes oerzem: (2.51b)

By (2.51), we deduce that there exists v € L?(X) limit of the sequence {vj }xen+
in L2(X) such that

||U||L2(x) < Cs”u()”g{jé(x)@LZ(T), for all € € [—60,60]. (252)

Let us define
=Y ¥ ®s_y) € Lo.

yel
By (2.52), we deduce that

i)l go < CSHU()”:H:Zé(x)@LZ(T), for all € € [—e, €0]. (2.53)
In order to end the proof we have to show that

i=u:= Z uys in 3,5 (1) ® L*(T).
V*EF*

If we use now inequality (2.48) with u replaced by ug x — 1o, we obtain
lux = ullscsner2m = Csllnor —uollse, er2m):-
We deduce that u = lim uy in 3(;*(X) ® L*(T). But, by (2.51), it = lim uy in
k /oo € k /oo

£o and thus, due to Lemma 2.40, also in 3*(X) ® L?(T). In conclusion & = u
and the proof is finished. U
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Lemma 2.45. We have
£(e) = {w € 8'(X?): Oy cw € Lo}
and its definition norm is equivalent with the norm

”w”/ss(e) = | Qs.ewlleo-

If s = 0, then £4(¢€) is continuously embedded into £y, uniformly with respect to
€ € [—e€p, €]

Proof. Let

W= wy = Z,/,*(v ®38_y) forsome v € Iy _(X).
yel

Then, by definition, Qs cv € L?(X), so that we deduce that

stewv = w*(QS,G ® ld)w*wu € 20.

Reciprocally let w € 8'(X2) be such that O s.ew belongs to £y. By the definition
of this last space it follows that there exists f € L?(X) such that

QS,ew = ZV’*(J( ®d—y).

yel
It follows that
w=Y P (Q-secf) ®5y).
yel
But then we have that
v=0sef €3 (X),

and in conclusion w belongs to £ (¢). The result concerning the norm follows from
the Closed Graph Theorem and the last statement from the continuous embedding
of 3} _(X) into L?(X) for any s > 0 uniformly for € € [—eo, €. O

Lemma 2.46. Forany m € R4 and for any € € [—¢g, €g], we have the topological
embedding
L (€) —> 8'(X; H™(T)), (2.54)

uniformly with respect to € € [—e¢g, €g).
Proof. By Lemmata 2.45 and 2.40 it follows that we have the topological embed-
ding

Lm(e) — 8'(X; L*(T))

uniformly with respect to € € [—¢€p, €g]. From here on we proceed as in the proof
of the second inclusion in Lemma 4.2. O
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We shall study now the effective Hamiltonian €_ (e, 1), that we defined in
Theorem 2.27. The following two technical results will be used in proving the
boundedness and self-adjointness of €_ (¢, A) in ‘U{)V .

Lemma 2.47. Suppose given an operator-valued symbol q € S (X; B(CY)) that
is Hermitian (i.e. q(x,£)* = q(x, §), for all (x, &) € E) and verifies the invariance
property

(id®tyx)q=1gq, forally® eT*.

Then, for any € € [—€q, €] the operator Op<(q) belongs to B(BY) uniformly
with respect to € € [—e¢g, €o] and is self-adjoint. The application

So(:B(CY)) 3 g +— Op?e(q) € B(Ty)
is continuous uniformly with respect to € € [—¢g, €o].

Proof. The invariance with respect to translations from I'* assumed in the state-
ment implies that the operator-valued symbol q is in fact a I'*-periodic function
with respect to the second variable £ € X* and thus can be decomposed in a
Fourier series (as tempered distributions in 8'(2; B(CV)))

4, 6) = D G0’ Go(x) == |Es| ™! / e ENq(x, £)dE. (259

ael E.

Due to the regularity of the symbol functions we deduce that for any g € IN¢ and
for any k € IN there exists a strictly positive constant Cg x such that

1(0862) ()| < Cgpla)™, forallx e X,a T, (2.56)

and we conclude that the series in (2.55) converges in factin BC*®(E; B(CV)) =
SJ(X; B(CY)). By (2.55), we deduce that

(DpAE (Pu)(x) = Z(Qau)(x), forall x € X,u € 8(X; CN), (2.57)

ael
where Q, is the linear operator defined on 8(X; CV) by the oscillating integral

xX+Yy

(Qu)x) = [ 0 Ny (. y)ia (2 Julr) dy
] (2.58)

= 04, (.3 + )ia(x + 3) (ar)(0).
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Both (2.57) and (2.58) may be extended by continuity to any u € 8'(X; CV).
Let us consider

=us=) f 8By,
yel
for some f € [12(I")]Y. We can write

Qatt = Y s~y —a.=p)ia( =7 = 3) 1, 8-ay

< (2.59)
~ o
=Y oa(~r.e—pia(—y + 5)1y_a5_y.
yell
By (2.59) in (2.57), )
Opte(@u =) fyé-y, (2.60)
yel
and
fri= Y oa—r.a—pia(—v+ %)iy_a
ael
(2.61)
X +
= Y os(—r—iy-o( - 57) £,
ael

Let us verify that f e [12(D)]V. By (2.56) and (2.61) it follows that for any k € IN
(sufficiently large) there exists Cr > 0 such that

Al <CY (v —a)*|f ]

ael
dDly—a)F Yy —a)Ff I
ael’ ael’
so that we have the estimation
| Wy = DA < CY 1L 1P = COLL Iy (2.62)

yel ael

By (2.60) and (2.62),Op%<(q) € B(VY) uniformly with respect to € € [—€o, €]
and the continuity of the application

Sg(X: BCY)) 3 q > Op?e(q) € B(Ty )

uniformly with respect to € € [—e¢g, €¢] clearly follows by (2.61) and (2.55).
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In order to prove the self-adjointness of Opie(q) we fix v € %{)V of the form
V=g = Zgy&,, for some g € (12~
yell
Then we note that

Ope(@v =Y &8,

) vl v +a (2.63)
8y = Za)Ae (=7 _“)qy—a< I ) o
ael

Let us point out the obvious equalities
[Ga(0)]" = G-a(x): @4, (—y.—) = 4. (. =) (2.64)

in order to deduce that

O™ (@, V)gy = D (fr.8 o

yel

= Z (CL)A€ (_)/, —Ol)ay—a( - 4 —; a)ia’ gy)CN

(a,y)er?

= Y (foon oy (- 750 )

(a,y)er?

=Y ([, &)en

ael

= (4, Op* ()0 - 0

Remark 2.48. Letus point out that a shorter proof of the boundedness of Opie(q)
on U5 may be obtained by using the Proposition 2.39 characterizing the distribu-
tions from Uy. The proof we have given has the advantage of giving the explicit
form of the operator Op“<(q) when we identify Y with [I2(T)]" (see (2.60)
and (2.61)). Moreover, the self-adjointness is a very easy consequence of these
formulae.

In order to prove that the effective Hamiltonian €_, (e, A) satisfies the hy-
pothesis of the Lemma 2.47 we shall need the commutation properties stated in
Lemma 2.30 and Remark 2.31, that we now recall in the following lemma.
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Lemma 2.49. With the notations introduced in Lemma 2.30 and Remark 2.31, for
any y* € T'* and for any (e, 1) € [—€g, €] X 1,

R ey = TR,

(2.65)
9%+,5Ty* = Uy*m_he,
and
@(G,A)Ty* = Ty*@f(é,k), QE_}_(G,A)O’],* = Ty* QE_;_(G,A),
E_t(e,M)oyr = 0pxE_L (€, 1), E_(€,A)Yyx = 0yrE_(e,A).
(2.66)

Lemma 2.50. Under the hypothesis of Theorem 2.27, €_, (€, 1) € IB(QI{)V) uni-
formly with respect to (e,1) € [—eo, €] X I and is self-adjoint on the Hilbert
space BY .

Proof. We recall that €_ (¢, 1) := Op“<(E_;") where E_;" € S§(X; B(CV)).
In order to use Lemma 2.47 we show that E;fr is Hermitian and I'*-periodic in
the second variable § € X*. In order to prove the symmetry we use the fact that
the operator €. is self-adjoint on K(X?) x L2(X; CV) and deduce that &_ (¢, 1)
is self-adjoint on the Hilbert space L?(X; CV). Thus we have the equality

[€_s(e. D] = E_y (e, D),
from which we deduce that
DpAe ([E;f—]* _ E;f_) = 0.

As the application
Opie: §'(2) — B(S(X); 8 (X))

is an isomorphism (see [17]) it follows the symmetry relation

-k _ gt
[Ee,/l ]* - Ee,k :

For the I'*-periodicity we use one of the equalities in (2.66) that can also be written
as

0_y+€_ (e, )0+ = E_4 (e, A).
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Considering now the arguments in the proof of Proposition 4.6 for the Op“¢ quan-
tization, we can write

0y €t (e. Nays = Ope (([d ®T_y ) EZ).

We repeat the above argument based on the injectivity of the quantization map
(cf. [17]) to get
(d®r-y)E} = E 3,

for all y* € T*. O
Lemma 2.51. R4 . € B(Lo; VY ) uniformly with respect to € € [—eo, €o)-

Proof. Let us recall that 4 . = Op<(Ry) with Ry € SQ(X; B(Ko; CV)) so
that finally we deduce that R ¢ € B(8'(X; Ko); 8'(X; CV)). By Proposition 4.17,
forany s € R we get R € B(3(;_(X) ® XKo; [I, (X)]") uniformly with respect
to € € [—€g, €0]- Suppose fixed some u € £y; by Proposition 2.42 we deduce the
existence of ug € HZP (X) ® Ko = HP (X) ® L?(T) such that

U= E Tyxug,
y*

with convergence in 8'(X?). In fact Lemma 2.41 implies the convergence of the
above series in 8'(X; Ko). Using now also the second equation in (2.65) we can
write that

9%+,eu = Z%-G—,GT]/*MO = Zﬁy*%_;_’euo.
r* v*

But we have seen that Ry cuo € [HF (X)]¥ and thus Proposition 2.39 b) implies
that Ry cu € VY. The fact that Ry o € B(Lo; VY ) uniformly with respect to
€ € [—¢o, €9] follows now using the following three facts:

(1) the above mentioned continuity property of %R ¢ that follows by Proposi-
tion 4.17,

(2) the uniform continuity of the application
Lo uUr—> Uy eﬂ-fjﬁ(X)@ﬂCo
with respect to € € [—eg, €¢], that follows by Proposition 2.42;
(3) the uniform continuity of the application
HL (X) > Ry crtg > Ry cu € BY

with respect to € € [—eg, €¢], that follows by Proposition 2.39 b).



The Peierls—Onsager effective Hamiltonian 499

O

Lemma 2.52. €_(¢, 1) € B(Lo; ‘U{)V) uniformly with respect to the pair (e, 1) €
[—€0,€0] X I.

Proof. Let us recall that €_(e, 1) = Op?<(E_,) with E_, € S(X: B(Ko: CV))
uniformly with respect to the pair (¢, 1) € [—€g, €9] x I. We continue as in the
above proof of Lemma 2.51. O

Lemma 2.53. &, (¢, A) € B(UY; £,,(€)) uniformly with respect to the pair (€, 1) €
[—€0,€0] X I.

Proof. Letusrecall that €, (e, 1) = Op*c(E})) with Ef, € S(X0: B(CY: K )
uniformly with respect to (e, A1) € [—eg, €9] x I. We conclude that €, (e,A) €
B(8'(X; CN); 8'(X; Km,0)). Noticing that by Lemma 2.37 the space VY embeds
continuously into 8'(X; CV) we conclude that ¢, (e,1) € B(BY ;8 (X: Km.0))
uniformly with respect to (€, 1) € [—e€p, €9] x . Fix now u € UY. By Proposi-
tion 2.39, there exists an element ug € [HZ® (X)]V such that

u= E Oy*Ug

y*el'*
converging as tempered distribution and such that the application
B 5 u > ug € [HE OV

is continuous uniformly with respect to € € [—e€g, €p]. Using this result and the
second equation in (2.66) we obtain that

Er(e, Du= Y €r(eopug= Y Ty(E4(e Muo).

y*el'* y*el'*

Using now Lemma 2.45, in order to prove that € (e, A\)u € £,,(¢) all we have to

prove is that Qm,e ¢1(e,M)u € £9. In order to do that we shall need two of the

properties of the operator 0,  that we have proved in the previous sections.
First we know that

Qm,eTy* = Ty« Qm,e, for all y* € T*.
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Secondly, at the end of the proof of Lemma 2.26 we have shown that

Qm,e = DPAE (Am,e)

with g € S B(Kym ¢; Ko)) uniformly with respect to € € [—e, o). If we
use the Composition Theorem 4.15 we note that g, 3¢ E:)L € SQ(%; B(CN; X))
uniformly with respect to (¢, A) € [—€g, €9] X I. Applying then Proposition 4.17
gives that Qm,e €4 (e, 1) € B(HZ OV HF (X) ® Ko) uniformly with respect
to (¢, A) € [—¢o, €0] X I. We conclude that

OmeCrle u=3 Yy Ome(@s(e. Muo),
y*EF*

and this last element belongs to £¢ as implied by Proposition 2.44. The conclusion
of the lemma follows now from the following remarks.

(1) The application

B 5 u > ug € [HE OV

is continuous uniformly with respect to (e, 1) € [—€g, €9] x I, as proved in
Proposition 2.39 a).

(2) The application
HP (X) ® Ko 3 Om,e €4 (€, Mg —> Ome €4 (€. M)u € Lo

is continuous uniformly with respect to (e, 1) € [—€g, €9] x I, as proved in
Proposition 2.44. O

Lemma 2.54. R_ . € B(VY; £,,(¢))uniformly with respect to € € [—eg, ).

Proof. Let us recall that 3_ . = Op”<(R_) with R_ € SQ(X; B(CV;K,n¢)) as
implied by its definition and (1.27). Using now the first equality in (2.65), we
observe that

R_coyx = TyxR_, forally* eT*,

and the arguments from the proof of Lemma 2.53 may be repeated and one obtains
the desired conclusion of the lemma. O

Lemma 2.55. &(¢, L) € B(Lo; £,(€)) uniformly with respect to the pair (€, A) €
[—€0,€0] X 1.
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Proof. Let us recall that &(e, 1) = Op“e (Ee,5) with E¢ 5 € SQ(X; B(Ko; Kimg))
uniformly with respect to (e, 1) € [—¢€p, €0] X I. As magnetic pseudodifferential
operator we can then extend it to €(e, 1) € B(8'(X; Ko); 8'(X; Km,0)). Recalling
that we have a continuous embedding £¢9 < 8'(X; Xo) we deduce that E(e, 1) €
B(Lo; 8'(X; Km,0)). We use now Proposition 2.42 and the first equality in (2.66)
and write that for any u € £, there exists ug € J{fﬁ (X) ® Ko such that

Ee. u= Y EEeMNTyug= Y Tp=(€E(e. M),

y*er* y*er=

with convergence in the sense of tempered distributions on X2. We deduce by
Proposition 2.42 that the application

209u|—>u0€%1?12(9€)®ﬂco

is continuous uniformly with respect to € € [—¢g, €¢] and from the Composition
Theorem 4.15 we deduce that G i3 E. 4 € SQ(X; B(Xo)) and the proof of the
lemma ends exactly as the proof of Lemma 2.53. U

Now we shall prove a variant of Theorem 2.27 in the frame of the Hilbert spaces
mo and 20 .

Theorem 2.56. We suppose verified the hypothesis of Theorem 2.27 and use the
same notations; then we have that

Pes € B(Lm(e) x VY : Lo x V),  Ecs € B(Lo x VY Lm(e) x VYY), (2.67)

uniformly with respect to (e, A) € [—e€g, €0] X I. Moreover, for any pair (¢, L) €
[—€0. €0] x I the operator P ) is invertible and its inverse is E j.

Proof. The boundedness properties in (2.67) follow by Lemmata 2.35 (a), 2.50,
2.51, 2.52, 2.53, 2.54, and 2.55. Concerning the invertibility of P ; let us re-
call that in Theorem 2.27 we have proved that the operator P ; considered as
operator in B(X™(X?) x L2(X; CV); K(X?) x L2(X;CN)) is invertible and its
inverse is €1 € B(K(X?) x L2(X; CV); K™ (X?) x L2(X; CN)). By (2.26) we
recall that P, , is a magnetic pseudodifferential operator with symbol P, of class
S B(Km,e x CN; Ko x CV)) uniformly with respect to (e, 1) € [—€o, €] x I.
Applying Proposition 4.13 we deduce that

P € BS(X; Km,0) X 8(; CV); 8(X; Ko) x 8(X; CV)), (2.68)
and extending by continuity we also have that

Pes € B(S'(X; Kom.0) x 8'(X: CN): 8'(X: Ko) x 8'(X; CVY). (2.69)
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Similarly, the operator €, appearing in Theorem 2.27 has a symbol of class
S B(Ko x CV; K,y ¢ x €V)) and thus defines first an operator of the form

Een € B(S(;Ko) x $(X; CV); $(X: Km0) x S(X; CV)), (2.70)
and extending by continuity we also have that
Eea € B(S/(X; Ko) x 8'(2; CV); 8'(3; Kmy0) x 8'(X; CV)). (2.71)

By the first inclusion in Lemma 4.2, 8(X; Ky 0) < K7 (X?), so that from the
invertibility implied by Theorem 2.27 (see above in this proof), it also follows that
the operator P ; appearing in (2.68) is invertible and its inverse is the operator
e, appearing in (2.70). As both operators P, j and €, ; are symmetric, by duality
we deduce that also the operators appearing in (2.69) and (2.71) are the inverse of
one another. This property, together with the embeddings £,,(¢) < 8'(X; Km.0)
given by Lemma 2.46, £y <— 8'(X;X,) given by Lemma 2.40 and Uy — 8'(X)
given by Lemma 2.37 allow us to end the proof of the theorem. O

We come now to the proof of the main result of this paper.

Proof of Theorem 1.1. We proceed exactly as in the proof of Corollary 2.29. We
start from the equality P ;€1 = idsoea*n{}’ and use the fact that f’e”’ is a self-
adjoint operator in £, that is unitarily equivalent with P (by Lemma 2.35) so that
we deduce that o(P/”) = o(P.). Then we can write that

0¢o(€_y(e, 1) =

A ¢ o(P!"), and (2.72)
(P =)' = €(e, 1) — €4 (e, M)E_1 (e, 1) 1E_ (e, ),

and

Aé¢o(P"y =
0¢o(¢_4(e, 1)), and (2.73)
C_y(e. ) =Ry (P — 1)

In conclusion we have obtained that A € o(ﬁe’”) < 0€0(¢_4(e, 1)) and this
implies that 1 € 6(Pe) < 0 € o(€_4 (€, A)). O
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Proof of Corollary 1.2. We apply Theorem 1.1 and the arguments from its proof
above, taking / = K and ¢y > 0 sufficiently small. Knowing that

dist(K,o(Pyg)) > 0,
we deduce that we also have

dist(K, o (PJ")) > 0

and thus
sup [[(Py" — ) lp(eg) < oo
AeK
By (2.73),
AeK =
0¢o(¢_4(0,4)) and
€ 1(0.0)7" =Ry o(Py — )R,
and thus

sup ||€_4 (0, )L)_1||]B(m(1)v) < o0.
AeK
By Theorem 2.27, for any (e, 1) € [—€p, €9] X K,
(e, V) =C_1(0.1) +G_t(e. 1), G_y(e, 1) := Ope (S;f), (2.74)

and
eli_r)r%)S;'{ =0 inS°X;B(CY)),

uniformly with respect to A € K. We note that the symbol S;f(x, §) is I'*-
periodic in the second variable £ € X*, so that by Lemma (2.47) we deduce that

im S (€ ) gy = 0

uniformly with respect to A € K. We conclude that for ¢ > 0 sufficiently small,
the magnetic pseudodifferential operator &_ (e, 1) is invertible in B(Uy) for any
(e, 1) € [—€0, €0] X K; in conclusion 0 ¢ o (€_4 (e, 1)) and thus A ¢ o (P,) for any
(e,A) € [—€o,€0] X K. O

The arguments elaborated in the proof of Corollary 1.2 allow to obtain an in-
teresting relation between the spectra of the operators P, and Py, under some
stronger hypotheses.
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Hypothesis 1.1. Under the conditions of Hypothesis H.1 we suppose further that
for any pair (j, k) of indices between 1 and d the families {€ ' B¢ jk }o<|e|<e, aT€
bounded subsets of BC*°(X).

Hypothesis 1.2. We suppose that

Pe(x,y,m) = po(y,n) + re(x,y,n)

where po is a real valued symbol from S7*(T) with m > 0 and {€ ' re}o<|e|<ey IS
a bounded subset of ST"(X x T), each symbol r¢ being real valued.

Hypothesis 1.3. The symbol py is elliptic; i.e. there exist C > 0 and R > 0 such
that

po(y,m) = Cn|™  forany (y,n) € E with [n| > R.
Remark 2.57. If we come back to the proofs of Theorem 2.27, Theorem 4.15

and Proposition 4.18 and suppose Hypotheses 1.1-1.3 to be true, we can prove the
following fact that extends our property (2.31):

for all / C R compact interval, there exist g > 0, N € IN, such that
E_i(e,A) =C_(0,1) + G_1(¢, ),
G 1 (e. 1) 1= OpAe(S_). for all (e, A) € [—€o. €0] X 1,

the family {e ™' S }(1el.1)e(0.c0)x7 is @ bounded subset of S°(X; B(CV)).
(2.75)

Once again we note the I'*-periodicity of the symbol S;{" (x, &) with respect
to the variable £ € X* and by Lemma 2.47 we deduce that there exists a strictly
positive constant C; such that

||6_+(6,A)||]B(Q3(1)v) < Cie, forall (¢,1) € [—€q,€0] X I. (2.76)

Using Lemmata 2.51 and 2.54 we conclude that there exists a strictly positive
constant C, such that

1R ooy + IR clpey oney < Car forall€ € [—€o, 6] (2.77)
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Proof of Proposition 1.3. For M C R and § > 0 we use the notation
Mg = {t € R: dist(¢, M) < §}.
Then we have to prove the inclusions
o(P)NI Co(Py)ceN I, forallee]|0,ep]. (2.78)
and
o(Po)NI Co(Pe)ce NI, foralle €][0,¢p]. (2.79)

Suppose there exists A € I such that dist(A,c(Pg)) > Ce. By Lemma 2.35 we
know that o(Py) = o(P}’) so that we deduce that dist(A,o(Pg")) > Ce and
conclude that

1(Pg" = 1) IB(ee) < (Ce)7. (2.80)

By (2.73),
0¢o(€_1(0,1) and €_(0,)7" = —R4 o(P) —N)7'R_,.
Using these facts together with (2.77) and (2.80) we obtain the estimation
I1€-4+0. ) gy, = C(Co™". (2.81)
Using (2.76) and (2.81) we also obtain

1€+ 1) pqay) - 16—+ Vllpey, < CLEICT! foralle € [—€o. €ol.
(2.82)
If we choose now C > 0 such that C > C;C2, we note that the operator

€ y(6.1) =€ 1(0,1) +6_1(. 1)

is invertible in IB(‘I]{)V ) and thus we deduce that 0 ¢ o (¢_4 (¢, A)). It follows then
that A ¢ o (P.) for any € € [—¢p, €¢] and inclusion (2.78) follows.
Let us suppose that for some € with |e| € (0, €o] there exists A € I such that

dist(A,0(P¢)) > Ce.
Recalling that o (P,) = a(f’e”/ ) we deduce that
dist(A, o0 (P")) > Ce

and thus
1P =) HlBey) < (Ce)™'. (2.83)
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We also deduce that
0¢o(C_t(e,A) and €E_i(e, 1) =Ry (P -V 'R_.
Using these facts together with (2.77) and (2.80) we obtain
[€_4(e, A1) ! [ CF(Ce)™ . (2.84)

It follows like above that the operator €_(0,A) = €_4(e,A) — &_4 (e, A) is
invertible in ]B(Q]{)V ) and thus we deduce that 0 ¢ o (¢_4(0,1)). It follows then
that A ¢ o (Pp) and the inclusion (2.79) follows. O

Remark 2.58. The relations (2.78) and (2.79) clearly imply that the boundaries
of the spectral gaps of the operator P, are Lipschitz functions of € in € = 0.

3. Some particular situations

3.1. The simple spectral band. In this subsection we shall find some explicit
forms for the principal part of the effective Hamiltonian €_ (e, A). We shall sup-
pose Hypotheses H.1-H.6 to be satisfied. If we suppose that Hypothesis H.7 is
satisfied, i.e. there exists k > 1 such that J; is a simple spectral band for Py, then
we have some more regularity for the Floquet eigenvalue Ag (§).

Lemma 3.1. Under Hypothesis H.7, if Jy. is a simple spectral band for Py, then
the function Ay (§) is of class C*°(Ty).

Proof. Let us fix a circle € in the complex plane having its center on the real axis
and such that Ji is contained in the open interior domain delimited by € and all
the other spectral bands J; with [ # k are contained in the exterior open domain
delimited by € (that is unbounded). Then d(C, 0(150)) > 0 and we define

e (8) := 2l_n fé(ﬁo(g) —z)"'dz, forall £ € X*. 3.1)

It defines a function in C*°(X*; B(Xy)) with values one-dimensional orthogonal
projections. Let us fix some point & € X* and some vector ¢ (&p) in the range of
Iy (&0) having norm 1. We can find a sufficiently small open neighborhood Vj of
& in X* such that

Tk (§)¢ (o) lloco = (1/2),  forall § € Vp.
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We define

¢ () == T (E)p(§0) 5, Tk (§)¢(£o0), forall § € Vo,
and we note that
Ak(®) — )™ = (Po§) — cid) ' (&), ¢ (£))x,-

Lemma 1.16 implies that Ay € C*(V,) and also there exists C > 0 such that
C <A(§)—1,forall £ € X*. O

Lemma 3.2. With the above definitions and notations,

(1) for any (s,§) € R x X* the Hilbert spaces Xy ¢ and F ¢ are stable under
complex conjugation;

(2) forall § € X* and all y* € T,
Po(€ + ") = o_y Po(§)oy»

and
Ai(E+y*)=2;(), foranyj > 1;

(3) if the symbol pq verifies the property
po(x,—§) = po(x.§), (3.2)
then
Po(E)u = Po(—E)it,  forallu € Ky, £ € X*,
Aj(=§) = 2;(6). forall j > 1,
T (E)u = Hp(—6)u, forallu € Ko, & € X*,

for any simple spectral band Ji of Py.

Proof. 'The first statement follows by Definitions (1.17) and (1.18), while the sec-
ond follows by Remark 1.17. As we know that Py (§) is induced by

Pog = Op((id ®7—¢) p)
on the Hilbert space Xy, it is enough to prove that

Pogu = Py_gu forallu € 8(X),
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but this follows easily by the pseudodifferential calculus. Let us fix now some point
& € X* and some vector u € X, ¢; it follows that the vector u is an eigenvector
of Py () for the eigenvalue A; (§) if and only if u is eigenvector of Py (—¢§) for the
eigenvalue A;(§). We deduce that {1;(—=£)};>1 = {4;(§)},;>1; as both sequences
are monotonous we conclude that A;(—=§) = A;(§), forall j > 1. ]

The next lemma (see [10]) is important for the construction in the Grushin
problem under Hypothesis H.7.

Lemma 3.3. Supposing that Hypothesis H.7 is also satisfied and supposing that
po(y,—n) = po(y,n) for any (y,n) € E, we can construct a function ¢ having
the following properties:

(1) ¢ € C°(X*; Kim,0), for any | € N;

2) ¢y +v.n) =¢(y.n).forall (y.n) € E,and all y € T;

B3) ¢(r.n+v*) = eI (y, ), forall (y, 1) € B, and all y* € T*;

@ Nl Ml =1, for all n € X*;

(5) (v, ) = ¢y, —n), forall (y,n) € E;

(6) ¢(-.n) € Ni(n) = ker(Po(n) — A (n)), for all n € X*.

Remark 3.4. By the argument used in the proof of Lemma 1.25 and proper-
ties (1)-(3) of Lemma 3.3, we deduce that for any & € IN¢ and for any s € R
there exists a constant Cy s > 0 such that

1OEP)C, Oy < Cas, forall§ € X*, (3.3)

Proof of Proposition 1.4. We repeat the construction of the Grushin operator de-
fined in (2.16) under the Hypothesis of Proposition 1.4. We prove that in this case
we can take N = 1 and ¢;1(x, &) = ¢(x, &) the function obtained in Lemma 3.3.
Due to Lemma 3.3 and Remark 3.4 this function has all the properties needed in
Lemma 1.25. It is thus possible to obtain the operator Py (&, 1) and the essential
problem is to prove its invertibility in order to obtain a result similar to Proposi-
tion 2.24. From that point the proof of Proposition 1.4 just repeats the arguments
of Subsection 2.1. O

3.2. The constant magnetic field. In this subsection we prove Proposition 1.5.
Thus we suppose that the symbols p. do not depend on the first argument and the
magnetic field has constant components:

1

Be=> > Bji(e)dxj ndxr. Bji(e) = —Bij(€) € R, limBji(e) = 0.
| e—>0

(3.4)
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Using the transversal gauge (1.4) we associate some vector potentials
Ae = (Ae,l, ey Ae,d)

satisfying

1
Aej(x) =5 D7 Bj(e)xe. (3.5)
1<k=<d

Proof of Proposition 1.5 (I). We use formula (2.5) by Lemma 2.2 noticing that the
linearity of the functions A, ; and the definition of w4 imply that

)

W4, (. ) = wa (v, 7)) = 4 4 0O, F).

We deduce that for any u € §(X?) and for any (x, y) € X? we have that

(x* Pe(x™) 'u)(x, y) = [(id ®04(x)) (id ® Pe)(id ®0_4(x))ul(x, ). (3.6)

It follows that the operator P,, that is an unbounded self-adjoint operator in L2(X2)
denoted in Proposition 1.20 by f’e’ , is unitarily equivalent with the operator id ® Pe¢
with P, self-adjoint unbounded operator in L2(X). It follows that a(f’e/) = o(Pe).
By Proposition 1.20, 0(156’) = cr(f’G”) where ﬁe” is the self-adjoint realization of
P, in the space L2(X x T). Finally, by Corollary 2.29, we deduce that for any
(A,€) € I x [—e€p, €9] we have the equivalence relation

Aea(P!) < 0ea(E_i(e, 1)),

where €_ (e, 1) is considered as a bounded self-adjoint operator on [L2(X)]".
O

In order to prove the second point of Proposition 1.5 we shall use the mag-
netic translations Te 4 := 04,(q)Tq for any a € X, that define a family of unitary
operators in L2(X).

Lemma 3.5. For any two families of Hilbert spaces with temperate variation
{Ag}eex+ and {Bg}eex+ and any operator-valued symbol g € SQ(X; B(As; Ba)),

Te.aOpe(q) = Op((r, ® id)q)Tey. foralla € X. (3.7)
Proof. By Lemma 1.11, it follows that
wOp™e(q) = Op™* ((ta ® id)q)7a,
while 1,4 = Ac — Ac(a), implies that

7, Op?e(q) = Op e (¢, ® id)q) 1o
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Then, for any u € 8(X; Ap) and for any x € X,
(0— 4. @OP* (9)04, (@) 1) ()

_ (27r)_d/ei("’x_y)e_i(Af(“)’x_y)wAE(x,y)q(

©
[

x+y
T,n)u(y) dy dn.

Noticing that
(Ae(@).x —y) = — / Ac(a),

[x,¥]
the last formula implies that

Op(9)04. (@) = Oa. (@ Op 4D (g).
We conclude that
TeaOp(q) = 04, (@ O 4 (1, ® id)g) 1,
= DpAE ((ta ® id)Q)UAE(a) Ta
= DPAE ((ta ® id)‘])Te,a-
Proof of Proposition 1.5 (2). The operator
.:PE,/l = Dpch(? B A’))

from Theorem 2.27 has its symbol defined in (2.25). Under our hypothesis nei-
ther the operator-valued symbol P, will not depend on the first variable. By

Lemma 3.5, the operator

Pea: S(X: Ko x CV) — 8(X: Ko x CV)

commutes with the family {7¢ s ® idy «cn }aex- Then its inverse E¢ 4 appearing
in Theorem 2.27 also commutes with the family {7, ; ® idy xcn }aex. By this

property we deduce that also the operator

E_ (e, A): L2(X; CN) — L2(; M)

commutes with the family {7¢ , ® idgn }aex. Using Lemma 3.5 once again we

deduce that
O (E_f) = € (e 2)
= [Tea ® den]€_ i (€, V)[Tea @ iden] ™
= Ope((ta ®ID)E_S), foralla € X.
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We conclude that
Ee_j(x,é) = E;‘{(x —a,t) forany (x,§) e E,a e X.
It follows that
E;j(x,g) = E;j{(O, g) forany (x,£) € B.

The I'*-periodicity follows as in the general case (see the proof of Lemma 2.50).
0

4. Appendices

4.1. Study of the distributions in J$(X?). We shall prove a result giving a
connection between the spaces: X2 (X?), §(X; H*(T)) and 8'(X; H5(T)).

Lemma 4.1. Let B be a magnetic field with components of class BC*°(X) and A
an associated vector potential with components of class C;’;’l. Let us consider a
symbol g € S} (X) for some s € R. We set

0 = Opi(g).

0 :=0®id,
and

0 :=y*Q'y*,

where ¥ is defined by (2.1). Then we have that
0 € B(S(X: 3¢5(1)): $(X: LX(T)))

uniformly for q varying in bounded subsets of S5 (X) and for B varying in bounded
subsets of BC*°(X).

Proof. On 8§(X; H*(T)) we shall use the family of seminorms

1/2
lulsy = sup[/(x)ﬂ”(azu)(x,-)||§(S(T) dx] , L eN,u e 8(X; H(T)).
| <!
4.1)
Using (2.3) and (2.8), or a straightforward computation, we obtain that, for any
ues(XxT),

(Ou)(x.y) = 2m) / / Py (x.x — y + )

% iy (4.2)
q(x +— n)u(x —y+y.y)dydn.
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In particular we obtain that Qu € $(X x T). For fixed x, y, 7 in X and 5 in X*,
we consider the function of the argument ¢ € X

O(t) = a)A(x,x—y—l—t)q(x—l-I_Ty,n)u(x—y—l-t,ﬁ). 4.3)

We use in (4.2) its Taylor expansion in t = y with integral rest of ordern > d + s
and eliminate the monomials (y — y)* by integration by parts using the identity

(F — y)txei(n,i—y) — (_D;x’)ei(n,i—y)_
We get

1

O ) = > D> fup)Tep)(x.0)+ > Y / (Rop ()u) (x, y)d,

le|<n B<a le|=n B=<a
4.4)
where
(Tapu)(x. y) i= (2)~ / / D e @), P dF dy, (45)
X X*
and
(Rag (1)) (x. y) = (2m) 4 / / Iy — §)
X X*

g (v + (1= 022 )@k GO

(x = =0)(y =y, y)dydn,

and where fyp € C3S(X), tap € S77°U(X), rop € S77(X), and finally heqp €
C;’;’I(DC x X) uniformly for = € [0, 1].
Let us use Lemma 1.12. Starting from (4.5) and considering x € X as a param-

eter we conclude that there exists a semi-norm cqg(q) of ¢ € S7(X) such that

1(Tap) (¥, )12 20py < Cap (@?110F1) (X, s ry>  forall x € X, u € 8(X x T).

4.7)

Due to our hypothesis, there exists a constant C(B) (bounded when the com-

ponents of the magnetic field B take values in bounded subsets of BC*°(X)) and
there exists a € Z such that

heap(x,y =) < C(B)(x)*(y—7)*, forall (x,y,5) € X v €[0,1]. (4.8)
We integrate by parts in (4.6), using the identity

eHmy=y) — (y — )7>—2N(1 _ An)Nei(n,y—fz)'
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This allows us to conclude that there exists a seminorm c, 8 ~ (p) of the symbol
p € S;(E) for which

|(Reg (T)u) (x, )|

< CBY g x (P [t~ [ 42V (G — (1 = )z = )l dz.
xX* X
4.9)

for any (x, y) € X? and any 7 € [0, 1].

We recall our choice s —n < —d, we choose further 2N > a + 2d and we
estimate the last integral by using the Cauchy—Schwartz inequality. We take the
square of the inequality (4.9) and integrate with respect to y € E. We conclude
that for any I'-periodic function v € L2 _(X) and for any z € X we have that for

loc

any k € IN there exists Cx > 0 such that, for any t € [0, 1],

/ ()2 [ (Rag (010005, )

X

< CLC(BY*c, 4. x(p) / (242 0%0) (v, ) 12, dx.
X

(4.10)

For the derivatives 5 (T,gu)(x, -) and 9% (Ryp (t)u)(x, -) (for any 1 € IN) we
obtain in a similar way estimations of the same form. U

Lemma 4.2. We have the topological embeddings (uniformly in € € [—¢y, €o])
8(X; H™(T)) —> KI'(X x X) —> 8'(X; H™(T)). 4.11)

Proof. In order to prove the first embedding we take into account the density of

8(X x T) into §(X; H™(T)) and the Definition 2.18 (c) of the space K7*(X x X)

and we use Lemma 4.1 with the symbol ¢,, defining the Sobolev spaces.

For the second embedding let us note that the canonical sesquilinear map on
8'(C; H™(T)) x 8(X; H™(T)) is just a continuous extension of the scalar product

U, V) = /(u(x,-), v(x,))gem(T) dx, 4.12)
x

for all (u, v) € S(; H™(T)) x S(X; H™(T)).



514 V. Iftimie and R. Purice

Due to the density of §(X x T) into X" (X x X), this amounts to prove that it
exists a continuous seminorm | - |,,, ; on 8(X; H™(T)) such that we have that

|t V)m| =< Mullsczr - [0]m,1. (4.13)
for all (u, v) € S(X; H™(T)) x 8(X; H™(T)), where
||“||9<§” = ||Qm,eu||L2(XXT)-
Let us note that
(1, v)m = (u, (1 ® (Dr)*™)v)1200xT)
= (Ometts Q—me(1® (Dr)*™)v)12(xxT)-

We set
vr := (1 ® (Dr)*™)v € $(X x T)

and we observe that we have the inequality
|(, V)| < || Qm,eul|L2(XxT) I Q—m,evr‘ ||L2(DCXT)' 4.14)

We conclude thus that the inequality (4.13) follows if we can prove that there exists
a seminorm | - |, ; on 8(X; H™(T)) such that

| 0-mevrllz2cxny < Clvlmy. forall v e $(X x T). (4.15)

By Lemma 4.1, we conclude that there exists a seminorm |- |, ; on 8(X x T) such
that

10 —m.evrllz2eexty < Clorl-mg. forall v e 8(X x T). (4.16)
Now (4.15) follows by (4.16) once we note that [vr|—p,; = |V]m,i- [l
4.2. Pseudodifferential operators with operator-valued symbols

Definition 4.3. A family of Hilbert spaces {Ag}¢cy+ (indexed by the points in
the momentum space) is said to have temperate variation when it verifies the two
conditions:

(1) Ag = A, as complex vector spaces for all (¢, 7) € [X*]?;

(2) there exist C > 0 and M > 0 such that, for all u € Ay,

lulla, < CE—n™|ulla,. forall (& n) e [X*] (4.17)



The Peierls—Onsager effective Hamiltonian 515

Example 4.4. We can take
Ag = I (X),

with any s € R endowed with the §-dependent norm
1/2
llagi= ([ 6+ n@tiapan)
X

for all u € H*(X) and all £ € X*. Inequality (4.17) clearly follows by the well
known inequality

(€ + ) < G+ (5 —0)?K!, forall (5,1.0) € [X*], (4.18)

where the constant Cs only depends on s € R. For this specific family we shall
use the shorter notation Ag = %g (X).

Definition 4.5. Suppose given two families of Hilbert spaces with tempered vari-
ation {Ag}gex+ and {Bg}eex+; suppose also given m € R, p € [0, 1] and Y a finite
dimensional real vector space. A function p € C*°(Y x X*; B(Ap; Bo)) is called
an operator-valued symbol of class S;'(J; B(A.: Ba)) when it verifies

foralla € N4mY B e IN?, there exists Cy g > 0 such that
1202 ) (. ) [ Baeime) < Cap (€)™ PP forall (y.£) € Y x X*.

The space S} (Y; B(As; Bs)) endowed with the family of seminorms vy g de-
fined as being the smallest constants Cy, g that satisfy the defining property (4.19)
is a metrizable locally convex linear topological space. In case we have for any
& € X* that Ag = Ao and B¢ = By as algebraic and topological structures, then
we use the notation S;"(J; B(Ao; Bo)). If moreover we have that Ag = By = C,
then we use the simple notation S7"(Y).

(4.19)

Proposition 4.6. If p € S7"(X) and if for any § € X*, we set
pe = (d®7_¢)p,
Pe = Op(pe),
and we denote by p the application
E > (x,§) > Pg € BOG™ (20): HE(X)),

for some s € R, we can prove that p is an operator valued symbol of class
ST B(HET™(X); HE(X))). Moreover the map

STH(X) 2 p > p € S (X BT (X0): HI(X)))

IS continuous.
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Proof. In fact, let us recall that for any £ € X* we have denoted by oz the multipli-
cation operator with the function ¢*} on the space 8'(X). Then, for any u € 8(X)
and for any & € X* we have that u € fJ-Cg“L’" (X) and we can write

X +

(0_g Poozu)(x) = @2n)~ / ei("_s’x_y)P( Y ; 77)“()’) dy dn

©
[

_ i X +
=y [ (S eJuy v

=
=

= (Peu)(x),
and we conclude that
Pé;- = O—EPOOE’ for all %’ e X*.

On the other side, for any £ € X* we note that pg is a symbol of class S7"(X)
and thus, the usual Weyl calculus implies that P¢ € B(3T"(X); H*(X)) for any
s € R. We note easily that for any multi-index 8 € IN¢ we can write

8 Pe = Op(3f pe).

and we conclude that Py € C®(&; B(H* 1" (X); H5(X))) (constant with respect
to the variable x € X) for any s € R. Let us further note that, for all u € §(X) and
all £ e X*,

—

ogu = ‘L’é;-u,

and

oty oy = / €+ > laE+mPdn = [ulpm,.  (4.20)
:x:*

Using these results we deduce that, for any u € $(X) and any & € X*,
2 _ 2 2 _ 2
”P‘éu”(}(g(x) - ||P005u||5{5(x) S Cs||05u||}(s+m(x) - CS”u”ng-ﬁ—m(x),

and we obtain similar estimations for the derivatives of Pg. Finally we conclude
that p € SQ(3C; B(HST™(X); H5(X))) and we have the continuity of the map

SI(X) 3 p > p € S BT (20); H3(X))). O
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Definition 4.7. We denote by S, (X%; B(A.: Bs)) the linear space of families
{De}le|<e, Satisfying the following conditions:

(1) for all € € [—€p,€0], pe € Sg1(DC2;IB(A.;B.)) uniformly with respect to
€ € [—e€p, €];

(2) lim pe = po in S7' (X2 B(As; Bo));
€e—

(3) denoting the variable in X2 by (x, y), for any multi-index « € IN¢ with

la| > 1,
1%wm=om$mﬁwu&»
€—>

Spre (X%; B(A.: Bs)) is endowed with the natural locally convex topology of sym-
bols of Hérmander type.

As in the case of Definition 4.5, in case we have for any £ € X* that Az = Ag
and Bg = By as algebraic and topological structures, then we use the notation
S [’)”’6 (X%; B(Ao: Bo)). If, moreover, Ay = By = C, then we use the simple notation
Spre (X?). For the families of symbols of type Spe (X%; B(A,; Bs)) that do not
depend on the first variable x in X? we shall use the notation S e (X; B(As; Ba)).
Let us also consider the following canonical injection

SI(X:B(Ae:Ba)) 3 p— id®p € S (X*: B(A.: B.))
as a constant family.

Remark 4.8. A symbol p belongs to S (X%; B(A.: Bs)) if and only if

pe(x.y.n) = po(y.n) +re(x, y.n),
with po € S (X; B(Ae; Ba)), 7e € S;,"(x2; B(Ae; Bs)), ro = 0, and lin(l)re = 0in
€—>
S7(X?: B(A.: B.)). Evidently we have

po(y.m) = po(0, y.n).
4.2.1. Periodic operator valued symbols

Definition 4.9. We shall denote by S;*(X x T; B(A.; B.)) the space of symbols
pESy (X%; B(A.: Bs)) that are I'-periodic with respect to the second variable,
i.e.

px,y+ 7.8 = p(x,y,£), forall (x,y)eX? EeX* yel.
In a similar way we define the spaces S (T; B(As; Be)), Sp" (X x T; B(Ao; Bo)),
S (T; B(Ao: Bo)), S (X x T), Sp7e (X x T; B(As; Ba)), Spe (X x T B(Ao; Bo)),
SP (X x T).
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Let us note that we have an evident identification of S’ (X; B(As; Bs)) with a
subspace of S}’ (X x T; B(As; Be)).

Proposition 4.10. For any s € R and any p € S7*(T), with the notations in
Remark 1.13,
PF,S € S(())(T; B(j{s—l—m,s; j{s,é)),

and the application
ST (M) > pr— Prg e S(())(Ty B(Ks+m.e: Ks,e))

IS continuous.

Proof. These two last statements will follow once we have proved that for any
o € IN? there exists ¢, (p) defining seminorm of the topology of ST*(T), such that

105 PrgllBec, m.es.e) < Cal(p), forall§ e X*.

It is clearly enough to prove the case o = 0. We deduce that for any u € K4, ¢
we have that

I Prgullsc, . = (D + &) o—g PogullL2(k)
= [(D)* (D)™ 0e(D + &) ""ul| L2k
As in the proof of Lemma 1.12 we deduce that

KDY  P(D)™ "0l L2gy < Co(P)IIvliL2r). forany v € Lig(X) N 8'(X).

2
loc

We consider

w = (D + &)y e L (X) N SR (X)

loc

and

V= 0w,
and obtain
101220 = N0l
= CI%,||w||I%2(E)
= CRI(D + &) ™ul,
= Cyllullz, ., .-

This gives us the desired estimation with c¢o(p) = CnCj(p). ]
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Lemma 4.11. Let p € S7*(T) be a real elliptic symbol (i.e. there exist C > 0 and
R > 0 such that p(y,n) > C|n|™ for any (y,n) € E with |n| > R), with m > 0.
Then the operator Pr defined in Lemma 1.12 is self-adjoint on the domain Xy, o.
Moreover, Pr is lower semi-bounded and its graph-norm on X, o gives a norm
equivalent to the defining norm of K, 0.

Proof. Let us first verify the symmetry of Pr on X, . Due to the density of
8(T) in K0 and to the fact that Pr € B(XK,u.0; L2(T)), it is enough to verify
the symmetry of Pr on 8(T'). Let u and v belong to S(T). Identifying S(T) with
€(X) N 8-(X) and using the definition of the operator P on the space 8'(X) one
easily verifies that Pu also belongs to £(X) N 81.(X) and is explicitly given by the
oscillating integral (for all x € X)

X +
2

(Puye) = @y [ (S )ty v

—
©

B o xX+y
) dXE / /et(n,x y>p(T,n)u(y)dy dn 421
Vel E x*

_ i(nox— xX+y—y
—en Y [ [ e (S )usy v an,
vel' g o«

the series converging in £(X). Using the I"-periodicity of p we obtain that

(Pu, U)Lz(E)

= / (Pu)(x)v(x) dx

fzn)dzr [ [ [ (=L ey an
vl g B g

_ (2n)—dE/u(y)L;E/x/* ei(my—x—y)p(w,n)v(x) dx dn} dy

— [uo) PGy

E

= (u, PU)L2(E)-
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In order to prove the self-adjointness of Pr let us choose some vector u €
D(Pf); thus it exists /€ L?(T) such that

(Pro,w)r2ery = (@, f)r2r), forall g € S(T).

Using now the facts that 8(T) is dense in 8'(T) and Pr is symmetric on 8(T), we
deduce that

(¢, /)T = (Pro,u)tr = (¢, Pru)y, forall ¢ € 8(T),

and thus we obtain the equality
Pru= f in8'(T).

By hypothesis Pr is an elliptic pseudodifferential operator of strictly positive order
m, on the compact manifold T, so that the usual regularity results imply that u €
Km0 = D(Pr). In conclusion Pr is self-adjoint on the domain X,, 0. The lower
semiboundedness property follows by the Garding inequality and the equivalence
of the norms stated as the last point of the lemma follows by the Closed Graph
Theorem. O

Remark 4.12. Under the Hypothesis of Lemma 4.11, the same proof also shows
that for any £ € X*, the operator Pr ¢ from Remark 1.22 is self-adjoint and lower
semibounded on L?(T) on the domain Xy, ¢. As in Remark 1.10 we can identify
Kom,g with H2(X) N 81(X) (endowed with the norm [[(D + £)"u|l;2(g)) and
thus we can deduce that the operator P is a self-adjoint operator in the space

L% (X) N 8(X) on the domain KX, ¢. We know that
P =ogPso_g

and we also know that
Oé;-: j(:s,g —> ffs,g

is a unitary operator for any s € R and for any § € X* and we conclude that the
operator induced by P in J ¢ is unitarily equivalent with the operator induced by
Pgin Ko ¢ == L2 ( X) N SR(X). It follows that the operator P acting in Fo ¢ with
domain F,, ¢ is self-adjoint and lower semibounded.

4.2.2. Magnetic pseudodifferential operators with operator-valued symbols.
We shall consider now magnetic pseudodifferential operators associated to oper-
ator-valued symbols and refer to the results in [17, 12, 13].
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Proposition 4.13. Let us consider p € S'(X; (As; Bs)), a magnetic field B with

components of class BC®°(X) and a vector potential A with components of class
C;’;’l (X).

(1) Theintegral in (1.6) exists for any u € 8(X; Ay) and any x € X as oscillating
Bochner integral and defines a function Op™(p)u € $(X; Bo).
(2) The map
Op(p): S(X; Ag) —> S(X; Bo)
defined by (1.6) and point (1) above is linear and continuous.
(3) The formal adjoint

[Op*(p)]*: 8(X; Bo) —> 8(X;Ao)
of the linear continuous operator defined in (2) above is equal to Opi(p*)
where p* € S[’)”/(DC; B(Be; As)) where
m' =m+2(My+ Mg) and p*(x,§) = [p(x, )]
(the adjoint in B(Ayp; By)).

(4) The operator Op(p) extends in a natural way to a linear continuous oper-
ator

8'(X; Ag) — 8'(X; By),

that we denote in the same way.

Proof. Fix some u € §(X; Agp) and for the beginning let us suppose that p(y, n) =
0 for || > R, with some R > 0. Then, for any x € X, the integral in (1.6) exists
as a By-valued Bochner integral. Let us note that in this case we can integrate by
parts in (1.6) and use the identities

etmx=y) — (x — y>—2N1 [(id—An)Nlei(”’x_y)],
and
e tny) — (n)_2N2[(id—Ay)Nze_i("’y)].

We deduce that there exist C (N7, N2) > 0 and k(N3) € IN such that for any / € IN
we have

IOp? (P)ul ()|,

< c[ [ ) RO g MM )y dn}

=

sup sup ()" (3%u) ()40
le|<2Noy€eX
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where M4 and M3 are the constants from (4.17) with respect to each of the two
families {Ag}gex+ and {Bg}gex+. We choose

2N, >m+ My + Mz +d,
I =2N1 +k(N2) +d +1,
2Ny = k(N),
and we obtain that

IO (P)ul(x)[|5, < C(N1){x)>M +k(N2)I Isu2pN Sug(y)lll(a"‘u)(y)lle’
a|<2Npy€
4.22)

for all x € X.

Similar estimations may be obtained for the derivatives 859]3‘4( p)u and this
finishes the proof of the first two points of the Proposition for the “compact sup-
port” case. The general case follows by a usual cut-off and Dominated Conver-
gence procedure. The proof of the last two points of the statement of the proposi-
tion is standard. U

Example 4.14. Let us consider a family {pc}|e|<¢, of class S{’fe(f)@) and let us
define, as in Subsection 1.2,

ﬁe(X,y,E, 7’) = pG('x’y’E + 77),
and

qé(x’ E) = Dp(ﬁG(x7 ) 57 ))
Then
(1) {de}ie<eo € Sg,e(f)C; B(HST™(X); H5(X)) for any s € R and
(2) if the family of magnetic fields { B¢} |¢|<¢, satisfies Hypothesis H.I and if the
associated vector potentials are choosen as in (1.4), then we have that
Op™e(ge) € B(S(X: FH (X)) 8(X; H5(X)))
N B8 (X; HET™(X)); 8'(X; H5(X))), forall s € R,
(4.23)
and
Opie(ge) € B(S(X?); $(X?) N B(S'(X?): 8'(X?)), (4.24)

and all the continuities are uniform with respect to € € [—e¢, €g].
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Proof. (1) By similar arguments as in Proposition 4.6 we prove that for any € €
[—€0, €0] and s € R we have that g € SJ(0C; B(HST™(X); 3(X))) uniformly with
respect to € € [—€y, €] and the application

ST'(X?) 3 pe B> qe € Sg (N BEIHTH™ (X): HX))

is continuous for all s € R, uniformly with respect to € € [—¢g, €¢]. Point (1)
follows then clearly.

(2) Let us note that (4.23) and the uniformity with respect to € € [—¢g, €0]
follow easily by Proposition 4.13 and its proof. In order to prove (4.24) let us note
that

e §) = (6) 7" pe(x.-.6.)
defines a symbol of class S§*(X) uniformly with respect to ((x,§),€) € E x

[—€0, €0] and we can view the element p. as a function in BC*°(E; S§"(X)). Then,
the operator-valued symbol

q0.(x, &) := (&) Mg (x, &)

has the property
(%98 a.) (x. §) € B(S(X)).
for all (a, B) € [IN¢]?, uniformly with respect to ((x,£),€) € E x [—¢p, €o]. De-
noting
s5(x, &) ;= (§)°, foranys e R,

and writing
Ope(ge) = Op™e (sm ),

the proof of Proposition 4.13 implies (4.24) uniformly with respectto € € [—¢, €g]-
O

Theorem 4.15. Take three families of Hilbert spaces with temperate variation
{Agteexs {Beleexr, and {Celeex~, a/nd two families of symbols {pe}ie|<e, €
Spte(X; B(Ba; Co)) and {qe}ie|<eq € Sy (X; B(Ae; Ba)), and a family of magnetic
fields { B¢} e|<e, satisfying Hypothesis H.1 with an associated family of vector po-
tentials {Ac}e|<e, given by (1.4). Then

(1) There exist a family of symbols
{PeltP*qelielzeo € Spic™ (X B(As: C)),

such that
DpAé (PG)DPAE (ge) = DPAE (PeﬂBéCIe);
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(2) the application

SM(X: B(Ba: Ca)) x S (X; B(Asi Ba)) 3 (pe. ge)
— peltBeqe € ST (X B(Al: €))

is continuous uniformly with respect to € € [—¢g, €¢];

(3) there exists a family of symbols {re}ic|<e, € S;'}:m/"’(x; B(Ae; Co)) having
the properties

limre =0 in ST =P (30; B(As; Co)) (4.25)
€—>

and
pettBeqe = pe-qe + re. forall € € [—e, €). (4.26)

Proof. As in the proof of Proposition 4.13 we reduce the problem to the case of

—~

symbols with compact support in both arguments (x, §) € E. A direct computa-
tion using Stokes formula and the fact that d B, = 0 for any € € [—e¢g, €g] shows
that for point (1) of the theorem we may take the definition of the composition
operation to be the following well defined integral formula

(petPeqe) (X) = n 2 / / 2210 (x ) D) po(X — V)ge(X — 2)dY dZ.

4.27)
where we used the notation

X =8, Y:==0n, Z:=(z79,

Y. z] == (n.z) = (&, »),
and

a)Be (x’ v, Z) = e_iFe(x,y,z)’

where
Fo(x,y,2) = / Be,
(x—y+z,x—y—z,x+y—z)

with (a, b, ¢) the triangle with vertices a € X, b € X and ¢ € X. A direct compu-
tation (see for example Lemma 1.1 in [12]) shows that all the vectors V Fe, V, F¢
and V, F, have the form

Ce(x,y,2)y + De(x,y,2)z,
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with C. and D, functions of class BC *®(X?; B(X)) satisfying the conditions

limC, = lin})De =0 in BC®(X3 B(X)).
€—>

e—0

It follows easily then that the derivatives of w®¢ (x, y, z) of order at least 1 are finite
linear combinations of terms of the form

Caprey 2P 0P (x.y.2).
with Cy g):c € BC>®(X?) satisfying the property

lim Cg gy =0 in BC™(X?).

e—>0
Applying the usual integrations by parts with respect to the variables {y, z, n, {},
we obtain (for some C > 0 and any N € IN)

1(Pet®qe) (X lBagses

= C max // —2N, —2N> —2N3 - —2N,
aliBLivLisi<n ) (m)72N(6) 722 ()72 ()

52 10%9L pe(X — Y) |peseics)
||3§3§¢]e(X = Z)|IBag;pe dY dZ,

(4.28)

for any € € [—¢€g,€0]. We use now (4.17) and (4.19) and obtain the following
estimations valid for any € € [—¢g, €¢]:

1050 pe(X — Y)[Besesce)

< C(n)lelaﬁagpe(X — V) BBs_:e_r) (4.29)
= C Mg — )" sup (5) 7+ 10292 p)(Z) B cse0)-
€B

Repeating the same computations for the derivatives of g. and choosing suitable
large exponents N; (1 < j < 4)in (4.28) we deduce the existence of two defining
seminorms | - |,, and respectively | - [,, on the Fréchet space S7"(X; B(B.; Cs))
and respectively on S [’)"/(I)C; B(A.; B.)) such that

sup (6) " (pet® ) (X Inasice) = |Pelm |delna.  forall € € [~co. ol.
€E

(4.30)
The derivatives of pcfi<g. can be estimated in a similar way in order to conclude
that p.ftBeq. € S;"+m/(x; B(A.; C,)) uniformly with respect to € € [—¢g, €¢] and
that property (2) is valid. Hypotheses (2) and (3) from the Definition 4.7 follow
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easily by (4.25) and (4.26). In conclusion there is only point (3) that remains to
be proved. By the same arguments as above we can once again assume that the
symbols p, and g have compact support. We begin by using in (4.27) the equality

Pe(X =Y)qe(X — Z)
1

= pe(X)ge(X) — /[(Y, Vxpe(X —1Y))ge(X —1Z) (4.31)
O+ pe(X —tY)Z,Vxqe(X —1Z))]dt.

The first term on the right side of equality (4.31) will produce the term p.g. in
equality (4.26) (see also Lemma 2.1 in [12]). Let us study now the term obtained
by replacing the last term from (4.31) into (4.27). We eliminate Y and Z by inte-
gration by parts as in the beginning of this proof. These operations will produce
derivatives of p and ¢, with respect to x € X, that go to 0 for ¢ — 0 in their
symbol spaces topology and derivatives of F, with respect to y and z; but these
derivatives may be once again transformed by integrations by parts into factors of
the form C, € BC*(X?) having limit O for ¢ — 0 as elements from BC > (X?).
Thus, the estimations proved in the first part of the proof imply that equality (4.26)

holds with
1

re = /se(z)a’t,

0

where
se(t) € Sy (A B(Aa: C))

uniformly with respect to (e,¢) € [—¢o, €0] X [0, 1] and

limse(r) =0 in SmEm =P (X B(Aa: Ca))
€—

uniformly with respect to ¢ € [0, 1]. We conclude that r. has the properties stated
in the theorem. U

Remark 4.16. The proof of Theorem 4.15 also implies the following fact: the
operation B¢ is well defined also as operation

ST B(Ba: Ca)) X ST (X B(As: Ba)) —> ST (00 B(As: Ca))

being bilinear and continuous uniformly with respect to € € [—¢g, €o].
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Proposition 4.17. Given two Hilbert spaces A and B and, for any € € [—¢g, €¢], a
symbol p. € SJ(X; B(A; B)), uniformly in € € [—€g, €o), then, for any s € R, the
operator Op< (pc) belongs to the space IB(iHj:’m (X) ®A; 3 _(X) ®B) uniformly
with respectto € € [—€g, €o]. Moreover, the norm of Op™< (pc) in the above Banach
space is bounded from above by a seminorm of pe in S§'(X; B(A; B)), uniformly
with respect to € € [—e¢g, €g].

Proof. For m = s = 0 the proposition may be proved by the same arguments
as in the scalar case: A = B = C (see for example [12]). Also using the results
from [12] we can see that for any + € R the operator Q. belongs to the space
IB(H-CZS (X); ?CQE (X)) uniformly with respect to € € [—¢g, €o]. The proof of the
general case follows now by the identity

DPAE (Pe) = Q—s,e Qs,erAE (Pe) O —(s+m),e Qs+m.e

and the fact that g 15 peiB< ¢_(s4m).c is a symbol of class SQ(X; B(A; B)) uni-
formly with respect to € € [—e€p, €o] (as implied by the Remark 4.16). O

Standard arguments allow us to prove the following statement.

Proposition 4.18. Suppose given a Hilbert space A and a bounded subset

{Pelelzeo C Sy B(A))
such that
e =0

in this space of symbols. Then, for sufficiently smalley > 0,

(1) id +Op4€(pe) is invertible in B(L*(X) ® A) for any € € [—€, €] and

(2) it exists a bounded subset of symbols {qc}e|<e, from S/? (X; B(A)) such that

limge =0 in SP(X: B(A))
and

[id +Op”e (pe)] ™! = id +Op?e (ge).

4.3. Relativistic Hamiltonians. We shall close this subsection with the study of
a property that connects the two relativistic Schrodinger Hamiltonians Op“< (i g)
and [Op“€ (hyr)]/? with

hr(x.§) = (§) = V1 + 5
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and

hnr(x,€) =1+ |§]> = (£)%

We shall use some arguments presented in §6.3 of [13]. The following proposition
allows to prove that the operator in (1.11) verifies the hypothesis in Subsection 1.2.

Proposition 4.19. There exists a bounded subset {qe}|¢|<e, of symbols from S?(X)
such that lirr(l)qe =0in SY)(X) and
€e—

[OpAe(hyr)]Y? = Op?e(hr) + Op?e(ge). (4.32)

Proof. Following [13], if we denote by p~ the inverse of the symbol p with respect
to the composition fiB¢,

[opAf(hNRn”z=DpAf(hNR)opAf(—% / z—1/2(<s>2—z>—dz). 4.33)
Tl

—ioo
Recalling the proof of point (3) in Theorem 4.15 we can easily prove that
(&) =% (&)~ =1 +res (4.34)
where (z)r , € SY(X) uniformly for (e, z) € [—€o, €] x i R and

lim(z)re, =0 in S2(X)

€—>

uniformly with respect to z € iR. Following the proof of Proposition 4.18, for
€0 > 0 sufficiently small there exists a symbol f; , such that (z) f;, € S?(X)
uniformly with respect to (¢, z) € [—€g, €o] X i R,

lim(z) fe, =0 in S7(X)
uniformly with respect to z € i R and we also have
(I4re) =14 fesr.
By (4.33) and the properties of the symbol r¢ 5, it follows that we can define

(£ =27 == () =P+ fer) = (8 =27 + () =715 fen.
(4.35)
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Using (4.35) in (4.33) we note that the term ((§)?> —z)~! produces by magnetic
quantization a term of the form

Ope(hyr)Op™e ("),
and using Theorem 4.15 this operator may be put in the form
Ope(hir) + Ope(qy),
where ¢/ € S(X) uniformly with respect to € € [—e€g, €] with
eli_r)r(l)q; =0 inSY(X).
If we note that hygtB(hygr —2)~! € SY(X) uniformly with respect to (€,z) €
[—€0, €0] X IR, then we can see that the last term of (4.35) gives in (4.33) by mag-

netic quantization an expression of the form Op“4e (q)) with ¢/ € S?(X) uniformly
with respect to € € [—¢g, €] and such that

lin})qé/ =0 inSP(X). O
€—>
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