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Absence of /! eigenfunctions for lattice operators
with fast local periodic approximation

Alexander Y. Gordon

Abstract. We show that a lattice Schrodinger operator A + v whose potential v: Z¢ — C
admits fast local approximation by periodic functions does not have /! eigenfunctions. In
particular, it does not exhibit Anderson localization. A special case of this result pertain-
ing to quasi-periodic potentials states: Let V: RY — C be a (1,...,1)-periodic func-
tion satisfying the Holder condition. There is such 6 > 0 that if real numbers «1, ..., aq
satisfy the inequality |nia1|| + -+ + ||ngaq| < 6714 for infinitely many d-tuples
(n1,....ng) € N (| - || is the distance from a real number to the nearest integer), then
the operator A + v with v(x) = V(a1x1,...,04xg) has no nontrivial eigenfunctions in
11(Z4). This statement contrasts the result of J. Bourgain: Anderson localization for quasi-
periodic lattice Schrodinger operators on Z4, d arbitrary, Geom. Funct. Anal. 17 (2007),
682-706.
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1. Introduction

We consider a lattice Schrodinger operator L = A + v acting in cz’ (d = 2)as
follows:

(Lu)(x) = Z u(x’) +v(xu(x), xeZ?.

x'€Zd : |x'—x|1=1
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We examine the case where the potential v(-) can be approximated with high ac-
curacy by a sequence of periodic potentials with growing periods on a suitable
increasing sequence of finite sets. We show that such operator does not have eigen-
functions in /!(Z?). In particular, there are no exponentially decaying eigenfunc-
tions and hence no Anderson localization (the phenomenon where such eigen-
functions are complete in /2(Z%)).

The class of potentials described above includes, among others, quasi-periodic
potentials of the form

v(x) = V(erxi, ..., aqxq), x€Z°, (1)

where V: R¢ — Cisa (1,...,1)-periodic function satisfying the Holder condi-
tion, and «;’s are irrational numbers that admit very good approximation by ra-
tionals. The absence of fast decaying eigenfunctions for such potentials contrasts
the result of Bourgain [1], according to which for a fixed real analytic function V
on T satisfying a mild non-degeneracy condition, the operator A 4+ Av with v(-)
given by (1) exhibits Anderson localization for all & = (a1, ..., ag) € T¢ \ Q;,
where mes 2, — 0 as A — oo; see also the earlier work [2].

The main tool used in the paper is the inequality (Lemma 1) of the form |u(0)| <
Y ek lu(x)], where u(-) is an arbitrary solution of a periodic linear homogeneous
lattice equation and K is a certain finite subset of the group of periods not con-
taining 0. This is a generalization of the one-dimensional inequality going back to
[3]: for any solution of the equation

yin—=1)+yn+1)+v@m)yn) =Ayn), nel,
with a T-periodic coefficient v(-) one has
0] <2 kT
yO)f =2 max |y(kT)|
(in [3] this was proved for the equation

=" +vt)y =2y
with a real-valued T'-periodic v(¢) and real A; for the further history of this in-
equality, see [4]).

2. Periodic operators

From now on, given a set X C Z<¢, we will denote the set X \ {0} by X*. The
cardinality of a finite set X will be denoted by | X | or, alternatively, by #X . The di-
mension d of the lattice Z¢ will always be assumed to be > 2 (except for Lemma 1
and Theorem 1, where d may also equal one).
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Lemma 1. Let T be a subgroup of Z¢ and L a T -periodic linear operator in cz!
(I'-periodicity means that, letting (TVu)(x) = u(x + y), we have TYL = LTY
forally € T.) Suppose F C T and Y C Z2 are such finite sets and A € C is such
a number that

(a) ifu(:) is a solution of the equation

Lu = \u (@)
anduly =0, thenulp = 0;
() [F|>[Y].
Then for any solution u(-) of (2)
uO < > ) 3)
x€(F—F)*

Proof. Let N denote the linear space of all solutions of (2), and let M = N|y.
It follows from (a) that for each x € F the value of a solution u € N at x is
uniquely determined by u|y and is, therefore, given by a linear functional on M.
Since dim M < |Y|, (b) implies that those functionals are linearly dependent:
there are b, € C (x € F), not all of them 0, such that

Y byu(x)=0 forallueN.

xXeF

There is such a € F that |by| < |b,| for all x € F. Then

u@) = Y cxu),

xeF\{a}

where ¢, = —b /b, and hence |cy| < 1; it follows that

u@| = Y (u)l. )

xeF\{a}

In view of the I'-periodicity of L, the space N of solutions of (2) is invariant under
translations by elements of I'. Therefore, (4) implies the inequality

uOl < Y u)l.

xe(F —a)\{0}

from which (3) follows. O
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Theorem 1. Let T be a subgroup of Z¢ and L a T-periodic linear operator
in CL Let F C Tand Y C Z9 be two finite sets with the following proper-
ties:
(a) for any q € Z% and any solution u(-) of equation (2) such that Uly+q =0,
we also have u|f 4 = 0;

(b) |F[> Y]
Then for any solution u(-) of (2) and any q € 7.2
@< D fulg +x)l. (5)
xe(F—-F)*

Proof. Forq € 7%, let LY = TYLT~4. The operator L4 and the sets F and Y
satisfy the conditions of Lemma 1. Putting u, = T7u, where u is a solution of
Lu = Au, we have LYu, = Au, and, by Lemma 1,

g < Y Jug()],
xe(F—F)*

which is equivalent to (5). O

Let L = A + v, where A is the lattice Laplacian,

(Au)(x) = Z u(x +z), xeZ?,

zeZd: |z =1

and v is the operator of multiplication by a complex-valued function v(-) on Z.
Suppose v(-) is I'-periodic, I' being a subgroup of Z¢ generated by d linearly
independent vectors fi, ..., fz, where f; = (fj(’))?l=1 €eZé, j=1,....d:

d
F:{ijfj: m; € Z, jzl,...,d}.

Jj=1

Denote by Ar the fundamental region of the lattice I" in RY,

d
Ar = {Zejf,-: 0<6 <1, :1....,d},
j=1
and by V' its volume,

d

Vr = Vol(Ar) = |det[fj(i)]i,j=1 )
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Theorem 2. Let u(-) be a solution of the equation (A + v)u = Au with a
T -periodic potential v. Then for any q € Z2

u(q)| < > lu(g + x)|. (6)

xeT*: ||x|lco<2d VT
Proof. Fix an integer n > 3 and consider the following subset of R¢:
Dy,={xeR:0<x;<n,i=1,...,d}.

For z € Z4, let
F, =T nNn (D, + 2). @)
The lattice I" has “density”

#Hy el |7l =1}

lim =1/Vr,
rjéoo (Zr)d / r
and since
R = | | (Du+2),
zenZd
we have

sup |F;| > Vol(D,)/Vr = n/Vr.

zenZd
Note that |F;|, the cardinality of the set F;, takes only finitely many values, and
hence there are such points z € nZ? that

d

n
F|>—.
|z|_VF

Fix one such z and let C, = Cy + z, where Cy = {0, 1,...,n— l}d. Note that
F,CZ°N(Dy+2)=ZND,y)+z=Co+z=C,.
Furthermore, let Yo = Cy \ So, where
So={1,....n=2Y9""1x{2, ... .n—1,

and
Y, =Yy +z.

Given ¢ € Z4, for any solution u(-) of the equation (A + v)u = Au such that
uly.+4 = 0 we have u|c,+4 = 0 and consequently u|r.+, = 0.
We have
V2] = Yo = n? — (n = 2)%.
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Theorem 1 is applicable when |Y,| < | F;|, which is guaranteed if n¢ — (n —2)¢ <

n /Vr, or
CORE
1—(1—-— < —.
n Vr
Since the left-hand side is < 2d/n, we have |Y;| < |F;| if
n>2dvr.

Theorem 1 then states that, given any solution u(-) of (A + v)u = Au and any
q € Z2, we have

@l < DY Julg + ). (®)

xe€(F;—Fz)*

Here, in view of (7),

F,—F,cI'N(Dy,—Dy) Cix €T ||x]loo < n}.

Let n = 2dVr; then (8) implies (6). O
Corollary 1. If u(-) is a solution of (A + v)u = Au, where the function v(-) on
74 is (11, ..., tq)-periodic (11, ..., 14 € N), then for any q € Z4

u(q)| < > lu(g + x)|,

x€lf: |xlco<2d1)...74

where

e ={(1n,. - jata): 1. ja € Z}. ©)

3. Operators approximable by periodic ones

We will denote a generic element of N as t = (1q, ..., 7q).

Theorem 3. Let L = A + v, where v(-) is a bounded complex-valued function

on Z2. Suppose for some fixed ¢ > 0 and each v = (11, ..., 1q) in some infinite
setT C N there is a (t1, . . ., 1q)-periodic function v.(-) satisfying the inequality
max [v:(x) —v(x)| < 9T, (10)

[xllco<(2d+8&)Ty...74

where 0 is a constant such that
0<6 < (4d+2v]leo — 1724, (11)

Then the equation Lu = Au with any A € C does not have nontrivial [' solutions.
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Proof. Let
me = [(2d + &)t1 ... 14]. TeT,

where [ - | denotes the integer part of a real number. Inequality (10) can be rewritten
in the form

pr = max [ve(x) —v(x)] < 671", (12)

where
Qr = {x € Z: ||x]loo < mq}.
Suppose u: Z¢ — C is a solution of the equation

(A +v)u=2Au

such that
Jully < 1. (13)

Pick any t € 7 so there is a t-periodic function v.(-) satisfying (12). Define a
subset Z, of Q. as follows:

Z,={x € Q;: x4 €{—1,0}o0r|x;| =m, forsomei € {1,...,d —1}}.

Also put
0% ={xeZ: ||x]loo <m;—1}.
Denote by u.(-) the unique function on Q, such that
1) (Aug)(x) + ve(X)uc(x) = Au (x) forall x € Q9;
(ii) wuelz, = ulz,.

The function
we(x) = u(x) —u(x), x€ 0Oy,

satisfies the equations

w,|ZT =0
and
(Awe)(x) + (v(x) = D we(x) + re()u(x) + re()we(x) =0, x € QF,

where

re(x) = v(x) —v(x).
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By representing any x € Z¢ in the form x = (j, k), where j € Z%~! and
k € Z, we transform the previous equation into
we(j.k+1)+w(j,k—1)
+ Z w‘[(jlak)+(v(.]7k)_A’)wT(j’k)

J'eza=N s =jh=1

+re(j u(j, k) + re(j. Kwe(j. k) =0, (j.k) € 7.
This equation implies that

lwe(j. k£ 1)]
< |lwe(j. k F 1|

+ 3 we (i |+ (G R+ ADlwe (k)] (1D

1A=L | 1=l =1

+ 1re G (G R+ [re (. ONwe (. k)], (j. k) € 0F.

Putting

or(k)= > |we(x)|= > lwe(j. k). —me <k <me.

x€Qc: xq=k JEZA=1: || jloosmy—1
we obtain from (14) by summation on j:
okt 1) <o,k F1)+ Bro(k)+pr;, —mg+1<k<m;—1, (15)
where
B =2(d — 1) + [|v]lec + [A] + pr

(we use the facts that |- (, k)| < pr forall (j,k) € Qrand Y ;cza—1 [u(j, k)| <1
for all k € Z, due to (12) and (13), respectively).

Furthermore, |A| does not exceed the norm of the operator L = A + v acting
in I'(Z%), which is < 2d + ||v||co. Therefore,

B <4d +2|v||loc—2+ p, TET.
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Pick such D € R that
D > 4d +2||v]leo — 1

and .
D2 < 5 (16)
(which is possible due to (11)) and note that, by (12), we have
B, <D-—1 (17)

for all but finitely many € 7.
Inequalities (15) and (17) imply that

otk 1) <o, (kF1)+(D—NDor(k)+p;, —me+1<k<m;—1.
It follows by induction (using the equalities o (—1) = 0;(0) = 0) that

or(k) < D¥=1p. —my <k <m.. (18)
Consequently,
Z Ur(k) = Dmrpra
|k|<m<
or, equivalently,
Y ue(x) —u(x)| < D™ py, (19)
x€0<

which holds for all € T with large enough || 7||co-
The function u(-) is defined on the cube Q. and satisfies the equation

Auz(x) + ve(X)ur(x) = Auz(x)

on QY. According to the following lemma, this function has an extension to Z¢
that satisfies the same equation for all x € Z¢.

Lemma 2. Let
0 :{xeld:ai <x;<bj,i=1,...,d}
and
Q°={xeZi: a;+1<x;<b—1,i=1,....d}.
Letv: Z¢ — Candu: Q — C be functions such that
Au(x) + v(x)u(x) = Au(x) forall x € Q°.
Then there is a function ii: Z¢ — C such that

ilp=u and (A+v)u=2Au onZ°.

The proof is deferred to the appendix.
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Due to the lemma, we can consider u.(-) as a function defined on 74 and
satisfying the equation (A + v;)u, = Au, on the entire lattice Z2 . The function
vz (+) is T';-periodic, where the lattice I'; is defined by (9).

Pick any ¢ € Z¢. According to Corollary 1,

(@ < Y- ()], (20)

x€q+PF

where
Pr={x el |xllc =2d71...74}.

Assuming that
me—=2dt...tg =letr...14] > 9]0

(which is true for all t € T with large enough ||7]|c), We have ¢ + P, C O,
so (20) and (19) imply that for all but finitely many t € T

@) < Y |u(x)] +2D" p. 1)
xeq+PF

As T > © — oo, the first summand on the right converges to 0 due to (13). The
second summand does not exceed

2D(2d+8)‘[1 T 0‘[1 Td — 2(D2d+89)‘[1 T )

Note that ¢ > 0 in (10) can be made arbitrarily small. Choose it so small that
D?@+e < g1 (which is possible due to (16)). Then the right-hand side of (21)
goes to 0 as T 3 7 — oo. Therefore, u(g) = 0. Since ¢ € Z? was chosen
arbitrarily, this completes the proof. U

We will apply now Theorem 3 to operators with quasi-periodic potentials.
The distance from a real number a to the nearest integer will be denoted by ||«||.

Theorem 4. Let the potential v(-) of the Schrodinger operator L = A + v be of
the form

v(x) = V(i xy,....agxg), xeZ9,
where ay, ..., o are real numbers and V . RY = Cisa (1,..., 1)-periodic func-
tion satisfying the Holder condition

d
V(tr.....ta) = V(... ) C Yl — 1|, (22)

i=1
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where 0 < B < 1. Suppose there are d sequences of positive integers vip), cees va(lp)

(p=1,2,...) such that

vip)+---+v2p)—>oo as p — oo

and
v(p) (p)

Parll 4+ v Pagl <7 p=12,.

where

0<n<@d+2||V]eo—1)"248, (23)

Then the operator A + v does not have eigenfunctions in ' (Z%).
The theorem can be reformulated in the following equivalent way.

Theorem 4*. Let V: R? — C be a (1,...,1)-periodic function satisfying the
Holder condition (22). Suppose n € R satisfies inequality (23). If real numbers
aq,...,0q are such that

||V1(X1|| +"'+||Vd05d|| Sﬂvl'"vd (24)
for infinitely many d-tuples (vy....,vg) € N%, then the operator A + v with
v(x) = V(ex1, - ,@gXq) has no eigenfunctions in 11 (Z2).

Proof. Denote by T the infinite set of those v = (vy,...,vy) € N? for which (24)
holds. Given v € T, thereis u = (i1, ..., ) € Z2 such that |pt; —viar| = |||
foreachi =1,...,d. Let

b Mi

o) - i=1,...,d,
and
Vo(X1,...,Xg) = V(aix1, ..., o xq).
The function v, () is (v, ..., vg)-periodic. In order to apply Theorem 3, we need

to estimate (for some fixed ¢ > 0) the number

M, = max lvy (x) — v(x)].
Ixllco<(2d +&) vi...v4
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If | x|loo < (2d + &) vy ...v4, then

oy (x) —v(X)| = [V(a)x1,...,ayxq) — V(aix1, ..., 0q4xq)|
d Wi B
1
<C ; o Xi — O X;
d
<C Y xilPlui — il (25)

i=1

d
< ClxlI5 Y Ivieu|)?
i=1
< Cd((2d + &)vy ...vg)P (n1-va)B,
Pick any 6 € R such that
P <6 < (4d +2||v]leo — )72, (26)

which is possible due to (23). It follows from (25) and the first inequality in (26)
that M,, < 6 "1--Yd for all but finitely many v € 7. This and the second inequality
in (26), in view of Theorem 3, guarantee that the equation (A + v)u = Au does
not have nontrivial /! solutions. O

Remark 1. By using, instead of (18), a better estimate of o, (k), we can relax
the requirement for the accuracy of periodic approximation in Theorem 3 by re-
placing the interval of possible values of 6, given by (11), with a larger interval
(0, 6p), where 8y can be found as follows. Let R be the radius of the smallest disk
containing the set v(Z?); then we put

A=4d +2R—-2, B=(A+VA2+4)/2,
and
6o = B~24.

Similarly, the interval of possible values of 7 in Theorem 4, given by (23), can be
replaced with a larger interval (0, n9), where no = 6(}/ P Here 0y is calculated in
the way just described, R being the radius of the smallest disk containing the set
V(RY).
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Remark 2. The main results of the paper — Theorems 2, 3 and 4 — pertain to the
lattice Schrodinger operator; however, the method we use can be adapted to other
finite-range lattice operators, such as A + v, where A is the diagonal Laplacian
introduced in [5]:

Awyx) = Y u(x+2). xeZ

ze{—1,+1}4

Appendix

Proof of Lemma 2. In this proof we will use the following notation: given two
integers a and b (a < b), we will denote by [a, b] the finite set

{x €eZ:a <x <b}.

We may assume that the set Q is nonempty so a; < b; foralli € [1,d]. It suf-
fices to show how u(-), which is initially defined on Q and satisfies the equation

Au(x) + v(x)u(x) = Au(x) 27)
on Q°, can be extended to
01 = [a1 — 1,b1] x [az, b2] x -+ x [agq, ba]
so it will satisfy (27) on
0V =la1,b1 —1] xJaz+ 1,by = 1] x---x [ag + 1,bg — 1].
Let
R ={a1} x [az, b2 x --- x [ag,b4]

and
R_={a; — 1} x [az,ba] x---x [ag,bs] = 01\ O.

We need to define v on R_ so that (27) will hold on 07 N R.
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Two cases are possible.

(i) a1 = by. In this case the set QY is empty, so we can define u|g_ arbitrarily.

(ii) a; < by. Equation (27), being applied at all points of the set
OINR=A{a1}x[az+1.bp — 1] x---x [ag + 1.bg — 1],
determines the values of u on the set
{ar — 1} xJaz+ 1,by— 1] x---x [ag + 1,bg — 1] C R_;
the values of u at the remaining points of R_ can be chosen arbitrarily. [
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