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Absence of l
1 eigenfunctions for lattice operators

with fast local periodic approximation

Alexander Y. Gordon

Abstract. We show that a lattice Schrödinger operator � C v whose potential v W Zd ! C

admits fast local approximation by periodic functions does not have l1 eigenfunctions. In

particular, it does not exhibit Anderson localization. A special case of this result pertain-

ing to quasi-periodic potentials states: Let V W Rd ! C be a .1; : : : ; 1/-periodic func-

tion satisfying the Hölder condition. �ere is such � > 0 that if real numbers ˛1; : : : ; ˛d

satisfy the inequality kn1˛1k C � � � C knd ˛d k < �n1:::nd for in�nitely many d -tuples

.n1; : : : ; nd / 2 Nd (k � k is the distance from a real number to the nearest integer), then

the operator � C v with v.x/ D V .˛1x1; : : : ; ˛d xd / has no nontrivial eigenfunctions in

l1.Zd /. �is statement contrasts the result of J. Bourgain: Anderson localization for quasi-

periodic lattice Schrödinger operators on Zd , d arbitrary, Geom. Funct. Anal. 17 (2007),

682–706.
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1. Introduction

We consider a lattice Schrödinger operator L D � C v acting in CZd
(d � 2) as

follows:

.Lu/.x/ D
X

x02Zd W kx0�xk1D1

u.x0/ C v.x/u.x/; x 2 Zd :
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We examine the case where the potential v.�/ can be approximated with high ac-

curacy by a sequence of periodic potentials with growing periods on a suitable

increasing sequence of �nite sets. We show that such operator does not have eigen-

functions in l1.Zd /. In particular, there are no exponentially decaying eigenfunc-

tions and hence no Anderson localization (the phenomenon where such eigen-

functions are complete in l2.Zd /).

�e class of potentials described above includes, among others, quasi-periodic

potentials of the form

v.x/ D V.˛1x1; : : : ; ˛d xd /; x 2 Zd ; (1)

where V W Rd ! C is a .1; : : : ; 1/-periodic function satisfying the Hölder condi-

tion, and ˛i ’s are irrational numbers that admit very good approximation by ra-

tionals. �e absence of fast decaying eigenfunctions for such potentials contrasts

the result of Bourgain [1], according to which for a �xed real analytic function V

on Td satisfying a mild non-degeneracy condition, the operator � C �v with v.�/

given by (1) exhibits Anderson localization for all ˛ D .˛1; : : : ; ˛d / 2 Td n ��,

where mes �� ! 0 as � ! 1; see also the earlier work [2].

�e main tool used in the paper is the inequality (Lemma 1) of the form ju.0/j �
P

x2K ju.x/j, where u.�/ is an arbitrary solution of a periodic linear homogeneous

lattice equation and K is a certain �nite subset of the group of periods not con-

taining 0. �is is a generalization of the one-dimensional inequality going back to

[3]: for any solution of the equation

y.n � 1/ C y.n C 1/ C v.n/y.n/ D �y.n/; n 2 Z;

with a T -periodic coe�cient v.�/ one has

jy.0/j � 2 max
kD˙1;˙2

jy.kT /j

(in [3] this was proved for the equation

�y00 C v.t/y D �y

with a real-valued T -periodic v.t/ and real �; for the further history of this in-

equality, see [4]).

2. Periodic operators

From now on, given a set X � Zd , we will denote the set X n ¹0º by X�. �e

cardinality of a �nite set X will be denoted by jX j or, alternatively, by #X . �e di-

mension d of the lattice Zd will always be assumed to be � 2 (except for Lemma 1

and �eorem 1, where d may also equal one).
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Lemma 1. Let � be a subgroup of Zd and L a �-periodic linear operator in CZd

(�-periodicity means that, letting .T 
u/.x/ D u.x C 
/, we have T 
 L D LT 


for all 
 2 �.) Suppose F � � and Y � Zd are such �nite sets and � 2 C is such

a number that

(a) if u.�/ is a solution of the equation

Lu D �u (2)

and ujY D 0, then ujF D 0;

(b) jF j > jY j.

�en for any solution u.�/ of (2)

ju.0/j �
X

x2.F �F /�

ju.x/j: (3)

Proof. Let N denote the linear space of all solutions of (2), and let M D N jY .

It follows from (a) that for each x 2 F the value of a solution u 2 N at x is

uniquely determined by ujY and is, therefore, given by a linear functional on M .

Since dim M � jY j, (b) implies that those functionals are linearly dependent:

there are bx 2 C .x 2 F /, not all of them 0, such that

X

x2F

bxu.x/ D 0 for all u 2 N .

�ere is such a 2 F that jbxj � jbaj for all x 2 F . �en

u.a/ D
X

x2F n¹aº

cxu.x/;

where cx D �bx=ba and hence jcx j � 1; it follows that

ju.a/j �
X

x2F n¹aº

ju.x/j: (4)

In view of the �-periodicity of L, the space N of solutions of (2) is invariant under

translations by elements of �. �erefore, (4) implies the inequality

ju.0/j �
X

x2.F �a/n¹0º

ju.x/j;

from which (3) follows.
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�eorem 1. Let � be a subgroup of Zd and L a �-periodic linear operator

in C Zd
. Let F � � and Y � Zd be two �nite sets with the following proper-

ties:

(a) for any q 2 Zd and any solution u.�/ of equation (2) such that ujY Cq D 0,

we also have ujF Cq D 0;

(b) jF j > jY j.

�en for any solution u.�/ of (2) and any q 2 Zd

ju.q/j �
X

x2.F �F /�

ju.q C x/j: (5)

Proof. For q 2 Zd , let Lq D T qLT �q . �e operator Lq and the sets F and Y

satisfy the conditions of Lemma 1. Putting uq D T qu, where u is a solution of

Lu D �u, we have Lquq D �uq and, by Lemma 1,

juq.0/j �
X

x2.F �F /�

juq.x/j;

which is equivalent to (5).

Let L D � C v, where � is the lattice Laplacian,

.�u/.x/ D
X

z2Zd W kzk1D1

u.x C z/; x 2 Zd ;

and v is the operator of multiplication by a complex-valued function v.�/ on Zd .

Suppose v.�/ is �-periodic, � being a subgroup of Zd generated by d linearly

independent vectors f1; : : : ; fd , where fj D
�

f
.i/

j

�d

iD1
2 Zd ; j D 1; : : : ; d :

� D

² d
X

j D1

mj fj W mj 2 Z; j D 1; : : : ; d

³

:

Denote by A� the fundamental region of the lattice � in Rd ,

A� D

² d
X

j D1

�j fj W 0 � �j < 1; j D 1: : : : ; d

³

;

and by V� its volume,

V� D Vol.A�/ D
ˇ

ˇ det
�

f
.i/

j

�d

i;j D1

ˇ

ˇ:
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�eorem 2. Let u.�/ be a solution of the equation .� C v/u D �u with a

�-periodic potential v. �en for any q 2 Zd

ju.q/j �
X

x2�� W kxk1�2dV�

ju.q C x/j: (6)

Proof. Fix an integer n � 3 and consider the following subset of Rd :

Dn D ¹x 2 Rd W 0 � xi < n; i D 1; : : : ; dº:

For z 2 Zd , let

Fz D � \ .Dn C z/: (7)

�e lattice � has “density”

lim
r!1

#¹
 2 � W k
k1 � rº

.2r/d
D 1=V� ;

and since

Rd D
G

z2nZd

.Dn C z/;

we have

sup
z2nZd

jFz j � Vol.Dn/=V� D nd =V� :

Note that jFz j, the cardinality of the set Fz , takes only �nitely many values, and

hence there are such points z 2 nZd that

jFz j �
nd

V�

:

Fix one such z and let Cz D C0 C z, where C0 D ¹0; 1; : : : ; n � 1ºd . Note that

Fz � Zd \ .Dn C z/ D .Zd \ Dn/ C z D C0 C z D Cz :

Furthermore, let Y0 D C0 n S0, where

S0 D ¹1; : : : ; n � 2ºd�1 � ¹2; : : : ; n � 1º;

and

Yz D Y0 C z:

Given q 2 Zd , for any solution u.�/ of the equation .� C v/u D �u such that

ujYzCq D 0 we have ujCzCq D 0 and consequently ujFzCq D 0.

We have

jYzj D jY0j D nd � .n � 2/d :
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�eorem 1 is applicable when jYzj < jFzj, which is guaranteed if nd � .n � 2/d <

nd =V� , or

1 �

�

1 �
2

n

�d

<
1

V�

:

Since the left-hand side is < 2d=n, we have jYzj < jFz j if

n � 2dV� :

�eorem 1 then states that, given any solution u.�/ of .� C v/u D �u and any

q 2 Zd , we have

ju.q/j �
X

x2.Fz�Fz/�

ju.q C x/j: (8)

Here, in view of (7),

Fz � Fz � � \ .Dn � Dn/ � ¹x 2 � W kxk1 � nº:

Let n D 2dV� ; then (8) implies (6).

Corollary 1. If u.�/ is a solution of .� C v/u D �u, where the function v.�/ on

Zd is .�1; : : : ; �d /-periodic (�1; : : : ; �d 2 N), then for any q 2 Zd

ju.q/j �
X

x2��

� W kxk1�2d�1:::�d

ju.q C x/j;

where

�� D ¹.j1�1; : : : ; jd�d / W j1; : : : ; jd 2 Zº: (9)

3. Operators approximable by periodic ones

We will denote a generic element of Nd as � D .�1; : : : ; �d /.

�eorem 3. Let L D � C v, where v.�/ is a bounded complex-valued function

on Zd . Suppose for some �xed " > 0 and each � D .�1; : : : ; �d / in some in�nite

set T � Nd there is a .�1; : : : ; �d /-periodic function v� .�/ satisfying the inequality

max
kxk1�.2dC"/�1:::�d

jv� .x/ � v.x/j � � �1:::�d ; (10)

where � is a constant such that

0 < � < .4d C 2kvk1 � 1/�2d : (11)

�en the equation Lu D �u with any � 2 C does not have nontrivial l1 solutions.
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Proof. Let

m� D Œ.2d C "/�1 : : : �d �; � 2 T;

where Œ � � denotes the integer part of a real number. Inequality (10) can be rewritten

in the form

�� � max
x2Q�

jv� .x/ � v.x/j � � �1:::�d ; (12)

where

Q� D ¹x 2 Zd W kxk1 � m� º:

Suppose u W Zd ! C is a solution of the equation

.� C v/u D �u

such that

kuk1 � 1: (13)

Pick any � 2 T so there is a �-periodic function v� .�/ satisfying (12). De�ne a

subset Z� of Q� as follows:

Z� D ¹x 2 Q� W xd 2 ¹�1; 0º or jxi j D m� for some i 2 ¹1; : : : ; d � 1ºº:

Also put

Qo
� D ¹x 2 Zd W kxk1 � m� � 1º:

Denote by u� .�/ the unique function on Q� such that

(i) .�u� /.x/ C v� .x/u� .x/ D �u� .x/ for all x 2 Qo
� I

(ii) u� jZ�
D ujZ�

:

�e function

w� .x/ D u� .x/ � u.x/; x 2 Q� ;

satis�es the equations

w� jZ�
D 0

and

.�w� /.x/ C .v.x/ � �/w�.x/ C r� .x/u.x/ C r� .x/w� .x/ D 0; x 2 Qo
� ;

where

r� .x/ D v� .x/ � v.x/:
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By representing any x 2 Zd in the form x D .j; k/, where j 2 Zd�1 and

k 2 Z, we transform the previous equation into

w� .j; k C 1/ C w� .j; k � 1/

C
X

j 02Zd�1 W kj 0�j k1D1

w� .j 0; k/ C .v.j; k/ � �/w� .j; k/

C r� .j; k/u.j; k/ C r� .j; k/w�.j; k/ D 0; .j; k/ 2 Qo
� :

�is equation implies that

jw� .j; k ˙ 1/j

� jw� .j; k � 1/j

C
X

j 02Zd�1 W kj 0�j k1D1

jw� .j 0; k/j C .jv.j; k/j C j�j/jw� .j; k/j

C jr� .j; k/jju.j; k/j C jr� .j; k/jjw�.j; k/j; .j; k/ 2 Qo
� :

(14)

Putting

�� .k/ D
X

x2Q� W xd Dk

jw� .x/j �
X

j 2Zd�1 W kj k1�m� �1

jw� .j; k/j; �m� � k � m� ;

we obtain from (14) by summation on j :

�� .k ˙ 1/ � �� .k � 1/ C B��� .k/ C �� ; �m� C 1 � k � m� � 1; (15)

where

B� D 2.d � 1/ C kvk1 C j�j C ��

(we use the facts that jr� .j; k/j � �� for all .j; k/ 2 Q� and
P

j 2Zd�1 ju.j; k/j � 1

for all k 2 Z, due to (12) and (13), respectively).

Furthermore, j�j does not exceed the norm of the operator L D � C v acting

in l1.Zd /, which is � 2d C kvk1. �erefore,

B� � 4d C 2kvk1 � 2 C �� ; � 2 T:
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Pick such D 2 R that

D > 4d C 2kvk1 � 1

and

D2d <
1

�
(16)

(which is possible due to (11)) and note that, by (12), we have

B� < D � 1 (17)

for all but �nitely many � 2 T.

Inequalities (15) and (17) imply that

�� .k ˙ 1/ � �� .k � 1/ C .D � 1/�� .k/ C �� ; �m� C 1 � k � m� � 1:

It follows by induction (using the equalities �� .�1/ D �� .0/ D 0) that

�� .k/ � Djkj�1�� ; �m� � k � m� : (18)

Consequently,
X

jkj�m�

�� .k/ � Dm� �� ;

or, equivalently,
X

x2Q�

ju� .x/ � u.x/j � Dm� �� ; (19)

which holds for all � 2 T with large enough k�k1.

�e function u� .�/ is de�ned on the cube Q� and satis�es the equation

�u� .x/ C v� .x/u� .x/ D �u� .x/

on Qo
� . According to the following lemma, this function has an extension to Zd

that satis�es the same equation for all x 2 Zd .

Lemma 2. Let

Q D ¹x 2 Zd W ai � xi � bi ; i D 1; : : : ; dº

and

Qo D ¹x 2 Zd W ai C 1 � xi � bi � 1; i D 1; : : : ; dº:

Let v W Zd ! C and u W Q ! C be functions such that

�u.x/ C v.x/u.x/ D �u.x/ for all x 2 Qo.

�en there is a function Qu W Zd ! C such that

QujQ D u and .� C v/ Qu D � Qu on Zd .

�e proof is deferred to the appendix.
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Due to the lemma, we can consider u� .�/ as a function de�ned on Zd and

satisfying the equation .� C v� /u� D �u� on the entire lattice Zd . �e function

v� .�/ is �� -periodic, where the lattice �� is de�ned by (9).

Pick any q 2 Zd . According to Corollary 1,

ju� .q/j �
X

x2qCP �

�

ju� .x/j; (20)

where

P� D ¹x 2 �� W kxk1 � 2d �1 : : : �d º:

Assuming that

m� � 2d �1 : : : �d � Œ"�1 : : : �d � � kqk1

(which is true for all � 2 T with large enough k�k1), we have q C P� � Q� ;

so (20) and (19) imply that for all but �nitely many � 2 T

ju.q/j �
X

x2qCP �

�

ju.x/j C 2Dm� �� : (21)

As T 3 � ! 1, the �rst summand on the right converges to 0 due to (13). �e

second summand does not exceed

2D.2dC"/�1:::�d � �1:::�d D 2.D2dC"�/�1:::�d :

Note that " > 0 in (10) can be made arbitrarily small. Choose it so small that

D2dC" < ��1 (which is possible due to (16)). �en the right-hand side of (21)

goes to 0 as T 3 � ! 1. �erefore, u.q/ D 0. Since q 2 Zd was chosen

arbitrarily, this completes the proof.

We will apply now �eorem 3 to operators with quasi-periodic potentials.

�e distance from a real number a to the nearest integer will be denoted by kak.

�eorem 4. Let the potential v.�/ of the Schrödinger operator L D � C v be of

the form

v.x/ D V.˛1x1; : : : ; ˛d xd /; x 2 Zd ;

where ˛1; : : : ; ˛d are real numbers and V W Rd ! C is a .1; : : : ; 1/-periodic func-

tion satisfying the Hölder condition

jV.t1; : : : ; td / � V.t 0
1; : : : ; t 0

d /j � C

d
X

iD1

jti � t 0
i j

ˇ ; (22)
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where 0 < ˇ � 1. Suppose there are d sequencesof positive integers �
.p/
1 ; : : : ; �

.p/

d

.p D 1; 2; : : :/ such that

�
.p/
1 C � � � C �

.p/

d
�! 1 as p ! 1

and

k�
.p/
1 ˛1k C � � � C k�

.p/

d
˛d k � � �

.p/
1

:::�
.p/

d ; p D 1; 2; : : : ;

where

0 < � < .4d C 2kV k1 � 1/�2d=ˇ : (23)

�en the operator � C v does not have eigenfunctions in l1.Zd /.

�e theorem can be reformulated in the following equivalent way.

�eorem 4�. Let V W Rd ! C be a .1; : : : ; 1/-periodic function satisfying the

Hölder condition (22). Suppose � 2 R satis�es inequality (23). If real numbers

˛1; : : : ; ˛d are such that

k�1˛1k C : : : C k�d ˛d k � � �1:::�d (24)

for in�nitely many d -tuples .�1; : : : ; �d / 2 Nd , then the operator � C v with

v.x/ D V.˛1x1; � � � ; ˛d xd / has no eigenfunctions in l1.Zd /.

Proof. Denote by T the in�nite set of those � D .�1; : : : ; �d / 2 Nd for which (24)

holds. Given � 2 T, there is � D .�1; : : : ; �d / 2 Zd such that j�i ��i˛j D k�i ˛k

for each i D 1; : : : ; d . Let

˛�
i D

�i

�i

; i D 1; : : : ; d;

and

v�.x1; : : : ; xd / D V.˛�
1x1; : : : ; ˛�

d xd /:

�e function v�.�/ is .�1; : : : ; �d /-periodic. In order to apply �eorem 3, we need

to estimate (for some �xed " > 0) the number

M� D max
kxk1�.2dC"/ �1:::�d

jv�.x/ � v.x/j:
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If kxk1 � .2d C "/ �1 : : : �d , then

jv�.x/ � v.x/j D jV.˛�
1x1; : : : ; ˛�

d xd / � V.˛1x1; : : : ; ˛d xd /j

� C

d
X

iD1

ˇ

ˇ

ˇ

ˇ

�i

�i

xi � ˛ixi

ˇ

ˇ

ˇ

ˇ

ˇ

� C

d
X

iD1

jxi j
ˇ j�i � �i˛i j

ˇ

� C kxkˇ
1

d
X

iD1

k�i˛ik
ˇ

� Cd..2d C "/�1 : : : �d /ˇ .��1:::�d /ˇ :

(25)

Pick any � 2 R such that

�ˇ < � < .4d C 2kvk1 � 1/�2d ; (26)

which is possible due to (23). It follows from (25) and the �rst inequality in (26)

that M� < � �1:::�d for all but �nitely many � 2 T. �is and the second inequality

in (26), in view of �eorem 3, guarantee that the equation .� C v/u D �u does

not have nontrivial l1 solutions.

Remark 1. By using, instead of (18), a better estimate of �� .k/, we can relax

the requirement for the accuracy of periodic approximation in �eorem 3 by re-

placing the interval of possible values of � , given by (11), with a larger interval

.0; �0/, where �0 can be found as follows. Let R be the radius of the smallest disk

containing the set v.Zd /; then we put

A D 4d C 2R � 2; B D .A C
p

A2 C 4/=2;

and

�0 D B�2d :

Similarly, the interval of possible values of � in �eorem 4, given by (23), can be

replaced with a larger interval .0; �0/, where �0 D �
1=ˇ
0 . Here �0 is calculated in

the way just described, R being the radius of the smallest disk containing the set

V.Rd /.
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Remark 2. �e main results of the paper – �eorems 2, 3 and 4 – pertain to the

lattice Schrödinger operator; however, the method we use can be adapted to other

�nite-range lattice operators, such as z� C v, where z� is the diagonal Laplacian

introduced in [5]:

. z�u/.x/ D
X

z2¹�1; C1ºd

u.x C z/; x 2 Zd :

Appendix

Proof of Lemma 2. In this proof we will use the following notation: given two

integers a and b (a � b), we will denote by Ja; bK the �nite set

¹x 2 Z W a � x � bº:

We may assume that the set Q is nonempty so ai � bi for all i 2 J1; dK. It suf-

�ces to show how u.�/, which is initially de�ned on Q and satis�es the equation

�u.x/ C v.x/u.x/ D �u.x/ (27)

on Qo, can be extended to

Q1 D Ja1 � 1; b1K � Ja2; b2K � � � � � Jad ; bd K

so it will satisfy (27) on

Qo
1 D Ja1; b1 � 1K � Ja2 C 1; b2 � 1K � � � � � Jad C 1; bd � 1K:

Let

R D ¹a1º � Ja2; b2K � � � � � Jad ; bdK

and

R� D ¹a1 � 1º � Ja2; b2K � � � � � Jad ; bdK � Q1 n Q:

We need to de�ne u on R� so that (27) will hold on Qo
1 \ R.
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Two cases are possible.

(i) a1 D b1. In this case the set Qo
1 is empty, so we can de�ne ujR�

arbitrarily.

(ii) a1 < b1. Equation (27), being applied at all points of the set

Qo
1 \ R D ¹a1º � Ja2 C 1; b2 � 1K � � � � � Jad C 1; bd � 1K;

determines the values of u on the set

¹a1 � 1º � Ja2 C 1; b2 � 1K � � � � � Jad C 1; bd � 1K � R�I

the values of u at the remaining points of R� can be chosen arbitrarily.
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