J. Spectr. Theory 5 (2015), 533[–546](#page-13-0) DOI 10.4171/JST/105

Absence of l^1 eigenfunctions for lattice operators **with fast local periodic approximation**

Alexander Y. Gordon

Abstract. We show that a lattice Schrödinger operator $\Delta + v$ whose potential $v \colon \mathbf{Z}^d \to \mathbf{C}$ admits fast local approximation by periodic functions does not have l^1 eigenfunctions. In particular, it does not exhibit Anderson localization. A special case of this result pertaining to quasi-periodic potentials states: Let $V: \mathbf{R}^d \to \mathbf{C}$ be a $(1, \ldots, 1)$ -periodic function satisfying the Hölder condition. There is such $\theta > 0$ that if real numbers $\alpha_1, \ldots, \alpha_d$ satisfy the inequality $||n_1\alpha_1|| + \cdots + ||n_d\alpha_d|| < \theta^{n_1...n_d}$ for infinitely many d-tuples $(n_1, \ldots, n_d) \in \mathbb{N}^d$ ($\|\cdot\|$ is the distance from a real number to the nearest integer), then the operator $\Delta + v$ with $v(x) = V(\alpha_1 x_1, \dots, \alpha_d x_d)$ has no nontrivial eigenfunctions in $l^1({\bf Z}^d)$. This statement contrasts the result of J. Bourgain: Anderson localization for quasiperiodic lattice Schrödinger operators on **Z** ^d , d arbitrary, *Geom. Funct. Anal.* **17** (2007), 682–706.

Mathematics Subject Classification (2010). Primary: 39A70; Secondary: 39A14.

Keywords. Difference operators, lattice Schrödinger operators, periodic operators, periodic approximation, quasi-periodic operators, Anderson localization.

1. Introduction

We consider a lattice Schrödinger operator $L = \Delta + v$ acting in $\mathbb{C}^{\mathbb{Z}^d}$ ($d \ge 2$) as follows:

$$
(Lu)(x) = \sum_{x' \in \mathbb{Z}^d : \|x' - x\|_1 = 1} u(x') + v(x)u(x), \quad x \in \mathbb{Z}^d.
$$

We examine the case where the potential $v(\cdot)$ can be approximated with high accuracy by a sequence of periodic potentials with growing periods on a suitable increasing sequence of finite sets. We show that such operator does not have eigenfunctions in $l^1(\mathbf{Z}^d)$. In particular, there are no exponentially decaying eigenfunctions and hence no Anderson localization (the phenomenon where such eigenfunctions are complete in $l^2(\mathbf{Z}^d)$).

The class of potentials described above includes, among others, quasi-periodic potentials of the form

$$
v(x) = V(\alpha_1 x_1, \dots, \alpha_d x_d), \quad x \in \mathbf{Z}^d,
$$
 (1)

where $V: \mathbf{R}^d \to \mathbf{C}$ is a $(1, \ldots, 1)$ -periodic function satisfying the Hölder condition, and α_i 's are irrational numbers that admit very good approximation by rationals. The absence of fast decaying eigenfunctions for such potentials contrasts the result of Bourgain $[1]$, according to which for a fixed real analytic function V on \mathbf{T}^d satisfying a mild non-degeneracy condition, the operator $\Delta + \lambda v$ with $v(\cdot)$ given by [\(1\)](#page-1-0) exhibits Anderson localization for all $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbf{T}^d \setminus \Omega_\lambda$, where mes $\Omega_{\lambda} \rightarrow 0$ as $\lambda \rightarrow \infty$; see also the earlier work [\[2\]](#page-13-2).

The main tool used in the paper is the inequality (Lemma [1\)](#page-1-1) of the form $|u(0)| <$ $\sum_{x \in K} |u(x)|$, where $u(\cdot)$ is an arbitrary solution of a periodic linear homogeneous lattice equation and K is a certain finite subset of the group of periods not containing 0. This is a generalization of the one-dimensional inequality going back to [\[3\]](#page-13-3): for any solution of the equation

$$
y(n-1) + y(n+1) + v(n)y(n) = \lambda y(n), \quad n \in \mathbb{Z},
$$

with a T-periodic coefficient $v(\cdot)$ one has

$$
|y(0)| \le 2 \max_{k=\pm 1, \pm 2} |y(kT)|
$$

(in [\[3\]](#page-13-3) this was proved for the equation

$$
-y'' + v(t)y = \lambda y
$$

with a real-valued T-periodic $v(t)$ and real λ ; for the further history of this inequality, see $[4]$).

2. Periodic operators

From now on, given a set $X \subset \mathbb{Z}^d$, we will denote the set $X \setminus \{0\}$ by X^* . The cardinality of a finite set X will be denoted by $|X|$ or, alternatively, by #X. The dimension d of the lattice \mathbf{Z}^d will always be assumed to be ≥ 2 (except for Lemma 1 and Theorem [1,](#page-3-0) where d may also equal one).

Lemma 1. Let Γ be a subgroup of \mathbf{Z}^d and L a Γ -periodic linear operator in $\mathbf{C}^{\mathbf{Z}^d}$ (Γ -periodicity means that, letting $(T^{\gamma}u)(x) = u(x + \gamma)$, we have $T^{\gamma}L = LT^{\gamma}$ for all $\gamma \in \Gamma$.) Suppose $F \subset \Gamma$ and $Y \subset \mathbf{Z}^d$ are such finite sets and $\lambda \in \mathbf{C}$ is such *a number that*

(a) *if* $u(\cdot)$ *is a solution of the equation*

$$
Lu = \lambda u \tag{2}
$$

and $u|_Y = 0$ *, then* $u|_F = 0$ *;*

(b) $|F| > |Y|$ *.*

<u>Then for any solution $u(\cdot)$ *of ([2](#page-2-0))</u>*

$$
|u(0)| \le \sum_{x \in (F - F)^*} |u(x)|. \tag{3}
$$

Proof. Let N denote the linear space of all solutions of [\(2\)](#page-2-0), and let $M = N|_Y$. It follows from (a) that for each $x \in F$ the value of a solution $u \in N$ at x is uniquely determined by $u|_Y$ and is, therefore, given by a linear functional on M. Since dim $M \leq |Y|$, (b) implies that those functionals are linearly dependent: there are $b_x \in \mathbb{C}$ ($x \in F$), not all of them 0, such that

$$
\sum_{x \in F} b_x u(x) = 0 \quad \text{for all } u \in N.
$$

There is such $a \in F$ that $|b_x| \leq |b_a|$ for all $x \in F$. Then

$$
u(a) = \sum_{x \in F \setminus \{a\}} c_x u(x),
$$

where $c_x = -b_x/b_a$ and hence $|c_x| \le 1$; it follows that

$$
|u(a)| \le \sum_{x \in F \setminus \{a\}} |u(x)|. \tag{4}
$$

In view of the Γ -periodicity of L, the space N of solutions of [\(2\)](#page-2-0) is invariant under translations by elements of Γ . Therefore, [\(4\)](#page-2-1) implies the inequality

$$
|u(0)| \leq \sum_{x \in (F-a)\setminus\{0\}} |u(x)|,
$$

from which (3) follows.

 \Box

Theorem 1. Let Γ be a subgroup of \mathbb{Z}^d and L a Γ -periodic linear operator *in* $C^{\mathbf{Z}^d}$ *. Let* $F \subset \Gamma$ and $Y \subset \mathbf{Z}^d$ be two finite sets with the following proper*ties*:

- (a) *for any* $q \in \mathbb{Z}^d$ *and any solution* $u(\cdot)$ *of equation* ([2](#page-2-0)) *such that* $u|_{Y+q} = 0$ *, we also have* $u|_{F+a} = 0$;
- (b) $|F| > |Y|$ *.*

fhen for any solution $u(\cdot)$ *of* ([2](#page-2-0)) *and any* $q \in \mathbf{Z}^d$

$$
|u(q)| \le \sum_{x \in (F - F)^*} |u(q + x)|. \tag{5}
$$

Proof. For $q \in \mathbb{Z}^d$, let $L^q = T^q L T^{-q}$. The operator L^q and the sets F and Y satisfy the conditions of Lemma [1.](#page-1-1) Putting $u_q = T^q u$, where u is a solution of $Lu = \lambda u$, we have $L^q u_q = \lambda u_q$ and, by Lemma [1,](#page-1-1)

$$
|u_q(0)| \le \sum_{x \in (F-F)^*} |u_q(x)|,
$$

which is equivalent to (5) .

Let $L = \Delta + v$, where Δ is the lattice Laplacian,

$$
(\Delta u)(x) = \sum_{z \in \mathbf{Z}^d : ||z||_1 = 1} u(x + z), \quad x \in \mathbf{Z}^d,
$$

and v is the operator of multiplication by a complex-valued function $v(\cdot)$ on \mathbb{Z}^d . Suppose $v(\cdot)$ is Γ -periodic, Γ being a subgroup of \mathbb{Z}^d generated by d linearly independent vectors f_1, \ldots, f_d , where $f_j = (f_j^{(i)})$ $\left(\begin{matrix}c^{(i)}\\j\end{matrix}\right)_{i=1}^d \in \mathbb{Z}^d, j = 1, \ldots, d$:

$$
\Gamma = \bigg\{\sum_{j=1}^d m_j f_j : m_j \in \mathbf{Z}, j = 1, \ldots, d\bigg\}.
$$

Denote by A_{Γ} the fundamental region of the lattice Γ in \mathbf{R}^d ,

$$
A_{\Gamma} = \left\{ \sum_{j=1}^{d} \theta_{j} f_{j} : 0 \leq \theta_{j} < 1, j = 1, ..., d \right\},\
$$

and by V_{Γ} its volume,

$$
V_{\Gamma} = \text{Vol}(A_{\Gamma}) = |\det [f_j^{(i)}]_{i,j=1}^d|.
$$

 \Box

Theorem 2. Let $u(\cdot)$ be a solution of the equation $(\Delta + v)u = \lambda u$ with a *F*-periodic potential v. Then for any $q \in \mathbb{Z}^d$

$$
|u(q)| \leq \sum_{x \in \Gamma^* \colon \|x\|_{\infty} \leq 2dV_{\Gamma}} |u(q+x)|. \tag{6}
$$

Proof. Fix an integer $n \geq 3$ and consider the following subset of \mathbb{R}^d :

$$
D_n = \{x \in \mathbf{R}^d : 0 \le x_i < n, \ i = 1, \dots, d\}.
$$

For $z \in \mathbf{Z}^d$, let

$$
F_z = \Gamma \cap (D_n + z). \tag{7}
$$

The lattice Γ has "density"

$$
\lim_{r \to \infty} \frac{\#\{\gamma \in \Gamma : \|\gamma\|_{\infty} \le r\}}{(2r)^d} = 1/V_{\Gamma},
$$

and since

$$
\mathbf{R}^d = \bigsqcup_{z \in n\mathbf{Z}^d} (D_n + z),
$$

we have

$$
\sup_{z \in n\mathbb{Z}^d} |F_z| \ge \text{Vol}(D_n) / V_{\Gamma} = n^d / V_{\Gamma}.
$$

Note that $|F_z|$, the cardinality of the set F_z , takes only finitely many values, and hence there are such points $z \in n\mathbb{Z}^d$ that

$$
|F_z| \geq \frac{n^d}{V_{\Gamma}}.
$$

Fix one such z and let $C_z = C_0 + z$, where $C_0 = \{0, 1, \ldots, n - 1\}^d$. Note that

$$
F_z \subset \mathbf{Z}^d \cap (D_n + z) = (\mathbf{Z}^d \cap D_n) + z = C_0 + z = C_z.
$$

Furthermore, let $Y_0 = C_0 \setminus S_0$, where

$$
S_0 = \{1, \ldots, n-2\}^{d-1} \times \{2, \ldots, n-1\},\
$$

and

$$
Y_z=Y_0+z.
$$

Given $q \in \mathbb{Z}^d$, for any solution $u(\cdot)$ of the equation $(\Delta + v)u = \lambda u$ such that $u|_{Y_z+q} = 0$ we have $u|_{C_z+q} = 0$ and consequently $u|_{F_z+q} = 0$.

We have

$$
|Y_z| = |Y_0| = n^d - (n-2)^d.
$$

Theorem [1](#page-3-0) is applicable when $|Y_z| < |F_z|$, which is guaranteed if $n^d - (n-2)^d <$ n^d/V_Γ , or

$$
1 - \left(1 - \frac{2}{n}\right)^d < \frac{1}{V_\Gamma}.
$$

Since the left-hand side is $\langle 2d/n,$ we have $|Y_z| \langle |F_z| \rangle$ if

$$
n \geq 2dV_{\Gamma}.
$$

Theorem [1](#page-3-0) then states that, given any solution $u(\cdot)$ of $(\Delta + v)u = \lambda u$ and any $q \in \mathbf{Z}^d$, we have

$$
|u(q)| \leq \sum_{x \in (F_z - F_z)^*} |u(q + x)|. \tag{8}
$$

 \Box

Here, in view of [\(7\)](#page-4-0),

$$
F_z - F_z \subset \Gamma \cap (D_n - D_n) \subset \{x \in \Gamma : ||x||_{\infty} \le n\}.
$$

Let $n = 2dV_\Gamma$; then [\(8\)](#page-5-0) implies [\(6\)](#page-4-1).

Corollary 1. If $u(\cdot)$ is a solution of $(\Delta + v)u = \lambda u$, where the function $v(\cdot)$ on \mathbf{Z}^d is (τ_1, \ldots, τ_d) -periodic $(\tau_1, \ldots, \tau_d \in \mathbf{N})$, then for any $q \in \mathbf{Z}^d$

$$
|u(q)| \leq \sum_{x \in \Gamma_{\tau}^* : ||x||_{\infty} \leq 2d\tau_1 \dots \tau_d} |u(q+x)|,
$$

where

$$
\Gamma_{\tau} = \{ (j_1 \tau_1, \dots, j_d \tau_d) : j_1, \dots, j_d \in \mathbb{Z} \}. \tag{9}
$$

3. Operators approximable by periodic ones

We will denote a generic element of \mathbb{N}^d as $\tau = (\tau_1, \dots, \tau_d)$.

Theorem 3. Let $L = \Delta + v$, where $v(\cdot)$ is a bounded complex-valued function *on* \mathbf{Z}^d *. Suppose for some fixed* $\varepsilon > 0$ *and each* $\tau = (\tau_1, \ldots, \tau_d)$ *in some infinite* set $\mathfrak{T} \subset \mathbb{N}^d$ there is a (τ_1, \ldots, τ_d) -periodic function $v_{\tau}(\cdot)$ satisfying the inequality

$$
\max_{\|x\|_{\infty}\leq (2d+\varepsilon)\tau_1\ldots\tau_d} |v_\tau(x)-v(x)| \leq \theta^{\tau_1\ldots\tau_d},\tag{10}
$$

where θ *is a constant such that*

$$
0 < \theta < (4d + 2||v||_{\infty} - 1)^{-2d}.\tag{11}
$$

filtera the equation $Lu = \lambda u$ with any $\lambda \in \mathbb{C}$ does not have nontrivial l^1 solutions.

Proof. Let

$$
m_{\tau} = [(2d + \varepsilon)\tau_1 \dots \tau_d], \qquad \tau \in \mathfrak{T},
$$

where $\lceil \cdot \rceil$ denotes the integer part of a real number. Inequality [\(10\)](#page-5-1) can be rewritten in the form

$$
\rho_{\tau} \equiv \max_{x \in Q_{\tau}} |v_{\tau}(x) - v(x)| \le \theta^{\tau_1 \dots \tau_d}, \tag{12}
$$

where

$$
Q_{\tau} = \{x \in \mathbf{Z}^d : ||x||_{\infty} \le m_{\tau}\}.
$$

Suppose $u: \mathbf{Z}^d \to \mathbf{C}$ is a solution of the equation

$$
(\Delta + v)u = \lambda u
$$

such that

$$
\|u\|_1 \le 1. \tag{13}
$$

Pick any $\tau \in \mathcal{T}$ so there is a τ -periodic function $v_{\tau}(\cdot)$ satisfying [\(12\)](#page-6-0). Define a subset Z_{τ} of Q_{τ} as follows:

$$
Z_{\tau} = \{x \in Q_{\tau} \colon x_d \in \{-1, 0\} \text{ or } |x_i| = m_{\tau} \text{ for some } i \in \{1, ..., d-1\}\}.
$$

Also put

$$
Q_{\tau}^{\circ} = \{x \in \mathbf{Z}^d : ||x||_{\infty} \le m_{\tau} - 1\}.
$$

Denote by $u_{\tau}(\cdot)$ the unique function on Q_{τ} such that

- (i) $(\Delta u_{\tau})(x) + v_{\tau}(x)u_{\tau}(x) = \lambda u_{\tau}(x)$ for all $x \in Q_{\tau}^{o}$;
- (ii) $u_{\tau}|_{Z_{\tau}} = u|_{Z_{\tau}}$.

The function

$$
w_{\tau}(x) = u_{\tau}(x) - u(x), \quad x \in \mathcal{Q}_{\tau},
$$

satisfies the equations

$$
w_{\tau}|_{Z_{\tau}}=0
$$

and

$$
(\Delta w_{\tau})(x) + (v(x) - \lambda)w_{\tau}(x) + r_{\tau}(x)u(x) + r_{\tau}(x)w_{\tau}(x) = 0, \quad x \in Q_{\tau}^{0},
$$

where

$$
r_{\tau}(x) = v_{\tau}(x) - v(x).
$$

By representing any $x \in \mathbb{Z}^d$ in the form $x = (j, k)$, where $j \in \mathbb{Z}^{d-1}$ and $k \in \mathbb{Z}$, we transform the previous equation into

$$
w_{\tau}(j,k+1) + w_{\tau}(j,k-1)
$$

+
$$
\sum_{j' \in \mathbb{Z}^{d-1} : ||j'-j||_1 = 1} w_{\tau}(j',k) + (v(j,k) - \lambda)w_{\tau}(j,k)
$$

+
$$
r_{\tau}(j,k)u(j,k) + r_{\tau}(j,k)w_{\tau}(j,k) = 0, \quad (j,k) \in Q_{\tau}^{\circ}
$$

:

This equation implies that

$$
|w_{\tau}(j,k \pm 1)|
$$

\n
$$
\leq |w_{\tau}(j,k \mp 1)|
$$

\n+
$$
\sum_{j' \in \mathbb{Z}^{d-1} : ||j'-j||_1 = 1} |w_{\tau}(j',k)| + (|v(j,k)| + |\lambda|)|w_{\tau}(j,k)|
$$
 (14)
\n+
$$
|r_{\tau}(j,k)||u(j,k)| + |r_{\tau}(j,k)||w_{\tau}(j,k)|, \quad (j,k) \in Q_{\tau}^{0}.
$$

Putting

$$
\sigma_{\tau}(k) = \sum_{x \in Q_{\tau}: x_d = k} |w_{\tau}(x)| \equiv \sum_{j \in \mathbb{Z}^{d-1}: ||j||_{\infty} \le m_{\tau}-1} |w_{\tau}(j,k)|, \quad -m_{\tau} \le k \le m_{\tau},
$$

we obtain from (14) by summation on j:

$$
\sigma_{\tau}(k \pm 1) \leq \sigma_{\tau}(k \mp 1) + B_{\tau}\sigma_{\tau}(k) + \rho_{\tau}, \quad -m_{\tau} + 1 \leq k \leq m_{\tau} - 1, \qquad (15)
$$

where

$$
B_{\tau} = 2(d-1) + ||v||_{\infty} + |\lambda| + \rho_{\tau}
$$

(we use the facts that $|r_{\tau}(j,k)| \leq \rho_{\tau}$ for all $(j,k) \in Q_{\tau}$ and $\sum_{j \in \mathbb{Z}^{d-1}} |u(j,k)| \leq 1$ for all $k \in \mathbb{Z}$, due to [\(12\)](#page-6-0) and [\(13\)](#page-6-1), respectively).

Furthermore, $|\lambda|$ does not exceed the norm of the operator $L = \Delta + v$ acting in $l^1(\mathbf{Z}^d)$, which is $\leq 2d + ||v||_{\infty}$. Therefore,

$$
B_{\tau} \le 4d + 2||v||_{\infty} - 2 + \rho_{\tau}, \quad \tau \in \mathfrak{T}.
$$

Pick such $D \in \mathbf{R}$ that

 $D > 4d + 2||v||_{\infty} - 1$

and

$$
D^{2d} < \frac{1}{\theta} \tag{16}
$$

(which is possible due to (11)) and note that, by (12) , we have

$$
B_{\tau} < D - 1 \tag{17}
$$

for all but finitely many $\tau \in \mathcal{T}$.

Inequalities (15) and (17) imply that

$$
\sigma_{\tau}(k\pm 1) \leq \sigma_{\tau}(k\mp 1) + (D-1)\sigma_{\tau}(k) + \rho_{\tau}, \quad -m_{\tau} + 1 \leq k \leq m_{\tau} - 1.
$$

It follows by induction (using the equalities $\sigma_{\tau}(-1) = \sigma_{\tau}(0) = 0$) that

$$
\sigma_{\tau}(k) \le D^{|k|-1} \rho_{\tau}, \quad -m_{\tau} \le k \le m_{\tau}.
$$
 (18)

Consequently,

$$
\sum_{|k| \leq m_{\tau}} \sigma_{\tau}(k) \leq D^{m_{\tau}} \rho_{\tau},
$$

or, equivalently,

$$
\sum_{x \in Q_{\tau}} |u_{\tau}(x) - u(x)| \le D^{m_{\tau}} \rho_{\tau}, \tag{19}
$$

which holds for all $\tau \in \mathcal{T}$ with large enough $\|\tau\|_{\infty}$.

The function $u_{\tau}(\cdot)$ is defined on the cube Q_{τ} and satisfies the equation

 $\Delta u_{\tau}(x) + v_{\tau}(x)u_{\tau}(x) = \lambda u_{\tau}(x)$

on Q_{τ}° . According to the following lemma, this function has an extension to \mathbb{Z}^{d} that satisfies the same equation for all $x \in \mathbb{Z}^d$.

Lemma 2. *Let*

$$
Q = \{x \in \mathbf{Z}^d : a_i \le x_i \le b_i, i = 1, \dots, d\}
$$

and

$$
Q^{o} = \{x \in \mathbf{Z}^{d} : a_{i} + 1 \leq x_{i} \leq b_{i} - 1, i = 1, ..., d\}.
$$

Let $v: \mathbf{Z}^d \to \mathbf{C}$ and $u: Q \to \mathbf{C}$ be functions such that

$$
\Delta u(x) + v(x)u(x) = \lambda u(x) \quad \text{for all } x \in Q^0.
$$

Then there is a function $\tilde{u} \colon \mathbf{Z}^d \to \mathbf{C}$ such that

$$
\tilde{u}|_Q = u
$$
 and $(\Delta + v)\tilde{u} = \lambda \tilde{u}$ on \mathbb{Z}^d .

The proof is deferred to the appendix.

Due to the lemma, we can consider $u_{\tau}(\cdot)$ as a function defined on \mathbb{Z}^{d} and satisfying the equation $(\Delta + v_{\tau})u_{\tau} = \lambda u_{\tau}$ on the entire lattice \mathbb{Z}^{d} . The function $v_{\tau}(\cdot)$ is Γ_{τ} -periodic, where the lattice Γ_{τ} is defined by [\(9\)](#page-5-3).

Pick any $q \in \mathbb{Z}^d$. According to Corollary [1,](#page-5-4)

$$
|u_{\tau}(q)| \leq \sum_{x \in q + P_{\tau}^*} |u_{\tau}(x)|,
$$
\n(20)

where

 $P_{\tau} = \{x \in \Gamma_{\tau}: ||x||_{\infty} < 2d \tau_1 ... \tau_d\}.$

Assuming that

$$
m_{\tau}-2d\,\tau_1\ldots\tau_d\equiv[\varepsilon\tau_1\ldots\tau_d]\geq||q||_{\infty}
$$

(which is true for all $\tau \in \mathcal{T}$ with large enough $\|\tau\|_{\infty}$), we have $q + P_{\tau} \subset O_{\tau}$, so [\(20\)](#page-9-0) and [\(19\)](#page-8-1) imply that for all but finitely many $\tau \in \mathcal{T}$

$$
|u(q)| \leq \sum_{x \in q + P_{\tau}^*} |u(x)| + 2D^{m_{\tau}} \rho_{\tau}.
$$
 (21)

As $\mathcal{T} \ni \tau \to \infty$, the first summand on the right converges to 0 due to [\(13\)](#page-6-1). The second summand does not exceed

$$
2D^{(2d+\varepsilon)\tau_1\ldots\tau_d}\theta^{\tau_1\ldots\tau_d}=2(D^{2d+\varepsilon}\theta)^{\tau_1\ldots\tau_d}.
$$

Note that $\varepsilon > 0$ in [\(10\)](#page-5-1) can be made arbitrarily small. Choose it so small that $D^{2d+\epsilon} < \theta^{-1}$ (which is possible due to [\(16\)](#page-8-2)). Then the right-hand side of [\(21\)](#page-9-1) goes to 0 as $\mathfrak{T} \ni \tau \to \infty$. Therefore, $u(q) = 0$. Since $q \in \mathbb{Z}^d$ was chosen arbitrarily, this completes the proof. \Box

We will apply now Theorem 3 to operators with quasi-periodic potentials. The distance from a real number a to the nearest integer will be denoted by $||a||$.

Theorem 4. Let the potential $v(\cdot)$ of the Schrödinger operator $L = \Delta + v$ be of *the form*

$$
v(x) = V(\alpha_1 x_1, \dots, \alpha_d x_d), \quad x \in \mathbf{Z}^d,
$$

where $\alpha_1, \ldots, \alpha_d$ are real numbers and $V : \mathbf{R}^d \to \mathbf{C}$ is a $(1, \ldots, 1)$ -periodic func*tion satisfying the Hölder condition*

$$
|V(t_1,\ldots,t_d) - V(t'_1,\ldots,t'_d)| \le C \sum_{i=1}^d |t_i - t'_i|^{\beta}, \qquad (22)
$$

where $0 < \beta \leq 1$. Suppose there are d sequences of positive integers $v_1^{(p)}$ $\binom{p}{1}, \ldots, \nu_d^{(p)}$ d $(p = 1, 2, ...)$ *such that*

$$
v_1^{(p)} + \dots + v_d^{(p)} \longrightarrow \infty \quad \text{as } p \to \infty
$$

and

$$
\|\nu_1^{(p)}\alpha_1\| + \cdots + \|\nu_d^{(p)}\alpha_d\| \leq \eta^{\nu_1^{(p)}\cdots\nu_d^{(p)}}, \quad p = 1, 2, \ldots,
$$

where

$$
0 < \eta < (4d + 2 \|V\|_{\infty} - 1)^{-2d/\beta}.\tag{23}
$$

Then the operator $\Delta + v$ does not have eigenfunctions in $l^1(\mathbf{Z}^d)$.

The theorem can be reformulated in the following equivalent way.

Theorem 4^{*}. Let $V: \mathbf{R}^d \to \mathbf{C}$ be a $(1, \ldots, 1)$ -periodic function satisfying the *Hölder condition ([22](#page-9-2)). Suppose* $\eta \in \mathbf{R}$ *satisfies inequality ([23](#page-10-0)). If real numbers* $\alpha_1, \ldots, \alpha_d$ are such that

$$
\|v_1\alpha_1\| + \ldots + \|v_d\alpha_d\| \le \eta^{v_1...v_d} \tag{24}
$$

for infinitely many d-tuples $(v_1, \ldots, v_d) \in \mathbb{N}^d$, then the operator $\Delta + v$ with $v(x) = V(\alpha_1 x_1, \cdots, \alpha_d x_d)$ has no eigenfunctions in $l^1(\mathbf{Z}^d)$.

Proof. Denote by T the infinite set of those $\nu = (\nu_1, \dots, \nu_d) \in \mathbb{N}^d$ for which [\(24\)](#page-10-1) holds. Given $\nu \in \mathcal{T}$, there is $\mu = (\mu_1, \dots, \mu_d) \in \mathbb{Z}^d$ such that $|\mu_i - \nu_i \alpha| = ||\nu_i \alpha||$ for each $i = 1, \ldots, d$. Let

$$
\alpha_i^{\nu} = \frac{\mu_i}{\nu_i}, \quad i = 1, \dots, d,
$$

and

$$
v_{\nu}(x_1,\ldots,x_d)=V(\alpha_1^{\nu}x_1,\ldots,\alpha_d^{\nu}x_d).
$$

The function $v_v(\cdot)$ is (v_1, \ldots, v_d) -periodic. In order to apply Theorem [3,](#page-5-5) we need to estimate (for some fixed $\varepsilon > 0$) the number

$$
M_{\nu} = \max_{\|x\|_{\infty} \le (2d+\varepsilon) \nu_1 \dots \nu_d} |v_{\nu}(x) - v(x)|.
$$

If $||x||_{\infty} \le (2d + \varepsilon) v_1 \dots v_d$, then

$$
|v_{\nu}(x) - v(x)| = |V(\alpha_1^{\nu} x_1, \dots, \alpha_d^{\nu} x_d) - V(\alpha_1 x_1, \dots, \alpha_d x_d)|
$$

\n
$$
\leq C \sum_{i=1}^d \left| \frac{\mu_i}{\nu_i} x_i - \alpha_i x_i \right|^\beta
$$

\n
$$
\leq C \sum_{i=1}^d |x_i|^\beta |\mu_i - \nu_i \alpha_i|^\beta
$$

\n
$$
\leq C \|x\|_\infty^\beta \sum_{i=1}^d \|\nu_i \alpha_i\|^\beta
$$

\n
$$
\leq C d((2d + \varepsilon)\nu_1 \dots \nu_d)^\beta (\eta^{\nu_1 \dots \nu_d})^\beta.
$$
 (25)

Pick any $\theta \in \mathbf{R}$ such that

$$
\eta^{\beta} < \theta < (4d + 2\|v\|_{\infty} - 1)^{-2d},\tag{26}
$$

which is possible due to (23) . It follows from (25) and the first inequality in (26) that $M_v < \theta^{\nu_1 \dots \nu_d}$ for all but finitely many $\nu \in \mathcal{T}$. This and the second inequality in [\(26\)](#page-11-1), in view of Theorem [3,](#page-5-5) guarantee that the equation $(\Delta + v)u = \lambda u$ does not have nontrivial l^1 solutions. \Box

Remark 1. By using, instead of [\(18\)](#page-8-3), a better estimate of $\sigma_{\tau}(k)$, we can relax the requirement for the accuracy of periodic approximation in Theorem [3](#page-5-5) by replacing the interval of possible values of θ , given by [\(11\)](#page-5-2), with a larger interval $(0, \theta_0)$, where θ_0 can be found as follows. Let R be the radius of the smallest disk containing the set $v(\mathbf{Z}^d)$; then we put

$$
A = 4d + 2R - 2, \quad B = (A + \sqrt{A^2 + 4})/2,
$$

and

$$
\theta_0=B^{-2d}.
$$

Similarly, the interval of possible values of η in Theorem [4,](#page-9-3) given by [\(23\)](#page-10-0), can be replaced with a larger interval $(0, \eta_0)$, where $\eta_0 = \theta_0^{1/\beta}$ $_0^{1/p}$. Here θ_0 is calculated in the way just described, R being the radius of the smallest disk containing the set $V(\mathbf{R}^d)$.

Remark 2. The main results of the paper – Theorems 2 , 3 and 4 – pertain to the lattice Schrödinger operator; however, the method we use can be adapted to other finite-range lattice operators, such as $\tilde{\Delta} + v$, where $\tilde{\Delta}$ is the diagonal Laplacian introduced in [\[5\]](#page-13-5):

$$
(\widetilde{\Delta}u)(x) = \sum_{z \in \{-1, +1\}^d} u(x+z), \quad x \in \mathbb{Z}^d.
$$

Appendix

Proof of Lemma [2](#page-8-4). In this proof we will use the following notation: given two integers a and b ($a \le b$), we will denote by $[a, b]$ the finite set

$$
\{x \in \mathbf{Z} \colon a \le x \le b\}.
$$

We may assume that the set Q is nonempty so $a_i \leq b_i$ for all $i \in [1, d]$. It suffices to show how $u(\cdot)$, which is initially defined on Q and satisfies the equation

$$
\Delta u(x) + v(x)u(x) = \lambda u(x) \tag{27}
$$

on Q° , can be extended to

$$
Q_1 = [a_1 - 1, b_1] \times [a_2, b_2] \times \cdots \times [a_d, b_d]
$$

so it will satisfy [\(27\)](#page-12-0) on

$$
Q_1^0 = [a_1, b_1 - 1] \times [a_2 + 1, b_2 - 1] \times \cdots \times [a_d + 1, b_d - 1].
$$

Let

$$
R = \{a_1\} \times [a_2, b_2] \times \cdots \times [a_d, b_d]
$$

and

$$
R_{-} = \{a_1 - 1\} \times [a_2, b_2] \times \cdots \times [a_d, b_d] \equiv Q_1 \setminus Q.
$$

We need to define u on $R_-\text{ so that } (27)$ $R_-\text{ so that } (27)$ will hold on $Q_1^0 \cap R$.

Two cases are possible.

- (i) $a_1 = b_1$. In this case the set Q_1^0 is empty, so we can define $u|_{R_-}$ arbitrarily.
- (ii) $a_1 < b_1$. Equation [\(27\)](#page-12-0), being applied at all points of the set

$$
Q_1^{\circ} \cap R = \{a_1\} \times [a_2 + 1, b_2 - 1] \times \cdots \times [a_d + 1, b_d - 1],
$$

determines the values of u on the set

$$
\{a_1 - 1\} \times [a_2 + 1, b_2 - 1] \times \cdots \times [a_d + 1, b_d - 1] \subset R_-;
$$

the values of u at the remaining points of $R_$ can be chosen arbitrarily. \Box

Acknowledgement. I am grateful to the anonymous referee whose comments led to a signicant improvement of the paper.

References

- [1] J. Bourgain, Anderson localization for quasi-periodic lattice Schrödinger operators on **Z** ^d , d arbitrary. *Geom. Funct. Anal.* **17** (2007), no. 3, 682–706. [MR 2346272](http://www.ams.org/mathscinet-getitem?mr=2346272) [Zbl 1152.82311](http://zbmath.org/?q=an:1152.82311)
- [2] J. Bourgain, M. Goldstein, and W. Schlag, Anderson localization for Schrödinger operators on **Z** ² with quasi-periodic potential. *Acta Math.* **188** (2002), no. 1, 41–86. [MR 1947458](http://www.ams.org/mathscinet-getitem?mr=1947458) [Zbl 1022.47023](http://zbmath.org/?q=an:1022.47023)
- [3] A. Y. Gordon, The point spectrum of the one-dimensional Schrödinger operator. *Uspehi Mat. Nauk* **31** (1976), no. 4 (190), 257–258. In Russian. [MR 0458247](http://www.ams.org/mathscinet-getitem?mr=0458247) [Zbl 0342.34012](http://zbmath.org/?q=an:0342.34012)
- [4] A. Y. Gordon, Imperfectly grown periodic medium: absence of localized states. *J. Spectr. Theory.* **5** (2015), no. 2, 279-294.
- [5] S. Molchanov and B. Vainberg, Scattering on the system of the sparse bumps: multidimensional case. *Appl. Anal.* **71** (1999), no. 1-4, 167–185. [MR 1690097](http://www.ams.org/mathscinet-getitem?mr=1690097) [Zbl 1022.47510](http://zbmath.org/?q=an:1022.47510)

Received December 26, 2013; revised April 24, 2014

Alexander Y. Gordon, Department of Mathematics and Statistics, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, U.S.A.

e-mail: aygordon@uncc.edu