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1. Introduction

We consider the self-adjoint Dirac (more precisely, Dirac-type) system

d

dx
y.x; z/ D i.zj C jV .x//y.x; z/ .x � 0/; (1.1)

where

j D
�

Im1
0

0 �Im2

�

; V D
�

0 v

v� 0

�

; m1 Cm2 DW m; (1.2)

Imk
is the mk � mk identity matrix and v.x/ is an m1 � m2 matrix function.

We assume that v is measurable and, moreover, locally square-summable, that is,

square-summable on the �nite intervals Œ0; l�. Here we say that a matrix function

is summable (square-summable) if its entries are summable (square-summable).
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Dirac (Dirac-type) system is a classical object of analysis. Its Weyl and spec-

tral theories were actively studied in the second half of the 20-th century, the �rst

solution of the inverse spectral problem being given (for the case of the scalar

v and without proof) by M.G. Krein in the seminal paper [11]. For more recent

publications on Dirac systems see, for instance, [1, 2, 3, 5, 6, 8, 12, 13, 16, 17] and

references therein. Dirac system is of independent interest and it is also important

as an auxiliary system for many integrable nonlinear equations. Moreover, it is

related to the famous Schrödinger equation (see, e.g., [4]). Many recent publica-

tions are dedicated to the development of the Weyl and spectral theories of Dirac

system under weaker summability conditions. Here, we solve the inverse problem

under the condition of the local square-summability of v. We deal with the case

where the potential v and the corresponding Weyl function are rectangular (not

necessarily square) matrix functions, which is essential for some applications to

matrix and multicomponent integrable equations.

Before stating our main result, we formulate several results from [6, 17] on

direct problems. �e notation u.x; z/ stands for the fundamental solution of (1.1)

normalized by the condition

u.0; z/ D Im: (1.3)

Later we shall need notations of the block rows of u.x; 0/:

ˇ.x/ D ŒIm1
0�u.x; 0/; .x/ D Œ0 Im2

�u.x; 0/: (1.4)

De�nition 1.1. A Weyl-Titchmarsh .or simply Weyl/ function of Dirac system (1.1)

on Œ0; 1/, where the potential v is locally summable, is a holomorphic m2 � m1

matrix function ' which satis�es the inequality
Z 1

0

�

Im1
'.z/�

�

u.x; z/�u.x; z/

�

Im1

'.z/

�

dx < 1; z 2 CC: (1.5)

HereC denotes the complex plane andCC stands for the open upper half-plane.

In order to study Weyl functions, we introduce the class of nonsingular m � m1

matrix functions P.z/ with property-j . Namely, the matrix functions P.z/ are

meromorphic in CC and satisfy (excluding, possibly, a discrete set of points) the

following relations

P.z/�P.z/ > 0; P.z/�jP.z/ � 0 .z 2 CC/: (1.6)

Relations (1.6) imply

det.ŒIm1
0�u.x; z/�1

P.z// 6D 0: (1.7)
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De�nition 1.2. �e set N.x; z/ of Möbius transformations is the set of values at
x; z of matrix functions

'.x; z;P/ D Œ0 Im2
�u.x; z/�1

P.z/.ŒIm1
0�u.x; z/�1

P.z//�1; (1.8)

where P.z/ are nonsingular matrix functions with property-j .

As usual, the sets N.x; z/ are embedded, that is,

N.x1; z/ � N.x2; z/ for x1 > x2: (1.9)

Moreover, the following proposition holds.

Proposition 1.3. [17, Subsection 2.2.1] Let Dirac system (1.1) be given on Œ0; 1/

and let its potential v be locally summable. �en there is a unique matrix function
'.z/ in CC such that

'.z/ D
\

x<1

N.x; z/: (1.10)

�is function is analytic and non-expansive. Moreover, this function is the unique
Weyl function of system (1.1).

If v is locally square-summable, we may recover it from the Weyl function.

�eorem 1.4. Let Dirac system (1.1) be given on Œ0; 1/, let its potential v be
locally square-summable and let ' be the Weyl function of this system. �en v is
uniquely recovered from '.

�e procedure to recover v from ' is based on the study of the operator

K D i

Z x

0

.x/j .t/� � dt; K 2 B.L2
m2
.0; l//; (1.11)

where  is the lower block row of u.x; 0/ (see (1.4)),L2
r .0; l/ is the class of square

summable vector functions on .0; l/with values in C
r and scalar product .f; g/ D

R l

0
g.x/�f .x/dx, and B.H/ denotes the class of bounded linear operators, which

map the space H into H . Using a new version of the similarity result for K, we

modify for the case of the locally square-summable potentials v the procedure to

solve inverse problem, which was developed in [15, 16, 17].

Further, F 0 stands for the derivative of F , "const" means a constant function or

vector-function, Ir is the r�r identity matrix, I is an identity operator,B.H1; H2/

denotes the class of bounded linear operators, which map the Hilbert spaceH1 into

the Hilbert space H2. When speaking about fundamental solutions, we assume

that they are normalized by Im at x D 0.
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2. Similarity result

We consider conditions of similarity of the two operators acting in L2
r .0; T/,

namely,

K WD F.x/

Z x

0

G.t/ � dt; A WD
Z x

0

� dt; (2.1)

where F and G are di�erentiable r � p and p � r , respectively, matrix functions.

Proposition 2.1. Let F and G be di�erentiable and satisfy the identity

F.x/G.x/ � Ir ; 0 � x � T; (2.2)

and assume that the entries of F 0 and G0 belong to L2.0; T/.
�en the operatorK de�ned by (2.1) is similar to the operator of integrationA.

More precisely, K D EAE�1 where E 2 B.L2
r .0; T// is a lower triangular

operator of the form

E D �.x/

�

I C
Z x

0

N.x; t/ � dt
�

;
d

dx
� D F 0G�; �.0/ D Ir ; (2.3)

and the matrix functions �, ��1 and N are measurable and uniformly bounded.
Moreover, the operatorsE˙1 map di�erentiable functions with a square-summa-
ble derivative into di�erentiable functions with a square-summable derivative.

�e case of operatorsK of the form (2.1), whereF andG have bounded deriva-

tives, is a particular case of operators, the similarity of which to A was proved in

an important paper [18]. Later on, the proof from [18] was modi�ed for the case

of operators K such that F and G have continuous derivatives (and E˙1 map

functions with continuous derivatives into functions with continuous derivatives)

[2]. Here, we modify further the proofs from [2, 18] for the case of the less smooth

functions F andG. �e proof of Proposition 2.1 above requires some preparations.

We note that, according to the general theory of semi-separable integral oper-

ators, which is also easily checked directly, the inverse of operator I �zK is given

by

..I � zK/�1f /.x/ D f .x/C
Z x

0

Q.x; t; z/f .t/dt; (2.4)

where

Q.x; t; z/ D zF.x/u1.x; z/u1.t; z/
�1G.t/; 0 � t � x � TI (2.5)

d

dx
u1.x; z/ D zG.x/F.x/u1.x; z/; 0 � x � TI (2.6)

u1.0; z/ D Ir : (2.7)
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Introduce also the p � p matrix function Qu1.x/ de�ned by

d

dx
Qu1.x/ D �G.x/F 0.x/ Qu1.x/; 0 � x � T; Qu1.0/ D Ip: (2.8)

We are now ready to prove the �rst lemma.

Lemma 2.2. Let F and G be absolutely continuous and assume that the iden-
tity (2.2) holds. Introduce the r � r matrix functions h and � by

h.x/ WD F.x/G.0/I d

dx
� D F 0G�; �.0/ D Ir : (2.9)

Put
g.x; z/ D �.x/�1..I � zK/�1h/.x/; 0 � x � T; (2.10)

where .I � zK/�1 is applied to h columnwise. �en g satis�es the following
integro-di�erential equation

d

dx
g.x; z/ � �.x/

Z x

0

�.t/g.t; z/dt � zg.x; z/ D 0; g.0; z/ D Ir ; (2.11)

where � and � are the summable functions on Œ0; T� given by

�.x/ W D �.x/�1F 0.x/ Qu1.x/; 0 � x � TI (2.12)

�.t/ W D � Qu1.t /
�1.G.t/F 0.t /G.t/CG0.t //�.t/; 0 � t � T: (2.13)

Proof. Put Qg.x; z/ D �.x/g.x; z/. Using (2.4)-(2.7), (2.10), and the de�nition of

the matrix function h, we present Qg in the form

Qg.x; z/ D F.x/G.0/C zF.x/u1.x; z/

Z x

0

u1.t; z/
�1G.t/F.t/G.0/dt

D F.x/G.0/ � F.x/u1.x; z/

Z x

0

d

dt
.u1.t; z/

�1G.0//dt

D F.x/G.0/ � F.x/u1.x; z/.u1.x; z/
�1 � Ir /G.0/

D F.x/u1.x; z/G.0/:

(2.14)

It follows that

g.x; z/ D �.x/�1F.x/u1.x; z/G.0/: (2.15)

Clearly g is di�erentiable and

d

dx
g.x; z/ D �.x/�1 Qgx.x; z/ � �.x/�1�0.x/�.x/�1 Qg.x; z/

D �.x/�1¹zF.x/G.x/F.x/C F 0.x/ � F 0.x/G.x/F.x/ºu1.x; z/G.0/

D zg.x; z/C �.x/�1F 0.x/.Ip �G.x/F.x//u1.x; z/G.0/:

(2.16)
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Here we took into account the identity (2.2). From (2.8) we see that

d

dt
Qu1.t /

�1 D � Qu1.t /
�1

�

d

dt
Qu1.t /

�

Qu1.t /
�1 D Qu1.t /

�1G.t/F 0.t /:

Hence

d

dt

�

Qu1.t /
�1.Ip �G.t/F.t//u1.t; z/

�

D Qu1.t /
�1G.t/F 0.t /.Ip �G.t/F.t//u1.t; z/

C Qu1.t /
�1.�G0.t /F.t/ �G.t/F 0.t //u1.t; z/

Cz Qu1.t /
�1.Ip �G.t/F.t//G.t/F.t/u1.t; z/:

Since, in view of condition (2.2), we have .Ip �G.t/F.t//G.t/ D 0, we obtain

d

dt

�

Qu1.t /
�1.Ip �G.t/F.t//u1.t; z/

�

D Qu1.t /
�1.G.t/F 0.t / �G.t/F 0.t /G.t/F.t/

�G0.t /F.t/�G.t/F 0.t //u1.t; z/

D � Qu1.t /
�1.G.t/F 0.t /G.t/CG0.t //F.t/u1.t; z/:

Using the de�nition of � in (2.13) and the identity (2.15), we derive

d

dt
. Qu1.t /

�1.Ip � G.t/F.t//u1.t; z//G.0/ D �.t/g.t; z/: (2.17)

Recall that .Ip �G.t/F.t//G.t/ D 0 and so .Ip �G.0/F.0//G.0/ D 0, in partic-

ular. Hence, from (2.17) it follows that

Z x

0

�.t/g.t; z/ dt

D Qu1.x/
�1.Ip � G.x/F.x//u1.x; z/G.0/ � .Ip �G.0/F.0//G.0/

D Qu1.x/
�1.Ip � G.x/F.x//u1.x; z/G.0/:

(2.18)

But then, using (2.16) and the de�nition of � in (2.12), we arrive at the iden-

tity (2.11).

�e lemma below provides an integral representation of the solution of (2.11).
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Lemma 2.3. Let �.x/ and �.x/ be r�p and p�r , respectively, matrix functions,
such that their entries belong to L2.0; T/. �en the integro-di�erential equation

d

dx
g.x; z/ �

Z x

0

~.x; t/g.t; z/dt � zg.x; z/ D 0; g.0; z/ D Ir ; (2.19)

~.x; t/ WD �.x/�.t/ (2.20)

has a unique solution g.�; z/ 2 L2
r .0; T/, and this solution has the form

g.x; z/ D ezxIr C
Z x

0

eztN.x; t/ dt; 0 � x � T; (2.21)

where N.x; t/ is bounded on 0 � t � x � T.

Proof. We set

~1.x; t / D
Z x

x�t

~.�; � C t � x/d�; 0 � t � x � T; (2.22)

~kC1.x; t / D
Z x

x�t

Z y

yCt�x

~.y; s/~k.s; y C t � x/ ds dy: (2.23)

It is easily proved by induction that

k~k.x; t /k � C0C
k�1
1

xk�1

.k � 1/Š ; 0 � t � x � T; k � 1 (2.24)

for some C0; C1 > 0. �us, we can introduce a bounded matrix function

N.x; t/ D
1
X

kD1

~k.x; t /; 0 � t � x � T: (2.25)

Putting

G0.x; t / D ~.x; t/I Gk.x; t / D
Z x

t

~.x; s/~k.s; t / ds; k > 0; (2.26)

and using (2.22), (2.23), and (2.26), we easily derive

Z x

0

ez.x��/

 

Z �

0

ezt
Gk.�; t /dt

!

d� D
Z x

0

 

Z �

0

ez.xCt��/
Gk.�; t / dt

!

d�

D
Z x

0

�Z x

x��

ezt
Gk.�; � C t � x/dt

�

d�

D
Z x

0

ezt

�Z x

x�t

Gk.�; � C t � x/d�
�

dt

D
Z x

0

ezt~kC1.x; t / dt .k � 0/:

(2.27)
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Taking into account (2.25) and (2.27), we see that g given by (2.21) satis�es the

equation

d

dx
g.x; z/ � zg.x; z/ D

Z x

0

ezt

 

1
X

kD0

Gk.x; t /

!

dt: (2.28)

In view of (2.26) we have the equalities

Z x

0

ezt~.x; t/dt D
Z x

0

ezt
G0.x; t /dt; (2.29)

Z x

0

~.x; t/

Z t

0

ezs~k.t; s/dsdt D
Z x

0

~.x; s/

Z s

0

ezt~k.s; t /dtds

D
Z x

0

ezt

Z x

t

~.x; s/~k.s; t /dsdt

D
Z x

0

ezt
Gk.x; t /dt:

(2.30)

Using (2.21), (2.25), (2.29), and (2.30), we rewrite (2.28) in the form (2.19).

It remains to prove that the solution of (2.19) is unique. Indeed, integrat-

ing (2.19) with respect to x we derive the equality

g.�; z/ � ARg.�; z/� zAg.�; z/ D Ir ; (2.31)

where the bounded in L2
r .0;T/ operators A and R are given by the relations

Af D
Z x

0

f .t/dt; Rf D
Z x

0

~.x; t/f .t/dt: (2.32)

Clearly A is a Volterra operator and it is easily checked (see also, e.g., [17, Sub-

section 1.2.4] and [19]) that

.I � zA/�1 D I C z

Z x

0

ez.x�t/ � dt: (2.33)

�erefore, .I � zA/�1AR is an integral triangular operator with Hilbert–Schmidt

kernel (and so .I � zA/�1AR is also a Volterra operator). Hence, according

to (2.31), the solution g of (2.19) is uniquely de�ned by the formula

g.�; z/ D .I � .I � zA/�1AR/�1.I � zA/�1Ir : (2.34)
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Proof of Proposition 2.1. We split the proof into two steps. In the �rst step we

construct the operator E and establish the similarity KE D EA. In the next

step we prove that E˙1 map functions with a square-summable derivative into

functions with a square-summable derivative.

Step 1 . Let g.x; z/ be the matrix function de�ned by (2.10). According to Lemma

2.2, g.x; z/ satis�es the equation (2.11). Hence, in view of Lemma 2.3, g admits

the representation

g.x; z/ D ezxIr C
Z x

0

N.x; t/.eztIr /dt; 0 � x � T; (2.35)

where N.x; t/ is given by (2.25). �e same N.x; t/ is substituted into the de�ni-

tion (2.3) of the operator E acting on L2
r .0; T/, whereas the r � r matrix function

� in (2.3) coincides with � de�ned by (2.9). �us, the matrix functions �, ��1 and

N are measurable and uniformly bounded, and E is boundedly invertible.

Taking into account (2.3), (2.10), and (2.35) we see that

E.ezxIr/ D �.x/g.x; z/ D .I � zK/�1h; (2.36)

where h is determined in (2.9) (i.e., h.x/ D F.x/G.0/). It is immediate from (2.33)

that

ezxIr D .I � zA/�1Ir : (2.37)

For the case that z D 0 formula (2.36) yields EIr D h. �us, using (2.37), we

rewrite (2.36) in the form

E.I � zA/�1Ir D .I � zK/�1EIr : (2.38)

From the series expansion in (2.38) it follows that

EAj Ir D KjEIr ; j D 0; 1; 2; : : : : (2.39)

�erefore, for each j D 0; 1; 2; : : :, we have

.KE/Aj Ir D K.EAj Ir / D Kj C1EIr D EAj C1Ir D .EA/Aj Ir : (2.40)

As the closed linear span of the columns of the matrices ¹Aj Irº1
j D0 coincides

with L2
r .0; T/, the equalities in (2.40) yield KE D EA. Since E is invertible,

we obtain K D EAE�1, and hence K and A are similar. It remains to prove

that E˙1 map functions with a square-summable derivative into functions with a

square-summable derivative.
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Step 2. Let f be a di�erentiable vector function such that

Qf WD f 0 2 L2
r .0; T/:

�en f admits a representation

f D A Qf C f0 . Qf 2 L2
r .0; T//; f0 � const: (2.41)

According to the previous step, EIr D h.x/ D F.x/G.0/, and so

Ef0 D F.x/G.0/f0; .Ef0/
0 D F 0.x/G.0/f0: (2.42)

Since we assume that the derivative F 0 is square-summable, the same is valid for

Ef0. Next note that

.EA Qf /.x/ D .KE Qf /.x/ D F.x/

Z x

0

G.t/.E Qf /.t/ dt: (2.43)

Since E maps L2
r .0; T/ onto L2

r .0; T/, formula (2.43) shows that EA Qf has a

square-summable derivative. �us, both Ef0 and EA Qf have square-summable

derivatives. �erefore, (2.41) implies that Ef also has a square-summable deriv-

ative.

Finally, we consider E�1. First, introduce operator K1 on L2
r .0; T/:

.K1f /.x/ D F 0.x/

Z x

0

G.t/f .t/dt; f 2 L2
r .0; T/;

and notice that AK1 D K � A or, equivalently,

A.I CK1/ D K: (2.44)

�e operator K1 is a triangular operator with Hilbert–Schmidt kernel. In particu-

lar, K1 is a Volterra operator. �us, I C K1 is invertible. Since E is also invert-

ible, we rewrite KE D EA as E�1K D AE�1. In view of (2.44) the equality

E�1K D AE�1 yields

E�1A D E�1A.I CK1/.I CK1/
�1

D E�1K.I CK1/
�1

D AE�1.I CK1/
�1:

(2.45)
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Recall that f with a square-summable derivative admits the representation of

eq (2.41). Formula (2.45) implies thatE�1A Qf has a square-summable derivative.

In order to show that E�1f0 also has a square-summable derivative, we take into

account (2.2) and rewrite the �rst equality in (2.42) in the form

f0 D E�1.F.x/G.0/f0/ D E�1A.F 0.x/G.0/f0/CE�1f0;

that is,

E�1f0 D f0 �E�1A.F 0.x/G.0/f0/; (2.46)

which completes the proof.

Remark 2.4. Relations (2.41), (2.45), and (2.46) show that for any di�erentiable
f with a square-summable derivative we have

.E�1f /.0/ D f .0/: (2.47)

3. Dirac system: fundamental solution

We start with a similarity result, which follows from Proposition 2.1.

Proposition 3.1. Let the potential v of Dirac system (1.1) be square-summable on
.0; T/, and let K be given by (1.11), where  is de�ned in (1.4). �en there is a
similarity transformation operator E 2 B.L2

m2
.0; T// such that

K D EAE�1; A WD �i

Z x

0

� dt; (3.1)

E D I C
Z x

0

N.x; t/ � dt; (3.2)

E�12 � Im2
; (3.3)

whereN is a Hilbert–Schmidt kernel and 2 is the rightm2 �m2 block of  . More-
over, the operatorsE˙1 map di�erentiable functions with a square-summable de-
rivative into di�erentiable functions with a square-summable derivative.



558 A. Sakhnovich

Proof. According to (1.1) we have

u.x; 0/�ju.x; 0/ D j D u.x; 0/ju.x; 0/�: (3.4)

�erefore, the blocks of u.x; 0/ introduced in (1.4) satisfy the relations

ǰˇ� � Im1
; j � � �Im2

; ǰ � � 0: (3.5)

Furthermore, equation (1.1) implies that  0 is square-summable and

 0.x/ D �i
�

v.x/� 0
�

u.x; 0/ D �iv.x/�ˇ.x/:

Hence, the third equality in (3.5) yields

 0j � � 0: (3.6)

In view of the second equality in (3.5), we may apply Proposition 2.1 to iK (where

K is de�ned in (1.11)). Moreover, (3.6) implies the indentity �.x/ � Ir for � given

in (2.3). �us, there is some similarity transformation operator zE, which satis�es

all conditions of Proposition 3.1 excluding, possibly, equality (3.3) (and the kernel

of zE is bounded). Let us normalize zE multiplying it by the operator

E0 D I C
Z x

0

E0.x � t / � dt; E0.x/ WD . zE�12/
0.x/: (3.7)

We see that E D zEE0 admits representation (3.2), where N is a Hilbert–Schmidt

kernel and that AE0 D E0A. �us, from K D zEA zE�1 follows K D EAE�1.

Finally, in view of (3.7) and Remark 2.4 we obtain

.E0Im2
/.x/ D Im2

C
Z x

0

E0.t /dt

D Im2
C . zE�12/.x/ � . zE�12/.0/

D . zE�12/.x/;

(3.8)

and so (3.3) is valid for E D zEE0.

Clearly, the equalitiesAE0 D E0A and (3.8) imply thatE0 maps di�erentiable

functions with a square-summable derivative into di�erentiable functions with a

square-summable derivative. Rewriting AE0 D E0A and (3.8) in the forms

E�1
0 A D AE�1

0 ; E�1
0 Im2

D Im2
� iE�1

0 A. zE�12/
0 D Im2

� iAE�1
0 . zE�12/

0;

respectively, we see that E�1
0 also maps di�erentiable functions with a square-

summable derivative into di�erentiable functions with a square-summable deriv-

ative. �us, the same is valid for E D zEE0 and for E�1.
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Remark 3.2. Formulas zE�1A D A zE�1 and (2.46) for zE�1 and formulas above
for E�1

0 yield a useful equality

.E�11/.0/ D .E�1
0

zE�11/.0/ D 1.0/ D 0: (3.9)

Now, we construct a representation of the fundamental solutionw of the system

d

dx
w.x; z/ D izj .x/�.x/w.x; z/; w.0; z/ D Im: (3.10)

For that purpose we introduce operators

S WD E�1.E�/�1; … WD
�

ˆ1 ˆ2

�

; ˆk 2 B.Cmk ; L2
m2
.0; l//I (3.11)

.ˆ1f /.x/ D ˆ1.x/f; ˆ1.x/ WD .E�11/.x/I ˆ2f D Im2
f � f I (3.12)

whereE is constructed (for the given ) in Proposition 3.1 and 1 is the leftm2�m1

block of  . We also introduce the transfer matrix function in Lev Sakhnovich form

[20, 21, 22]

wA.z/ WD Im C izj…�S�1.I � zA/�1…: (3.13)

We shall need the reductions of the operators above (and the matrix function wA

corresponding to those reductions):

.P�f /.x/ D f .x/ .0 < x < �/; P� 2 B.L2
m2
.0; T/; L2

m2
.0; �//; (3.14)

A� WD P�AP
�
� ; S� WD P�SP

�
� ; (3.15)

wA.�; z/ WD Im C izj…�P �
� S

�1
� .I � zA�/

�1P�…; 0 < � � T: (3.16)

�eorem 3.3. Let  be determined by (1.4), whereu is the fundamental solution of
the Dirac system (1.1) with a square-summable potential v. �en, the fundamental
solution w given by (3.10) admits representation

w.�; z/ D wA.�; z/; (3.17)

where wA.�; z/ is de�ned by (3.16).

Proof. Formulas (3.3), (3.11) and (3.12) imply that

…f D .E�1/f: (3.18)

It is immediate from the de�nition (1.11) of K that

K� D �i

Z T

x

.x/j .t/� � dt; K �K� D i.x/j

Z T

0

.t/� � dt: (3.19)
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According to Proposition 3.1 we have K D EAE�1. Since K D EAE�1, taking

into account (3.11) and (3.18), we rewrite the second equality in (3.19) in the form

of the operator identity

AS � SA� D i…j…�: (3.20)

Hence, we may use the Method of Operator Identities [20, 21, 22]. We need now

to show the applicability of the Continuous Factorization �eorem (see [22, p.

40]) or, more conveniently, its corollary [17, �eorem 1.20]. Completely similar

to the cases in [17] we see that conditions .i/ and .i i/ of [17, �eorem 1.20] are

satis�ed. It remains only to derive that …�P�S
�1
�
P�… is absolutely continuous

(i.e., condition .i i i/ of [17, �eorem 1.20] holds) and that

.…�P �
� S

�1
� P�…/

0 D H.�/ D .�/.�/�; (3.21)

in order to prove that wA satis�es the di�erential system in (3.10).

Since the operator E is invertible, triangular, and has Hilbert–Schmidt ker-

nel, we see that E�1 is also triangular. Taking into account that E˙1 are lower

triangular operators, we obtain

P�EP
�
� P� D P�E; .E�1/�P �

� D P �
� P�.E

�1/�P �
� : (3.22)

�e �rst equality in (3.22) yields P�EP
�
�
P�E

�1P �
�

D P�P
�
�

, that is,

P�E
�1P �

� D .P�EP
�
� /

�1:

Hence, formulas (3.11), (3.15), and (3.22) lead us to

S�1
� D E�

� E� ; E� WD P�EP
�
� : (3.23)

Finally, from (3.18), (3.22), and (3.23) we derive that

…�P �
� S

�1
� P�… D

Z �

0

.�/.�/�d� (3.24)

(i.e., …�P �
�
S�1

�
P�… is absolutely continuous and (3.21) is valid). Hence, wA

satis�es the system in (3.10) and, furthermore, the normalization

lim
x!0

wA.x; z/ D Im (3.25)

easily follows from (3.16) and (3.23).

Since (3.20) holds we say that the triple ¹A; S;…º forms an S -node [20, 21, 22].
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Corollary 3.4. Let u.x; z/ be the fundamental solution of a Dirac system with
the square-summable potential v and let  be given by (1.4). �en u.x; z/ admits
representation

u.x; z/ D eixzu.x; 0/wA.x; 2z/: (3.26)

Here wA has the form (3.16), where the S -node ¹A; S; …º, which determines wA,
is given in (3.1), (3.11), and (3.12).

Proof. According to (1.1) and �eorem 3.3 we have

.eixzu.x; 0/wA.x; 2z//
0

D .izIm C ijV .x/C 2izu.x; 0/j .x/�.x/u.x; 0/�1/eixzu.x; 0/wA.x; 2z/:

(3.27)

Writing u.x; 0/ in the block form and taking into account (3.5), we derive

u.x; 0/ D
�

ˇ.x/

.x/

�

; u.x; 0/j .x/� D
�

0

�Im2

�

: (3.28)

From (3.4) we obtain u.x; 0/�1 D ju.x; 0/�j . �us, in view of (3.27) and (3.28)

we see that

.eixzu.x; 0/wA.x; 2z//
0

D
�

izIm C ijV .x/ � 2iz
�

0 0

0 Im2

��

eixzu.x; 0/wA.x; 2z/

D .izj C ijV .x//eixzu.x; 0/wA.x; 2z/:

(3.29)

Relations (3.25) and (3.29) yield (3.26).

4. Solution of the inverse problem

Here, we may follow the lines of [5, Sections 3 and 4] without any essential

changes. �e high-energy asymptotics of ' is given by the following theorem.

�eorem 4.1. Assume that ' 2 N.T; z/ and the potential v of the corresponding
Dirac system (1.1) is square-summable on .0; T/. �en .uniformly with respect to
<.z// we have

'.z/ D 2iz

Z T

0

e2ixzˆ1.x/dx CO
�

2ze2iTz=
p

=.z/
�

; =.z/ ! 1: (4.1)
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Proof. To prove the theorem, we consider the matrix function

U.z/ D ŒIm1
'.z/��.j �wA.T; 2z/

�jwA.T; 2z//

�

Im1

'.z/

�

: (4.2)

It easily follows from (3.16) and (3.20) (see, e.g., [17, p. 24]) that

wA.T; z/
�jwA.T; z/ D j C i.z � z/…�.I � zA�/�1S�1.I � zA/�1…; (4.3)

and so we derive U.z/ � 0. Because of (3.4), (3.26), and (4.2) we have

U.z/ D Im1
� '.z/�'.z/ � eiT.z�z/ŒIm1

'.z/��u.T; z/�ju.T; z/

�

Im1

'.z/

�

: (4.4)

We note that (1.8) yields
�

Im1

'.z/

�

D u.T; z/�1
P.z/.ŒIm1

0�u.T; z/�1
P.z//�1: (4.5)

Taking into account (4.5), we rewrite (4.4) as

U.z/ DIm1
� '.z/�'.z/ � eiT.z�z/..ŒIm1

0�u.T; z/�1
P.z//�1/�

� P.z/�jP.z/.ŒIm1
0�u.T; z/�1

P.z//�1: (4.6)

Recall that U.z/ � 0. Hence, from (1.6) and (4.6) we see that

0 � U.z/ � Im1
; '.z/�'.z/ � Im1

: (4.7)

Now, formulas (4.2), (4.3), and (4.7) imply that

2i.z � z/ŒIm1
'.z/��…�.I � 2zA�/�1S�1.I � 2zA/�1…

�

Im1

'.z/

�

� Im1
: (4.8)

Since S is positive and boundedly invertible, inequality (4.8) yields








.I � 2zA/�1…

�

Im1

'.z/

�








� C=
p

=z for some C > 0: (4.9)

After applying �iˆ�
2 to the operator on the left-hand side of (4.9), we derive

� iˆ�
2.I � 2zA/�1ˆ2'.z/ D iˆ�

2.I � 2zA/�1ˆ1 CO
� 1
p

=.z/

�

: (4.10)

Using (2.33) we see that

ˆ�
2.I � 2zA/�1f D

Z T

0

e2i.x�T/zf .x/dx; (4.11)

ˆ�
2.I � 2zA/�1ˆ2 D i

2z
.e�2iTz � 1/Im2

: (4.12)
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Because of (4.10)–(4.12), we have

1

2z
.e�2iTz � 1/'.z/ D ie�2iTz

Z T

0

e2ixzˆ1.x/dx CO
� 1
p

=.z/

�

: (4.13)

Since ' is non-expansive, we see from (4.13) that (4.1) holds.

Corollary 4.2. Let ' be the Weyl function of Dirac system (1.1) on Œ0; 1/, where
the potential v is locally square-summable. �en we have

'.z/ D 2iz

Z 1

0

e2ixzˆ1.x/dx; =.z/ > 0: (4.14)

Proof. Since ' is analytic and non-expansive in CC, for any " > 0 it admits (see,

e.g., [14, �eorem V]) a representation

'.z/ D 2iz

Z 1

0

e2ixzˆ.x/dx; =.z/ > " > 0; (4.15)

where e�2"xˆ.x/ 2 L2
m2�m1

.0; 1/. Because of (4.1) and (4.15) we obtain

 .z/ W D
Z T

0

e2i.x�T/z.ˆ1.x/ �ˆ.x//dx

D
Z 1

T

e2i.x�T/zˆ.x/dx CO
� 1
p

=.z/

�

: (4.16)

From (4.16) we see that  .z/ is bounded in some half-plane =.z/ � �0 > 0.

Clearly,  .z/ is bounded also in the half-plane =.z/ < �0. Since  is analytic and

bounded in C and tends to zero on some rays, we have

 .z/ D
Z T

0

e2i.x�T/z.ˆ1.x/ �ˆ.x//dx � 0: (4.17)

It follows from (4.17) that ˆ1.x/ � ˆ.x/ on all �nite intervals Œ0; T�. Hence,

(4.15) implies (4.14).

Remark 4.3. According to the proof of Corollary 4.2, we have ˆ1 � ˆ, and so
ˆ1.x/ does not depend on T for T > x. Furthermore, the proof of Corollary 4.2

implies also that e�"xˆ1.x/ 2 L2
m2�m1

.0; 1/ for any " > 0.
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Using representation (4.14), we uniquely recover v from '. Indeed, taking into

account Plancherel �eorem and Remark 4.3, we apply inverse Fourier transform

to formula (4.14) and derive

ˆ1

�x

2

�

D 1

�
ex�l:i:m:a!1

Z a

�a

e�ix� '.� C i�/

2i.� C i�/
d�; � > 0: (4.18)

Here l.i.m. stands for the entrywise limit in the norm of L2.0; b/, 0 < b � 1.

(Note that if we put additionally ˆ1.x/ D 0 for x < 0, equality (4.18) holds for

l.i.m. as the entrywise limit in L2.�b; b/.) �us, for any �xed interval .0; T/ the

corresponding operators S and … are recovered from '.

Since the Hamiltonian H is recovered from S and … via formula (3.21), and

H D � , we recover also  . First, for that purpose, we recover the so called

Schur coe�cient:

�

Œ0 Im2
�H

�

0

Im2

���1

Œ0 Im2
�H

�

Im1

0

�

D .�
2 2/

�1�
2 1 D �1

2 1: (4.19)

Here we used the inequality det 2 6D 0, which follows from the second identity

in (3.5). �e second identity in (3.5) yields also

Im2
� .�1

2 1/.
�1
2 1/

� D �1
2 .�1

2 /�;

which implies that the left-hand side of this equality is invertible. Taking into ac-

count det 2 6D 0, we rewrite 1 in the form 1 D 2.
�1
2 1/ and the identity (3.6)

in the form  0
2 D  0

1.
�1
2 1/

�. �erefore, we obtain

 0
2 D .2.

�1
2 1//

0.�1
2 1/

�;

i.e.

 0
2 D 2.

�1
2 1/

0.�1
2 1/

�.Im2
� .�1

2 1/.
�1
2 1/

�/�1; (4.20)

and recover 2 from (4.20) and the initial condition 2.0/ D Im2
. Finally, we

recover 1 from 2 and �1
2 1.

In order to recover ˇ from  , we partition ˇ into two blocks ˇ D Œˇ1 ˇ2�,

where ˇk (k D 1; 2) is an m1 �mk matrix function. We put

Q̌ D ŒIm1
�

1 .
�
2 /

�1�: (4.21)

Because of (3.5) and (4.21), we have ǰ � D Q̌j � D 0, and so

ˇ.x/ D ˇ1.x/ Q̌.x/: (4.22)
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It follows from (1.1) and (1.4) that

ˇ0.x/ D iv.x/.x/; (4.23)

which implies

ˇ0jˇ� D 0; ˇ0j � D �iv: (4.24)

Formula (4.22) and the �rst relation in (3.5) lead us to

Q̌j Q̌� D ˇ�1
1 .ˇ�

1 /
�1: (4.25)

From (4.22) we also derive that

ˇ0jˇ� D ˇ0
1.

Q̌j Q̌�/ˇ�
1 C ˇ1. Q̌ 0j Q̌�/ˇ�

1 :

Taking into account the �rst relation in (4.24) and formula (4.25), we rewrite the

relation above:

ˇ0
1ˇ

�1
1 C ˇ1. Q̌0j Q̌�/ˇ�

1 D 0: (4.26)

According to (1.3), (4.25), and (4.26), ˇ1 satis�es the �rst order di�erential equa-

tion (and initial condition):

ˇ0
1 D �ˇ1. Q̌ 0j Q̌�/. Q̌j Q̌�/�1; ˇ1.0/ D Im1

: (4.27)

�us, ˇ1 and ˇ are successively recovered from  . �e potential v is recovered

from ˇ and  via the second equality in (4.24). In this way, we recover v on

any interval Œ0; T�, therefore, on the whole semiaxis. We proved the following

theorem.

�eorem 4.4. Let ' be the Weyl function of Dirac system (1.1) on Œ0; 1/, where
the potential v is locally square-summable. �en v can be uniquely recovered from
' via the formula

v.x/ D iˇ0.x/j .x/�: (4.28)

Here ˇ is recovered from  using (4.21), (4.22) and (4.27)I  is recovered from
the HamiltonianH using (4.19) and (4.20)I the Hamiltonian is given by (3.21),…
from (3.21) is expressed viaˆ1.x/ in formula (3.12), and S is the unique solution
of (3.20). Finally, ˆ1.x/ is recovered from ' using (4.18).
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Remark 4.5. It follows from (3.15) and (3.20) that the operator identities

A�S� � S�A
�
� D iP�…j.P�…/

�; 0 < � � T; (4.29)

where A is given in (3.1), A� D P�AP
�
�

, and … is given by (3.12), hold. �e
uniqueness of the operatorsS� satisfying these identities is proved on p. 311 in [17].
Moreover, it is easy to see that the proof of [7, Proposition 3.2] works also for the
case where and Q are di�erentiable functions with the square-summable deriva-
tives. �us, recalling (3.9) and formulas (3.16) and (3.17) in [7, Proposition 3.2],
we see that S� given by

S� D I � 1

2

Z �

0

Z xCt

jx�t j

ˆ0
1

�� C x � t
2

�

ˆ0
1

�� C t � x
2

��

d� � dt (4.30)

satis�es (4.29). Hence, S� of the form (4.30) is the unique solution of (4.29), and
we may recover S� .considered in �eorem 4.4/ from ˆ1 in this way.

Using �eorem 4.4 we modify Borg–Marchenko-type �eorem 2.52 from [17]

for the case of the locally square-summable potentials. We note that seminal pub-

lications by F. Gesztesy and B. Simon [9, 10, 23] gave rise to a series of interest-

ing results on the high energy asymptotics of the Weyl functions and local Borg-

Marchenko-type uniqueness theorems. Recall that the high energy asymptotics of

the Weyl functions is given (for our case) in �eorem 4.1.

�eorem 4.6. Let ' and O' be Weyl functions of two Dirac systems on Œ0; T� .or on
Œ0; 1// with square-summable .locally square-summable/ potentials, which are
denoted by v and Ov , respectively. Suppose that on some ray <z D c=z, where
c 2 R and =z > 0, the equality

k'.z/ � O'.z/k D O.e2i�z/ .=z ! 1/ (4.31)

holds for all 0 < � < l .l < T < 1/. �en we have

v.x/ D Ov.x/; 0 < x < l: (4.32)

Proof. Since Weyl functions are non-expansive, it is immediate that the inequality

ke�2i�z.'.z/ � O'.z//k � c1e2� jzj; =z � c2 > 0 (4.33)

is valid for some c1 and c2. It is apparent also that the matrix function

e�2i�z.'.z/ � O'.z// is bounded on the line =z D c2. Furthermore, formula (4.31)

implies that e�2i�z.'.z/ � O'.z// is bounded on the ray <z D c=z. �erefore,
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applying the Phragmen–Lindelöf theorem (e.g. its version [17, Corollary E.7]) in

the angles generated by the line =z D c2 and the ray <z D c=z (=z � c2), we see

that

ke�2i�z.'.z/ � O'.z//k � c3; =z � c2 > 0: (4.34)

Let functions associated with O' be written with a hat (e.g., Ov; ŷ
1). Because of

formula (4.1), its analog for O', ŷ
1 and the inequality (4.34), we have











Z �

0

e2i.x��/z.ˆ1.x/ � ŷ
1.x//dx











� c4; =z � c2 > 0: (4.35)

Clearly, the left-hand side of (4.35) is bounded in the half-plane =z < c2 and tends

to zero on some rays. �us, we derive

Z �

0

e2i.x��/z.ˆ1.x/ � ŷ
1.x//dx � 0;

i.e.

ˆ1.x/ � ŷ
1.x/ .0 < x < �/: (4.36)

Since (4.36) holds for all � < l , we obtain ˆ1.x/ � ŷ
1.x/ for 0 < x < l . In view

of �eorem 4.4, the last identity implies (4.32).
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