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Introduction

�e multi-particle Anderson Hamiltonian is an alloy-type random Schrödinger

operator describing n interacting electrons moving in a medium with random im-

purities. It is the continuous version of the (discrete) multi-particle Anderson

model.

Localization was proved for the multi-particle discrete Anderson model by

Chulaevsky and Suhov [7, 8, 9], using a multiscale analysis, and Aizenman and

Warzel [2], using the fractional moment method. Chulaevsky, Boutet de Monvel

and Suhov [6] extended the results of Chulaevsky and Suhov to the multi-particle

continuous Anderson Hamiltonian, establishing Anderson and dynamical local-

ization at the bottom of the spectrum.

�e bootstrap multiscale analysis, developed in the one-particle case by Ger-

minet and Klein [13] (see also [23]), is an enhanced multiscale analysis that yields

sub-exponentially decaying probabilities for ‘bad’ events. �e initial step for the

bootstrap multiscale analysis only requires the veri�cation of polynomial decay

of the �nite volume resolvent, at some su�ciently large scale, with probability

bigger than some minimal probability 1 � p0, where 0 < p0 < 1 is independent

of the scale. An important feature of the bootstrap multiscale analysis is that the

�nal probability estimates are independent of the probability estimate in the ini-

tial step: any desired sub-exponential decay for the probabilities of ‘bad’ events

can be achieved. �e bootstrap multiscale analysis yields Anderson localization

with �nite multiplicity of eigenvalues, decay of eigenfunction correlations, and a

strong form of dynamical localization.

We previously extended the bootstrap multiscale analysis to the multi-particle

(discrete) Anderson model [27]. �e initial step for the bootstrap multiscale anal-

ysis of [27, �eorem 1.5] has to hold for all energies in the spectrum (and hence

for all energies); it can be veri�ed for the multi-particle Anderson model at high

disorder, as discussed in [27, Remark 1.6].

In this article we extend the bootstrap multiscale analysis and its consequences

to the multi-particle (continuous) Anderson Hamiltonian; we do not require a cov-

ering condition. �e initial step is only required to hold for all energies in a non-

trivial interval at the bottom of the spectrum (or equivalently, for all energies be-

low some �xed energy). We also show that we always have this initial step in

some nontrivial interval at the bottom of the spectrum for multi-particle Ander-

son Hamiltonians. �e consequences to the bootstrap multiscale analysis include,

in addition to Anderson and dynamical localization, new results for multi-particle

(continuous) Anderson Hamiltonians: �nite multiplicity of eigenvalues, decay of

eigenfunction correlations, and a strong form of dynamical localization (see �e-

orem 1.2).
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Although the results in this paper are written for the continuous multi-particle

Anderson Hamiltonian, they also apply to the discrete multi-particle Anderson

model, yielding localization at the bottom of the spectrum for the discrete model

at any disorder.

�e main de�nitions and results are stated in Section 1. �eorem 1.2 states that

continuous multi-particle Anderson Hamiltonians exhibit Anderson localization

with �nite multiplicity of eigenvalues, decay of eigenfunction correlations, and a

strong form of dynamical localization in an interval at the bottom of the spectrum.

�eorem 1.6 is the bootstrap multiscale analysis. �e consequences regarding lo-

calization (Anderson localization with �nite multiplicity of eigenvalues, dynam-

ical localization, decay of eigenfunction correlations) are given in Corollary 1.7.

In Section 4 we show that the hypotheses of �eorem 1.6 (the initial step for the

bootstrap multiscale analysis) are always satis�ed at some nontrivial interval at

the bottom of the spectrum. Section 3 contains a collection of technical results

necessary for the multiscale analysis in the continuum. �e proof of �eorem 1.6

is given in Section 5, and the derivation of Corollary 1.7 is discussed in Section 6.

In the multi-particle case events based on disjoint boxes are not necessarily

independent, even if the boxes are far apart from each other. �is di�culty is

overcome by the use of the concepts of partially and fully separated boxes (Sub-

section 2.1) and partially and fully interactive boxes (Subsection 3.3) introduced by

Chulaevsky and Suhov [7, 8, 9]. �e relevant distance between boxes is the Haus-

dor� distance (see (1.6)), introduced in this context by Aizenman and Warzel [2].

In the multiscale analysis partially interactive boxes are handled by the induction

hypothesis, i.e., by the conclusions of �eorem 1.6 for a smaller number of parti-

cles (see Lemmas 3.9 and 5.1), and fully interactive boxes are handled similarly to

one particle boxes (see Lemma 3.11).

�e multiscale analysis requires Wegner estimates. Wegner estimates were

previously proved for the n-particle discrete Anderson model [7, 21, 27]. In the

continuum, Wegner estimates for the n-particle Anderson Hamiltonian with a cov-

ering condition were proved in [28, 3], and without the covering condition in [19].

�e one-particle energy interval multiscale analysis [12, 11, 13, 23] requires a

two-volume Wegner estimate, i.e., an estimate of the probability of the spectra

of independent �nite volume Hamiltonians being close together. Chulaevsky and

Suhov [7, 8, 9] realized that for n-particles this estimate is required for partially

separated �nite volume Hamiltonians, that is, �nite volume Hamiltonians on par-

tially separated rectangles (here we need rectangles, not just boxes), and proved

such an estimate in the discrete case (see also [27]). In the continuum, such an

estimate was proved for the n-particle Anderson Hamiltonian with a covering con-
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dition [3]. �is two-volume Wegner estimate is now proven without the covering

condition in [19] and in Corollary 2.3 below by somewhat di�erent arguments.

Our de�nition of the �nite volume random potential (see (1.9)), as well as our

de�nition of fully and partially separated rectangles (De�nition 2.1), are slightly

di�erent than the ones used in [3, 19]. While [3, 19] take the �nite volume ran-

dom potential to be the restriction of the in�nite volume random potential to the

n-particle rectangle, our �nite volume random potential contains only random

variables indexed by sites located in the faces of the rectangle (see (1.10)). We

prove a Wegner estimate in �eorem 2.2 in which the expectation is taken only

with respect to the random variables indexed by one face of the rectangle (a one-

particle box). In Corollary 2.3 we derive from �eorem 2.2 a two-volume Wegner

estimate for partially separated rectangles as in De�nition 2.1. To do this, in Ap-

pendix B we extend the results of [24], proving a unique continuation principle

for spectral projections of Schrödinger operators on arbitrary rectangles.

1. Main de�nitions and results

We start by de�ning the multi-particle Anderson Hamiltonian. We write

a D .a1; : : : ; an/ 2 R
nd Š .Rd /n;

and set

kak WD max¹ka1k; : : : ; kankº;

where

kxk D kxk1 WD max¹jx1j ; : : : ; jxd jº

for x D .x1; : : : ; xd / 2 R
d .

De�nition 1.1. For all n 2 N, the n-particle Anderson Hamiltonian is the random

Schrödinger operator on L2.Rnd / given by

H .n/
! WD H

.n/
0;! C U; with H

.n/
0;! WD ��.n/ C V .n/

! ; (1.1)

where we used the following notations.
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(i) �.n/ is the nd -dimensional Laplacian operator.

(ii) V
.n/

! is the random potential given by (x D .x1; : : : ; xn/ 2 R
nd )

V .n/
! .x/ D

X

iD1;:::;n

V .1/
! .xi /; with V .1/

! .x/ D
X

k2Zd
!ku.x � k/;

where

(a) ! D ¹!kºk2Zd is a family of independent identically distributed ran-

dom variables whose common probability distribution� has a bounded

density � and satis�es ¹0;MCº � supp� � Œ0;MC� for someMC > 0;

(b) the single site potential u is a measurable function on R
d with

u��ƒı� .0/ � u � �ƒıC.0/ for some constants u�; ı˙ 2 .0;1/:

(1.2)

(ƒı˙
.0/ D

�
� ı˙

2
;

ı˙
2

�d
. We take u � 1 without loss of generality.)

(iii) U is a potential governing the �nite range interaction between the n particles.

We take

U.x/ D
X

1�i<j �n

zU.xi � xj /; (1.3)

where zU W Rd ! Œ0;1/ is a bounded measurable function, zU.y/ D zU.�y/,
with zU.y/ D 0 for kyk > r0 for some 0 < r0 < 1.

Remarks. (i) �e results of this paper are valid if we only assume that the proba-

bility measure� is uniformly Hölder continuous, i.e., there exist constantsC < 1
and ˛ 2 .0; 1� such �.Œa; aC t �/ � C t˛ for all a 2 R and t � 0. We assumed that

� has a bounded density (i.e., � is uniformly Hölder continuous with ˛ D 1) for

simplicity.

(ii) We took U to be a two-particle interaction potential as in (1.3) for simplic-

ity. Our results hold for nonnegative bounded �nite range n-particle interaction

potentials.

�e n-particle Anderson Hamiltonian H
.n/
! is a Z

d -ergodic random Schröd-

inger operator on L2.Rnd /. Here Z
d acts on R

nd by

.x1; x2 : : : ; xn/ 2 R
nd 7�! .x1 C a; x2 C a; : : : ; xn C a/ 2 R

nd for a 2 Z
d :

It follows (see [5, Proposition V.2.4]) that there exists �xed subsets †.n/, †
.n/
pp ,

†
.n/
ac and†

.n/
sc of R so that the spectrum �.H

.n/
! / ofH

.n/
! , as well as its pure point,

absolutely continuous, and singular continuous components, are equal to these

�xed sets with probability one.
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Note that H
.1/
! D H

.1/
0;!, and it is well known that †.1/ D Œ0;1/ (e.g., [22]).

It follows, letting †
.n/
0 denote the almost sure spectrum of H

.n/
0;!, that

†
.n/
0 D †.1/ C � � � C†.1/ D Œ0;1/: (1.4)

In Appendix A we show that we also have

†.n/ D Œ0;1/: (1.5)

We now �x a multi-particle Anderson Hamiltonian H
.n/
! , n 2 N.

We use the following de�nitions and notation.

(i) Given a D .a1; : : : ; an/ 2 R
nd , we let

hai WD .1C kak2/
1
2 ;

diam a WD max
i;j D1;:::;n

kai � aj k;

and

Sa D ¹a1; : : : ; anº:

(ii) Given a; b 2 R
nd , we set

dH .a; b/ WD dH .Sa; Sb/;

where dH .S1; S2/ denotes the Hausdor� distance between two �nite subsets

S1; S2 � R
d , given by

dH .S1; S2/ WD max¹max
x2S1

min
y2S2

kx � yk;max
y2S2

min
x2S1

kx � ykº

D max¹max
x2S1

dist.x; S2/;max
y2S2

dist.y; S1/º:
(1.6)

It follows from the de�nition that

dH .a; b/ � ka � bk � dH .a; b/C diam a for a; b 2 R
nd (1.7)

(see [2]).

(iii) We �x �n >
nd
2

and letTn be the operator onL2.Rnd / given by multiplication

of the function hxi�n , where hxi D .1C kxk2/
1
2 .

(iv) We set

�x D �¹y2Rnd Iky�xk< 1
2 º for x 2 R

nd .
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We prove localization for the multi-particle Anderson Hamiltonian H
.n/
! ,

for all n 2 N, as follows. (Note that �Œ0;EN /.H
.N /
! / D �.�1;EN /.H

.N /
! / since

H
.N /
! � 0.)

�eorem 1.2. Given N 2 N, there exists an energyEN > 0 satisfying the follow-

ing properties.

(i) �e following holds with probability one.

(a) Anderson Localization

H
.N /
! has pure point spectrum in the interval Œ0; EN /. Moreover, there

exists M D MN > 0 such that for all E 2 Œ0; EN / and  2 �¹Eº.HN
! /

we have

k�x k � C!;E kT �1
N  ke�M kxk for all x 2 R

Nd : (1.8)

In particular, each eigenfunction ofH
.N /
! with eigenvalueE2 Œ0;EN/

is exponentially localized with the non-random rate of decay M > 0.

(b) Finite multiplicity of eigenvalues

�e eigenvalues of H
.N /
! in Œ0; EN / have �nite multiplicity:

tr�¹Eº.H
.N /
! / < 1 for all E 2 Œ0; EN /:

(c) Summable uniform decay of eigenfunction correla-

tions (SUDEC)

For every � 2 .0; 1/ there exists a constant C!;� such that for every

E 2 Œ0; EN / and �;  2 Ran�¹Eº.H
.N /
! / we have

k�x�kk�y k � C!;� kT �1
N �kkT �1

N  k hxi2�e�.dH .x;y//�

for all x;y 2 R
Nd .

(ii) Dynamical Localization

For every � 2 .0; 1/ and y 2 R
Nd there exists a constant C�.y/ such that

E¹ sup
jgj�1

k�x�Œ0;EN /.H
.N /
! /g.H .N /

! /�ykº � C�.y/e
�.dH .x;y//�

for all x;y 2 R
Nd , the supremum being taken over Borel functions g on R

with supt2R jg.t/j � 1. In particular, we have

E¹sup
t2R

k�x�Œ0;EN /.H
.N /
! /eitH

.N/
! �ykº � C�.y/e

�.dH .x;y//�

for all x 2 R
Nd .
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Remark. SUDEC (Summable Uniform Decay of Eigenfunction Correlations) is

equivalent to SULE (Semi Uniformly Localized Eigenfunctions); see [17, Re-

mark 3].

�e theorem is proved by a bootstrap multiscale analysis, a statement about

�nite volume multi-particle Anderson Hamiltonians. Our �nite volumes will be

boxes and rectangles, de�ned as follows.

(i) �e one-particle box centered at x 2 R
d with side of length L > 0 is

ƒL.x/ D
®
y 2 R

d I ky � xk < L
2

¯
. We set

yƒ D ƒ \ Z
d :

(ii) �e n-particle box centered at x 2 R
nd with side length L > 0 is

ƒ
.n/
L .x/ D

°
y 2 R

nd I ky � xk < L

2

±
D

nY

iD1

ƒL.xi /I

note that ƒ
.1/
L .x/ D ƒL.x/. By a box ƒL in R

nd we mean an n-particle box

ƒ
.n/
L .x/ for some x 2 Rnd . Note that �x D �ƒ1.x/ for x 2 Rnd .

(iii) We also de�ne n-particle rectangles in R
nd centered at points x 2 R

nd :

ƒ.n/.x/ D
nY

iD1

ƒLi .xi /; where L1; L2; : : : ; Ln > 0:

(We mostly use n-particle boxes, but in a few places we will need n-particle

rectangles.)

De�nition 1.3. Given an n-particle rectangle

ƒ D ƒ.n/.a/ D
nY

iD1

ƒLi .ai /;

we de�ne the corresponding �nite volume Anderson HamiltonianH
.n/

!;ƒ
on L2.ƒ/

by

H
.n/
!;ƒ

WD H
.n/
0;!;ƒ

C Uƒ; with H
.n/
0;!;ƒ

WD ��.n/
ƒ

C V
.n/

!;ƒ
;

where �
.n/

ƒ
is the Laplacian on ƒ with Dirichlet boundary condition, Uƒ is the

restriction of U to ƒ, and

V
.n/

!;ƒ.x/ D
nX

iD1

V
.1/

!;ƒLi .ai /
.xi / for x 2 ƒ; (1.9)
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where V
.1/

!;ƒ is de�ned for a one-particle box ƒ � R
d by

V
.1/

!;ƒ.x/ D
X

k2 yƒ

!k u.x � k/ for x 2 ƒ: (1.10)

We set

R
.n/
!;ƒ.z/ D .H

.n/
!;ƒ � z/�1 for z … �.H .n/

!;ƒ/:

Note that H
.1/
!;ƒ D H

.1/
0;!;ƒ and we have (cf. (1.4))

�.H
.n/

0;!;ƒ
/ D �.H

.1/

!;ƒL1 .a1/
/C � � � C �.H

.1/

!;ƒLn.an/
/: (1.11)

We will often omit the dependency on n from the notation, where it is clear, and

just write H!;ƒ for H
.n/
!;ƒ

and R!;ƒ.z/ for R
.n/
!;ƒ

.z/.

�e bootstrap multiscale analysis uses three types of good boxes, de�ned for a

�xed ! (omitted from the notation).

De�nition 1.4. Let ƒ D ƒ
.n/
L .x/ be an n-particle box and let E 2 R. Let � > 0,

� 2 .0; 1/, and m > 0.

(i) �e n-particle box ƒ is .�; E/-suitable if, and only if, E … �.Hƒ/ and

k�aRƒ.E/�bk � L�� for all a; b 2 ƒ with ka � bk � L

100
:

Otherwise, ƒ is called .�; E/-nonsuitable.

(ii) �e n-particle box ƒ is .�; E/-subexponentially suitable (SES) if, and only

if, E … �.Hƒ/ and

k�aRƒ.E/�bk � e�L� for all a; b 2 ƒ with ka � bk � L

100
:

Otherwise, ƒ is called .�; E/-nonsubexponentially suitable (nonSES).

(iii) �e n-particle box ƒ is .m;E/-regular if, and only if, E … �.Hƒ/ and

k�aRƒ.E/�bk � e�mka�bk for all a; b 2 ƒ with ka � bk � L
100
:

Otherwise, ƒ is called .m;E/-nonregular.
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Remark 1.5. �e di�erent types of good boxes are related:

(i) ƒ
.n/
L .x/ .m;E/-regular H) ƒ

.n/
L .x/

�
mL

100 log L
; E

�
-suitable;

(ii) ƒ
.n/
L .x/ .�; E/-suitable H) ƒ

.n/
L .x/

� � log L

L
; E

�
-regular;

(iii) ƒ
.n/
L .x/ .L��1; E/-regular H) ƒ

.n/
L .x/

�
� � log 100

log L
; E

�
-SES;

(iv) ƒ
.n/
L .x/ .�; E/-SES H) ƒ

.n/
L .x/ .L��1; E/-regular.

Our main technical result extends the bootstrap multiscale analysis of Ger-

minet and Klein [13] (see also [23]) to the multi-particle Anderson Hamiltonian.

�eorem 1.6 (bootstrap multiscale analysis). �ere exist

p0.n/ D p0.d; n/ > 0; n D 1; 2; : : :,

such that, for every N 2 N, given � > 8Nd and an energy E.N / > 0, there exists

L D L.d; k�k1; N; �; E.N //;

such that if, for some L0 � L and all n D 1; 2; : : : ; N ,

sup
x2Rnd

P¹ƒ.n/
L0
.x/ is .�; E/-nonsuitableº � p0.n/ (1.12)

for all

E � E.n/ WD 2N �nE.N /;

then, given 0 < � < 1, we can �nd a length scale

L� D L�.d; k�k1; N; �; E.N /; L0/;

ı� D ı�.d; k�k1; N; �; E.N /; L0/ > 0;

and

m� D m� .ı� ; L�/ > 0;

so that the following holds for n D 1; 2; : : : ; N .
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(i) For every E � E.n/, L � L� , and a 2 R
nd ,

P¹ƒ.n/
L .a/ is .m� ; E/-nonregularº � e�L� :

(ii) Given E1 < E
.n/, set

I.E1/ D ŒE1 � ı� ; E1 C ı� � \ .�1; E.n/�:

�en, for every E1 < E
.n/, L � L� , and a; b 2 R

nd with dH .a; b/ � L,

P¹there exists E 2 I.E1/ such that

ƒ
.n/
L .a/ and ƒ

.n/
L .b/ are .m� ; E/-nonregularº � e�L� :

(1.13)

�eorem 4.1 shows that the hypotheses of �eorem 1.6 are always satis�ed at

some nontrivial interval at the the bottom of the spectrum.

Corollary 1.7 (localization). Given N 2 N, an energy E.N / > 0, and an open

interval I � .�1; E.N //, suppose that the conclusions of �eorem 1.6 hold for

all energies E 2 I . �en the conclusions of �eorem 1.2 hold on the interval I

(i.e., with I substituted for the interval Œ0; EN / in �eorem 1.2).

�eorem 1.2 follows immediately from �eorem 1.6, �eorem 4.1, and Corol-

lary 1.7.

2. Wegner estimates

2.1. Fully and partially separated rectangles. Let

ƒ D ƒ.n/.a/ D
nY

iD1

ƒLi .ai /

be an n-particle rectangle. Given J �
®
1; :::; n

¯
, we set

ƒ.aJ/ D ƒJ.aJ/ D
Y

i2J
ƒLi .ai /; where aJ D .ai ; i 2 J/; a D .aJ; aJc /I

…Jƒ.n/.a/ D
[

i2J
ƒLi .ai /; …iƒ

.n/.a/ D …¹iºƒ
.n/.a/ D ƒLi .ai /I

…ƒ.n/.a/ D …®
1; :::; n

¯ƒ.n/.a/:
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De�nition 2.1. Let

ƒ.n/.x/ D
nY

iD1

ƒLi .xi / and ƒ.n/.y/ D
nY

iD1

ƒ`i .yi /

be a pair of n-particle rectangles.

(i) ƒ.n/.x/ and ƒ.n/.y/ are partially separated if, and only if, either

ƒLi .xi / \…ƒ.n/.y/ D ; for some i 2
®
1; :::; n

¯
;

or

ƒ
j̀
.yj / \…ƒ.n/.x/ D ; for some j 2

®
1; :::; n

¯
:

(ii) ƒ.n/.x/ and ƒ.n/.y/ are fully separated if, and only if,

…ƒ.n/.x/ \…ƒ.n/.y/ D ;: (2.1)

Note that, in view of our de�nition of the �nite volume random potentials

(see (1.9) and (1.10)), events based on fully separated rectangles are independent.

Moreover, if the n-particle rectangles ƒ.n/.x/ and ƒ.n/.y/ are partially separated,

with, say,ƒLi .xi /\…ƒ.n/.y/ D ;, then events based on ƒ.n/.y/ are independent

of the random variables ¹!kI k 2 2ƒLi .xi /º.

2.2. �e Wegner estimates. Given a one-particle boxƒL.x/, we will useEƒL.x/

and PƒL.x/ to denote the expectation and probability with respect to the probabil-

ity distribution of the random variables ¹!kI k 2 1ƒL.x/º.

�eorem 2.2. Let n 2 N and EC > 0. �ere exist constants

n;EC D n;EC.d;MC; ı�; k zUk1/ > 0

and

Cn;EC D C.d;MC; u�; ı˙; k zU k1; n; EC/;

such that, for all n-particle rectangles

ƒ D ƒ.n/.a/ D
nY

iD1

ƒLi .ai /

with a D .a1; : : : ; an/ 2 R
nd and 114

p
nd � Li � L for i D 1; : : : ; n, and all

intervals I � Œ0; EC/ with jI j � 2n;EC , we have

EƒLi .ai /¹tr�I .H
.n/
!;ƒ

/º � Cn;ECk�k1 jI jLnd for i D 1; 2; : : : ; n: (2.2)
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In particular, for any E � EC, 0 < " � n;EC , and i D 1; 2; : : : ; n, we have

PƒLi .ai /

°
kR.n/

!;ƒ.E/k � 1

"

±
D PƒLi .ai /¹d.�.H

.n/
!;ƒ/; E/ � "º

� 2Cn;ECk�k1"Lnd :

(2.3)

We prove �eorem 2.2 by modifying the proof of [19, �eorem 1]. �e main

di�erence between �eorem 2.2 and [19, �eorem 1] is that the expectation in (2.2)

is taken only with respect to the random variables indexed by the one-particle

box ƒq . �is is needed for proving Corollary 2.3 for a pair of partially sepa-

rated n-particle rectangles. Note also that �eorem 2.2 is proved for arbitrary

n-particle rectangles, not just n-particle boxes ƒ
.n/
L .a/ with a 2 Z

nd and L 2 N

as in [19, �eorem 1] – a consequence of their use of the results of [24]. We extend

the results of [24] to arbitrary n-particle rectangles in Appendix B.

Proof. Let

ƒ D
Y

iD1;:::;n

ƒi ; where ƒi D ƒLi .ai /,

be an n-particle rectangle with a 2 R
nd and 114

p
nd � Li � L for i D 1; : : : ; n.

�en for x 2 ƒ we have

V
.n/

!;ƒ.x/ D
nX

iD1

V
.1/

!;ƒi
.xi /

D
nX

iD1

X

k2bƒi
!ku.xi � k/

D
X

k2Zd
!k

� X

i Ik2bƒi
u.xi � k/

�

D
X

k2Zd
!k�

.ƒ/

k
.x/;

where

�
.ƒ/

k
.x/ D

X

¹i Ik2bƒi º
u.xi � k/ � u�

X

¹i Ik2bƒi º
�

ƒ
.1/
ı�

.k/
.xi /;

where we used (1.2). It follows that for q D 1; 2; : : : ; n we have

H
.n/

!;ƒ
D ��.n/

ƒ
C Uƒ C

X

k2Zd
!k�

.ƒ/

k

D ��.n/
ƒ

C Uƒ C
X

k2Zd ncƒq
!k�

.ƒ/

k
C

X

k2cƒq
!k�

.ƒ/

k
:

(2.4)
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Now, for

� D min
°ı�
2
;
1

2

±
and B.n/

� .k/ D ¹x 2 R
nd I jx � kj2 < �º;

we de�ne

W .ƒ/.x/ D
X

k2ƒ\Znd

�
B
.n/
� .k/

.x/ for x 2 ƒ:

Fix q 2 ¹1; : : : ; nº, and given x 2 R
nd , write

x D .xq ;x
?
q /; where x?

q 2 R
.n�1/d .

�en

�
B
.n/
� .k/

.x/ � �
B
.1/
� .kq/

.xq/�B
.n�1/
� .k?

q /
.x?

q / for k 2 Z
nd ;x 2 R

nd : (2.5)

We write

ƒ D ƒq � ƒ?
q ; where ƒ?

q D
Y

i2¹1;:::;nºn¹qº
ƒi .

It follows that, for all x 2 ƒ,

W .ƒ/.x/ �
X

k2ƒ\Znd

�
B
.1/
� .kq/

.xq/�B
.n�1/
� .k?

q /
.x?

q /

D
X

kq2cƒq
�

B
.1/
� .kq /

.xq/

² X

k?
q 2ƒ?

q \Z.n�1/d

�
B
.n�1/
� .k?

q /
.x?

q /

³

�
X

kq2cƒq
�

B
.1/
� .kq/

.xq/

�
X

k2cƒq
�

ƒ
.1/

ı�
.k/
.xq/

�
X

k2cƒq

� X

i Ik2bƒi
�

ƒ
.1/

ı�
.k/
.xi /

�

� u�1
�

X

k2cƒq
�

.ƒ/

k
.x/:

Fix EC > 0. It follows from �eorem B.1 that for any interval I � Œ0; EC/
with jI j � 2n;EC ,

�I .H
.n/
!;ƒ/ � �2

n;EC
�I .H

.n/
!;ƒ/W

.ƒ/�I .H
.n/
!;ƒ/

� u�1
� �2

n;EC
�I .H

.n/
!;ƒ/

� X

k2cƒq
�

.ƒ/

k

�
�I .H

.n/
!;ƒ/;

(2.6)
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for all ! 2 Œ0;MC�Z
d
, where n;EC is obtained from (B.5):

2
n;EC

D 1
2
�Mnd .1CK

2
3 / with K D n.n � 1/k zU k1 C 2MCıd

C CEC: (2.7)

Wegner estimate (2.2) can be proved following the strategy of [24, Lemma 3.1],

using (2.4) and (2.6). �is is what is done in [19, Proof of �eorem 1], the di�er-

ence being that the proof in [19] uses a version of (2.6) where in the right hand

side

X

k2cƒq
�

.ƒ/

k
is replaced by

dX

qD1

X

k2cƒq
�

.ƒ/

k
;

and averages over all random variables instead of only over the random variables

¹!iºi2cƒq . �e same argument as in [19] applies, using (2.6) and averaging only

over the random variables ¹!iºi2cƒq , yielding (2.2).

Corollary 2.3. Let n 2 N and EC > 0, and let n;EC be as in �eorem 2.2. Let

ƒ1 D
Y

iD1;:::;n

ƒLi .ai / and ƒ2 D
Y

iD1;:::;n

ƒL0
i
.bi /;

with a; b 2 R
nd and 114

p
nd � Li ; L

0
i � L for i D 1; : : : ; n, be a pair of partially

separated n-particle rectangles. Set

Q�.Hƒ1/ D �.Hƒ1/ \ .�1; EC�;

and

Q�.Hƒ2/ D �.Hƒ2/ \ .�1; EC�:

�en there exists a constant

zCn;EC D zC.d;MC; u�; ı˙; k zUk1; n; EC/;

such that, for all 0 < " � n;EC ,

P¹dist. Q�.Hƒ1/; Q�.Hƒ2// � "º � zCn;ECk�k1"L2nd : (2.8)

Corollary 2.3 follows from �eorem 2.2 in the same way [27, Corollary 2.4]

is derived from [27, �eorem 2.3]. Note that Corollary 2.3 is (up to minor details)

the same as [19, �eorem 9], although the proofs use somewhat di�erent versions

of the Wegner estimate.
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3. Toolkit for the multiscale analysis

3.1. Deterministic estimates. �e following lemmas are deterministic, i.e., they

hold for a �xed ! (omitted from the notation).

Given n-particle boxes ƒ � zƒ we set

@
zƒƒ WD @ƒ n @ zƒ; (3.1a)

ƒ
zƒ; ı WD ¹x 2 ƒI dist.x; @

zƒƒ/ � ıº for ı > 0; (3.1b)

‡ D ‡
zƒ

ƒ WD
°
x 2 ƒI dist.x; @

zƒƒ/ D 1C ıC
2

DW QıC
±
; (3.1c)

z‡ D z‡ zƒ
ƒ WD

[

x2‡

.ƒ1
2

.x/ \ ƒ/: (3.1d)

Lemma 3.1. Let ƒ ¨ zƒ be two n-particles boxes of length ` and L, respectively,

with ` < L, and z … �.Hƒ/ [ �.Hzƒ/. �en there exists a constant

C D Cn;d ;

such that, for x 2 ƒ with ƒ3CıC
.x/\ zƒ � ƒ, and y 2 zƒnƒ, we can �nd a 2 ‡ zƒ

ƒ

such that

k�yRzƒ.z/�xk � Cn;d`
nd�1

p
5C max¹0;<.z/ºk�yRzƒ.z/�akk�aRƒ.z/�xk:

(3.2)

In particular, if <.z/ � E.n/, for some �xed energy E.n/, we get

k�yRzƒ.z/�xk � `nd k�yRzƒ.z/�akk�aRƒ.z/�xk; (3.3)

provided ` is su�ciently large (depending on E.n/).

Lemma 3.1 is just [18, Lemma 2.4(i)] with minor modi�cations.

Lemma 3.2. Given an n-particle box, ƒ of side `, for every E � 0 we have

#¹� 2 �.H .n/
ƒ
/ \ .�1; E�º D tr¹�.�1;E�.H

.n/
ƒ
/º � CndE

nd
2 `nd :

Lemma 3.2 follows from [25, Lemma 3.3] (see also [16, Eq. (A.7)]).

We also use the following Combes-�omas estimate from [14, Eq. (19) in �e-

orem 1].
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Lemma 3.3. Let ƒ be an n-particle box. �en for all E < inf �.Hƒ/ we have

k�xRƒ.E/�yk � 4

3
.inf �.Hƒ/ �E/�1e� 1

2

p
inf �.Hƒ/�E.kx�yk�nd/ (3.4)

for all x;y 2 R
nd . In particular, if we take kx � yk � L

100
with L su�ciently

large, we have

k�xRƒ.E/�yk � 4

3
.inf �.Hƒ/ �E/�1e� 13

p
inf �.Hƒ/�Ekx�yk (3.5)

� 4

3
.inf �.Hƒ/ �E/�1e�

p
inf�.Hƒ/�E

300 L:

3.2. Suitable cover. Following [18, De�nition 3.12] we introduce suitable covers

of n-particle boxes.

De�nition 3.4. Given scales ` < L, a suitable `-covering of a box ƒ
.N /
L .x/ is a

collection of boxes ƒ` of the form

G
.`/

ƒ
.N/
L .x/

D ¹ƒ`.r/ºr2G.`/
ƒ
.N/
L

.x/

; (3.6)

where

G
.`/

ƒ
.N/
L

.x/
WD ¹xC˛`ZNd º\ƒ

.N /
L .x/ with ˛ 2

h3
5
;
4

5

i
\

°L� `

2`n
I n 2 N

±
: (3.7)

Suitable covers are useful because of [18, Lemma 3.13], stated below.

Lemma 3.5. Let ` � L
6

. �en every box ƒ
.N /
L .x/ has a suitable `-covering, and

for any suitable `-covering G
.`/

ƒ
.N/
L

.x/
of ƒ

.N /
L .x/,

ƒ
.N /
L .x/ D

[

r2G.`/
ƒ
.N/
L

.x/

ƒ`.r/I (3.8)

for each y 2 ƒ
.N /
L .x/ there is r 2 G

.`/

ƒ
.N/
L

.x/
such that

ƒ `
5
.y/ \ ƒ

.N /
L .x/ � ƒ`.r/I (3.9)

ƒ `
5
.r/ \ ƒ`.r

0/ D ; for all r ; r 0 2 x C ˛`Zd ; r ¤ r 0I (3.10)

�L
`

�Nd

� #G
.`/

ƒ
.N/
L

.x/
D

�L � `
˛`

C 1
�Nd

�
�2L
`

�Nd

: (3.11)
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Moreover, given y 2 x C ˛`ZNd and k 2 N, it follows that

ƒ.2k˛C1/`.y/ D
[

r2¹xC˛`ZNd º\ƒ.2k˛C1/`.y/

ƒ`.r/; (3.12)

and ¹ƒ`.r/ºr2¹xC˛`ZNd º\ƒ.2k˛C1/`.y/ is a suitable `-covering of ƒ.2k˛C1/`.y/.

In particular, for each y 2 Z
Nd there is r 2 x C ˛`ZNd such that

ƒ `
5
.y/ � ƒ`.r/: (3.13)

Remark 3.6. In performing the N -particle multiscale analysis, we will utilize

Lemma 3.5 in the following way: we �rst choose some appropriate k1 such that

2k1˛ C 1 > 3N . Given J 2 N, let a1; � � � ; at 2 ƒ
.N /
L .x/ where t � JNN , there

exists

y1; : : : ;y t 2 x C ˛`ZNd

such that

ƒ3N `.a1/ \ ƒ
.N /
L .x/ � ƒ.2k1˛C1/`.y1/

� ƒ
.N /
L .x/; : : : ;ƒ3N `.at / \ ƒ

.N /
L .x/

� ƒ.2k1˛C1/`.y t /

� ƒ
.N /
L .x/:

If the set

ƒ.2k1˛C1/`.y
.1// [ � � � [ ƒ.2k1˛C1/`.y

.m// � ƒ
.N /
L .x/;

where

y.1/; : : : ;y.m/ 2 x C ˛`ZNd ;

is connected, then we will take km to be the smallest integer such that

ƒ.2k1˛C1/`.y
.1// [ � � � [ ƒ.2k1˛C1/`.y

.m// � ƒ.2km˛C1/`.r/ � ƒ
.N /
L .x/;

for some r 2 x C ˛`ZNd . Moreover, for each y 2 Z
Nd , we set

ƒ
.y/

`
D ƒ`.r/;

where ƒ`.r/ comes from (3.13).
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3.3. Partially and fully interactive boxes. Following Chulaevsky and Suhov

[8, 9], we divide n-particle boxes into two types: partially interactive and fully

interactive.

De�nition 3.7. An n-particle box ƒ
.n/
L .a/ is partially interactive (PI) when there

exists ; ¤ J ¨
®
1; :::; n

¯
such that ƒ

.n/
L .a/ � EJ, where

EJ D ¹x 2 R
nd j min

i2J;j …J
kxi � xj k > r0º:

If ƒ
.n/
L .a/ is not partially interactive, then it is said fully interactive (FI).

If the n-particle box ƒ
.n/
L .a/ is partially interactive, by writing

ƒ
.n/
L .a/ D ƒJ

L.aJ/ � ƒJc

L .aJc/

we are implicitly stating that

ƒ
.n/
L .a/ � EJ for ; ¤ J ¨

®
1; :::; n

¯
:

We set

�J D �.H
ƒ

J

L
.aJ/

/ and �Jc D �.H
ƒ

Jc

L
.aJc /

/:

Given � 2 �J, we write

P J

�
D �¹�º.Hƒ

J

L
.aJ/

/:

Lemma 3.8. Let

ƒ
.n/
L .u/ D ƒJ

L.uJ/ � ƒJc

L .uJc/

be a PI n-particle box. �en

(i) …Jƒ
.n/
L .u/

T
…Jcƒ

.n/
L .u/ D ;, so events based on ƒJ

L.uJ/ and ƒJc

L .uJc/

are independent;

(ii) H
ƒ
.n/
L

.u/
D HJ

L
.uJ/

˝ IJc
L

.uJc /
C IJ

L
.uJ/

˝HJc

L
.uJc /

;

(iii) �.H
ƒ
.n/
L .u/

/ D �.HƒL.uJ//C �.HƒL.uJc //;
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(iv) if z … �.H
ƒ
.n/
L

.u/
/, then

R
ƒ
.n/
L .u/

.z/ D
X

�2�J

X

�2�Jc

1

�C � � z P
J

�
˝ P Jc

�

D
X

�2�J

P J

�
˝RƒL.uJc /.z � �/

D
X

�2�Jc

RƒL.uJ/.z � �/˝ P Jc

� ;

and, for all x;y 2 ƒ
.n/
L .u/, we get

k�xRƒ.z/�yk �
X

�2�J

k�xJc
RƒL.uJc /.z � �/�yJc

k; (3.14a)

and

k�xRƒ.z/�yk �
X

�2�Jc

k�xJ
RƒL.uJ/.z � �/�yJ

k: (3.14b)

Lemma 3.9. Let

ƒ
.n/

`
.u/ D ƒJ

`
.uJ/ � ƒJc

`
.uJc/

be a PI n-particle box andE � E.n/. If ` is su�ciently large, the following holds.

(i) Given � > 2nd C 2, suppose that ƒJ

`
.uJ/ is .�; E � �/-suitable for every

� 2 �Jc \ .�1; 2E.n/� and that ƒJc

`
.uJc/ is .�; E � �/-suitable for every

� 2 �J \ .�1; 2E.n/�. �en ƒ
.n/

`
.u/ is

�
�
2
; E

�
-suitable.

(ii) Given 0 < m � 1
6

p
E.n/, suppose that ƒJ

`
.uJ/ is .m;E��/-regular for every

� 2 �Jc \ .�1; 2E.n/� and that ƒJc

`
.uJc/ is .m;E � �/-regular for every

� 2 �J \ .�1; 2E.n/�. �en ƒ
.n/

`
.u/ is

�
m � 100.ndC1/ log.2`/

`
; E

�
-regular.

(iii) Given 0 < �0 < � < 1, suppose that ƒJ

`
.uJ/ is .�; E � �/-SES for ev-

ery � 2 �Jc \ .�1; 2E.n/� and that ƒJc

`
.uJc/ is .�; E � �/-SES for every

� 2 �J \ .�1; 2E.n/�. �en ƒ
.n/

`
.u/ is .�0; E/-SES.

Proof. We prove (ii), the proofs of (i) and (iii) are similar. Given x;y 2 ƒ
.N /

`
.u/

with kx � yk � `
100
; then either we have

kxJ � yJk � `

100
or kxJc � yJck � `

100
:
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Without loss of generality, we suppose that

kxJ � yJk � `

100
:

�en, using (3.14), Lemma 3.2, and the fact that ƒJ D ƒJ

`
.uJ/ is .m;E��/-reg-

ular for every � 2 �Jc \ .�1; 2E.n/�, and setting

�Jc .E/ D �Jc \ .�1; E�;

we get

k�xRƒ.E/�yk

�
X

�2�Jc

k�xJ
RƒJ

.E � �/�yJ
k

D
X

�2�Jc .2E.n//

k�xJ
RƒJ

.E � �/�yJ
k

C
X

�2�Jc n�Jc .2E.n//

k�xJ
RƒJ

.E � �/�yJ
k

� Cnd .2E
.n//

nd
2 `nd e�mkxJ�yJk

C
X

�2�Jc n�Jc .2E.n//

k�xJ
RƒJ

.E � �/�yJ
k

� `ndC1e�mkxJ�yJk C
1X

kD2

X

�2�Jc

kE.n/<��.kC1/E.n/

k�xJ
RƒJ

.E � �/�yJ
k:

(3.15)

Applying (3.5) for � 2 �Jc with kE.n/ < � � .k C 1/E.n/ we get

k�xJ
RƒJ

.E � �/�yJ
k � 4

3
.inf �J � .E � �//�1e� 1

3

p
inf �J�.E��/kxJ�yJk

� 4

3
.kE.n/ �E/�1e� 1

3

p
kE.n/�EkxJ�yJk

� 4

3
..k � 1/E.n//�1e� 1

3

p
.k�1/E.n/kxJ�yJk:
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Using Lemma 3.2 and (), we have (k � 2, kxJ � yJk � `
100

)

X

�2�Jc

kE.n/<��.kC1/E.n/

k�xJ
RƒJ

.E � �/�yJ
k

� Cnd`
nd ..k C 1/E.n//

nd
2

�1e� 13
p

.k�1/E.n/kxJ�yJk

� e� 1
6

p
.k�1/E.n/kxJ�yJk;

for su�ciently large `, so

1X

kD2

X

�2�Jc

kE.n/<��.kC1/E.n/

k�xJ
RƒJ

.E � �/�yJ
k

�
1X

kD2

e� 16
p

.k�1/E.n/kxJ�yJk

� 2e� 16
p

E.n/kxJ�yJk;

for ` large. Using (3.15) and m � 1
6

p
E.n/, we get

k�xRƒ.E/�yk � `ndC1e�mkxJ�yJk C 2e� 1
6

p
E.n/kxJ�yJk

� 2`ndC1e�mkxJ�yJk

� e
�
�

m� 100.ndC1/ log.2`/

`

�
kx�yk

:

De�nition 3.10. Let ƒ
.n/
L .a/ and ƒ

.n/
L .b/ be a pair of n-particle boxes. We say

ƒ
.n/
L .a/ and ƒ

.n/
L .b/ are L-distant when

max¹dist.b; Sn
a/; dist.a; Sn

b/º � 3nL:

�e following lemma gives a su�cient condition for a pair of FI n-particle

boxes to be fully separated, and hence for events based on these boxes to be inde-

pendent. We omit the proof.

Lemma 3.11. Let ƒ
.n/
L .a/ and ƒ

.n/
L .b/ be a pair of FI n-particle boxes, where L

is su�ciently large. �en ƒ
.n/
L .a/ and ƒ

.n/
L .b/ are fully separated if

max
x2Sa ;y2Sb

kx � yk � 3nL: (3.16)

In particular, a pair of L-distant FI n-particle boxes are fully separated.
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3.4. Resonant rectangles

De�nition 3.12. Let

ƒ D
Y

iD1;:::;n

ƒLi .ai /

with L D miniD1;:::;n¹Liº > 0 be an n-particle rectangle, E 2 R, s > 0, and

ˇ 2 .0; 1/.

(i) ƒ is called .E; s/-suitably resonant provided

dist.�.H
.n/
ƒ
/; E/ < L�s :

Otherwise, ƒ is said .E; s/-suitably nonresonant.

(ii) ƒ is called .E; ˇ/-resonant provided

dist.�.H
.n/
ƒ
/; E/ <

1

2
e�Lˇ :

Otherwise, ƒ is said .E; ˇ/-nonresonant.

4. �e initial step for the bootstrap multiscale analysis

We now show that the hypotheses of �eorem 1.6 are veri�ed for energies at the

bottom of the spectrum. Recall †.n/ D Œ0;1/.

�eorem 4.1. Let � > 0 and 0 < p0 < 1, and �x " > 0. �en for all n 2 N there

exists

Ln D Ln.d; u�; ı˙; �; �; p0; "/;

such that, for all L � Ln and x 2 R
nd ,

P¹ƒ.n/
L .x/ is .�; E/-suitableº � 1� p0 for all E � E

.n/
L ; (4.1)

where

E
.n/
L D n

2
.d log.LC ıC C 2/ � logp0 C log n/�

2C"
d : (4.2)

Proof. We start with a well known result for the one-particle case. Fix � > 0,

p0 > 0, and n 2 N, " > 0, and set

pn D p0

n
:
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As shown in [18, Proof of Proposition 4.3], there exists an energy

E1 D E1.d; u�; ı�; �; "/ > 0

such that for energies E � E1, x 2 Rd , and scales L 2 2N,

P¹�.H .1/

!;ƒL.x/
/ \ .�1; E� ¤ ;º � e�E

� d
2C"

Ld ;

and hence

P¹H .1/

!;ƒL.x/
� min¹.d logL � logpn/

� 2C"
d ; E1ºº � 1 � pn:

Proceeding as in [18, Proof of Proposition 4.3], for each x 2 R
d and scales

L � 1, we consider the event

�L;x D ¹H .1/

!;ƒL.x/
� 2E 0

Lº;

where

E 0
L D 1

2
.d log.LC ıC C 2/ � logpn/

� 2C"
d ;

and conclude that for scales L � L0
n D L0

n.d; u�; ı�; �; p0; "/ we have

P¹�L;xº � 1 � pn for all x 2 R
d :

Now let x 2 R
nd , and consider the n-particle box ƒ

.n/
L .x/. Given L � 1, we

set

�L;x D
n\

iD1

�L;xi ;

so

P¹�L;xº � 1� npn D 1� p0 for L � L0
n:

In view of (1.11),

inf �.H
0;ƒ

.n/
L

.x/
/ � 2nE 0

L D 2E
.n/
L for all ! 2 �L;x;

which implies, using U � 0,

inf �.H
ƒ
.n/
L

.x/
/ � 2E

.n/
L for all ! 2 �L;x: (4.3)

We now �x ! 2 �L;x and let E � E
.n/
L and a; b 2 ƒ D ƒ

.n/
L .x/ with

ka � bk � L
100

. It follows from (4.3) and Lemma 3.3 that E … �.H
ƒ
.n/
L

.x/
/ and

(provided L is su�ciently large)

k�aRƒ.E/�bk � 4
3
.E

.n/
L /�1e� L

201

q
E
.n/
L : (4.4)

�us, given � > 0, there exists Ln D Ln.d; u�; ı˙; �; �; p0; "/, such that for

all L � Ln and x 2 R
nd we have (4.1).
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Remark 4.2. �e hypotheses of �eorem 1.6 can be veri�ed in a �xed interval at

the bottom of the spectrum at high disorder. To see that, consider

H
.n/

!;�
D ��.n/ C �V .n/

! C U;

where V
.n/

! and U are as in De�nition 1.1 and � > 0 is the disorder parameter.

H
.n/

!;�
can be rewritten as n-particle Anderson Hamiltonian in the form of De�-

nition 1.1 by replacing the probability distribution � by the probability distribu-

tion ��, where �� is the probability distribution of the random variable �!0, that

is, ��.B/ D �.��1B/ for all Borel sets B � R. In particular, �� has density

��.!0/ D ��1�.��1!0/.

For simplicity we assume the covering condition

U��ƒ �
X

k2Zd\ƒ

u.x � k/ (4.5)

for all one-particle boxesƒ, whereU� > 0. (�e condition (4.5) can be guaranteed

by requiring ı� � 2. If we restrict ourselves to boxes ƒL.x/ with x 2 Z
d and L

an odd natural number it su�ces to require ı� � 1.) In this case it is well known

how to proceed in the one-particle case (see [10, 15]): Given E1 > 0, it follows

from (4.5) that

P¹H .1/

!;�;ƒL.x/
� 2E1º � 1� Ld��¹Œ0; 2E1U

�1
� �º � 1� 2E1U

�1
� ��1k�k1L

d :

Proceeding as in the proof of �eorem 4.1, we obtain

P¹H .n/

!;�;ƒ
.n/
L

.x/
� 2nE1º � 1� 2nE1U

�1
� ��1k�k1Ld :

Given 0 < p.n/ < 1 and E > 0, we set

�.E;L; p.n// D 2Ek�k1Ld

p.n/U�
;

obtaining for all E > 0

P¹H .n/

!;�;ƒ
.n/
L

.x/
� 2Eº � 1� p.n/ for all � � �.E;L; p.n//:

To use Lemma 3.3 as in (4.4), we require

4

3
E�1e� L

201

p
E � L�� ;

i.e., L � L.E; �/.
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We conclude that, given 0 < p.n/, E0 > 0, and � > 0, for all L � L.E0; �/

and � � �.E0; L; p.n// we have

P¹ƒ.n/
L .x/ is .�; E/-suitable for H

.n/

!;�
º � 1� p.n/ for all E � E0: (4.6)

If we do not assume the covering condition (4.5), we can still prove a large

disorder result using [18, Proposition 4.5] for the one-particle case.

5. �e multi-particle bootstrap multiscale analysis

�eorem 1.6 is proven by induction on N , the number of particles. For N D 1

the theorem was proved by Germinet and Klein [13]. Given N � 2, we assume

the induction hypothesis: �eorem 1.6 holds for n D 1; 2; : : : ; N � 1 particles,

and prove the theorem for N particles. As in [13], the proof will be done by a

bootstrapping argument, making successive use of four multiscale analyses.

Induction hypothesis. Let N 2 N, N � 2, and E.N / > 0. For every � 2
.0; 1/ there is a length scale L� , ı� > 0, and 0 < m�

� � 1
6

p
E.N /, such that for

n D 1; 2; : : : ; N � 1 the following holds for all E � E.n/ WD 2N �nE.N /.

(i) For all L � L� and a 2 R
nd ,

P¹ƒ.n/
L .a/ is .m�

� ; E/-nonregularº � e�L� : (5.1)

(ii) Fix E < E.n/ and let I.E/ D ŒE � ı� ; EC ı� �\ .�1; E.n/�. For all L � L�

and all pairs of n-particle boxes ƒ
.n/
L .a/ and ƒ

.n/
L .b/ with dH .a; b/ � L, we

get

P¹there exists E 0 2 I.E/ such that

both ƒ
.n/
L .a/ and ƒ

.n/
L .b/ are .m�

� ; E
0/-nonregularº � e�L� :

(5.2)

Lemma 3.9 (ii) will play an important role in the proof of �eorem 1.6.

To satisfy its hypotheses, the induction hypothesis speci�es m�
� � 1

6

p
E.N / for

every � 2 .0; 1/, without loss of generality, and sets

E.n/ WD 2N �nE.N /:

In this section we fix N 2 N , N � 2 , and an energy E.N / > 0 ,

and assume that the induction hypothesis holds for this N

and E.N / .

For partially interactive N -particle boxes we immediately get probability esti-

mates from the induction hypothesis.
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Lemma 5.1. Let

ƒ
.N /

`
.u/ D ƒ`.uJ/ � ƒ`.uJc /

be a PI N -particle box and � 2 .0; 1/. �en for ` large and all E � E.N /,

(i) P¹ƒ.N /

`
.u/ is .m�

� .`/; E/-nonregularº � `NdC1e�`� ;

with

m�
� .`/ D m�

� � 100.ndC1/ log.2`/

`
;

(ii) P¹ƒ.N /

`
.u/ is .�; E/-nonsuitableº � `NdC1e�`� ;

for

� < `
log `

m�
�

100
;

and

(iii) P¹ƒ.N /

`
.u/ is .�; E/-nonSESº � `NdC1e�`� :

Proof. Let E � E.N /. It follows from Lemma 3.9 (ii) and the induction hypoth-

esis, using also Lemma 3.2, that for large `,

P¹ƒ.N /

`
.u/ is .m�

� .`/; E/-nonregularº

�
X

�2�Jc\.�1;2E.N/�

P¹ƒ`.uJ/ is .m�
� ; E � �/-nonregularº

C
X

�2�J\.�1;2E.N/�

P¹ƒ`.uJc/ is .m�
� ; E � �/-nonregularº

� CN;d .E
.N //

Nd
2 `Nd e�`�

� `NdC1e�`� :

�e other estimates now follow from Remark 1.5.

In what follows, we �x �; �; ˇ; �0; �1; �2;  such that

0 < � < � < 1; �2 < �2; (5.3a)

and

0 < � < �2 < �2 < �1 < �1 < ˇ < �0 < r < � < 1 with �2 < �2: (5.3b)
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We set

m� D m�
� ;

where m�
� � 1

6

p
E.N / is given in the induction hypothesis.

We will use the Wegner estimates of �eorem 2.2 and Corollary 2.3 for n D
1; 2; : : : ; N particles, which apply to an interval I � Œ0; EC/ with jI j � 2n;EC .

In the multiscale analysis we will need

EC D E.n/ WD 2N �nE.N /

for the n-particles Wegner estimates. For convenience, we take

EC D E.1/ D 2N �1E.N / � E.n/ for n D 1; 2; : : : ; N :

Note that the constants in these Wegner estimates (including n;EC) are increasing

in n and on EC, so we will always take the constants for n D N and EC D E.1/

(e.g., N;EC ). To ensure that the condition jI j � 2N;E1 is always satis�ed, we

will always take su�ciently large scales L, i.e.,

L � L.N;E1/;

such that

L�s � N;E1 and e�Lˇ � N;E1 :

Moreover, in the following lemmas the conclusions are always assumed to hold

for L su�ciently large.

�e proof of the induction step proceeds as in [13, 23], with four multi-scale

analyses, as in [27], using the toolkit for the multiscale analysis in the continuum

given in Section 3. We state all the steps, but refer to [27] for the proofs when they

are similar.

5.1. �e �rst multiscale analysis

Proposition 5.2. Let � > 8Nd and E � E.N /. Take

0 < p < p CNd < s < s C 2Nd � 2 < �;

Y � 4000NN C1, and p0 D p0.N / <
1
2
.2Y /�Nd . �en there exists a length scale

Z�
0 such that if, for some L0 � Z�

0 , we have

sup
x2RNd

P¹ƒ.N /
L0
.x/is.�; E/-nonsuitableº � p0;

then, setting

LkC1 D YLk; for k D 0; 1; 2; : : : ;
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there exists K0 2 N such that, for every k � K0,

sup
x2RNd

P¹ƒ.N /
Lk
.x/is.�; E/-nonsuitableº � L

�p

k
:

�e proof of the proposition uses the following deterministic lemma.

Lemma 5.3. Let � > 8Nd and E � E.N /. Take Nd < s < s C 2Nd < � .

Let J 2 N, Y � 4000JNN C1, L D Y `, and x 2 R
Nd . Suppose we have the

following:

(i) ƒ
.N /
L .x/ is E-suitably nonresonant;

(ii) there are at most J pairwise `-distant, .E; �/-nonsuitable boxes in the `-

suitable cover;

(iii) every box ƒ
.N /
t .u/ � ƒ

.N /
L .x/ with t 2 ¹.2kj˛C 1/`I j D 1; : : : ; JNN º and

u 2 x C˛`ZNd , where kj is given in Remark 3.6, isE-suitably nonresonant.

�en the N -particle box ƒ
.N /
L .x/ is .E; �/-suitable for L su�ciently large.

Lemma 5.3 has the same proof as [27, Lemma 3.3]. Prop 5.2 is proved using

Lemma 5.3 as [27, Proposition 3.2] is proved using [27, Lemma 3.3].

5.2. �e second multiscale analysis

Proposition 5.4. Let E � E.N /, p > 0, � > 0, 1 <  < 1C p
pC2Nd

. �en there

exists a length scale Z�
1 such that if for some L0 � Z�

1 we can verify

sup
x2RNd

P¹ƒ.N /
L0
.x/ is .m0; E/-nonregularº � L

�p
0 ;

where �
log L0

L0
� m0 < m

�, then, setting

LkC1 D L


k
; for k D 1; 2; : : : ;

we get

sup
x2RNd

P¹ƒ.N /
Lk
.x/ is

�
m0
2
; E

�
-nonregularº � L

�p

k
for all k D 0; 1; 2; : : : :

To prove the proposition we use the following deterministic lemma.
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Lemma 5.5. Let E � E.N /, L D ` , J 2 N, m0 > 0, and

m` 2
h 1
`�
; m0

i
; where 0 < � < min¹ � 1; .1� ˇ/; 1º: (5.4)

Suppose that we have the following:

(i) ƒ
.N /
L .x/ is E-nonresonant;

(ii) there are at most J pairwise `-distant, .E;m`/-nonregular boxes in the suit-

able cover;

(iii) every box ƒ
.N /
t .u/ � ƒ

.N /
L .x/ with t 2 ¹.2kj˛C 1/`I j D 1; � � � ; JNN º and

u 2 x C ˛`ZNd , where kj is given in Remark 3.6, is E-nonresonant.

�en ƒ
.N /
L .x/ is .E;mL/-regular for L large, where

m` � mL � m` � 1

2`�
� 1

L�
: (5.5)

Lemma 5.5 and Proposition 5.4 are proved in the same way as [27, Lemma 3.5

and Proposition 3.4].

5.3. �e third multiscale analysis

Proposition 5.6. Let E � E.N /, 0 < �1 < �0 < 1 as in (5.3), and assume

Y � .3800NN C1/
1

1��0 . �en there exists Z�
2 > L� such that, if for some scale

L0 > Z
�
2 we have

sup
x2RNd

P¹ƒ.N /
L0
.x/ is .�0; E/-nonSESº � .2.2Y /Nd /

� 1

Y �0�1 ;

then, setting

LkC1 D YLk; k D 0; 1; 2; : : : ;

there exists K1 2 N such that, for every k � K1,

sup
x2RNd

P¹ƒLk .x/ is .�0; E/-nonSESº � e�L
�1
k :

As a consequence, for every k � K1, we have

sup
x2RNd

P¹ƒLk.x/ is .L
�0�1

k
; E/-nonregularº � e�L

�1
k :

�e proof of proposition uses the following deterministic lemma.
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Lemma 5.7. Let E � E.N /, L D Y `, where Y � .3800NN C1/
1

1��0 , and set

J D bY �0c;

the largest integer � Y �0 . Suppose the following are true:

(i) ƒ
.N /
L .x/ is E-nonresonant;

(ii) there are at most J pairwise `-distant, .E; �0/-nonSES boxes in the suitable

cover;

(iii) every box ƒ
.N /
t .u/ � ƒ

.N /
L .x/ with t 2 ¹.2kj˛C 1/`I j D 1; � � � ; JNN º and

u 2 x C ˛`ZNd , where kj is given in Remark 3.6, is E-nonresonant.

�en ƒ
.N /
L .x/ is .E; �0/-SES, provided ` is su�ciently large.

Lemma 5.7 and Proposition 5.6 are proved in the same way as [27, Lemma 3.7

and Proposition 3.6].

5.4. �e fourth multiscale analysis. We �x �; �; ˇ; �1; �2;  as in (5.3).

5.4.1. �e single energy multiscale analysis

Proposition 5.8. �ere exists a length scale Z�
3 such that, given an energy E �

E.N /, if for some L0 � Z�
3 we can verify

sup
a2RNd

P¹ƒ.N /
L0
.a/ is .m0; E/-nonregularº � e�L

�1
0 ;

where L
�0�1
0 � m0 < m

�, then, for su�ciently large L,

sup
a2RNd

P
®
ƒ

.N /
L .a/ is

�
m0
2
; E

�
-nonregular

¯
� e�L�2 :

Proposition 5.8 is proved �rst for a sequence of length scale Lk similarly to

Proposition 5.4; to obtain the sub-exponential decay of probabilities we choose J ,

the number of bad boxes, dependent on the scale L as in the proof of Proposi-

tion 5.19 below. To obtain Proposition 5.8 as stated, that is, for all su�ciently

large scales, we prove a slightly more general result.

De�nition 5.9. Let E 2 R. An N -particle box, ƒ
.N /
L .x/, is .E;mL/-good when

it is .E;mL/-regular and E-nonresonant.

Lemma 5.10. Let ƒ
.N /
L .x/ be an N -particle box,  > 1, ` D L

1
 0 with  �  0 �

2, and m > 0. Let E � E.N /, and suppose every box in the suitable cover is

.E;m/-good. �en ƒ
.N /
L .x/ is .E; m

2
/-good for large L.
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�is lemma is just [18, Lemma 3.16].

Lemma 5.11. LetE1 � E.N /, �2 2 .�; �/, and  2
�
1; 1

�2

�
with �2 < �2. Assume

there exists a mass m�2 > 0 and a length scale

L0 D L0.�2/;

such that, taking

LkC1 D L


k
for k D 0; 1; : : :,

we have

sup
a2RNd

P ¹ƒ.N /
Lk
.a/ is not .m�2 ; E1/-goodº � e�L

�2
k for k D 0; 1; : : : : (5.6)

�en there exists L� such that, for every L � L� ,

sup
a2RNd

P ¹ƒ.N /
L .a/ is not .m�2 ; E1/-goodº � e�L� :

�e proof of Lemma 5.11 is straightforward (see [27, Lemma 3.11]).

5.4.2. �e energy interval multiscale analysis

Lemma 5.12. Let ƒ
.N /
L .x/ be an N -particle box andm > 0. LetE0 � E.N /, and

suppose that

(i) ƒ
.N /
L .x/ is .m;E0/-regular,

(ii) dist.�.H
ƒ
.N/
L

.x/
/; E0/ � e�Lˇ , i.e., kR

ƒ
.N/
L

.x/
.E0/k � eLˇ .

�en ƒ
.N /
L .x/ is

�
m � 100 log 2

L
; E

�
-good for every E 2 I D .E0 � �; E0 C �/,

where � D 1
2
e�mL�2Lˇ .

Lemma 5.12 is proved as [27, Lemma 3.12].

Proposition 5.6, combined with �eorem 2.2 and Lemma 5.12, yields the fol-

lowing proposition.

Proposition 5.13. Let 0 < �2 < �1 < �0 < 1, and assume the conclusions of

Proposition 5.6. �ere exists scales Lk , k D 1; 2; : : : , such that

lim
k!1

Lk D 1;

with the following property. Let

mk D
�
L

�0�1

k
� 100 log 2

Lk

�
and �k D 1

2
e�L

�0
k

�2L
ˇ

k :
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�en, for all E0 � E.N /,

sup
x2RNd

P¹there exists E 2 .E0 � �k; E0 C �k/ such that

ƒLk .x/ is .mk ; E/-nonregularº � e�L
�1
k ;

and

sup
x2RNd

P¹there exists E 2 .E0 � �k; E0 C �k/ such that

ƒLk .x/ is not .mk ; E/-goodº � e�L
�2
k :

We now take L D ` .

De�nition 5.14. Let

ƒ
.N /
L .x/ D ƒL.xJ/ � ƒL.xJc /

be a PI N -particle box with the usual ` suitable cover, and consider an energy

E 2 R.

(i) ƒ
.N /
L .x/ is not E-Lregular (for “left regular”) when there are two boxes in

the suitable cover of ƒL.xJ/ that are `-distant and .m�; E � �/-nonregular

for some � 2 �.HƒL.xJc // \ .�1; 2E.N /�.

(ii) ƒ
.N /
L .x/ is not E-Rregular (for “right regular”) when there are two boxes in

the suitable cover of ƒL.xJc / that are `-distant and .m�; E � �/-nonregular

for some � 2 �.HƒL.xJ// \ .�1; 2E.N /�.

(iii) ƒ
.N /
L .x/ is E-preregular when ƒ

.N /
L .x/ is E-Lregular and E-Rregular.

Lemma 5.15. Let E0 � E.N / such that

I D ŒE0 � ı� ; E0 C ı� � � .�1; 2E.N /�;

and consider a PI N -particle box

ƒ
.N /
L .x/ D ƒL.xJ/ � ƒL.xJc /:

�en

P¹ƒ.N /
L .x/ is not E-Lregular for some E 2 I º � L3Nd e�`� ;(i)

and

P¹ƒ.N /
L .x/ is not E-Lregular for some E 2 I º � L3Nd e�`� :(ii)

We conclude that for L su�ciently large,

P¹ƒ.N /
L .x/ is not E-preregular for some E 2 I º � 2L3Nd e�`� :(iii)
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Lemma 5.15 has the same proof as [27, Lemma 3.15].

De�nition 5.16. Let

ƒ
.N /
L .x/ D ƒL.xJ/ � ƒL.xJc /

be a PI N -particle box, and consider an energy E � E.N /.

(i) ƒ
.N /
L .x/ is E-left nonresonant (or LNR) when for every box ƒ.2kjC1/`.a/

with ƒ.2kjC1/`.a/ � ƒL.xJ/, a 2 xJ C ˛`ZjJjd and j 2 ¹1; 2; : : : jJjjJjº, is

.E��/-nonresonant for every � 2 �.HƒL.uJc //\ .�1; 2E.N /�. Otherwise

we say ƒ
.N /
L .x/ is that E-left resonant (or LR).

(ii) ƒ
.N /
L .x/ isE-right nonresonant (or RNR) when for every box ƒ.2kjC1/`.a/�

ƒL.xJc / with a 2 xJc C˛`ZjJc jd and j 2 ¹1; 2; : : : jJcjjJc jº is .E ��/-non-

resonant for every � 2 �.HƒL.xJ// \ .�1; 2E.N /�. Otherwise we say that

ƒ
.N /
L .x/ is E-right resonant (or RR).

(iii) We say ƒ
.N /
L .x/ is E-highly nonresonant (or HNR) when for ƒ

.N /
L .x/ is

E-nonresonant, E-LNR, and E-RNR.

Lemma 5.17. Let E � E.N / and ƒ
.N /
L .x/ D ƒL.xJ/ � ƒL.xJc / be a PI N -par-

ticle box. Assume that

(i) ƒ
.N /
L .x/ is E-HNR and

(ii) ƒ
.N /
L .x/ is E-preregular.

�en ƒ
.N /
L .x/ is .m.L/; E/-regular for su�ciently large L, where

m.L/ D m� � 1
2L�

� 100.nd C 1/ log.2L/

L
: (5.7)

Proof. Applying Lemma 3.9(ii), it is su�cient to prove that there exists m �
1
6

p
E.N / such that ƒL.xJ/ is .m;E��/-regular for every� 2 �Jc \.�1; 2E.N /�

and ƒL.xJc/ is .m;E ��/-regular for every � 2 �J \ .�1; 2E.N /�. �en we can

conclude that ƒ
.N /
L .x/ is

�
m � 100.ndC1/ log.2L/

L
; E

�
-regular.

Let � 2 �Jc \ .�1; 2E.N /�. Since ƒ
.N /
L .u/ is E-preregular; thus it isE-Lreg-

ular, which implies there cannot be two boxes in the suitable cover of ƒL.xJ/

that are `-distant and .m�; E � �/-nonregular. Moreover, ƒ
.N /
L .u/ is E-HNR;

thus it is E-LNR, which implies every box ƒ.2kjC1/`.a/ with ƒ.2kjC1/`.a/ �
ƒL.xJ/, a 2 xJ C ˛`ZjJjd and j 2 ¹1; 2; : : : ; jJjjJjº, is .E � �/-nonresonant.

By Lemma 5.5, we have ƒL.xJ/ is .m� � 1
2L�

; E � �/-regular. A similar ar-

gument will apply for � 2 �J \ .�1; 2E.N /�. We conclude that ƒ
.N /
L .x/ is�

m� � 1
2L�

� 100.ndC1/ log.2L/

L
; E

�
-regular.
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Lemma 5.18. Let E � E.N /; and

ƒ
.N /
L .x/ D ƒL.xJ/ � ƒL.xJc /

be a PI N -particle box.

(i) If ƒ
.N /
L .x/ is E-right resonant, then there exists an N -particle rectangle

ƒ D ƒL.xJ/ � ƒ.2kj ˛C1/`.u/;

where j 2 ¹1; 2; : : : ; jJcjjJc jº, u 2 xJc C ˛`ZjJc jd , and ƒ.2kj ˛C1/`.u/ �
ƒL.xJc /, such that

dist.�.ƒ/; E/ <
1

2
e�..2kj˛C1/`/ˇ � 1

2
e�`ˇ :

(ii) If ƒ
.N /
L .x/ is E-left resonant, then there exists an N -particle rectangle

ƒ D ƒ.2kj ˛C1/`.u/ � ƒL.xJc /;

where j 2 ¹1; 2; : : : ; jJjjJjº, u 2 xJC˛`ZjJjd , and ƒ.2kj ˛C1/`.u/ � ƒL.uJ/,

such that

dist.�.ƒ/; E/ <
1

2
e�..2kj˛C1/`/ˇ � 1

2
e�`ˇ :

Proof. Let E � E.N / and

ƒ
.N /
L .x/ D ƒL.xJ/ � ƒL.xJc /

be a PI N -particle box. Suppose ƒ
.N /
L .x/ is E-right resonant. (�e same argu-

ment applies if ƒ
.N /
L .x/ is E-left resonant.) �en we can �nd � 2 �.HƒL.xJ// \

.�1; 2E.N /� and an .N � jJj/-particle box, ƒ.2kj ˛C1/`.u/ � ƒL.xJc /, with u 2
xJc C ˛`ZNd and j 2 ¹1; 2; : : : ; jJcjjJc jº, such that ƒ.2kj ˛C1/`.u/ is .E ��/-res-

onant, so there exists � 2 �.Hƒ.2kj˛C1/`.x// such that

jE � � � �j < 1

2
e�..2kj˛C1/`/ˇ :

Moreover, ƒL.xJ/ � ƒL.xJc / is PI and ƒ.2kj ˛C1/`.u/ � ƒL.xJc /, so if we take

ƒ D ƒL.xJ/ � ƒ.2kj ˛C1/`.u/, then we get

�.Hƒ/ D �.HƒL.xJ//C �.Hƒ.2kj˛C1/`.u//:

Hence, if a PI N -particle box ƒ
.N /
L .x/ D ƒL.xJ/ � ƒL.xJc / is E-right reso-

nant, then there exists an N -particle box ƒ D ƒL.xJ/ � ƒ.2kj ˛C1/`.u/; where

ƒ.2kj ˛C1/`.u/ � ƒL.xJc /, such that

dist.�.Hƒ/; E/ <
1

2
e�..2kj ˛C1/`/ˇ :
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We now state the energy interval multiscale analysis. Given m > 0, L 2 N,

x;y 2 Z
Nd , and an interval I , we de�ne the event

R.m; I;x;y; L; N / D ¹there exists E 2 I such that

both ƒ
.N /
L .x/ and ƒ

.N /
L .y/ are not .m;E/-regularº:

Proposition 5.19. . Let �; �; ˇ; �1; �2;  as in (5.3) and 0 < m0 < m
�. �ere exists

a length scale Z�
3 such that, given a closed interval I � .�1; E.N /�, if for some

L0 � Z�
3 we can verify

P¹R.m0; I;x;y; L0; N /º � e�L
�2
0 ;

for every pair of partially separatedN -particle boxes ƒN
L0
.x/ and ƒ

.N /
L0
.y/, then,

setting

LkC1 D L


k
D L

k

0 for k D 0; 1; 2; : : : ,

for every pair of partially separated N -particle boxes ƒ
.N /
Lk
.x/ and ƒ

.N /
Lk
.y/,

P¹R.m0
2
; I;x;y; Lk; N /º

� P
®
there exists E 2 I such that

ƒ
.N /
Lk
.x/ and ƒ

.N /
Lk
.y/ are not

�
m0
2
; E

�
-good

¯

� e�L
�2
k :

Proposition 5.19 is proved in the same way as [27, Propositions 3.19 and 3.21].

�e dependence of the length scale Z�
3 on E.N / (not present in [27]) comes from

the use of �eorem 2.2 and Corollary 2.3.

5.5. Completing the proof of the bootstrap multiscale analysis. Proceeding

as in [13, Section 6], �eorem 1.6 follows from Propositions 5.2, 5.4, and 5.6, plus

Proposition 5.8 for Part (i) (the single energy bootstrap multiscale analysis), and

Propositions 5.13 and 5.19 (the energy interval bootstrap multiscale analysis).

6. From the bootstrap multiscale analysis to localization

Corollary 1.7 is proved from �eorem 1.6 along the lines of the proofs of the corre-

sponding statements in [11, 13, 17, 18]), similarly to the proof of [27, Corollary 1.7]

from [27, �eorem 1.5].
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A. �e almost-sure spectrum of the n-particle Anderson Hamiltonian

Proposition A.1. Let†.n/ be the almost-sure spectrum of the n-particle Anderson

Hamiltonian H
.n/
! as in De�nition 1.1. �en †.n/ D Œ0;1/

Proof. Clearly †.n/ � Œ0;1/. We need to prove Œ0;1/ � †.n/. So let � 2 Œ0;1/

and " > 0. Since �.��.n// D Œ0;1/, there exists  2 C 2.Rnd / with k k D 1

and a box ƒ
.n/
L .x/ such that supp � ƒ

.n/
L .x/ and k.��.n/ ��/ k � �

2
. Without

loss of generality we can assume that U D 0 on ƒ
.n/
L .x/, so H

.n/
!  D H

.n/
0;! .

If we have V
.n/

! �
ƒ
.n/
L

.x/
� �

2
, we conclude that k.H .n/

! � �/ k � ", and hence

dist.�; �.H
.n/
! // � ". �us,

P¹dist.�; �.H .n/
! // � "º � P

°
V .n/

!
�

ƒ
.n/
L

.x/
� �

2

±
> 0; (A.1)

where the strict positivity comes from De�nition 1.1.

Since †.n/ D �.H
.n/
! / for P-a.e. !, we conclude from (A.1) that we have

dist.�; †.n// � " for all " > 0, and hence � 2 †.n/.

B. Unique continuation principle for spectral projections

of Schrödinger operators on arbitrary rectangles

In this appendix we extend [24, �eorems 1.1 and 2.2] to arbitrary rectangles.

Let H D �� C V be a Schrödinger operator on L2.Rd /. Given a rectangle

ƒ � R
d , let Hƒ D ��ƒ C Vƒ denote the restriction of H to the rectangle ƒ

with either Dirichlet or periodic boundary condition: �ƒ is the Laplacian with

either Dirichlet or periodic boundary condition and Vƒ is the restriction of V to

ƒ. (We will abuse the notation and simply write V for Vƒ, i.e., Hƒ D ��ƒ C V

on L2.ƒ/.) By a unique continuation principle for spectral projections (UCPSP)

we mean an estimate of the form

�I .Hƒ/W �I .Hƒ/ � ��I .Hƒ/; (B.1)

where �I is the characteristic function of an interval I � R,W � 0 is a potential,

and � > 0 is a constant.

In this appendix we use the Euclidean norm on R
d :

jxj D jxj2 WD
� dX

j D1

ˇ̌
xj

ˇ̌2
� 1
2

for x D .x1; x2; : : : ; xd / 2 R
d :
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Distances between sets in R
d will be measured with respect to norm jxj. �e ball

centered at x 2 R
d with radius ı > 0 is given by

B.x; ı/ WD ¹y 2 R
d I jy � xj < ıº:

We consider rectangles

ƒ D ƒL.a/ D a C
dY

j D1

�
� Lj

2
;
Lj

2

�
D

dY

j D1

�
aj � Lj

2
; aj C Lj

2

�
; (B.2)

where a 2 R
d and L D .L1; : : : ; Ld / 2 .0;1/d . �e boxƒL.x/ D xC

�
� L

2
; L

2

�d

centered at x 2 R
d with side of length L is the special case L1 D � � � D Ld D L.

Given a rectangle ƒ we set

yƒ D ƒ \ Z
d and

yyƒ D ¹k 2 yƒIƒ1.k/ � ƒº: (B.3)

Hƒ will denote the restriction of H to the rectangle ƒ with either Dirichlet or

periodic boundary condition.

Given subsets A and B of Rd , and a function ' on the set B , we set

'A WD '�A\B :

In particular, given x 2 R
d and ı > 0 we write

'x;ı WD 'B.x;ı/:

We let Nodd denote the set of odd natural numbers. IfK is an operator on a Hilbert

space, D.K/ will denote its domain. By a constant we will always mean a �nite

constant. We will use Ca;b;:::, C
0
a;b;:::

, C.a; b; : : :/, etc., to denote a constant de-

pending only on the parameters a; b; : : :.

�e following is an extension of [24, �eorem 1.1] to rectangles with arbitrary

centers and side lengths.

�eorem B.1. LetH D ��CV be a Schrödinger operator on L2.Rd /, where V

is a bounded potential. Fix ı 2 .0; 1
2
�, let ¹ykºk2Zd be sites in Rd with B.yk; ı/ �

ƒ1.k/ for all k 2 Z
d . GivenE0 > 0, setK D K.V;E0/ D 2kV k1CE0. Consider

a rectangle ƒ as in (B.2), where a 2 R
d and Lj � 114

p
d for j D 1; : : : ; d , and

set

W .ƒ/ D
X

k2 yyƒ

�B.yk ;ı/: (B.4)
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�ere exists a constantMd > 0, such that, de�ning  D .d;K; ı/ > 0 by

2 D 1
2
ıMd .1CK

2
3 /; (B.5)

then for any closed interval I � .�1; E0� with jI j � 2 we have

�I .Hƒ/W
.ƒ/�I .Hƒ/ � 2�I .Hƒ/: (B.6)

Remark B.2. It follows, using �eorem B.1 in the proofs, that the optimal Weg-

ner estimates for (one-particle) crooked Anderson Hamiltonians given in [24,

�eorems 1.4 and 1.5] hold for a rectangle ƒ as in (B.2), where a 2 R
d and

Lj � 114
p
d C ıC for j D 1; : : : ; d . (In particular, they hold on arbitrary boxes

ƒ D ƒL.x0/, where x0 2 R
d and L � 114

p
d C ıC.)

For convenience we recall the quantitative unique continuation principle [4,

�eorem 3.2] as stated in [24, �eorem 2.1].

�eorem B.3. Let � be an open subset of Rd and consider a real measurable

function V on � with kV k1 � K < 1. Let  2 H2.�/ be real valued and let

� 2 L2.�/ be de�ned by

�� C V D � a.e. on �: (B.7)

Let ‚ � � be a bounded measurable set where k ‚k2 > 0. Set

Q.x;‚/ WD sup
y2‚

jy � xj for x 2 �: (B.8)

Consider x0 2 � n‚ such that

Q D Q.x0; ‚/ � 1 and B.x0; 6QC 2/ � �: (B.9)

�en, given

0 < ı � min
°

dist.x0; ‚/;
1

2

±
; (B.10)

we have

� ı
Q

�md .1CK
2
3 /

�
Q
4
3Clog

k �k2
k ‚k2

�
k ‚k2

2 � k x0;ık2
2 C ı2k��k2

2; (B.11)

where md > 0 is a constant depending only on d .

�e following theorem is a version of [24, �eorem 2.2] for rectangles with

arbitrary centers and side lengths.
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�eorem B.4. LetH D ��C V be a Schrödinger operator on L2.Rd /, where V

is a bounded potential with kV k1 � K. Fix ı 2 .0; 1
2
�, let ¹ykºk2Zd be sites in R

d

with B.yk; ı/ � ƒ1.k/ for all k 2 Z
d . Consider a rectangle ƒ as in (B.2), where

a 2 Rd and Lj � 114
p
d for j D 1; : : : ; d . �en for all real-valued  2 D.�ƒ/

we have

ıMd .1CK
2
3 /k ƒk2

2 �
X

k2 yyƒ

k yk ;ık2
2 C ı2k..��C V / /ƒk2

2; (B.12)

where Md > 0 is a constant depending only on d .

Proof. As in [18, Proof of Corollary A.2], we extend V and functions ' 2 L2.ƒ/

to R
d .

For Dirichlet boundary condition, given ' 2 L2.ƒ/, we extend it to a function

Q' 2 L2
loc.R

d / by setting Q' D ' on ƒ and Q' D 0 on @ƒ, and requiring

Q'.x/ D � Q'.x C .Lj � 2�j .xj � aj //ej / for all x 2 R
d and j 2 ¹1; 2 : : : ; dº;

(B.13)

where ¹ej ºj D1;2:::;d is the canonical orthonormal basis in R
d , and for each t 2 R

we de�ne �j .t / 2
�

� Lj
2
;

Lj
2

�
by

t D kLj C �j .t /

with k 2 Z. We also extend the potential V to a potential yV on R
d by by setting

yV D V on ƒ and V D 0 on @ƒ, and requiring that, for all x 2 R
d and j 2

¹1; 2 : : : ; dº,
yV .x/ D yV .x C .Lj � 2�j .xj � aj //ej /:

Note that k yV k1 D kV k1 � K. Moreover,  2 D.�ƒ/ implies Q 2 H2
loc.R

d /

and

E.��C V / D .��C yV / Q : (B.14)

For periodic boundary condition, we extend ' 2 L2.ƒ/ and V to periodic

functions Q' and yV on R
d of period .L1; : : : ; Ld /; note k yV k1 D kV k1 � K.

Moreover,  2 D.�ƒ/ implies Q 2 H2
loc.R

d / and we have (B.14).

Let � D .�1; : : : ; �d / be given by

�j D min¹t � 2ILj 2 tNoddº D Lj

2
jLj � 2

4

k
C 1

; j D 1; 2; : : : ; d:
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It follows that (Lj > 12
p
d � 12)

2 � �j � Lj

2
�Lj � 2

4
� 1

�
C 1

D 2

1 � 4

Lj

<
2

1� 4

12

D 3; (B.15)

so

�1 D max
j D1;:::;d

�j < 3: (B.16)

We let �Zd D
Qd

j D1 �jZ and ƒ.�/ D .a C �Zd / \ƒ. �en

ƒ D
[

�2ƒ.�/

ƒ�.�/: (B.17)

We de�ne

J W ƒ.�/ �! yyƒ
in such a way that

ƒ1.J.�// � ƒ�.�/ for all � 2 ƒ.�/.

�is can always be done since �j � 2 for j D 1; : : : ; d ; note that J is one to one.

Let Y 2 Nodd, Y � Lj
6
<

Lj
2�j

for j D 1; 2; : : : ; d . It follows that for all

' 2 L2.ƒ/ we have (see [29, Subsection 5.2])
X

�2ƒ.�/

k Q'ƒY� .�/k2
2 � .2�1Y /d k'ƒk2

2 � .6Y /d k'ƒk2
2: (B.18)

We now �x  2 D.�ƒ/. Following Rojas-Molina and Veselić, we call a site

� 2 ƒ.�/ dominating (for  ) if

k ƒ� .�//k2
2 � 1

2.6Y /d
k Q ƒY� .�/k2

2: (B.19)

Letting yD � ƒ.�/ denote the collection of dominating sites, Rojas-Molina and

Veselić [29, Subsection 5.2] observed that it follows from equations (B.18), (B.19),

and (B.17), that X

�2 yD

k ƒ� .�//k2
2 � 1

2
k ƒk2

2: (B.20)

We de�ne a map

J W ƒ.�/ �! ƒ.�/

by

J.�/ D

8
<
:
� C 2�1e1 if � C 2�1e1 2 ƒ.�/;

� � 2�1e1 if � C 2�1e1 … ƒ.�/:
(B.21)
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Note that J is well de�ned, and

#J�1.¹�º/ � 2 for all � 2 ƒ.�/: (B.22)

We have (see (B.8))

Q.yJ.J.�//; ƒ�.�// D sup
x2ƒ� .�/

jx � yJ.J.�//j

� sup
x2ƒ� .�/

jx � �j C j� � J.�/j C jJ.�/ � yJ.J.�//j

� �1
2

p
d C 2�1 C �1

2

p
d

� 3�1
p
d

� 9
p
d:

(B.23)

for all k 2 ƒ.�/.

For each � 2 ƒ.�/ we will apply �eorem B.3 with � D ƒY �.�/, ‚ D ƒ�.�/,

and x0 D yJ.J.�//. We need to guarantee (B.9), that is,

B.yJ.J.�//; 6Q.yJ.J.�//; ƒ�.�//C 2/ � ƒY �.�/ for all k 2 yD:

It su�ces, using (B.23) and �j � 2, to have

ˇ̌
yJ.J.�// � �

ˇ̌
C 9

p
d � �1

2

p
d C 2�1 C 9

p
d � 33

2

p
d � 2Y

2
D Y:

We thus choose

Y D min
°
n 2 NoddI n � 33

2

p
d

±
� 33

2

p
d C 2 � 19

p
d: (B.24)

Since we want Y � Lj
6
<

Lj
2�j

for j D 1; 2; : : : ; d , we require Lj � 114
p
d for

j D 1; 2; : : : ; d .

Applying �eorem B.3, for each � 2 ƒ.�/ we get

ım0
d

.1CK
2
3 /k ƒ� .�/k2

2 � k yJ.J.�//;ık2
2 C ı2kQ�ƒY� .�/k2

2; (B.25)

where � D .��CV / andm0
d
> 0 is a constant depending only on d . Summing

over � 2 yD and using (B.20), (B.22), (B.18), and (B.24), and we get

1
2
ım0

d
.1CK

2
3 /k ƒk2

2 � 2
X

k2 yyƒ

k yk;ık2
2 C .6Y /dı2k�ƒk2

2

� 2
X

k2 yyƒ

k yk;ık2
2 C .114

p
d/d ı2k�ƒk2

2;

so (B.12) follows.
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Proof of �eorem B.1. Given E0 > 0, set K D K.V;E0/ D 2kV k1 C E0, and

let  be given by (B.5), where Md > 0 is the constant in �eorem B.4. Let

I � .�1; E0� be a closed interval with jI j � 2 . Since �.Hƒ/ � Œ�kV k1;1/

for any rectangleƒ, without loss of generality we assume I D ŒE�; EC�with

E 2 Œ�kV k1; E0�, so

kV �Ek1 � kV k1 C max¹E0; kV k1º � K:

Moreover, for any rectangle ƒ we have

k.Hƒ �E/ k2 � k k2 for all  2 Ran�I .Hƒ/: (B.26)

Let ƒ be a rectangle as in �eorem B.4 and  2 Ran�I .Hƒ/. If  is real-

valued, it follows from �eorem B.4, (B.5), and (B.26) that

22k k2
2 �

X

k2 yyƒ

k yk;ık2
2 C 2k k2

2; (B.27)

yielding

2k k2
2 �

X

k2 yyƒ

k yk;ık2
2 D kW .ƒ/ k2

2; (B.28)

where the equality follows from (B.4). For arbitrary  2 Ran�I .Hƒ/, we write

 D < Ci= , and note that < ;= 2 Ran�I .Hƒ/, k k2
2 D k< k2

2Ck= k2
2,

and, since W .ƒ/ is real-valued, kW .ƒ/ k2
2 D kW .ƒ/< k2

2 C kW .ƒ/= k2
2. Re-

calling .W .ƒ//2 D W .ƒ/, we conclude that

2 h ; i D 2k k2
2 � kW .ƒ/ k2

2 D h ;W .ƒ/ i; (B.29)

for all  2 Ran�I .Hƒ/, proving (B.6).
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