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Abstract. We extend the bootstrap multiscale analysis developed by Germinet and Klein
to the multi-particle continuous Anderson Hamiltonian, obtaining Anderson localization
with finite multiplicity of eigenvalues, decay of eigenfunction correlations, and a strong
form of dynamical localization. We do not require a covering condition. The initial step for
this multiscale analysis, required to hold for energies in a nontrivial interval at the bottom
of the spectrum, is verified for multi-particle continuous Anderson Hamiltonians. We also
extend the unique continuation principle for spectral projections of Schrodinger operators
to arbitrary rectangles, and use it to prove Wegner estimates for multi-particle continuous
Anderson Hamiltonians without the requirement of a covering condition.
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Introduction

The multi-particle Anderson Hamiltonian is an alloy-type random Schrodinger
operator describing n interacting electrons moving in a medium with random im-
purities. It is the continuous version of the (discrete) multi-particle Anderson
model.

Localization was proved for the multi-particle discrete Anderson model by
Chulaevsky and Suhov [7, 8, 9], using a multiscale analysis, and Aizenman and
Warzel [2], using the fractional moment method. Chulaevsky, Boutet de Monvel
and Suhov [6] extended the results of Chulaevsky and Suhov to the multi-particle
continuous Anderson Hamiltonian, establishing Anderson and dynamical local-
ization at the bottom of the spectrum.

The bootstrap multiscale analysis, developed in the one-particle case by Ger-
minet and Klein [13] (see also [23]), is an enhanced multiscale analysis that yields
sub-exponentially decaying probabilities for ‘bad’ events. The initial step for the
bootstrap multiscale analysis only requires the verification of polynomial decay
of the finite volume resolvent, at some sufficiently large scale, with probability
bigger than some minimal probability 1 — po, where 0 < py < 1 is independent
of the scale. An important feature of the bootstrap multiscale analysis is that the
final probability estimates are independent of the probability estimate in the ini-
tial step: any desired sub-exponential decay for the probabilities of ‘bad’ events
can be achieved. The bootstrap multiscale analysis yields Anderson localization
with finite multiplicity of eigenvalues, decay of eigenfunction correlations, and a
strong form of dynamical localization.

We previously extended the bootstrap multiscale analysis to the multi-particle
(discrete) Anderson model [27]. The initial step for the bootstrap multiscale anal-
ysis of [27, Theorem 1.5] has to hold for all energies in the spectrum (and hence
for all energies); it can be verified for the multi-particle Anderson model at high
disorder, as discussed in [27, Remark 1.6].

In this article we extend the bootstrap multiscale analysis and its consequences
to the multi-particle (continuous) Anderson Hamiltonian; we do not require a cov-
ering condition. The initial step is only required to hold for all energies in a non-
trivial interval at the bottom of the spectrum (or equivalently, for all energies be-
low some fixed energy). We also show that we always have this initial step in
some nontrivial interval at the bottom of the spectrum for multi-particle Ander-
son Hamiltonians. The consequences to the bootstrap multiscale analysis include,
in addition to Anderson and dynamical localization, new results for multi-particle
(continuous) Anderson Hamiltonians: finite multiplicity of eigenvalues, decay of
eigenfunction correlations, and a strong form of dynamical localization (see The-
orem 1.2).
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Although the results in this paper are written for the continuous multi-particle
Anderson Hamiltonian, they also apply to the discrete multi-particle Anderson
model, yielding localization at the bottom of the spectrum for the discrete model
at any disorder.

The main definitions and results are stated in Section 1. Theorem 1.2 states that
continuous multi-particle Anderson Hamiltonians exhibit Anderson localization
with finite multiplicity of eigenvalues, decay of eigenfunction correlations, and a
strong form of dynamical localization in an interval at the bottom of the spectrum.
Theorem 1.6 is the bootstrap multiscale analysis. The consequences regarding lo-
calization (Anderson localization with finite multiplicity of eigenvalues, dynam-
ical localization, decay of eigenfunction correlations) are given in Corollary 1.7.
In Section 4 we show that the hypotheses of Theorem 1.6 (the initial step for the
bootstrap multiscale analysis) are always satisfied at some nontrivial interval at
the bottom of the spectrum. Section 3 contains a collection of technical results
necessary for the multiscale analysis in the continuum. The proof of Theorem 1.6
is given in Section 5, and the derivation of Corollary 1.7 is discussed in Section 6.

In the multi-particle case events based on disjoint boxes are not necessarily
independent, even if the boxes are far apart from each other. This difficulty is
overcome by the use of the concepts of partially and fully separated boxes (Sub-
section 2.1) and partially and fully interactive boxes (Subsection 3.3) introduced by
Chulaevsky and Suhov [7, 8, 9]. The relevant distance between boxes is the Haus-
dorff distance (see (1.6)), introduced in this context by Aizenman and Warzel [2].
In the multiscale analysis partially interactive boxes are handled by the induction
hypothesis, i.e., by the conclusions of Theorem 1.6 for a smaller number of parti-
cles (see Lemmas 3.9 and 5.1), and fully interactive boxes are handled similarly to
one particle boxes (see Lemma 3.11).

The multiscale analysis requires Wegner estimates. Wegner estimates were
previously proved for the n-particle discrete Anderson model [7, 21, 27]. In the
continuum, Wegner estimates for the n-particle Anderson Hamiltonian with a cov-
ering condition were proved in [28, 3], and without the covering condition in [19].

The one-particle energy interval multiscale analysis [12, 11, 13, 23] requires a
two-volume Wegner estimate, i.e., an estimate of the probability of the spectra
of independent finite volume Hamiltonians being close together. Chulaevsky and
Suhov [7, 8, 9] realized that for n-particles this estimate is required for partially
separated finite volume Hamiltonians, that is, finite volume Hamiltonians on par-
tially separated rectangles (here we need rectangles, not just boxes), and proved
such an estimate in the discrete case (see also [27]). In the continuum, such an
estimate was proved for the n-particle Anderson Hamiltonian with a covering con-
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dition [3]. This two-volume Wegner estimate is now proven without the covering
condition in [19] and in Corollary 2.3 below by somewhat different arguments.

Our definition of the finite volume random potential (see (1.9)), as well as our
definition of fully and partially separated rectangles (Definition 2.1), are slightly
different than the ones used in [3, 19]. While [3, 19] take the finite volume ran-
dom potential to be the restriction of the infinite volume random potential to the
n-particle rectangle, our finite volume random potential contains only random
variables indexed by sites located in the faces of the rectangle (see (1.10)). We
prove a Wegner estimate in Theorem 2.2 in which the expectation is taken only
with respect to the random variables indexed by one face of the rectangle (a one-
particle box). In Corollary 2.3 we derive from Theorem 2.2 a two-volume Wegner
estimate for partially separated rectangles as in Definition 2.1. To do this, in Ap-
pendix B we extend the results of [24], proving a unique continuation principle
for spectral projections of Schrodinger operators on arbitrary rectangles.

1. Main definitions and results

We start by defining the multi-particle Anderson Hamiltonian. We write

a=(ai,... a,) €R" ~ (RY)",

and set
lall := max{[laill.....llaxll},
where
Ixll = llxlloo := max{|xi].....|xql}
for x = (x1,....xq) € R%.

Definition 1.1. For all n € NN, the n-particle Anderson Hamiltonian is the random
Schrodinger operator on L2(R"¢) given by

HP = HY) + U, with H{") := —A® 4y, (1.1)

where we used the following notations.
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(i) A®™ is the nd-dimensional Laplacian operator.

(i) Va(,") is the random potential given by (x = (x1,...,x,) € R"9)
Vi) = Y V). with VP (x) = Y wpulx — k),
i=1,..,n kezd
where

() ® = {wg}reya 1s a family of independent identically distributed ran-
dom variables whose common probability distribution p has a bounded
density p and satisfies {0, M4} C supp u < [0, M4 ] for some M4 > 0;

(b) the single site potential u is a measurable function on R? with

U—XA5_(0) U = XA5, (0) for some constants u_, §+ € (0, 00).
(1.2)

(A5, (0) = (— %i %)d. We take u < 1 without loss of generality.)

(iii) U is a potential governing the finite range interaction between the n particles.
We take
Ux)= Y Uxi—xp). (1.3)
1<i<j=<n
where U : R¢ — [0, 00) is a bounded measurable function, U (y) = U (—y),
with U (y) = 0 for || y|| > ro for some 0 < ry < 0.

Remarks. (i) The results of this paper are valid if we only assume that the proba-
bility measure u is uniformly Holder continuous, i.e., there exist constants C < 0o
and o € (0, 1] such u([a,a +¢t]) < Ct* foralla € R and ¢ > 0. We assumed that
w has a bounded density (i.e., u is uniformly Holder continuous with ¢ = 1) for
simplicity.

(ii) We took U to be a two-particle interaction potential as in (1.3) for simplic-
ity. Our results hold for nonnegative bounded finite range n-particle interaction
potentials.

The n-particle Anderson Hamiltonian H(f,") is a Z4-ergodic random Schrod-
inger operator on L2(R"?). Here Z¢ acts on R"? by

(X1, X2...,Xp) e R" — (x14+a,x2+a,...,xy,+a) e R foraeZq.

It follows (see [5, Proposition V.2.4]) that there exists fixed subsets ON ng,),
™ and T of R so that the spectrum o (HSY) of HV, as well as its pure point,
absolutely continuous, and singular continuous components, are equal to these
fixed sets with probability one.
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Note that H" = H{Y | and it is well known that =@ = [0, c0) (e.g., [22]).

0,0
It follows, letting 28”) denote the almost sure spectrum of Héfz, that

=M =50 4. 4 20 = [0, 00). (1.4)
In Appendix A we show that we also have
™ =10, o0). (1.5)
We now fix a multi-particle Anderson Hamiltonian H(,(,”), n € NN.
We use the following definitions and notation.
(i) Givena = (ai,...,a,) € R"¢, we let
(@) := (1 + [lall*)2.
diama := max |la; —a;|,
i n

.....

and

(i) Givena,b € R" we set
du(a,b) := dy(Sa, Sp),

where dg (S1, S2) denotes the Hausdorff distance between two finite subsets
S1,S8, C R4, given by

dg(S1, S2) ;= max{max min||x — y||, max min|x — y||}
xeSy yeS>2 yeSy xeS8

(1.6)
= max{max dist(x, S»), max dist(y, S1)}.
X€S yeS>

It follows from the definition that
di(a,b) < |a—b| < dy(a,b) + diama fora,b € R"¢ (1.7)

(see [2]).

(iii)) Wefixv, > % and let T}, be the operator on L2(IR"¢) given by multiplication
of the function (x)"", where (x) = (1 + ||x|?)2.

(iv) We set

— nd
Zx = Ayemndjy—xl<fy Torx € R™.
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We prove localization for the multi-particle Anderson Hamiltonian H(f,"),
for all n € NN, as follows. (Note that X[O,EN)(H‘E,N)) = )((_OO,EN)(H(E,N)) since
(N)
Hgy' " =2 0.)

Theorem 1.2. Given N € N, there exists an energy En > 0 satisfying the follow-
ing properties.

(i) The following holds with probability one.

(a) ANDERSON LocALizATION

H(E,N) has pure point spectrum in the interval [0, En ). Moreover, there
exists M = My > 0 such that for all E € [0, Ex) and ¢ € x(gy(HY)
we have

12Vl < Coe Ty Wlle™ forallx e RN (1.8)
In particular, each eigenfunction r of H(,(,N) with eigenvalue E € [0, En)
is exponentially localized with the non-random rate of decay M > 0.
(b) FINITE MULTIPLICITY OF EIGENVALUES

The eigenvalues of H(,(,N) in [0, En) have finite multiplicity:

tr xgy(HS) < 00 forall E € [0, Ey).

(c) SUMMABLE UNIFORM DECAY OF EIGENFUNCTION CORRELA-
TioNs (SUDEC)

For every § € (0, 1) there exists a constant C ¢ such that for every
E €0, Ex) and ¢, € Ran )({E}(H(,(,N)) we have

_ _ _ ¢

1Xx @MVl < CogITR' IITR W x)> e @ &)

forallx,y e RN,

(ii) DynaAMIcAL LOCALIZATION

Foreveryt € (0,1) and y € RN? there exists a constant Ce(y) such that

— ¢
B 5up e 10,230 (M DSy} = ey 452
gl=1

forall x,y € RN?, the supremum being taken over Borel functions g on R
with sup, e |g(t)| < 1. In particular, we have

() B ¢
IE{SUIEH)(x)([o,l«:N)(H(,(,N))e”Hw Xyll} < Ce(y)e (dp (x.))
te

forall x € RN,
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Remark. SUDEC (Summable Uniform Decay of Eigenfunction Correlations) is
equivalent to SULE (Semi Uniformly Localized Eigenfunctions); see [17, Re-
mark 3].

The theorem is proved by a bootstrap multiscale analysis, a statement about
finite volume multi-particle Anderson Hamiltonians. Our finite volumes will be
boxes and rectangles, defined as follows.

(i) The one-particle box centered at x € R? with side of length L > 0 is
Ap(x)={y e R4 |y —x|| < £}. We set

A=ANZ2.

(ii) The n-particle box centered at x € R*? with side length L > 0 is
W)=y eR" |y x| < 1‘[ L(x%):

note that A(Ll)(x) = Az(x). By abox Az in R”¢ we mean an n-particle box
A(L”)(x) for some x € R"4. Note that ¥, = XA, (x) for x € R"4.

(iii) We also define n-particle rectangles in R”? centered at points x € R"¢:
n
AP (x) =T AL;(xi). where Ly, L..... Ly > 0.

(We mostly use n-particle boxes, but in a few places we will need n-particle
rectangles.)

Definition 1.3. Given an n-particle rectangle
n
A = A(n)(a) = l_[ AL[ (ai)s
i=1

we define the corresponding finite volume Anderson Hamiltonian H ("zx onL?(A)
by

HcSan = Héna), A T Ua, with " A(”) + V(n)

0,w,A *

where Aff) is the Laplacian on A with Dirichlet boundary condition, Uy is the
restriction of U to A, and

v (x) = Z VAL (i) forx €A, (1.9)

wAL (a;
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where V( . 1s defined for a one-particle box A < R? by

VN (@) =Y wpu(x—k) forx € A. (1.10)
kel

We set
RV ()= (HI) —2)7" forz ¢ o(HI)).

Note that H", = H{') , and we have (cf. (1.4))

(H(") 2) _o(H“AL @)+ +0(H(1AL @)- (1.11)

We will often omit the dependency on n from the notation, where it is clear, and
just write Hy, A for Hcanx and Ry, A (z) for R((:)A (2).

The bootstrap multiscale analysis uses three types of good boxes, defined for a
fixed @ (omitted from the notation).

Definition 1.4. Let A = A(L”)(x) be an n-particle box and let £ € R. Let 6 > 0,
. €(0,1),and m > 0.

(1) The n-particle box A is (0, E)-suitable if, and only if, E ¢ o(H, ) and

L
I XaRa(E)xsll < L% foralla,b e A with |la —b| > 00"

Otherwise, A is called (0, E)-nonsuitable.

(ii) The n-particle box A is (¢, E)-subexponentially suitable (SES) if, and only
if, E ¢ 0(Ha) and

L
IxaRa(E) i3] < e™L° foralla,b e A with |a — b > To6°

Otherwise, A is called (¢, E)-nonsubexponentially suitable (nonSES).
(iii) The n-particle box A is (m, E)-regular if, and only if, E ¢ o(H, ) and
I XaRA(E) 3] < ™58l foralla,b e A with |a—b| > L.

Otherwise, A is called (m, E)-nonregular.
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Remark 1.5. The different types of good boxes are related:

@) Ay (x) (m, E)regular = A" (x) (rgmk. E)-suitable;

(i) AV (x) (6, E)-suitable = AV (x) (£2L, E)-regular;

(i) Ay (x) (L8571 E)-regular = A{”(x) (¢ — 98100, E)-SES;

(iv) A (x) (¢ E)-SES = A (x) (L', E)-regular.

Our main technical result extends the bootstrap multiscale analysis of Ger-
minet and Klein [13] (see also [23]) to the multi-particle Anderson Hamiltonian.

Theorem 1.6 (bootstrap multiscale analysis). There exist
po(n) = po(d,n) >0, n=1,2,..,
such that, for every N € NN, given 6 > 8Nd and an energy E™) > 0, there exists
£ =L ||plloo. N.6. EM).
such that if, for some Lo > L andalln =1,2,...,N,

sup P{A{"(x) is (0. E)-nonsuitable} < po(n) (1.12)

xeRnd

Jor all
E < E® = N-"gW),

then, given 0 < ¢ < 1, we can find a length scale
Le = Le(d, ||plloos N, 6, EN) | Ly),

8¢ = 8¢(d, ||plloos N, 6, EM), Lg) > 0,
and

m; = m;(S;, L;) > 0,

so that the following holds forn = 1,2,..., N.
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(i) Forevery E < E®™ [ > L¢, and a € R4,

P(AY (@) is (me. E)-nonregular} < e~

(i) Given E; < E®, set
I(Ey) = [Ey — 8¢, Ex + 8¢] N (—o0, E™].
Then, for every E1 < E®™ [ > L¢,anda,b € R with dig(a,b) > L,

P{there exists E € I(E1) such that

() () L (1.13)
A;7(a) and A}~ (b) are (m¢, E)-nonregulary < e™ " .

Theorem 4.1 shows that the hypotheses of Theorem 1.6 are always satisfied at
some nontrivial interval at the the bottom of the spectrum.

Corollary 1.7 (localization). Given N € NN, an energy E®) > 0, and an open
interval I C (—oo, EM)), suppose that the conclusions of Theorem 1.6 hold for
all energies E € 1. Then the conclusions of Theorem 1.2 hold on the interval 1
(i.e., with I substituted for the interval [0, Ex) in Theorem 1.2).

Theorem 1.2 follows immediately from Theorem 1.6, Theorem 4.1, and Corol-
lary 1.7.

2. Wegner estimates

2.1. Fully and partially separated rectangles. Let
n
A=A =[] Ar(a)
i=1

be an n-particle rectangle. Given J € {1, ..., n}, we set

A(ag) = A%ay) = [[Ar;(@). whereay = (a;.i € J). a = (ag.aye);
ied
MA@ (@) = | JAL (@), TA™(a) = THAP (@) = AL, (@);
i€d

IA™(a) = n{1 }A(")(a).
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Definition 2.1. Let
n n
AP ) =] AL (xi) and AP (y) =]]Ay ()
i=1 j =
be a pair of n-particle rectangles.
(i) A®™(x)and A®(y) are partially separated if, and only if, either
Ar;(x))NTIA™(y) =@ forsomei € {1, ..., n},
or
Ag; (yj) N NMA™(x) =0 forsome j € {I, ..., n}.
(ii) A®(x)and A®™ (y) are fully separated if, and only if,
OA™(x) N TIA® (y) = 0. 2.1)
Note that, in view of our definition of the finite volume random potentials
(see (1.9) and (1.10)), events based on fully separated rectangles are independent.
Moreover, if the n-particle rectangles A (x) and A ™ (y) are partially separated,

with, say, Az, (x;) NTTA ™) (y) = @, then events based on A ™ (y) are independent
of the random variables {wy; k € AL, (x;)}.

2.2. The Wegner estimates. Given a one-particle box Ay (x), we willuse £, (x)
and IP 5, (r) to denote the expectation and probability with respect to the probabil-
ity distribution of the random variables {wg; k € Ar(x)}.

Theorem 2.2. Letn € N and E+ > 0. There exist constants

Vn,E+ = )’n,E+ (d7M+’8—’ ||l7||00) > 0
and
Cn,E+ = C(d’M-l—’u—’S:t’||l7||007n’E+)7

such that, for all n-particle rectangles
= A"(a) = 1‘[ AL, (a;)

witha = (ay,...,a,) € R™ and 114+/nd < L; < Lfori =1,...,n, and all
intervals 1 C [0, E4) with |I| <2y, g, we have

Eny, @) xr(HSDY < Cog lplloo I L™ fori=1.2.....n. (22)
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In particular, forany E < E4, 0 <¢g < Yn,E4r andi =1,2,...,n, we have

1

Pas, @I ROA B = <} = Py apld@(HIY). E) < &) .

=< 2Cn,E+ ”p”oogLnd .

We prove Theorem 2.2 by modifying the proof of [19, Theorem 1]. The main
difference between Theorem 2.2 and [19, Theorem 1] is that the expectation in (2.2)
is taken only with respect to the random variables indexed by the one-particle
box Ag4. This is needed for proving Corollary 2.3 for a pair of partially sepa-
rated n-particle rectangles. Note also that Theorem 2.2 is proved for arbitrary
n-particle rectangles, not just n-particle boxes A(L”)(a) witha € 2" and L € N
asin [19, Theorem 1] — a consequence of their use of the results of [24]. We extend
the results of [24] to arbitrary n-particle rectangles in Appendix B.

Proof. Let
A = H A, where A; = A, (a;),
i=1,...,n
be an n-particle rectangle with @ € R"? and 114+/nd < L; < Lfori =1,...,n.
Then for x € A we have

n
1
v ) =Y v ()
i=1

n

= Z Z wru(x; — k)

DI DIFTE)
kezd iskel;
A
kezd
where
A
BN = D0 ui =k Zus YT Xy (),
{iskeA;} {iskeA;)
where we used (1.2). It follows that forg = 1,2, ...,n we have
A
HO) =00 + U+ Y ol
kezd

2.4)
= _AXz) + Up + Z a)kQIEA) + Z a)kQIEA).

kezd\A, ke,
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Now, for

51
7= min{=-, 5} and B{(k) = {x e R"; |x —kl|, <},

2
we define

(A) _

Wi (x) = Z XBS,’”(k)(x) for x € A.
keAnznd
Fix g € {1,...,n}, and given x € R"?, write
x = (xq,x;), where xj e R4,

Then

XB,({"(k)(x) < XB,S”(k,,)(xq)XB;”—“(kj)(x;') fork € 7', x e R". (2.5)
We write
A=A;x A;‘, where A;‘ = 1_[ A;.
ie{l,...n)\{g}
It follows that, for all x € A,

) 1
Wi (x) < Z XB,S”(kq)(x‘l)XBf,”_”(kj-)(xq)
keAnznd

1
=2 XB%"(kq)(xq){ ) e )}

kyehg kgeA nz=1d

= > X B (kg (¥a)
kqel/\;

= D KA

kej\;

< Z ( Z XAfsl_)(k)(xl))
keX; i;kel/\\,-
<u' ) oM (x).
kejx:
Fix E;+ > 0. It follows from Theorem B.1 that for any interval I C [0, E4)

1 (HE) < v i (HOOW D (H)

— — n n 2.6
< u_lyn,%+x,(Hg,L)( 3 Q;A’)XI(H;)A), (2:0)

kel/\;
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forall w € [0, M+]Zd, where y, g, is obtained from (B.5):

2 ~
Vg, = snMmdHED with K = n(n = D)||Ulloo + 2M4 8% + E. (27

Wegner estimate (2.2) can be proved following the strategy of [24, Lemma 3.1],
using (2.4) and (2.6). This is what is done in [19, Proof of Theorem 1], the differ-
ence being that the proof in [19] uses a version of (2.6) where in the right hand
side

d
Z GIEA) is replaced by Z Z G,EA),
keh, 9=lken,

and averages over all random variables instead of only over the random variables

{w; }ieK;' The same argument as in [19] applies, using (2.6) and averaging only

over the random variables {w; }iejx\’ yielding (2.2). O
q

Corollary 2.3. Letn € N and E+ > 0, and let y, g, be as in Theorem 2.2. Let

Av= [ ML) and A= T] Ay,

witha,b € R"® and 114/nd < L;, Lg < Lfori =1,...,n, bea pairof partially
separated n-particle rectangles. Set

§(Ha,) = 0(Ha,) N (—o0, E4],
and

§(Ha,) = 0(Ha,) N (—o0, E4].
Then there exists a constant
Cny =C(d, My u_.8+.1|U 0. . Ex),
such that, for all 0 < e < yn g,
P{dist(5 (HA,).5(Ha,)) < &} < Co £ ||plloctL>". (2.8)

Corollary 2.3 follows from Theorem 2.2 in the same way [27, Corollary 2.4]
is derived from [27, Theorem 2.3]. Note that Corollary 2.3 is (up to minor details)
the same as [19, Theorem 9], although the proofs use somewhat different versions
of the Wegner estimate.
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3. Toolkit for the multiscale analysis

3.1. Deterministic estimates. The following lemmas are deterministic, i.e., they
hold for a fixed @ (omitted from the notation).
Given n-particle boxes A € A we set

dAA = 9A \ 94, (3.1a)
AR = x e A; dist(x, 08 A) > 8 for§ > 0, (3.1b)
T =T = {x € A: dist(x. 98A) = # =8}, (.1c)
T =72 = U(A%(x) NA). (3.1d)

xeY

Lemma 3.1. Let A € A be two n-particles boxes of length £ and L, respectively,
with{ < L, and z ¢ 0 (HA) U o (Hg). Then there exists a constant

C = Cn,d,

such that, for x € A with Az 15 (x)NA C A,andy € A\ A, we can finda € Tl‘}
such that

1y RE () Xx |l < Coa €471 V/5 + max{0, R(2)} Xy RE (2)Xall [ Xa RA (2) Xl
(3.2)

In particular, if R(z) < E®™, for some fixed energy E™, we get
12y RE (D)2x | < "¢ 11Xy RE () Xall Xa RA ()Xt | (3.3)

provided { is sufficiently large (depending on E™).
Lemma 3.1 is just [18, Lemma 2.4(i)] with minor modifications.
Lemma 3.2. Given an n-particle box, A of side £, for every E > 0 we have
# € o (H{) N (<00, BN} = t{(oe s (H)) = Cua BT €79,

Lemma 3.2 follows from [25, Lemma 3.3] (see also [16, Eq. (A.7)]).
We also use the following Combes-Thomas estimate from [14, Eq. (19) in The-
orem 1].
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Lemma 3.3. Let A be an n-particle box. Then for all E < inf o (Hp) we have

4 -
12 RA (E)Xy || = 3 (info (Ha) — E)lem2V/info(HA—E(lx—yl-nd) (3 4y

forall x,y € R™. In particular, if we take ||x — y| > ﬁ with L sufficiently
large, we have

4 —
||XxRA (E)Xy” < g(lnfO'(HA) _ E)—le—%«/lnfO'(HA)—E“x—y” (35)

4 JRIGTHA—E
< J(info(Ha) - E)yle—* =0 L

3.2. Suitable cover. Following [18, Definition 3.12] we introduce suitable covers
of n-particle boxes.

Definition 3.4. Given scales £ < L, a suitable {-covering of a box A(LN )(x) isa
collection of boxes A, of the form

©  _
9A2N)(x) = {AZ(")},.EQ;;K?LN)(X), (3.6)
where
© ._ Ndy A A (V) - 347 gLt
Glim gy = e+ alZVNA () witha e [g’ g]m{m,n e N} 3.7)

Suitable covers are useful because of [18, Lemma 3.13], stated below.

Lemma 3.5. Let £ < %. Then every box A(LN) (x) has a suitable £-covering, and

for any suitable L-covering 953"”@) ofAéN) (x),
L

AP @ = A (38)

©
reG
AN )

foreach y € A(LN)(x) thereisr € Gifzm( ) such that
L X

A NALY(x) C Ag(r); (3.9)

Ag(r)n Ae(r'y=0 forallr,r' €x +alZ% r # v (3.10)
L\Nd ) L—Z Nd 2. \Nd

(Z) =HG :( T 1) = (7) ' G.11)
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Moreover, given y € x + alZN? and k € N, it follows that

A kot 1e(¥) = U Ag(r), (3.12)
re{x+alZN4INA ka4 1)¢(¥)

and {A((I’)}re{x_i_(xesz}ﬁA(zka_H)e(y) is a suitable {-covering of A (2ka+1)¢(Y).
In particular, for each y € ZN? there is r € x + alZN? such that

Ag(y) C Ay(r). (3.13)

Remark 3.6. In performing the N-particle multiscale analysis, we will utilize
Lemma 3.5 in the following way: we first choose some appropriate k; such that
2kioe +1>3N.GivenJ € N, leta;y,--- ,a; € A(LN)(x) where t < JNV, there
exists

Vireos Vs cx +alzN?

such that

Asye(@) VAN (x) S Aiarne(yy)
c AM @), ... Asyela) N A (x)
C Akiarne(yy)
c AM(x).

If the set

A(2k1a+1)e(y(1)) U---u A(2k1a+1)e(y(m)) - A(LN) (%),

where
yO L y™ e x 4 apzN?,

is connected, then we will take k,, to be the smallest integer such that
A ka3 U+ U Akyarne (3 ™) € Agipa+ne) € AT (x),
for some r € x + alZN?. Moreover, for each y € ZN?, we set
AP = Ag(r),

where A, (r) comes from (3.13).
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3.3. Partially and fully interactive boxes. Following Chulaevsky and Suhov
[8, 9], we divide n-particle boxes into two types: partially interactive and fully
interactive.

Definition 3.7. An n-particle box A(L")(a) is partially interactive (PI) when there
exists @ # J < {1, ..., n} such that A(L")(a) C &4, where

E5={x eR" | min |x; —x;|| > ro}.
) [, i flx; =

If A(L")(a) is not partially interactive, then it is said fully interactive (FI).

If the n-particle box A(L”) (a) is partially interactive, by writing
A7’ (@) = A (ag) x A (age)
we are implicitly stating that
AP@ce; ford#£3< {1, ..., n).

We set
0y :O'(HAz(aa)) and Ogc :O(HAic(agc‘))'
Given A € oy, we write

d
P/l = X{A}(HAz(ag))

Lemma 3.8. Let

AP @) = A7 (ug) x A (uge)
be a PI n-particle box. Then

@) HgAgt)(ll) N chA(L")(u) = @, so events based on Ai(ug) and Aic (uge)
are independent;

() Hyon gy =Hy g ®Loeq o+ 11, ® Hye

(uye) Wye)’

(i) o(Hyon ) = 0(Ha @p) +0(Ha @se)):
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(iv) ifz ¢ U(HA<Ln>(u)), then

Ry @ =D 3 +—F®P]

Aeay H«E(Tgf

= > PI®Ra 0z — )
AEGg
Z RaLwp(z—)® P,
Meagc

and, forall x,y € A(L")(u), we get

’

X RAG Al < Y 12 ye Rapuge) (2 = Dy e

1603
and
X RA LI < Y ey Ray gy (@ — )Xy, |l

Mecgc

Lemma 3.9. Let
AL ) = A (ug) x AY (uge)

(3.14a)

(3.14b)

be a PI n-particle box and E < E™. If ¢ is sufficiently large, the following holds.

(1) Given 8 > 2nd + 2, suppose that Ag(ug) is (0, E — p)-suitable for every
W € oge N (—00,2E™] and that Agc (uge) is (0, E — A)-suitable for every

A €0y N (=00, 2E™). Then AE")(u) is (£, E)-suitable.

(i) Given0 <m < é\/ E® suppose that Ag (uy) is (m, E—p)-regular for every
W € oge N (—o00,2E™] and that A?C (uge) is (m, E — A)-regular for every

A €0y N (=00, 2EM™). Then AE")(u) is (m — w, E)

-regular.

(iii) Given 0 < ¢’ < ¢ < 1, suppose that A?(U3) is (¢, E — w)-SES for ev-
ery i € oge N (—o0,2E™] and that A?C (age) is (¢, E — A)-SES for every

A€oy N (—00,2E™]. Then A (w) is (¢, E)-SES.

Proof. We prove (ii) the proofs of (i) and (iii) are similar. Given x, y € AEN ) (u)

with ||x —y| > then either we have

W’

— > — ¢ — Yool > —.
g =yl = 355 or lxae —yyell = 105
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Without loss of generality, we suppose that

s - gl = —
37 Y8l = 100"
Then, using (3.14), Lemma 3.2, and the fact that Ay = A?(ug) is (m, E — u)-reg-
ular for every j € ogc N (—o0, 2E™)], and setting
03¢ (E) = 0ge N (00, E],

we get

[ XxRA(E) Xyl

S Z ||Xx3RAg(E_H)Xy3”

/,LEUgc

= Y txgRa,(E— )y,
MGO‘SC(ZE(’“)
+ Z ”XngAg(E_/’L)Xyg”

ueoge\oge (QEM)

< Cpg(2E®)S gnd g=mlxs=y,|

T Y ey Rag(E— oy,
weoge\oge (2E M)
o0
5K"d+1e_m||xg_y3|| _|_Z Z ||Xx3RAg(E—,U~)Xy3||~
k=2 HET e
KEMW<p<(k+1)E™

(3.15)
Applying (3.5) for 1 € ogc with kE™ < i < (k + 1) E™ we get

4 —1,— L fifo;—(E—)llxs—
1Xx, Ray(E — )Xy, || < =(infog — (E — p))~le~3vintoa—(E-mlxg=yyl

4 (kE(") _ E)—le—%VkE(")—Ellxa—yg l

A

A

g((k — EM) e 3V EDED x5 -y,
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Using Lemma 3.2 and (), we have (k > 2, [[x5 — y4| > lem)

Do ey Ray(E =iy,
ueagc
kE™ <p<(k+1)E™ .
< Cpg 0 ((k + 1)E™)2 ~1e=3VG=DE®lxg=y;|

< e~ VEDED x =y,

for sufficiently large ¢, so

o0
> > Xy Ray(E — )Xy, |

k=2 HETHC
KEM<u<(k+1)E™

oo
< Z VE=DE®|xz-y,|

<2e~ LVEW|xy .Yg”

for ¢ large. Using (3.15) and m < vV E®, we get

— — 1 (n) —
16 RAGEN L) < €441 emmIxa vl 4 gp=aVEDlxs=s]
< 2end+le—m||x3—y9||

100(nd +1) log(2£)
m-—z )

<o lx—y1 0

Definition 3.10. Let A(L")(a) and A(L”)(b) be a pair of n-particle boxes. We say
A(L”) (a) and A(L")(b) are L-distant when

max{dist(b, 87), dist(a, 8})} > 3nL.

The following lemma gives a sufficient condition for a pair of FI n-particle
boxes to be fully separated, and hence for events based on these boxes to be inde-
pendent. We omit the proof.

Lemma 3.11. Let A(L")(a) and Ag’)(b) be a pair of FI n-particle boxes, where L
is sufficiently large. Then A(L")(a) and A(L")(b) are fully separated if

max ||lx —yl|| > 3nL. (3.16)
XE€8q,yES)

In particular, a pair of L-distant FI n-particle boxes are fully separated.
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3.4. Resonant rectangles

Definition 3.12. Let

with L = min;—;

B e€(0,1).

.....

(i) A is called (E, s)-suitably resonant provided
dist(0(H\"), E) < L™*.

Otherwise, A is said (E, s)-suitably nonresonant.

(i) A is called (E, B)-resonant provided
1
dist(a(H™), E) < Ee—LB.

Otherwise, A is said (E, §)-nonresonant.

4. The initial step for the bootstrap multiscale analysis

We now show that the hypotheses of Theorem 1.6 are verified for energies at the
bottom of the spectrum. Recall ™ = [0, c0).

Theorem 4.1. Let 0 > 0and 0 < po < 1, and fix ¢ > 0. Then for all n € N there
exists
Ln = Ln(ds u—s 8i7 /—’L7 91 pOs 8)7

such that, forall L > L, and x € R4,

P{A Y (x) is (0, E)-suitable} > 1 — po forall E < E{",  (4.1)
where
m _ N -2
E[” = 2(dlog(L + 84 +2) —log po +logn)™ 4. “4.2)

Proof. We start with a well known result for the one-particle case. Fix 6§ > 0,
po > 0,andn € IN, ¢ > 0, and set
Po

Pn = —.
n
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As shown in [18, Proof of Proposition 4.3], there exists an energy
Ei=E(d,u_,5_,u,8) >0

such that for energies £ < Ej, x € R4, and scales L € 2IN,

P{o(HY

@,Ap(x

_d_
)N (=00, E] #£ 0y <e™® " LY,

and hence

. _2te
P{HS\ (o = min{(d log L —log pn)~ @ . E1}} > 1 — py.

Proceeding as in [18, Proof of Proposition 4.3], for each x € R4 and scales
L > 1, we consider the event

eV
QL,X - {H&),AL(X) Z 2E£}7

where .
24¢
E; = E(d log(L + 684+ +2)—log pu)™ @,
and conclude that for scales L > £/ = L/ (d,u—,5—, i, po, &) we have
P{Qr ) >1—p, forallxeRY.

Now let x € R"?, and consider the n-particle box A(L”)(x). Given L > 1, we
set
n
Qrx = m Qr.x;
i=1
SO
P{Qrx}>1—np, =1—py forL > L.
In view of (1.11),
infa(HO’A(Ln)(x)) >2nE; = 2E£n) forallw € Qp ,

which implies, using U > 0,

info(H

(n)
A(L")(x)) > ZELn forall w € QL x- 4.3)

We now fix @ € Qp, and let E < Eé") anda,b € A = A(L")(x) with
la —b| > ﬁ. It follows from (4.3) and Lemma 3.3 that £ ¢ cr(HA<n>(x)) and
L

(provided L is sufficiently large)

_ L (n)
1XaRA(E)xp] < 2(E) e 20T VEL, (4.4)

Thus, given 6 > 0, there exists £, = L,(d,u—, 8+, i, 0, po, €), such that for
all L > £, and x € R"? we have (4.1). O
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Remark 4.2. The hypotheses of Theorem 1.6 can be verified in a fixed interval at
the bottom of the spectrum at high disorder. To see that, consider
HY =-A™ 42vW + U,
where VaS") and U are as in Definition 1.1 and A > 0 is the disorder parameter.
H (f)"} can be rewritten as n-particle Anderson Hamiltonian in the form of Defi-
nition 1.1 by replacing the probability distribution p by the probability distribu-
tion w;, where ), is the probability distribution of the random variable Awy, that
is, u(B) = w(A7!B) for all Borel sets B C R. In particular, u; has density
pa(@o) = A7 p(A™ wo).
For simplicity we assume the covering condition

U-xa < ). ulx—k) (4.5)

keZdNA

for all one-particle boxes A, where U— > 0. (The condition (4.5) can be guaranteed
by requiring §_ > 2. If we restrict ourselves to boxes Az (x) with x € Z< and L
an odd natural number it suffices to require §_ > 1.) In this case it is well known
how to proceed in the one-particle case (see [10, 15]): Given E; > 0, it follows
from (4.5) that

PLHS, A o = 2E1} = 1= LY {(0.2E, U]} = 1-2E,U7 A7 | plloo LY.

Proceeding as in the proof of Theorem 4.1, we obtain

(n) _ A ‘
IP{erfA,A(L’”(x) >2mEr} > 1= 2nE1UZ" A7 plloo L7

Given 0 < p(n) < 1 and E > 0, we set

2E||pllooL?
ME.L,p(n)) = ———,
p(n)U-
obtaining for all £ > 0
P{H™ >2E}>1—p(n) forall A > A(E, L, p(n)).

0 A (x) T

To use Lemma 3.3 as in (4.4), we require

gE_le_ZLW‘/E <L

ie., L > L(E,0).
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We conclude that, given 0 < p(n), Eg > 0,and 8 > 0, for all L > L(Ey, 0)
and A > A(Ey, L, p(n)) we have

]P{A(L”)(x) is (0, E)-suitable for H(.(Bl} >1—p) forall E < Eo. (4.6)

If we do not assume the covering condition (4.5), we can still prove a large
disorder result using [18, Proposition 4.5] for the one-particle case.

5. The multi-particle bootstrap multiscale analysis

Theorem 1.6 is proven by induction on N, the number of particles. For N = 1
the theorem was proved by Germinet and Klein [13]. Given N > 2, we assume
the induction hypothesis: Theorem 1.6 holds forn = 1,2,..., N — 1 particles,
and prove the theorem for N particles. As in [13], the proof will be done by a
bootstrapping argument, making successive use of four multiscale analyses.

Induction hypothesis. Letr N € N, N > 2, and EN) > 0. For every t €
(0,1) there is a length scale Ly, §; > 0, and 0 < m* < %\/ EW) | such that for
n=12,...,N — 1 the following holds for all E < E® .= oN-np(N),

(i) Forall L > L, anda € R4,
P{Ag’)(a) is (m7, E)-nonregular} < e L7 (5.1)

(i) Fix E < E®™ andlet I(E) = [E — 8, E +8;] N (=00, E™]. Forall L > L,
and all pairs of n-particle boxes Ag’)(a) and Ag’)(b) with dg (a,b) > L, we
get

P{there exists E' € 1(E) such that

(n) (n) * o/ —LT (5-2)
both A} (a) and A} " (b) are (m;, E')-nonregulary < e™"~ .

Lemma 3.9 (ii) will play an important role in the proof of Theorem 1.6.
To satisfy its hypotheses, the induction hypothesis specifies m} < é\/ EW) for
every t € (0, 1), without loss of generality, and sets

E® ;=N g

IN THIS SECTION WE FIX N € N, N > 2, AND AN ENERGY EW) > 0,
AND ASSUME THAT THE INDUCTION HYPOTHESIS HOLDS FOR THIS N
AND EN)

For partially interactive N -particle boxes we immediately get probability esti-
mates from the induction hypothesis.
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Lemma 5.1. Let
AN (@) = Ag(ug) x Ag(uge)

be a PI N-particle box and t € (0, 1). Then for £ large and all E < E™),
(i) IP{AEN) (w) is (m* (L), E)-nonregular} < (N9+1e=t"

with

(ii) P{A () is (0, E)-nonsuitable} < (N +1e™t"
for
¢ m:
0 < @%,
and
(iii) P{AN (w) is (v, E)-nonSESy < (N4+1e7",

425

Proof. Let E < E™) Tt follows from Lemma 3.9 (ii) and the induction hypoth-

esis, using also Lemma 3.2, that for large ¢,
P{AN (w) is (m?(€), E)-nonregular}

< Z P{A((uy) is (m}, E — p)-nonregular}
HETge N(—00,2E(N)]

+ Z P{A¢(uge) is (m;, E — A)-nonregular}
A€ogN(—00,2E(N)]

Nd
< Cna(EM) 2 ¢
< Nd+1,-7
The other estimates now follow from Remark 1.5.
In what follows, we fix ¢, 7, 8, Co, {1, {2, ¥ such that

0<l<t<l1, Y?><0b,
and

0<l<b<ybhh<l<yli<B<iy<r<t<l]1 with{y? <.

(5.3a)

(5.3b)
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We set
m* =m},
where m¥ < 2/ E() is given in the induction hypothesis.
We will use the Wegner estimates of Theorem 2.2 and Corollary 2.3 for n =
1,2,..., N particles, which apply to an interval / C [0, E4) with [I]| < 2y, g, .
In the multiscale analysis we will need

Ey=E® =N
for the n-particles Wegner estimates. For convenience, we take
Er=ED =N 1TEW > FM forp =1,2,...,N.

Note that the constants in these Wegner estimates (including y,, g, ) are increasing
in n and on E, so we will always take the constants forn = N and Ey = E®M
(e.g., yN,E, ). To ensure that the condition |I| < 2yy g, is always satisfied, we
will always take sufficiently large scales L, i.e.,

L > L(yn,E,).

such that

L™ <yngp and e <yyp,.
Moreover, in the following lemmas the conclusions are always assumed to hold
for L sufficiently large.

The proof of the induction step proceeds as in [13, 23], with four multi-scale
analyses, as in [27], using the toolkit for the multiscale analysis in the continuum
given in Section 3. We state all the steps, but refer to [27] for the proofs when they
are similar.

5.1. The first multiscale analysis

Proposition 5.2. Let 6 > 8Nd and E < E™). Take
O<p<p+Nd<s<s+2Nd-2<86,

Y > 4000NN*1 and po = po(N) < 2(2Y)™N9. Then there exists a length scale
Z§ such that if, for some Lo > Z, we have

sup P{A(L]Z)(x)is(Q, E)-nonsuitable} < py,
xeRNd

then, setting
Lk+1=YLk, fork=0,1,2,...,
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there exists Ko € IN such that, for every k > K,

sup ]P{A( )(x)ls(G E)-nonsuitable} < L, P

xeRNd

The proof of the proposition uses the following deterministic lemma.

Lemma 5.3. Let 0 > 8Nd and E < EN). Take Nd < s < s + 2Nd < 6.
Let J € N, Y > 4000/JNN*! L = Y{, and x € RN?. Suppose we have the
Jollowing:

@) A(LN)(x) is E-suitably nonresonant,

(ii) there are at most J pairwise {-distant, (E, 0)-nonsuitable boxes in the (-
suitable cover;

(iii) every box AEN)(u) - A(LN)(x) witht € {2k;ja+1)¢;j =1,...,JNN} and
u € x +alZN?, where k; is given in Remark 3.6, is E-suitably nonresonant.

Then the N -particle box A(LN)(x) is (E, 0)-suitable for L sufficiently large.

Lemma 5.3 has the same proof as [27, Lemma 3.3]. Prop 5.2 is proved using
Lemma 5.3 as [27, Proposition 3.2] is proved using [27, Lemma 3.3].

5.2. The second multiscale analysis

Proposition 5.4. Let E < E™), p > 0,0 > 0,1 <y <1+ 5557 Then there

exists a length scale Z7 such that if for some Lo > ZT we can verify

sup IP{A( )(x) is (mg, E)-nonregular} < L,?,

xeRNd
where 0% < mgo < m*, then, setting
%
Liyr =Ly, fork=12,...,
we get

sup IP{A(N)(x) is (TO E)-nonregular} < L,:p forallk =0,1,2,....

xeRNd

To prove the proposition we use the following deterministic lemma.
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Lemma5.5. Let E < E™), L =¢7, J € N, mg > 0, and
1 .
my € [K—K,mo], where 0 < k < min{y — 1, y(1 — B), 1}. 5.4)

Suppose that we have the following:
@) A(LN)(x) is E-nonresonant,

(ii) there are at most J pairwise L-distant, (E, mg)-nonregular boxes in the suit-
able cover;

(iii) every box AgN)(u) C Agv)(x) witht € {kja+1)¢;j =1,--- ,JNN} and
uex +alZV, where k; is given in Remark 3.6, is E-nonresonant.

Then AiN) (x) is (E, mp)-regular for L large, where

1 1
myg =z mp Zm(—ﬁZF- (5.5

Lemma 5.5 and Proposition 5.4 are proved in the same way as [27, Lemma 3.5
and Proposition 3.4].

5.3. The third multiscale analysis

Proposition 5.6. Let E < EM), 0 < &, < & < 1 as in (5.3), and assume

1
Y > (3800NN*1)T=%0. Then there exists Z > L. such that, if for some scale
Lo > ZJ we have

1
sup P{ASY) (x) is (¢o. E)-nonSES} < (2(2)N4) Yoo,
x€eRNd

then, setting
Lk+1=YLk, k=0,1,2,...,

there exists Ky € IN such that, for every k > K,

4
sup P{Ar, (x) is (Co. E)-nonSES} < e k.

xeRNd
As a consequence, for every k > K;, we have
. Co—l _Lzl
sup P{Ar,(x)is (L;°" ", E)-nonregular} < e~ "k .

xeRNd

The proof of proposition uses the following deterministic lemma.
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1
Lemma 5.7. Let E < EWN)| L = YU, where Y > (3800NN+t1)T=%  and set
J = Y%y,

the largest integer < Y 0. Suppose the following are true:
@) A(LN)(x) is E-nonresonant,
(ii) there are at most J pairwise L-distant, (E, o)-nonSES boxes in the suitable
cover;
(iii) everybox A" (w) € AN (x) with t € {(2kja+1)¢;j = 1,---, JNV} and
uex +alZV where k; is given in Remark 3.6, is E-nonresonant.
Then A(LN) (x) is (E, £o)-SES, provided { is sufficiently large.

Lemma 5.7 and Proposition 5.6 are proved in the same way as [27, Lemma 3.7
and Proposition 3.6].

5.4. The fourth multiscale analysis. We fix ¢, 7, 8, {1, {2, y as in (5.3).

5.4.1. The single energy multiscale analysis

Proposition 5.8. There exists a length scale Z73 such that, given an energy E <
EWM) if for some Lo > Z3% we can verify

N/ _L4
sup IP{AL0 (a) is (mg, E)-nonregular} < e -0 |
acRNd

where Lf)o_l < mgo < m¥*, then, for sufficiently large L,

sup IP{A(LN)(a) is (%,E)-nonregular} 56_1}2.

acRNd
Proposition 5.8 is proved first for a sequence of length scale Lj similarly to
Proposition 5.4; to obtain the sub-exponential decay of probabilities we choose J,
the number of bad boxes, dependent on the scale L as in the proof of Proposi-
tion 5.19 below. To obtain Proposition 5.8 as stated, that is, for all sufficiently
large scales, we prove a slightly more general result.

Definition 5.9. Let £ € R. An N-particle box, A(LN )(x), is (E, mp)-good when
itis (E, mp)-regular and E-nonresonant.

1
Lemma 5.10. Let A(LN) (x) be an N-particle box, y > 1,{ = LY withy <y’ <
y2 andm > 0. Let E < E™), and suppose every box in the suitable cover is
(E,m)-good. Then A(LN) (x) is (E, Z)-good for large L.
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This lemma is just [18, Lemma 3.16].

Lemma 5.11. Let E; < E™), ¢, € (¢,7), and y € (1, %) with {y* < L. Assume
there exists a mass mg, > 0 and a length scale

Lo = Lo($2),

such that, taking
Lk+1 =LZ fork =0,1,...,

we have
Ny 7 -2 —
sup P{ALk (@) is not (m¢,, Ey)-goody < e "k  fork =0,1,.... (5.6)
acRNd

Then there exists L¢ such that, for every L > Ly,

sup P{A(LN)(a) is not (me,, E1)-good} < e LF

acRNd

The proof of Lemma 5.11 is straightforward (see [27, Lemma 3.11]).

5.4.2. The energy interval multiscale analysis

Lemma 5.12. Let AiN) (x) be an N -particle box and m > 0. Let Eg < E™), and
suppose that

@) A(LN)(x) is (m, Eo)-regular,

i _LB . 8

(ii) dlS'[(U(HA(LN)(x)), Eg)>e L% e, ”RA(LN)(x)(EO)” < eLl”,

Then A(LN)(x) is (m — %logz’ E)—goodfor every E € I = (Eg—n, Eo + 1),
where n = %e‘mL—zLﬁ.

Lemma 5.12 is proved as [27, Lemma 3.12].

Proposition 5.6, combined with Theorem 2.2 and Lemma 5.12, yields the fol-
lowing proposition.

Proposition 5.13. Let 0 < {» < &1 < {o < 1, and assume the conclusions of
Proposition 5.6. There exists scales Ly, k = 1,2, ..., such that

lim L; = oo,
k—o00

with the following property. Let

10010g2) 1e_Li0_2L£'

my = (L,io_l i and 7 = 3
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Then, for all Ey < EM),
sup P{there exists E € (Eo — ng, Eo + ni) such that
xeRNd . _L81
Ap, (x)is (mg, E)-nonregulary < e™ "k |

and

sup P{there exists E € (Eg — ng, Eo + ni) such that

RNd ¢
e Ay, (x)is not (mg, E)-good} < e L

We now take L = £7.

Definition 5.14. Let
AN (x) = AL(xg) x AL(xge)

be a PI N-particle box with the usual £ suitable cover, and consider an energy
E eR.

@) A(LN )(x) is not E-Lregular (for “left regular”) when there are two boxes in
the suitable cover of A (xy) that are {-distant and (m™*, E — w)-nonregular
for some p € 0 (Hp , (xze)) N (—00, 2EM)].

(i) A(LN ) (x) is not E-Rregular (for “right regular’”) when there are two boxes in
the suitable cover of Ay (xgc) that are {-distant and (m*, E — A)-nonregular
for some A € 0(Hp, (x,)) N (—00,2EM)].

(iii) A(LN )(x) is E-preregular when A(LN ) (x) is E-Lregular and E-Rregular.
Lemma 5.15. Let Ey < EW) such that

I = [Eq 8¢, Eo +8:] € (=00, 2EW)],
and consider a PI N -particle box

AN (x) = AL(xg) x AL(xge).

Then

6))] IP{A;N) (x) is not E-Lregular for some E € [} < L3Nd g7
and

(ii) IP{A;N) (x) is not E-Lregular for some E € [} < L3Nd gt

We conclude that for L sufficiently large,

(iii) IP{A(LN) (x) is not E-preregular for some E € I} < 213N =7
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Lemma 5.15 has the same proof as [27, Lemma 3.15].

Definition 5.16. Let
AP () = AL(xg) x Ar(xge)
be a PI N-particle box, and consider an energy E < EM),

@) A(LN)(x) is E-left nonresonant (or LNR) when for every box A(zkj_H)g (a)
with Aok, +1ye(a) © Ap(xg),a € x5 + alzV and j € {1,2,... |3||3|}, is
(E — p)-nonresonant for every jt € 0 (HA ; (uye)) N (—00, 2EM)]. Otherwise
we say A(LN ) (x) is that E-left resonant (or LR).

(i) A(LN ) (x)is E-right nonresonant (or RNR) when for every box A @k;j+1)¢ (a)C
Ar(xge) witha € xge + o713 and j € {1,2,...13¢|"" IV is (E — 1)-non-
resonant for every A € o (Hp, (x,)) N (=00, 2EM)]. Otherwise we say that
A(LN) (x) is E-right resonant (or RR).

(iii) We say AN (x) is E-highly nonresonant (or HNR) when for AN (x) is
E-nonresonant, E-LNR, and E-RNR.

Lemma 5.17. Let E < E™) and A (x) = AL(xy) x AL(xgc) be a PI N-par-
ticle box. Assume that

(i) A (x) is E-HNR and
(ii) A(LN)(x) is E-preregular.
Then AiN) (x) is (m(L), E)-regular for sufficiently large L, where

N 100(nd + 1) log(2L)
m(L):m—ziK— T g .

5.7

Proof. Applying Lemma 3.9(ii), it is sufficient to prove that there exists m <
1V EW) suchthat Af(xy) is (m, E —p)-regular for every p € oge N(—00,2E™)]
and Ay (xgc) is (m, E — A)-regular for every A € o5 N (—oo, 2E™)]. Then we can
conclude that A(LN )(x) is (m— w, E)-regular.

Let 1 € ogc N (=00, 2EM]. Since A(LN)(u) is E-preregular; thus it is £-Lreg-
ular, which implies there cannot be two boxes in the suitable cover of Ap(xy)
that are ¢-distant and (m™*, E — p)-nonregular. Moreover, A(LN ) (u) is E-HNR;
thus it is E-LNR, which implies every box A(2kj+1)g(a) with A 2k +1)¢ (a) <
Ar(xy),a € x5+ 734 and j € {1,2,..., |H||3|}, is (E — p)-nonresonant.
By Lemma 5.5, we have A (xy) is (m* — ﬁ E — p)-regular. A similar ar-
gument will apply for A € o5 N (—o0,2E™)]. We conclude that A(LN ) (x) is

1 100(nd+1) log(2L)
(m* —2LF T L E)

-regular. O
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Lemma 5.18. Let E < EN) and
AP (x) = AL(xg) x AL(xge)
be a PI N -particle box.
Gy If A(LN)(x) is E-right resonant, then there exists an N -particle rectangle
A =ArL(xg) X Ak a+nye(n),

where j € {12,137, u € xge + a0z, and Akjat+e(n) S
A1 (xgc), such that
dist(a(A), E) < %e—«zk,-aﬂ)e)ﬁ 5 %e_zs'

(i) If A(LN)(x) is E-left resonant, then there exists an N -particle rectangle
A = AQk;a+1ye(u) X Ap(xge),

where j € {1,2,....13|"1}, u € x5+0Z139, and A (i, a11)0 (@) S AL (uy),
such that
- 1 (kjernpp _ 1 8
dist(c(A), E) < Ee 7 < Ee .
Proof. Let E < EN) and
AN (x) = AL(xg) x Ar(xc)

be a PI N-particle box. Suppose A(LN ) (x) is E-right resonant. (The same argu-
ment applies if A(LN)(x) is E-left resonant.) Then we can find A € 6(HA , (x,)) N
(=00, 2E™] and an (N — |J])-particle box, Akja+1e(w) S Ap(xge), withu €
xge +alZN4 and j € {1,2,....|3¢/%1}, such that A (o, 1) (u) is (E — X)-res-
onant, so there exists n € o (Hx 2k o +1ye(x)) such that

Moreover, Az (x3) X Ap(xgc) is Pl and A ok ;a+1)e(®) S AL(x g¢), so if we take
A = AL(xg) X A@k;a+1)e(u), then we get

0(HA) = 0(HAp(x) + 0 (HAx 0y 1y0@)-

Hence, if a PI N-particle box A(LN ) (x) = Ap(xy) x Ap(x4c) is E-right reso-
nant, then there exists an N-particle box A = Ap(xj) X Ak;a+1)¢(#), where
A(2kj(x+1)€ (ll) - AL(X3C), such that

1
dist(c(Hy). E) < Ee_((2kj(¥+l)€)ﬁ‘ 0
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We now state the energy interval multiscale analysis. Given m > 0, L € NN,
x,y € ZN? and an interval I, we define the event

R(m,I,x,y,L,N) = {there exists E € I such that
both A(LN) (x) and A(LN) (y) are not (m, E)-regular}.

Proposition 5.19. . Let ¢, 1, 8,1, 82,y as in (5.3) and 0 < mg < m*. There exists
a length scale Z% such that, given a closed interval I < (—oo, E (N, if for some
Lo > Z3 we can verify

_sz
]P{R(mOylsxsyﬁL()#N)}Se 0,

for every pair of partially separated N -particle boxes A JLVO (x) and A(L]Z) (y), then,
setting

y vk
Lk+1=L =L0 fork=0,1,2,...,

for every pair of partially separated N -particle boxes Agz) (x) and Agz) (»),

P{R(%2.1,x,y,Li, N)}
< IP{there exists E € I such that
A(L]Z)(x) and A(L]Z)(y) are not (%2, E)-good}

&
<e Lk,

Proposition 5.19 is proved in the same way as [27, Propositions 3.19 and 3.21].
The dependence of the length scale Z3 on E ) (not present in [27]) comes from
the use of Theorem 2.2 and Corollary 2.3.

5.5. Completing the proof of the bootstrap multiscale analysis. Proceeding
as in [13, Section 6], Theorem 1.6 follows from Propositions 5.2, 5.4, and 5.6, plus
Proposition 5.8 for Part (i) (the single energy bootstrap multiscale analysis), and
Propositions 5.13 and 5.19 (the energy interval bootstrap multiscale analysis).

6. From the bootstrap multiscale analysis to localization

Corollary 1.7 is proved from Theorem 1.6 along the lines of the proofs of the corre-
sponding statements in [11, 13, 17, 18]), similarly to the proof of [27, Corollary 1.7]
from [27, Theorem 1.5].
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A. The almost-sure spectrum of the n-particle Anderson Hamiltonian

Proposition A.1. Let X be the almost-sure spectrum of the n-particle Anderson
Hamiltonian H(f,") as in Definition 1.1. Then £ = [0, 00)

Proof. Clearly ™ c [0, c0). We need to prove [0, 00) € . Solet A € [0, c0)
and ¢ > 0. Since o(—A™) = [0, 00), there exists ¥ € C2(R"¢) with ||[y| = 1
and abox A" (x) such that supp ¥ € A (x) and | (~A® —)y|| < &. Without
loss of generality we can assume that U = 0 on A(L")(x), so HMy = Héf’z,w.

If we have Va(,”)XA(n)(x) < £, we conclude that I(HS — 1)y < e, and hence
L

dist(A, o (HI)) < e. Thus,
: @) () €
P{dist(1. o (HI)) < &} 2 P{V{" Xt < 5} >0, (A1)

where the strict positivity comes from Definition 1.1.
Since ¥™ = U(H(f,")) for P-a.e. @, we conclude from (A.1) that we have
dist(A, =™) < g for all ¢ > 0, and hence A € =, O

B. Unique continuation principle for spectral projections
of Schrodinger operators on arbitrary rectangles

In this appendix we extend [24, Theorems 1.1 and 2.2] to arbitrary rectangles.
Let H = —A + V be a Schrodinger operator on L>(R?). Given a rectangle
A C RY, let Hy = —A, + Va denote the restriction of H to the rectangle A
with either Dirichlet or periodic boundary condition: A, is the Laplacian with
either Dirichlet or periodic boundary condition and V is the restriction of V to
A. (We will abuse the notation and simply write V for Vj,ie., Hy = —Axr +V
on L?(A).) By a unique continuation principle for spectral projections (UCPSP)
we mean an estimate of the form

Xr(HA)W X1 (HA) > kX1 (Ha), (B.1)

where )7 is the characteristic function of an interval I C R, W > 0 is a potential,
and « > 0 is a constant.
In this appendix we use the Euclidean norm on R¢:

=

d
2
x| = |x|, :=(Z|x,-| ) for x = (x1,x2,...,xq) € RY.
j=1
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Distances between sets in R¢ will be measured with respect to norm |x|. The ball
centered at x € R? with radius § > 0 is given by

B(x,8) :={y e R%; |y — x| < 8}.

We consider rectangles

d d
_ _ Ly Lj\ L; L;
A=Ar@=a Jr]_]:[1 (-3.3)= ]]:[1 (0 -Faj+3). B2
wherea € R4 and L = (L1,..., Lg) € (0,00)%. Thebox Az (x) = x+(—
centered at x € R? with side of length L is the special case L; = --- = L
Given a rectangle A we set

L A)d
2°2
s=1L.

A=ANnZ¢ and A ={keRr:Ak)CA. (B.3)

H will denote the restriction of H to the rectangle A with either Dirichlet or
periodic boundary condition.
Given subsets A and B of R?, and a function ¢ on the set B, we set

YA ‘= @XANB-

In particular, given x € R? and § > 0 we write

PDx,8 = ¥B(x,8)-

We let Ny4q denote the set of odd natural numbers. If K is an operator on a Hilbert
space, D(K) will denote its domain. By a constant we will always mean a finite
constant. We will use C, 5., C;,b,...’ C(a,b,...), etc., to denote a constant de-
pending only on the parameters a, b, .. ..

The following is an extension of [24, Theorem 1.1] to rectangles with arbitrary

centers and side lengths.

Theorem B.1. Let H = —A + V be a Schrédinger operator on L*(R?), where V
is a bounded potential. Fix § € (0, %], let {yi}rcga be sites in R? with B(yi,8) C
A1(k) forallk € Z2. Given Eg > 0, set K = K(V, Eg) = 2||V ||oo+ Eo. Consider
a rectangle A as in (B.2), where a € R and L; > 114«/3f0rj =1,...,d, and
set

W =" 18- (B.4)

keA
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There exists a constant Mg > 0, such that, defining y = y(d, K,§) > 0 by
V2 _ %SMd(1+K%)’ (B.5)
then for any closed interval I C (—oo, Eo] with |I| < 2y we have
X (HOW D1 (Ha) = y2 21 (Ha). (B.6)

Remark B.2. It follows, using Theorem B.1 in the proofs, that the optimal Weg-
ner estimates for (one-particle) crooked Anderson Hamiltonians given in [24,
Theorems 1.4 and 1.5] hold for a rectangle A as in (B.2), where a € R4 and
L; > 114+/d + 84 for j = 1,...,d. (In particular, they hold on arbitrary boxes
A = Ar(xo), where xo € R? and L > 114/d + §4.)

For convenience we recall the quantitative unique continuation principle [4,
Theorem 3.2] as stated in [24, Theorem 2.1].

Theorem B.3. Let Q be an open subset of R? and consider a real measurable
function V on Q with ||V |leo < K < oco. Let € H2(RQ) be real valued and let
¢ € L2(Q) be defined by

—AY+ VY =C¢ ae onQ. (B.7)
Let ©® C Q be a bounded measurable set where ||[Yg|2 > 0. Set

O(x,0):=sup|ly —x| forxeQ. (B.8)
yeO®

Consider xg € Q \ © such that
0 =0(x0,0)>1 and B(x,60 +2)C Q. (B.9)

Then, given
1
0 < § < min { dist(xo. ©). E}’ (B.10)

we have

( 5 )md<1+K§)(Q§+log ZZ)

I¥ell? < |Vxsl3 + 82lI¢all3, (B.11)

0

where mg > 0 is a constant depending only on d.

The following theorem is a version of [24, Theorem 2.2] for rectangles with
arbitrary centers and side lengths.
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Theorem B.4. Let H = —A + V be a Schrédinger operator on L2(R4), where V
is a bounded potential with ||V ||co < K. Fix§ € (0, %] let {yi}reza be sites in R4
with B(yk,8) C Ay (k) for all k € Z¢. Consider a rectangle A as in (B.2), where
acRyand Lj > 114y/d for j = 1,...,d. Then for all real-valued € D(A )
we have

2
SMACTED yall5 < Y Iyl +ENEA VYAl B12)
kef\

where My > 0 is a constant depending only on d.
Proof. As in [18, Proof of Corollary A.2], we extend V and functions ¢ € LZ(A)

to R4,
For Dirichlet boundary condition, given ¢ € L?(A), we extend it to a function

Q€ Lloc(Rd) by setting ¢ = ¢ on A and ¢ = 0 on dA, and requiring

o(x) =—@(x 4+ (Lj —20;(x; —aj;))ej) forallx e R? and j e {1,2....d),
(B.13)

where {€;};=1,...4 is the canonical orthonormal basis in R4, and for each r € R

we define 6; (1) € (— LTJ LTJ] by

t=kL; +60;(t)

with k € Z. We also extend the potential V' to a potential VV on R? by by setting
V =VonAandV = 0on dA, and requiring that, for all x € R? and j €
{1,2....,d},

V(x) = V(x4 (L; —26;(x; —aj))e)).

Note that ||V||c>o = |V]leo < K. Moreover, ¥ € D(A,) implies ¥ € HIOC(Rd)
and
A+ V)Y = (—A+ V)y. (B.14)

For periodic boundary condition, we extend ¢ € L2(A) and V to periodic
functions @ and V on R? of period (L1,....Lg); note [V = [[V]eo < K.
Moreover, ¥ € D(A,) implies ¢ € H? (]Rd) and we have (B.14).

Lett = (71, ..., 14) be given by

loc

7; =min{t > 2; L; € tNogq} = L.—2,
2 ’4 J+1
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It follows that (L; > 12+/d > 12)

L; 2 2
2<71 < L,-—z'] = r<—71 =3 (B.15)
2 —1)+1 1-— 1-—=
( 4 )+ Lj 12
SO
Too = Mmax 71; <3. (B.16)
j=1,...d

A= |J A0 (B.17)

We define

in such a way that
A1(J(k)) C A(x) forallk € A,

This can always be done since t; > 2 for j = 1,...,d; note that J is one to one.
Let Y € Nogq, ¥ < % < 2% for j = 1,2,...,d. It follows that for all

¢ € L2(A) we have (see [29, Subsection 5.2])

D 188y w3 = QY lleall3 < (6Y)lleall3. (B.18)
KkeA®
We now fix ¥ € D(A,). Following Rojas-Molina and Veseli¢, we call a site
k € A dominating (for ) if

1 N
VAL wpls = WWAH(K)H%- (B.19)

Letting D c A® denote the collection of dominating sites, Rojas-Molina and
Veseli¢ [29, Subsection 5.2] observed that it follows from equations (B.18), (B.19),
and (B.17), that

1
2 W3 = S 1vall. (B.20)
keb
We define a map
J:-A® 5 A®

by

K + 21181 if € + 21181 € A(T),
J(k) = (B.21)
K — 2‘[161 if K + 2‘[161 ¢ A(T).
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Note that J is well defined, and
#J7'({k}) <2 forallk € A®. (B.22)
We have (see (B.8))

Qguwy.Ar(k)) = sup [x — Y@yl
x€A¢ (k)

< sup |x —«|+ [k —=JW|+[J(K) = ysuyl
xeA¢ (k)

< 2Vd 4 om + 2Va (529

§3roo\/g
<9/d.

forall k € A,
For each k € A® we will apply Theorem B.3 with Q@ = Ay, (k), ® = A (x),
and xo = y3(J))- We need to guarantee (B.9), that is,

B(a0): 6Q(vaws Az (k) +2) C Ay (k) forallk € D.
It suffices, using (B.23) and t; > 2, to have

2Y
Yoy — k| +9Vd < L"\/—Jrzn +9Vd < 7\/ES == Y.

We thus choose
33
Y = min{n € Noasin = >vd} = $vd +2 <194, (B.24)

L .

Since we want ¥ < —-

j=12,....d.
Applying Theorem B.3, for each k € A(®) we get

< 2% for j =1,2,...,d, we require L; > 114+/d for

’ ; ~
8md(1+K3)”¢’Ar(K)“% = ||Wy3(J(K)),8||% + 82”§Ayf(l€)”%7 (B25)

where { = (=A + V) and m/; > 0 is a constant depending only on d. Summing
over k € D and using (B.20), (B.22), (B.18), and (B.24), and we get

, 2
L§ma KDy a2 < 2 3 19y, 503 + 6Y)482018413

keA

<2 Mlyesl3 + (114Vd) 8% ¢a 3.

ke[fi
so (B.12) follows. O
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Proof of Theorem B.1. Given Eq > 0, set K = K(V, Eg) = 2||V|loo + Eo, and
let y be given by (B.5), where M; > 0 is the constant in Theorem B.4. Let
I C (—o0, Ey] be a closed interval with |/| < 2y. Since 6 (HA) C [—||V|lco, 00)
for any rectangle A, without loss of generality we assume [ = [E —y, E + y] with
E € [~V Eol, 50

IV = Elloo = [IVlloo + max{Eo, [|V]|oo} < K.
Moreover, for any rectangle A we have
I(Ha = E)¥ll2 < yllyll2 forall y € Rany;(Ha). (B.26)

Let A be a rectangle as in Theorem B.4 and i € Ran x;(Hy). If ¢ is real-
valued, it follows from Theorem B.4, (B.5), and (B.26) that

271015 < Y 1Wyesllz + vV 153, (B.27)
kef\
yielding
VI < D Iesls = IW®y3, (B.28)
kef\

where the equality follows from (B.4). For arbitrary ¥ € Ran x;(Hya), we write
¥ = Ry +i3y, and note that By, 3y € Ran 27 (Ha), [V 113 = [0y 13+ 13913
and, since W@ is real-valued, [|[W ™y |2 = |[WDRy |2 + WD Iy|2. Re-
calling (W M))2 = W) we conclude that

v2 (W y) = V2l I3 < (WP 3 = (v, why), (B.29)
for all ¥ € Ran x;(Hp), proving (B.6). U
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