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1. Introduction

In this note we establish exponential lower bounds on the scattering resolvent on

the real line. We show that these lower bounds can be understood in terms of

resonances close to the real axis.

To �x the concepts, consider a semiclassical Schrödinger operator on Rn:

P.h/ D �h2�C V.x/; x 2 R
n; V 2 C1

c .RnIR/; (1.1)

suppV � B.0; R0/I V.0/ D V0 > 0; V
0.0/ D 0; V 00.0/ > 0I (1.2a)

x � V 0.x/ � 0 on ¹V � V0º; x � V 0.x/ < 0 on ¹V D V0º n ¹0º: (1.2b)

Take R > R0 and de�ne the cuto�s

� D 1lB.0;R0/;  D 1lB.0;RC1/nB.0;R�1/ : (1.3)

�eorem 3 in §4 shows that for any R > R0 there exists a constant c > 0 indepen-

dent of h and E0.h/ D V0 C O.h/ such that

k�.P.h/�E0.h/˙ i0/�1�kL2!L2 � exp.c=h/; (1.4)

k .P.h/�E0.h/˙ i0/�1�kL2!L2 � exp.c=h/: (1.5)
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A very general exponential upper bound corresponding to (1.4) was �rst proved by

Burq [2], with generalizations by Vodev [19], and more recently by Datchev [4].

�e lower bound is immediate from much easier arguments involving quasimodes.

�e “non-trapping” upper bound (for R large enough)

k .P.h/�E0.h/˙ i0/�1 kL2!L2 � C0

h
; (1.6)

was again given by Burq [2] (with a log 1=h loss) and Vodev [19] – see [4] for a

neat new proof.

It is (1.5) which seems to be the novel aspect. It shows that having a one sided

cuto� to the exterior of the interaction region cannot prevent exponential blow up

of the resolvent.

�e method also applies to the case of Riemannian manifolds, .M; g/, consid-

ered recently by Rodnianski–Tao [17] – see Fig. 1. In that case the support of V

is replaced in (1.3) by the set where the metric is di�erent from the Euclidean

metric, and we obtain a sequence of �k ! 1 such that

k .�g � �k ˙ i0/�1�kL2.M /!L2.M / � ec
p

�k : (1.7)

See �eorem 4 in §4 for details.

Figure 1. Examples of manifolds for which the estimate (1.7) holds: on the left a surface

of revolution with two Euclidean ends to which �eorem 4 applies directly; on the right a

surface with one end to which a modi�cation of the same method applies (see [7]). �e

same examples work in any dimension.
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�e reason behind these estimates is the presence of resonances close to real

axis. �e resolvent

Rh.z/ D .P.h/ � z/�1 W L2.Rn/ �! H 2.Rn/; z 62 Œ0;C1/;

has a meromorphic continuation to the Riemann surface of
p
z for n odd, and to

the Riemann surface of log z for n even, as a family of operators

L2
comp.R

n/ �! H 2
loc.R

n/;

see for example [6], [13], and references given there. Resonances, de�ned as the

poles of this continuation, replace discrete spectral data for problems on non-com-

pact domains. For the situations considered here, in particular for the case (1.1),

Rellich’s theorem (see [6]) shows that there are no resonances on the positive real

axis, that is, the operators .P.h/� E ˙ i0/�1 are well-de�ned for E > 0.

�eorem 2 in §3 gives general lower bounds based on existence of resonances

with certain properties. It is then applied in �eorems 3 and 4 in §4 to obtain

examples, in particular of Riemannian manifolds with Euclidean ends.

�e simple proofs here are based on previous work on scattering resonances,

in particular those by Bony and Michel [1], Gérard and Martinez [8], Hel�er

and Sjöstrand [10], Tang and Zworski [18] and Nakamura, Stefanov, and Zworski

[15]. To make the basic idea accessible, we present in §2 an elementary and self-

contained one dimensional example which captures the basic reason for (1.5); the

argument of §2 does not directly use resonances though it could be used to show

their existence.

Acknowledgements. We would like to thank André Martinez and András Vasy

for helpful discussions of resolvent estimates. We are also grateful for the support

by a National Science Foundation postdoctoral fellowship (KD), a Clay Research

Fellowship (SD) and by a National Science Foundation grant DMS-1201417 (MZ).

2. An explicit example

�e following one dimensional example shows the reasons for (1.5) in an explicit

setting:

�eorem 1. Let V 2 C1
c .R/ be a nonnegative potential satisfying the following

conditions (see Figure 2):

V.x/ D V.�x/; V .x/ D x2 C 1 for x 2 Œ�1; 1�; (2.1a)

V.x/ D 4 � x for x 2 Œ2; 3:5�; V.x/ < 1 for x > 3; suppV � Œ�5; 5�. (2.1b)
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Put R0 D 4, �x R > 5, and de�ne �;  by (1.3). �en there exists c > 0 and

families E0.h/ D 1C O.h/, u.h/; f .h/ 2 C1
c .R/ such that

.P.h/� E0.h//u D f; f D  f I (2.2a)

k�ukL2.R/ D 1; kf kL2.R/ � e�c=h: (2.2b)

Note that (2.2) implies (henceforth suppressing the dependence on h)

k�Rh.E0 ˙ i0/ kL2!L2 � ec=h; (2.3)

k Rh.E0 ˙ i0/�kL2!L2 � ec=h: (2.4)

Indeed, since u 2 C1
c and f D  f , we have �u D �Rh.E0 ˙ i0/ f ; this

shows (2.3). �e bound (2.4) follows since Rh.E0 ˙ i0/� D Rh.E0 � i0/.

1 2 3 3.5 5

1

Figure 2. �e potential V used in �eorem 1.

�e key component of the proof of �eorem 1 is the existence of quasimodes

for the operator P �E0, namely functions that satisfy .P � E0/v D O.e�c=h/:

Lemma 2.1. �ere existh-dependent familiesE0 D E0.h/ 2 R, and v D v.r I h/ 2
C1.Œ�R;R�/, such that E0 D 1C O.h/ and for some C; c > 0,

.P �E0/v D 0; kvkL2.�3:5;3:5/ � C�1; kvkH 1
h

.¹R�1<jxj<Rº/ � Ce�c=h:

Here H 1
h

denotes the semiclassical Sobolev space where in the standard de�-

nition Dx is replaced by hDx – see for instance [20, §7.1, §8.3].

To derive �eorem 1 from Lemma 2.1, we take �0 2 C1
c .�R;R/ such that

�0 D 1 on Œ�.R � 1/; R � 1� and put

u WD ˛�0v; f D .P �E0/u D ˛ŒP; �0�v;

here the constant ˛ D ˛.h/ is chosen so that k�ukL2 D 1 and we have j˛j � C .

We furthermore see that suppf � ¹R � 1 < jxj < Rº and kf kL2 � e�c=h

(the constant C can be absorbed into the exponential by replacing c by a smaller

constant and taking h small enough).
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�e rest of this section contains the proof of Lemma 2.1. We take zR.h/ � R,
zR.h/ D R C O.h/, to be chosen at the end of this section in (2.15), and let v be

an eigenfunction of P on Œ� zR.h/; zR.h/� with Dirichlet boundary conditions with

eigenvalue E0 close to the ground state 1C h of the quantum harmonic oscillator

�h2@2
x C x2 C 1. �e existence of such eigenvalue is given by the following

Lemma 2.2. For h small enough and given zR.h/ 2 ŒR; RC1�, there existsE0 2 R

and v 2 C1.Œ� zR.h/; zR.h/�/ such that

.P � E0/v D 0; v. zR.h// D v.� zR.h// D 0I

kvkL2.� zR.h/; zR.h// D 1; kvkH 1
h

.� zR.h/; zR.h// � C; E0 D 1C hC O.e� 1
10h /:

Proof. De�ne

v1.x/ WD h�1=4e� x2

2h ; x 2 Œ�1; 1�:

Note that, since P D �h2@2
x C x2 C 1 on Œ�1; 1�, we have

.P � .1C h//v1 D 0; x 2 Œ�1; 1�I

kv1kL2.�1=2;1=2/ � C�1; kv1kH 1
h

.¹1=2<jxj<1º/ � Ce� 1
10h :

Now, take z� 2 C1
c .�1; 1/ such that z� D 1 on Œ�1=2; 1=2�. �en

kz�v1kL2 � C�1; k.P � .1C h//z�v1kL2 � Ce� 1
10h ;

and z�v1 satis�es the Dirichlet boundary conditions at ˙ zR.h/ (since it vanishes

there). Now, P � .1 C h/ is self-adjoint on L2.Œ� zR.h/; zR.h/�/ when Dirich-

let boundary conditions are imposed. Since the norm of its inverse is at least

C�1e
1

10h , we see that this operator has an eigenvalue which isO.e� 1
10h /; we denote

the corresponding eigenvalue of P by E0 and the corresponding L2 normalized

eigenfunction by v. Finally, to establish a bound on the H 1
h

norm of v it su�ces

to multiply the equation .P �E0/v D 0 by v and integrate by parts.

Lemma 2.1 follows once we establish the following exponential bound on v:

kvk
H 1

h
.¹3:5�jxj� zR.h/º/

� Ce�c=h: (2.5)

We will show (2.5) for positive x; the case of negative x is handled similarly (since

V is even, v can be taken to be even as well). �e main idea is the following: if v

is not exponentially large in 1=h near, say, x D 2 relative to its size on Œ3:5; zR.h/�,
then one expects v to give an approximate Dirichlet eigenfunction to the operator

P on Œ2; zR.h/�with eigenvalueE0. However, thenE0 has to satisfy a quantization
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condition determined by the behavior of V on Œ2; zR.h/�; sinceE0 D 1ChCo.h/,

one can choose zR.h/ to ensure that the quantization condition is not satis�ed and

thus obtain a contradiction.

For f1; f2 2 C1.R/ we de�ne the (semiclassical) Wronskian by

W.f1; f2/ D f1 � h@xf2 � f2 � h@xf1;

and note that

h@xW.f1; f2/ D f2 � .P �E0/f1 � f1 � .P � E0/f2:

�e interval Œ2; R� can be split into three regions where the behavior of v is di�er-

ent, based on the sign of V.x/ � 1: the “elliptic” or classically forbidden region

Œ2; 3/, where v will grow exponentially in h as x decreases, the neighborhood of

the turning point x D 3, and the “hyperbolic” region .3; R/, where the equation

.P.h/ �E0/v D 0 has two solutions which are bounded as h ! 0.

We start with the hyperbolic region, considering the phase function

ˆ.x/ WD
Z x

4�E0

p

E0 � V.y/ dy:

Note that ˆ is well-de�ned on x 2 Œ4�E0; RC 1�, since
p

E0 � V.y/ D
p

y � .4� E0/ for y 2 Œ4 �E0; 3:5�;

in fact, we have

ˆ.x/ D 2

3
.x � .4 �E0//

3=2 for x 2 Œ4� E0; 3:5�: (2.6)

De�ne now the following WKB solutions:

v˙.x/ WD .E0 � V.x//�1=4e˙ iˆ.x/
h ; x 2 Œ3:5; RC 1�;

then we have uniformly in x 2 Œ3:5; RC 1�,

.P � E0/v˙.x/ D O.h2/; W.vC; v�/.x/ D �2i C O.h/: (2.7)

Denote

v.x/ D .v1.x/; v2.x// WD .W.v; vC/.x/;W.v; v�/.x//;

then

v.x/ D v2.x/ � vC.x/ � v1.x/ � v�.x/

W.vC; v�/.x/
; (2.8)

h@xv.x/ D v2.x/ � h@xvC.x/ � v1.x/ � h@xv�.x/

W.vC; v�/.x/
: (2.9)
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Since .P �E0/v D 0, we have

h@xW.v; v˙/ D �v � .P �E0/v˙ :

From (2.7) and (2.8) we see that for x 2 Œ3:5; RC 1�,

j@xv.x/j � Chjv.x/j:

�erefore,

v.x/ D v.3:5/.1C O.h//; x 2 Œ3:5; zR.h/�: (2.10)

�is and (2.8), (2.9) show that

kvkH 1
h

.3:5; zR.h// � C jv.3:5/j: (2.11)

�e �nal component of the proof is the following solution in the region Œ2; 3:5�

which describes the transformation from the hyperbolic to the elliptic region

via the turning point, and is exponentially decaying in the elliptic region. Since

V.x/ D 4 � x in this region, the solution is given by an Airy function, and its

properties are as follows:

Lemma 2.3. �ere exists a solution w.x/ to the equation .P � E0/w D 0 for

x 2 Œ2; 3:5� such that kwkH 1
h

.2;2:5/ � Ce�c=h for some constants C; c > 0 and

�

w.x/

h@xw.x/

�

D e
i�
4

�

vC.x/

h@xvC.x/

�

� e� i�
4

�

v�.x/

h@xv�.x/

�

CO.h/; x 2 Œ3:25; 3:5�:

(2.12)

Proof. �e solution w is given by

w.x/ D 2i
p
�h�1=6 Ai.h�2=3.4 �E0 � x//;

and its properties follow from the following asymptotic formulæ for the Airy func-

tion Ai as y ! C1:

Ai.y/ D y�1=4

2
p
�

exp
�

� 2

3
y3=2

�

.1C O.y�3=2//;

Ai.�y/ D y�1=4

p
�

�

sin
�2

3
y3=2 C �

4

�

C O.y�3=2/
�

;

and similar formulæ for its derivatives, see for example [11, (7.6.20), (7.6.21)].
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We are now ready to �nish the proof of (2.5). Since

.P �E0/v D .P � E0/w D 0 on Œ2; 3:5�,

the Wronskian W.v; w/ is constant on this interval. Using the estimates

kvkH 1
h

.2;2:5/ � C; kwkH 1
h

.2;2:5/ � Ce�c=h;

we see that

jW.v; w/j � Ce�c=h:

Now, computing the same Wronskian at x D 3:5 and using (2.12), we get

W.v; w/D e
i�
4 v1.3:5/ � e�i�

4 v2.3:5/C O.h/jv.3:5/j;

It remains to prove that, for a certain choice of zR.h/ independent of E0, we have

je i�
4 v1.3:5/ � e�i�

4 v2.3:5/j � C�1jv.3:5/j: (2.13)

Indeed, in this case jv.3:5/j � Ce�c=h, which together with (2.11) gives (2.5).

Using (2.10), we rewrite (2.13) as follows:

je i�
4 v1. zR.h// � e�i�

4 v2. zR.h//j � C�1jv. zR.h//j: (2.14)

Since v satis�es the Dirichlet boundary condition at zR.h/, we have

W.v; v˙/. zR.h// D �E�1=4
0 e˙ iˆ. zR.h//

h � h@xv. zR.h//;

so that jv1. zR.h//j; jv2. zR.h//j � C�1jv. zR.h//j and

e� i�
4 v2. zR.h//

e
i�
4 v1. zR.h//

D exp
�

� i

h

�

2ˆ. zR.h//C �h=2
�

�

:

To prove (2.14), we choose zR.h/ D RC O.h/, zR.h/ � R, so that

min
j 2Z

ˇ

ˇˆ. zR.h//C .j C 1=4/�h
ˇ

ˇ � �h

4
I (2.15)

this can be done independently of E0, since E0 D 1C hC O.e� 1
10h / and thus

ˆ. zR.h// D
Z 5

3�h

p

1C h � V.y/ dy C
p

1C h. zR.h/ � 5/C O.e� 1
10h /:
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3. A general argument

Suppose that P.h/ is an operator satisfying the general assumptions of [15], that is

a black box self-adjoint operator, close to the Laplacian and having analytic coef-

�cients near in�nity and with a barrier at energy V0. (A barrier separates the inter-

action region from in�nity – see (3.3) and Fig. 3). We assume that Rn n B.0; R0/

is contained in the “outside” of the black box and the trapped set at energy V0. We

also assume the Hilbert space on which the operator acts, H D HR0
˚ L2.Rn n

B.0; R0/, is equipped with an involution u 7! Nu equal to complex conjugation on

L2.Rn nB.0; R0// and satisfying zu D Nz Nu, z 2 C. �e abstract reality assumption

on P.h/ reads P.h/u D P.h/u.

An example to keep in mind is given by the operator

P.h/ D �h2�g C V W H 2.Rn/ �! L2.Rn/;

where the measure on L2 is obtained from the Riemannian metric and

H WD L2.Rn/:

�e potential V.x/ and the metric coe�cients gij .x/ are smooth, extend analyti-

cally to � WD ¹z 2 Cn W jzj � R1; j Im zj � ıjzjº, and

gij .z/ � ıij ! 0; V .z/ ! 0; jzj ! 1; z 2 �: (3.1)

�e trapped set, KE , at energy E > 0 is then de�ned by

KE WD ¹.x; �/ 2 R
n � R

n W p.x; �/ D E; etHp.x; �/ 6! 1; t ! ˙1º; (3.2)

where

Hp WD
n

X

j D1

@�j
p � @xj

� @xj
p � @�j

p.x; �/ WD
n

X

i;j D1

gij .x/�j �i C V.x/:

�e assumption on the interaction region in this case means that �.KV0
/ �

B.0; R0/. �e barrier assumption means that there exists †V0
� p�1.V0/ such

that

p�1.V0/ D KV0
[†V0

; †V0
\KV0

D ;; †V0
is closed. (3.3)

�e more general black box setting allows obstacle problems and other geomet-

ric situations. However, the barrier assumption cannot be satis�ed for connected

manifolds without having a nontrivial potential V .

We denote by Res.P.h// the set of resonances of P.h/ (in an h-independent

neighborhood of ¹Re z > 0; Im z > 0º).



608 K. Datchev, S. Dyatlov, and M. Zworski

Figure 3. Examples of one-dimensional potentials satisfying: (a) condition (1.2) and

hence (3.3) and (4.1); (b) conditions (3.3) and (4.1), but not (1.2); (c) condition (3.3),

but not (4.1); (d) neither (3.3) nor (4.1). �e dashed line corresponds to V0. In particular,

examples (a) and (b) satisfy the assumptions of �eorems 2 and 3.

�eorem 2. Let P.h/ satisfy the general assumptions above. Suppose that z0 D
z0.h/ 2 Res.P.h//, Re z0 D V0 C O.h/, z0 is simple, and

j Im z0j D O.h1/; d.z0.h/;Res.P.h// n ¹z0.h/º/ > hN ; (3.4)

for some N . Suppose that � and  are given by (1.3) with R > R0. �en there

exist C0 > 0 and h0 such that for 0 < h < h0,

k�.P.h/� Re z0 � i0/�1�kH!H � 1

C0j Im z0j ; (3.5)

and

k .P.h/� Re z0 � i0/�1�kH!H � 1

C0

p

j Im z0jh
: (3.6)

Remark. As stated in the introduction, it is (3.6) that seems to be the novel as-

pect. �e presence of the square root is (morally) consistent with the results of [3,

Lemma A.2] and of [5, �eorem 2].

Proof. We only present the proof of (3.6). Using the involution u 7! Nu we de�ne

.u˝ v/f WD uhf; Nvi;

where we use the inner product on the black box Hilbert space. Since z0 is simple,

we have

 .P.h/ � z/�1� D  u˝ �u

z � z0

C  Rz0
.z; h/�;
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where u is the corresponding normalized resonant state andRz0
.z; h/ is holomor-

phic in

ŒRe z0 � hN ;Re z0 C hN �C i.�hN ;1/:

From [15, (5.1)] and [1, (1.12)] (or [16, (8.18)]) we see that

k�ukH D 1C O.h1/; u D �uC O.h1/L2
loc
: (3.7)

Using the maximum principle as in [18, Lemma 2] and the estimates on the

resolvent in [18, Lemma 1] we see that

k�Rz0
.Re z0; h/ kH!H D O.h�M /; (3.8)

for some M . Hence to obtain (3.6) we need to estimate

1

j Im z0jk u˝ �ukH!H D k ukHk�ukH
j Im z0j ; (3.9)

from below.

To estimate k ukH from below we write

0 D Imh.P.h/ � z0/u; 1lB.0;RCt/ uiH
D ImhP.h/u; 1lB.0;RCt/ uiH � Im z0k 1lB.0;RCt/ uk2

H
:

Since P.h/ is self-adjoint on H and acts as a symmetric second order operator on

C1
c .Rn n B.0; R0//, we obtain

Im z0k 1lB.0;RCt/ uk2
H

D �h Im

Z

@B.0;RCt/

NuN.x; hD/udS.x/;

where N.x; hDx/ is a �rst order semiclassical di�erential operator. For example,

if P.h/ D �h2�C V , then N.x; hDx/ D i.x=jxj/ � hDx.

Since from (3.7), k 1lB.0;RCt/ uk2
H

D 1C Ot .h
1/, we see that

1
3
j Im z0j � h

Z 2
3

1
3

Z

@B.0;RCt/

jujjN.x; hDx/ujdS.x/dt

D h

Z

B.0;RC 2
3 /nB.0;RC 1

3 /

jujjN.x; hDx/ujdx

� C 0h

Z

B.0;RC1/nB.0;R/

juj2dx � C 0hk uk2
H
;

where we used the equation .P � z0/u D 0 and elliptic estimates to control the

�rst order term term N.x; hDx/u. �is shows that

k ukH �
p

j Im z0j=Ch;

which combined with (3.8),(3.9) and (3.7) completes the proof of (3.6).
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4. A metric example

We start by using �eorem 2 to obtain a generalization of �eorem 1 to higher

dimensions and to more general potentials:

�eorem 3. Consider a Schrödinger operator

P.h/ D �h2�C V

on L2.Rn/ where V satis�es (3.1) and (3.3). Suppose also that

KV0
D ¹.x0; 0/º; V 0.x0/ D 0; V 00.x0/ > 0: (4.1)

�en there exists z0 satisfying the assumptions of �eorem 2 with

d.z0;Res.P.h// n ¹z0º/ > h=C; j Im z0j < e�c0=h : (4.2)

In particular in the notation of (3.6),

k .P.h/� Re z0 ˙ i0/�1�kL2!L2 � exp
c

h
; (4.3)

for 0 < h < h0 and some c > 0.

Proof. �e existence of z0 follows from Corollary in [15, §5]. �e reference oper-

ator P ].h/ there can be chosen as P ].h/ D �h2�CV ].x/, where V ].x/ D V.x/

in a small neighbourhood of x0 where x0 is the only critical point and V ].x/ >

V.x0/ C ", " > 0, outside of that neighbourhood. Since the eigenvalue of P ].h/

corresponding to the minimum V0 D V.x0/ is separated from other eigenvalues

by h=C (see for instance [9] and references given there) the same corollary shows

the separation from other resonances.

Remarks. 1. �e condition (1.2) implies that (3.3) and (4.1) hold (since

Hp.x � �/ > 0 on ¹p D V0º except at x D � D 0), but the converse is not true –

see Figure 3.

2. When V is analytic and satis�es certain “well-in-the-island” hypotheses, �e-

orem 3 follows from the work of Hel�er–Sjöstrand [10] and under these stronger

assumptions �eorem 2 can then be proved in the same way using the earlier re-

sults of Gérard–Martinez [8] in place of the results of [15]. In particular, when

n D 1 and V is even, by [10, (11.5)] we have

Im z0 D �Ch1=2e�S0=h.1C O.h//; S0 D
Z

¹x W V.x/>V0º

p

V.x/dx:
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Plugging this into (3.5) and (3.6) gives bounds with an explicit exponential rate:

k�.P.h/� Re z0 ˙ i0/�1�kL2!L2 � 1

Ch1=4eS0=h
;

k .P.h/� Re z0 ˙ i0/�1�kL2!L2 � 1

Ch3=4eS0=2h
:

See also [6, §2.8] for further explicit examples. It is natural to expect that such

bounds also hold in the example from §2.

3. For P.h/ D �h2�C V , and for E’s satisfying (4.1) (with V0 D E), a result of

Nakamura [14, Proposition 4.1] and [15, Corollary, §5] show that

k�.P.h/�E � i0/�1�kL2!L2 � Ch�q ; jE � zj .h/j � hq ;

where q � 1 and zj .h/ are the resonances of P.h/. Since the density of Re zj .h/

satis�es a Weyl law, this means that the bound is O.h�q/, outside of a set of mea-

sure O.hq�n/, q > n.

�e example in �eorem 3 can be used directly to obtain examples of resolvent

growth for asymptotically conic metrics of the type studied by Rodnianski and

Tao [17].

�eorem 4. Let .M; g/ be the following Riemannian manifold:

M D Rx � S
n�1
� ; g D dx2 C V.x/�1 d�2; n > 1;

where d�2 is the round metric on the sphere of radius 1 and V.x/ 2 C1.RI .0;1//

is a function satisfying the assumptions of �eorem 3 and

V.x/ D 1

x2
; jxj � R0:

Put

�.x/ D 1ljxj<R0
;  .x/ D 1lR�1<jxj<RC1; R > R0:

�en there exists a sequence �k ! 1 such that

k .��g � �k ˙ i0/�1�kL2.M /!L2.M / � exp.c
p

�k/; (4.4)

for some constant c > 0.
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Proof. In the .x; �/ coordinates, the Laplacian �g has the form

�g D @2
x � .n� 1/V 0.x/

2V .x/
@x C V.x/�S :

Here �S is the Laplacian on Sn�1. For k � 0, let Yk.�/ be (any) spherical har-

monic of order k, i.e. a smooth function on Sn�1 such that

.��S � k.k C n � 2//Yk D 0; kYkkL2.Sn�1/ D 1;

see for example [11, §17.2] for the spectrum of �S . �en for u.x/ 2 C1.R/ and

� 2 R, we have

��g.u.x/Yk.�// D
�

� @2
x C .n� 1/V 0.x/

2V .x/
@x C k.k C n � 2/V .x/

�

u.x/Yk.�/:

Put

hk WD .k.k C n � 2//�1=2

so that

h2
k.��g � �/.u.x/Yk.�// D .P.hk/ � h2

k�/u.x/Yk.�/;

where

P.h/ WD �h2@2
x C .n� 1/V 0.x/

2V .x/
h2@x C V.x/ :

Let

R.�/ WD .��g � �/�1

for � 62 Œ0;C1/. It follows that

R.�/ D
X

k2N

h2
k.P.hk/ � h2

k�/
�1 ˝…k W L2.M/ �! L2.M/; (4.5a)

L2.M/ ' L2.R; V .x/�
n�1

2 dx/˝ L2.Sn�1/; (4.5b)

where

…k W L2.Sn�1/ �! L2.Sn�1//
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is the orthogonal projection onto the space of spherical harmonics of order k.

�e operator

R.�/ W C1
c .M/ �! C1.M/

continues meromorphically to Im� � 0, and

.P.hk/ � h2
k�/

�1 W C1
c .R/ �! C1.R/

continues meromorphically for each k. Hence (4.5) is valid for Im� � 0, with the

operator acting on

C1
c .M/ ' C1

c .R/˝ C1
c .Sn�1/:

Hence,

k .��g � �˙ i0/�1�kL2.M /!L2.M /

D k R.�˙ i0/�kL2.M /!L2.M /

D sup
k2N

h2
kk .P.hk/ � h2

k�˙ i0/�1�kL2
x!L2

x
;

where

L2
x WD L2.R; V .x/�

n�1
2 dx/:

We now apply �eorem 3 to P.hk/ and put

�k D Re z0.hk/=h
2
k:

�e estimate (4.4) follows from (4.3). �eorem 3 applies to the operator P.h/

despite the presence of a �rst order term, as this term is of order O.h/ in the semi-

classical calculus and thus does not a�ect the classical Hamiltonian �owHp, and

the results of [15] and �eorem 2 apply to a wide class of semiclassical di�erential

operators including P.h/.
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