
J. Spectr. �eory 5 (2015), 571–597

DOI 10.4171/JST/107

Journal of Spectral �eory

© European Mathematical Society

Lower bounds for resonance counting functions

for Schrödinger operators with �xed sign potentials

in even dimensions

T. J. Christiansen

Abstract. If d is even, the resonances of the Schrödinger operator �� C V on Rd with

V 2 L1

comp.R
d / are points on ƒ, the logarithmic cover of C n ¹0º. We show that for �xed

sign potentials V and form 2 Z n ¹0º, the resonance counting function for themth sheet of

ƒ has maximal order of growth.
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1. Introduction

�is paper proves some optimal lower bounds on the order of growth of resonance-

counting functions for certain Schrödinger operators in even-dimensional

Euclidean space. �e resonances associated to the Schrödinger operator ��CV ,

with potential V 2 L1
comp.R

d /, lie on ƒ, the logarithmic cover of C n ¹0º, if d is

even. �e main result of this paper is that for scattering by a �xed sign, compactly

supported potential V the resonance counting function for the mth sheet of ƒ has

maximal order of growth for anym 2 Z n ¹0º. �ough the results of [7] show that

there are many potentials with resonance counting functions for themth sheet hav-

ing maximal order of growth, the techniques of [7] do not give a way of identifying

those potentials other than those which are scalar multiples of the characteristic

function of a ball. For comparison, in odd dimensions d � 3 the only speci�c real-

valued potentials V 2 L1
comp.R

d / which are known to have resonance-counting

function with optimal order of growth are certain radial potentials [31], though in

that case asymptotics are known (see [31] and [26, 10]).
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Let V 2 L1
comp.R

d / and let � � 0 denote the Laplacian on Rd . We de-

note the resolvent RV .�/ D .�� C V � �2/�1 for � in the “physical space,”

0 < arg� < � . With at most a �nite number of exceptional values of �, RV .�/

is a bounded operator on L2.Rd / for � in this region. It is well known that for

� 2 L1
comp.R

d /, �RV .�/� has a meromorphic continuation to C when d is odd

and to ƒ, the logarithmic cover of C n ¹0º, when d is even (e.g. [19, Chapter 2]).

In either case, the resonances are de�ned to be the poles of �RV .�/� when � is

chosen to satisfy �V � V . �e fact that when d is even the resonances lie on ƒ

makes them generally more di�cult to study in the even-dimensional case than in

the odd-dimensional case.

A point on ƒ can be described by its modulus and argument, where we do not

identify points which have arguments di�ering by nonzero integral multiples of

2� . �us the physical half plane corresponds to

ƒ0
defD ¹� 2 ƒ W 0 < arg� < �º:

Likewise, for m 2 Z we may de�ne the mth sheet to be

ƒm
defD ¹� 2 ƒ W m� < arg� < .mC 1/�º

which is homeomorphic with the physical region and can be identi�ed with the

upper half plane when convenient.

Vodev [28, 29], following earlier work of Intissar [13] studied the resonance

counting function nV .r; a/, de�ned to be the number of resonances (counted with

multiplicity, here and everywhere) with norm at most r and argument between �a
and a. He showed that there is a constant C which depends on V but not on r or

a so that

nV .r; a/ � Ca.rd C .log a/d //; for r; a > 1:

�e most general lower bound known is due to Sá Barreto ([22], d � 4) and

Chen ([3], d=2):

lim sup
r!1

#¹�j W pole of RV .�/ with 1
r

� j�j j � r; j arg�j j � log rº
.log r/.log log r/�p

D 1
(1.1)

for all p > 1, for any nontrivial V 2 C1
c .Rd IR/. �is follows the earlier work

of [23]. We note that the assumption that the potential is real-valued is cru-

cial here. �ere are explicit examples of nontrivial complex-valued potentials

V 2 L1
comp.R

d / which can be chosen to be smooth so that the corresponding

Schrödinger operator ��C V has neither eigenvalues nor resonances [2, 5, 6].
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For m 2 Z, let nm.r/ D nm;V .r/ be the number of resonances of �� C V

which both lie on ƒm and have norm at most r . We call this the resonance count-

ing function for the mth sheet. It follows from Vodev’s result that nm.r/ D O.rd /

as r ! 1. On the other hand, lower bounds have proved more elusive, as demon-

strated by the di�erence between the upper bound and the lower bound (1.1). �e

results of [7, �eorem 1.1] show that “generically” for potentials V 2 L1
comp.R

d /,

m 2 Z n ¹0º,
lim sup

r!1

log nm;V .r/

log r
D d: (1.2)

However, the result of [7] is nonconstructive in the sense that other than potentials

which are nonzero positive scalar multiples of the characteristic function of a ball

and those complex-valued potentials which are isoresonant with them [6], that

paper does not give a way of identifying the particular potentials for which (1.2)

holds.

�e main result of this paper is the following theorem.

�eorem 1.1. Let d be even. Suppose V 2 L1
comp.R

d / with V bounded below

by ��B , where � > 0 and �B is the characteristic function of a nontrivial ball B .

�en for any nonzerom 2 Z,

lim sup
r!1

log nm;˙V .r/

log r
D d:

We note that by Vodev’s result d is the maximum value this limit can attain.

�e limit

lim sup
r!1

lognm;˙V .r/

log r

is called the order (or order of growth) of nm;˙V .r/. When this limit is d , we say

that the mth counting function has maximal order of growth.

�eorem 1.1, when combined with [7, �eorem 3.8], has the following theorem

as an immediate corollary.

�eorem 1.2. Let d be even, and K � Rd be a compact set with nonempty inte-

rior. Let F denote either R or C. �en for m 2 Z, m 6D 0, the set

¹V 2 C1.KIF/ W lim sup
r!1

log nm;V .r/

log r
D dº

is dense in C1.KIF/.

�e paper [7] proves a similar theorem, but for L1 potentials rather than C1

potentials. For the case of odd dimension d � 3, the analog of �eorem 1.2 was

proved in [4]. A stronger result holds in dimension d D 1, see [30] or [11, 21, 24].
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�eorem 1.1 may be compared with other results for �xed-sign potentials. In [8]

it is shown that in even dimensions there are no “pure imaginary” resonances for

positive potentials, and on each sheetƒm ofƒ, only �nitely many for negative po-

tentials. In contrast, in the odd-dimensional case Lax-Phillips [16] and Vasy [27]

proved that for potentials of �xed sign the number of pure imaginary resonances

of norm at most r grows at least like crd�1 for some c > 0 when r is su�ciently

large. Both [16] and [27] use a monotonicity property for potentials of �xed sign.

�is paper also uses a monotonicity property, though it is more closely related to

one used in [4]. Also important here are some results from one-dimensional com-

plex analysis, more delicate than the corresponding complex-analytic arguments

from [4].

We end this introduction with a brief sketch of the proof of �eorem 1.1.

We shall reduce the problem of studying the large r behavior of nm;˙V .r/ to that

of studying the zeros of a function holomorphic in ƒ0.

In Section 2 we prove Proposition 2.4, a preliminary, complex-analytic, result.

�is provides an upper bound on the norm of a function f holomorphic in the set

� D ¹z 2 C W jzj � 1; Im z � 0º

when we have some control on both the behavior of f .z/ for large jzj, z 2 R and

on the order of growth of its zero counting function in �.

Let m 2 Z n ¹0º. To study the resonances of �� ˙ V on ƒm we introduce

a scalar function Fm;˙V de�ned on ƒ0. �e zeros of Fm;˙V on ƒ0 correspond

(with at most �nitely many exceptions) to the resonances of ��˙ V on ƒm. �e

functionFm;˙V is meromorphic onƒ0, with at most �nitely many poles there. �e

de�nition of Fm;˙V in Section 3 uses familiar ideas from the study of resonances.

�e main result of Section 4 is a lower bound on jFm;˙V .�e
i�=2/j when

� ! 1 and V � ��B . It is here that we use a monotonicity argument.

�e proof proceeds by contradiction. In Section 5 we show that when V � ��B ,

the assumption

lim sup
r!1

lognm;˙V .r/

log r
< d

together with the lower bound on jFm;˙V .�e
i�=2/j as � ! 1 from Section 4

produces a contradiction to Proposition 2.4.

Acknowledgments. �e author gratefully acknowledges the partial support of

the NSF under grant DMS 1001156, and thanks the referees for helpful comments.
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2. Some Complex Analysis

�e main result of this section is Proposition 2.4, which, roughly speaking, con-

trols the growth of a function f analytic in a half plane in terms of the growth of

the counting function for the zeros of f in the half plane and the behavior of f

on the boundary of the half plane.

Both the statement and the proof of the following lemma bear some resem-

blance to those for Carathéodory’s inequality for the disk. �e estimate we obtain

here is likely a crude one, but su�ces for our purposes.

Lemma 2.1. Let f be analytic in a neighborhood of

�R
defD ¹z 2 C W 1 � jzj � R; Im z � 0º;

� > 0, and for x 2 R \�R, jf .x/j � C0jxj� for some constant C0 > 0. Set

M D max
jzjD1; z2�R

jf .z/j

and de�ne

A.R/ D max.C0R
�;MR�; max

z2�R

Ref .z//:

�en if 1 < r < R and z 2 �R with jzj D r , then jf .z/j � 2r�

R��r�A.R/:

Proof. Set

g.z/ D 1

z�

f .z/

2A.R/� f .z/

which is analytic in a neighborhood of�R. We bound jgj on the boundary of�R.

If z 2 �R has jzj D R, then

jg.z/j � 1

R�

jf .z/j
j2A.R/ � f .z/j � jf .z/j

R�jf .z/j D 1

R�
:

Notice that if x 2 �R \ R,

jg.x/j � 1

jxj�
C0jxj�
R�C0

� 1

R�
:

Moreover, if z 2 �R has jzj D 1, since A.R/ � jf .z/jR�, jg.z/j � 1=R�. �us,

by the maximum principle jg.z/j � 1=R� for all z 2 �R.
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Suppose z 2 �R with jzj D r , 1 < r < R. �en

jf .z/j � jzj�j2A.R/� f .z/jR�� � r�.2A.R/C jf .z/j/R��:

Rearranging, we �nd

.R� � r�/jf .z/j � 2r�A.R/;

or

jf .z/j � 2r�

R� � r�
A.R/:

Lemma 2.2. Let

� D ¹z W Im z � 0; jzj � 1º

and suppose f is analytic in a neighborhood of �, and there are constants �0,

C0, so that

jf .z/j � C0 exp.C0jzj�0/ for all z 2 �.

Suppose there are constants C1, � > 0 so that

ˇ

ˇ

ˇ

ˇ

Z x

1

f 0.t /=f .t/dt

ˇ

ˇ

ˇ

ˇ

� C1jxj�; for all x > 1,

and
ˇ

ˇ

ˇ

ˇ

Z �1

x

f 0.t /=f .t/dt

ˇ

ˇ

ˇ

ˇ

� C1jxj�; for all x < �1.

If, in addition, f does not vanish in �, then there is a constant C3 so that

jf .z/j � C3 exp.C3jzj�/ for all z 2 �.

Proof. In the proof we shall denote byC a constant the value of which may change

from line to line without comment.

Since f is nonvanishing in �, there is a function g analytic on � so that

expg.z/ D f .z/. Since g0.z/ D f 0.z/=f .z/,

g.x/ � g.1/ D
Z x

1

f 0.t /

f .t/
dt if x > 1

so that jg.x/j � C jxj� C jg.1/j when x � 1 for some constant C . A similar

argument gives a similar bound for x � �1.
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We now assume � < �0 since otherwise there is nothing to prove. We give

a bound on the growth of g at in�nity which is more than adequate to allow us

to apply a version of the Phragmén-Lindellöf theorem as we will below. Since

Re g.z/ D log jf .z/j, for all z 2 �, Reg.z/ � C.1Cjzj�0/. Applying Lemma 2.1,

we �nd that jg.z/j � C.1C jzj�0/ for all z 2 �.

Consider the function h.z/ D g.z/=.i C z/�. �is is an analytic function in a

neighborhood of � and is bounded on @�. �us, by a version of the Phragmén-

Lindellöf theorem (proved, for example, by an easy modi�cation of the proof of [9,

Corollary VI.4.2] using [9, �eorem VI.4.1]), h is bounded in�. �is implies that

for z 2 �, jf .z/j D exp.Reg.z// � exp.C.1C jzj/�/ for some constant C .

We shall use the notation

E0.z/ D 1 � z

and

Ep.z/ D .1� z/ exp.z C z2=2C � � � C zp=p/ for p 2 N

for a canonical factor. �e proof of the following lemma bears many similarities

to proofs for estimates of canonical products; see for example [17, Lemma I.4.3].

Lemma 2.3. Let ¹aj º � C be a set of not necessarily distinct points in the open

upper half plane, with ja1j � ja2j � ::: and suppose for some constants C0 and �

n.r/
defD #¹j W jaj j � rº � C0r

� when r � 1:

Suppose � > 0 is not an integer, let p be the greatest integer less than �, and set

f .z/ D
1
Y

nD1

Ep.z=an/

Ep.z=an/
:

�en for x 2 R
ˇ

ˇ

ˇ

ˇ

Z x

0

f 0.t /

f .t/
dt

ˇ

ˇ

ˇ

ˇ

D O.jxj�/

as jxj ! 1.

Proof. We note �rst that our assumption on n.r/ ensures that the canonical prod-

ucts converge, so that f is a meromorphic function on C. Moreover, by assump-

tion f has neither poles nor zeros on the real line.
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A computation shows that E 0
p.z/=Ep.z/ D �zp=.1 � z/. �us

f 0.x/

f .x/
D

1
X

nD1

� .x=an/
p

x � an

� .x=an/
p

x � an

�

: (2.1)

Let a 2 C, Im a > 0, t 2 R. �en

.t=a/p

t � a � .t=a/p

t � a D 1

jaj2p
tp

�ap.t � a/ � ap.t � a/
jt � aj2

�

D 2i
1

jaj2p
tp

� t Im.ap/ � Im.apC1/

jt � aj2
�

:

(2.2)

Now set a D ˛ C iˇ, ˇ > 0, and note that j Im apj � pˇjajp�1. �us for x 2 R

ˇ

ˇ

ˇ

ˇ

Z x

0

� .t=a/p

t � a � .t=a/p

t � a

�

dt

ˇ

ˇ

ˇ

ˇ

� 2

jajpC1

ˇ

ˇ

ˇ

ˇ

Z x

0

pjt jpC1ˇ C .p C 1/jajjt jpˇ
.t � ˛/2 C ˇ2

dt

ˇ

ˇ

ˇ

ˇ

:

(2.3)

Now for q > 0
Z x

0

tqˇ

.t � ˛/2 C ˇ2
dt

D xq arctan
� .x � ˛/

ˇ

�

� q
Z x

0

tq�1 arctan
� .t � ˛/

ˇ

�

dt:

Using that for s 2 R, j arctan sj < �=2, we �nd that for jxj > 1
ˇ

ˇ

ˇ

ˇ

Z x

0

tqˇ

.t � ˛/2 C ˇ2
dt

ˇ

ˇ

ˇ

ˇ

� C jxjq (2.4)

for some constant C , independent of ˛ and ˇ.

To prove the lemma, we will split ¹aj º into two sets, depending on the relative

size of jaj j and 2jxj. For jaj j � 2jxj, we �rst note that

p

Z x

0

ˇtpC1

.t � ˛/2 C ˇ2
dt D pˇ

Z x

0

tp�1
�

1C 2˛t � .˛2 C ˇ2/

.t � ˛/2 C ˇ2

�

dt

and use (2.3) and (2.4) to get

X

jaj j�2jxj

ˇ

ˇ

ˇ

ˇ

Z x

0

� .t=aj /
p

t � aj

� .t=aj /
p

t � aj

�

dt

ˇ

ˇ

ˇ

ˇ

� C
X

jaj j�2jxj

.jxjpjaj j�p C jxjp�1jaj j�pC1/:

(2.5)
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Since

X

1�jaj j�r

jaj jq D
Z r

1

tqdn.t/

D rqn.r/ � n.1/ �
Z r

1

qtq�1n.t/dt

(2.6)

applying our upper bound on n.r/ we get from (2.5)

X

jaj j�2jxj

ˇ

ˇ

ˇ

ˇ

Z x

0

� .t=aj /
p

t � aj

� .t=aj /
p

t � aj

�

dt

ˇ

ˇ

ˇ

ˇ

� C.jxj� C 1/: (2.7)

Now we bound the contribution of the aj with jaj j > 2jxj. For this we use (2.2)

more directly. Here

X

jaj j>2jxj

ˇ

ˇ

ˇ

ˇ

Z x

0

� .t=aj /
p

t � aj

� .t=aj /
p

t � aj

�

dt

ˇ

ˇ

ˇ

ˇ

D 2
X

jaj j>2jxj

ˇ

ˇ

ˇ

ˇ

ˇ

Z x

0

1

jaj j2p
tp

� t Im.a
p
j / � Im.a

pC1
j /

jt � aj j2
�

dt

ˇ

ˇ

ˇ

ˇ

ˇ

� C
X

jaj j>2jxj

ˇ

ˇ

ˇ

ˇ

Z x

0

1

jaj j2p

� jt jpC1jaj jp C jt jpjaj jpC1

jaj j2
�

dt

ˇ

ˇ

ˇ

ˇ

� C
X

jaj j>2jxj

.jxjpC2jaj j�p�2 C jxjpC1jaj j�p�1/:

Applying the analog of (2.6) and using the upper bound on n.r/ we obtain

X

jaj j>2jxj

jaj j�q � C jxj��q

provided q > �, giving us

X

jaj j>2jxj

ˇ

ˇ

ˇ

ˇ

Z x

0

� .t=aj /
p

t � aj

� .t=aj /
p

t � aj

�

dt

ˇ

ˇ

ˇ

ˇ

� C jxj�:

Combined with (2.7), this completes the proof of the lemma.
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Proposition 2.4. Let f be a function analytic in a neighborhood of

� D ¹z W Im z � 0; jzj � 1º:

Suppose f does not vanish on R \�, and let n.r/ be the number of zeros of f in

¹z W Im z � 0; 1 � jzj � rº counted with multiplicity. Suppose that that there are

constants C0 and � > 0, � not an integer, so that

n.r/ � C0.1C r�/

and
ˇ

ˇ

ˇ

ˇ

f 0.x/

f .x/

ˇ

ˇ

ˇ

ˇ

� C0.1C jxj��1/ for all x 2 R with jxj � 1:

Suppose in addition that there are some constants �1, C1 so that log jf .z/j �
C1.1C jzj�1/ for all z 2 �. �en there is a constant C so that jf .z/j � Cejzj� for

z 2 �.

Proof. We will assume �1 > � as otherwise there is nothing to prove.

We prove this proposition by constructing a function to which we can apply

Lemma 2.2. Let p denote the greatest integer less than �, and ¹aj º the zeros of f

in �, repeated according to multiplicity, with ja1j � ja2j � :::. Set

h.z/ D f .z/g1.z/

g2.z/
;

where

g1.z/ D
1
Y

nD1

Ep.z=an/ and g2.z/ D
1
Y

nD1

Ep.z=an/:

Note that h is analytic in � and does not vanish there.

As an intermediate step we show that log jh.z/j � C jzj�1 for all z 2 �. Recall

we have assumed �1 > �. Here and belowC is a �nite constant which may change

from line to line. If x 2 R, 1 � jxj, then log jh.x/j D log jf .x/j � C0.1C jxj�1/.

Moreover, from estimates on canonical products,

log jgj .z/j � C.1C jzj�/; j D 1; 2 (2.8)

for some constant C , see [17, Lemma I.4.3].

As is shown in the proof of [17, �eorem I.12], given R > 0 and 0 < ı < 1

there are rj 2 ŒR; R.1� ı/�1�, (depending on R and ı) so that for all z 2 C with

jzj D rj ,

log jgj .z/j � �
�

2C log
12e

ı

�

log max
jzjD2eR.1�ı/�1

jgj .z/j; for j D 1; 2: (2.9)



Lower bounds for resonance counting functions 581

Using (2.8), this gives

log jgj .z/j � �Cı;j .1C .R.1� ı/�1/�/; jzj D rj ; j D 1; 2: (2.10)

To aid in notation, we set�R D ¹z 2 C W Im z � 0 and 1 � jzj � Rº.
Now �x ı > 0, ı < 1. Given any R > 1, we can �nd an r2 2 ŒR; R.1� ı/�1�

as above so that (2.10) holds for j D 2. �en using that

max
z2�R

log jh.z/j � max
z2�r2

log jh.z/j D max
z2@�r2

log jh.z/j;

our assumptions on f , and (2.10) we �nd for any R > 1

max
z2�R

log jh.z/j � Cı.1C .R.1� ı/�1/�1/C C.1CR�/ � QCı.1CR�1/:

For x 2 R, jxj � 1,

h0.x/

h.x/
D f 0.x/

f .x/
C .g1=g2/

0.x/

g1.x/=g2.x/
:

By applying our assumptions on f and Lemma 2.3, we �nd that for x > 1,

ˇ

ˇ

ˇ

ˇ

Z x

1

h0.t /=h.t/dt

ˇ

ˇ

ˇ

ˇ

D O.x�/;

and likewise for x < �1,
ˇ

ˇ

ˇ

ˇ

Z �1

x

h0.t /=h.t/dt

ˇ

ˇ

ˇ

ˇ

D O.jxj�/:

By Lemma 2.2, there is a constant C so that

log jh.z/j � C.1C jzj�/; when z 2 �: (2.11)

Now we write f .z/ D g2.z/h.z/=g1.z/, holomorphic in a neighborhood of�.

Given R > 1 and ı satisfying 0 < ı < 1, as above we choose r1 2 ŒR; R.1� ı/�1�

so that (2.10) holds for g1. Using in addition (2.8) and (2.11), we �nd there is a

constant so that

log jf .z/j � C.1C .R.1� ı/�1/�/ for jzj D r1; Im z � 0:

As in the proof of the bound on h, since jh.x/j D jf .x/j for x 2 R \�R, we �nd

then from the maximum principle that there is a constant C so that

max
z2�R

log jf .z/j � C.1CR�/:
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3. A scalar function having zeros at the poles of the resolvent

We recall the derivation of some identities commonly used in the study of reso-

nances for Schrödinger operators. Let V 2 L1
comp.R

d / and let d � 2 be even.

�ere is no need to make an assumption on the sign of V here. We recall the nota-

tionRV .�/ D .��CV ��2/�1 when � 2 ƒ0. For such �, .��CV ��2/R0.�/ D
I C VR0.�/ and by meromorphic continuation,

R0.�/ D RV .�/.I C VR0.�//; � 2 ƒ:

�us RV .�/ has a pole if and only if I CVR0.�/ has a zero, and the multiplicities

agree. Writing V 1=2 D V=jV j1=2 with the convention that V 1=2 D 0 outside the

support of V , we see that ICVR0.�/ has a zero if and only if ICV 1=2R0.�/jV j1=2

has a zero. Consequently, I C V 1=2R0.�/jV j1=2 is invertible for all but a �nite

number of points in ƒ0. �us, if m 2 Z, � 2 ƒ0,

I C V 1=2R0.e
im��/jV j1=2

D .I C V 1=2R0.�/jV j1=2/

.I C .I C V 1=2R0.�/jV j1=2/�1V 1=2.R0.e
im��/ �R0.�//jV j1=2/:

But when d is even

R0.e
im��/ � R0.�/ D imT .�/

with

.T .�/f /.x/ D ˛d�
d�2

Z

Rd

Z

Sd�1

ei�.x�y/�!f .y/d! dy (3.1)

for f 2 L2
comp.R

d /, with ˛d D .2�/1�d=2; see [19, (1.32)]. Moreover,

V 1=2T .�/jV j1=2 is trace class. �us, with at most a �nite number of exceptions,

the poles of RV .e
im��/ with � 2 ƒ0 correspond, with multiplicity, to the zeros

of

Fm;V .�/
defD det.I C im.I C V 1=2R0.�/jV j1=2/�1V 1=2T .�/jV j1=2/ (3.2)

in ƒ0. Similar functions were used, for example, in [11, 12, 8].
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4. Lower bounds on Fm;˙V .i� / when V has �xed sign

In the remainder of this paper we assume d � 2 is even.

Let V � 0, V 2 L1
comp.R

d /. In this section we study the function Fm;˙V

from (3.2). For � 2 RC, we shall use the shorthand i� to denote the point in the

physical region with norm � and argument �=2. Taking the positive sign,

I C V 1=2R0.i�/jV j1=2 D I C V 1=2R0.i�/V
1=2

is a positive operator for � > 0. When we choose the negative sign, we will addi-

tionally assume that � is chosen large enough that I�V 1=2R0.i�/V
1=2 is a positive

invertible operator; this is possible, for example, by insisting � > 2.kV k1 C 1/

since kR0.i�/k � 1=�2. With these assumptions on � , using the properties of

the determinant and the fact that V � 0 we may rewrite the function Fm;˙V .i�/

from (3.2) as

Fm.i�/ D Fm;˙V .i�/

D det.I ˙ im.I ˙ V 1=2R0.i�/V
1=2/�1=2V 1=2T .i�/V 1=2

.I ˙ V 1=2R0.i�/V
1=2/�1=2/:

(4.1)

We shall obtain a lower bound on Fm.i�/ as � ! 1.

�e following proposition is central to the proof of �eorem 1.1 and is the main

result of this section. Related results were obtained in odd dimensions in [4, Sec-

tion 5].

Proposition 4.1. Let V 2 L1
comp.R

d /, V � 0, and let V be bounded below by

��B where � > 0 and �B is the characteristic function of a nontrivial open ball.

Let m 2 Z, m 6D 0. �en there is a constant c0 > 0 so that jFm;˙V .i�/j �
c0 exp.c0�

d / for all su�ciently large � > 0.

�e proof is similar to the proofs of some results of [16, 27] in that it uses

both a property of monotonicity in V and the fact that for potentials which are

positive multiples of the characteristic function of a ball much can be said by

using a decomposition into spherical harmonics and special functions. However,

the implementation of these underlying ideas is rather di�erent here.

�e proof of Proposition 4.1 uses the following lemma, a monotonicity result

reminiscent of results of [16, 27]. In fact, the proof of this lemma uses a result

from [27].
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Lemma 4.2. Let V1; V2 2 L1.Rd / and suppose the support of Vj is contained

in xB.R/ D ¹x 2 Rd W jxj � Rº for j D 1; 2. Suppose V2.x/ � V1.x/ � 0 for

all x 2 Rd . We use the convention that V
1=2

1 =V
1=2

2 is 0 outside the support of V1.

�en for � > 0















.I C V
1=2

1 R0.i�/V
1=2

1 /�1=2V
1=2

1

V
1=2

2

.I C V
1=2

2 R0.i�/V
1=2

2 /1=2
















� 1:

If � � 2.kV2k1 C 1/, then















.I � V 1=2
1 R0.i�/V

1=2
1 /�1=2V

1=2
1

V
1=2

2

.I � V
1=2

2 R0.i�/V
1=2

2 /1=2
















� 1:

Proof. When � > 0 is su�ciently large that I ˙ V
1=2

j R0.i�/V
1=2

j is a positive

operator,

.I ˙ VjR0.i�//V
1=2

j .I ˙ V
1=2

j R0.i�/V
1=2

j /�1

D V
1=2

j .I ˙ V
1=2

j R0.i�/V
1=2

j /.I ˙ V
1=2

j R0.i�/V
1=2

j /�1

D V
1=2

j :

�us

V
1=2

j .I ˙ V
1=2

j R0.i�/V
1=2

j /�1V
1=2

j D .I ˙ VjR0.i�//
�1Vj ; j D 1; 2

for � > 0 su�ciently large. Applying [27, Lemma 2.2], and using that V2 � V1,

we get

.I C V2R0.i�//
�1V2 � .I C V1R0.i�//

�1V1:

When we take the “�” sign, again applying [27, Lemma 2.2],

.I � V2R0.i�//
�1V2 � .I � V1R0.i�//

�1V1

when � > 2.kV2k1 C 1/. Here we note our convention di�ers somewhat from

[27], in that we take Vj � 0. Summarizing,

V
1=2

2 .I ˙ V
1=2

2 R0.i�/V
1=2

2 /�1V
1=2

2 � V
1=2

1 .I ˙ V
1=2

1 R0.i�/V
1=2

1 /�1V
1=2

1

when � > 0 (for the “C” sign) or � > 2.kV k C 1/ (for the “�” sign). For the

remainder of the proof, we shall assume � > 0 satis�es these requirements and

suppress the argument i� .

Now let �V2
be the characteristic function of the support of V2, recall

V
1=2

1 �V2
D V

1=2
1 ;
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and note that

�V2
.I ˙ V

1=2
2 R0V

1=2
2 / D .I ˙ V

1=2
2 R0V

1=2
2 /�V2

:

�en

�V2
.I ˙ V

1=2
2 R0V

1=2
2 /�1�V2

� V
1=2

1

V
1=2

2

.I ˙ V
1=2

1 R0V
1=2

1 /�1V
1=2

1

V
1=2

2

:

�is implies

�V2
� .I˙V 1=2

2 R0V
1=2

2 /1=2V
1=2

1

V
1=2

2

.I˙V 1=2
1 R0V

1=2
1 /�1V

1=2
1

V
1=2

2

.I˙V 1=2
2 R0V

1=2
2 /1=2:

�is proves the lemma, since the norm of the right hand side is the square of the

norm of the operator in question.

Lemma 4.3. Let H be an in�nite dimensional complex separable Hilbert space,

A; B 2 L.H/, with B D B�, and kAk � 1. Let j�1j � j�2j � : : : be the norms of

the eigenvalues of A�BA, and j�1j � j�2j � : : : be the norms of the eigenvalues

of B . In both cases we repeat according to multiplicity. �en j�j j � j�j j for all j .

Proof. One way to prove this it that by noting that since B and A�BA are self-

adjoint, the norms of the the eigenvalues are the characteristic values. �en this

lemma is an immediate application of the bound for the characteristic values of a

product found, for example, in [25, �eorem 1.6].

�e next lemma shows that Fm;˙V .i�/ depends monotonically on V in some

sense.

Lemma 4.4. Let V1; V2 2 L1.Rd / and suppose the support of Vj is contained

in xB.R/ for j D 1; 2. Suppose V2.x/ � V1.x/ � 0 for all x 2 Rd . �en

jFm;V1
.i�/j � jFm;V2

.i�/j for all � 2 RC.

Moreover, if � � 2.kV2k1 C 1/, then

jFm;�V1
.i�/j � jFm;�V2

.i�/j:

Proof. For any compactly supported V � 0, set

B1;˙;V .i�/ D .I ˙ V 1=2R0.i�/V
1=2/�1=2V 1=2T .i�/V 1=2

.I ˙ V 1=2R0.i�/V
1=2/�1=2

(4.2)
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and notice that if � > 0 (for the “C” sign) or � > 2.kV k1 C1/ (for the “�” sign),

B1;˙;V .i�/ is a self-adjoint trace class operator. Comparing (4.1), we see that

Fm;˙V .i�/ D det.I ˙ imB1;˙;V .i�//:

Hence for su�ciently large �

jFm;˙V .i�/j D
ˇ

ˇ

ˇ

Y

.I C im�j .B1;˙;V .i�///
ˇ

ˇ

ˇ

D
Y

ˇ

ˇ.I C im�j .B1;˙;V .i�///
ˇ

ˇ

D
Y

q

1Cm2�2
j .B1;˙;V .i�//

where �j .B1;˙;V / are the nonzero eigenvalues of B1;˙;V , repeated according to

multiplicity and arranged in decreasing order of magnitude:

j�1.B1;˙;V /j � j�2.B1;˙;V /j � : : : :

Now we turn to V1 and V2, and � as in the statement of the lemma. Note that

B1;˙;V1
.i�/

D .I ˙ V
1=2

1 R0.i�/V
1=2

1 /�1=2V
1=2

1

V
1=2

2

.I ˙ V
1=2

2 R0.i�/V
1=2

2 /1=2B1;˙;V2
.i�/

.I ˙ V
1=2

2 R0.i�/V
1=2

2 /1=2V
1=2

1

V
1=2

2

.I ˙ V
1=2

1 R0.i�/V
1=2

1 /�1=2:

Again we use the convention that V
1=2

1 =V
1=2

2 is 0 outside the support of V1. �e

lemma now follows from (4.3) and Lemmas 4.2 and 4.3.

In order to obtain the lower bounds of Proposition 4.1, we shall need a special

case of that proposition, in which the potential is of the form V.x/ D ��B.x/, and

�B.x/ is the characteristic function of a ball centered at the origin. To study such

a special case, we will introduce spherical coordinates in Rd (polar coordinates

in the case d D 2).

In spherical coordinates,

�� D � @2

@r2
� d � 1

r

@

@r
C 1

r2
�Sd�1 :

�e eigenvalues of of the Laplacian on Sd�1,�Sd�1 , are l.lCd � 2/, l 2 N0 with

multiplicity

�.l/ D 2l C d � 2
d � 2

�

l C d � 3
d � 3

�

D 2ld�2

.d � 2/Š.1CO.l�1//:
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Denote by ¹Y �

l
º, 1 � � � �.l/, l D 0; 1; 2; ::: a complete orthonormal set of

spherical harmonics on Sd�1 so that �Sd�1Y
�

l
D l.l C d � 2/Y �

l
.

We denote by Pl projection onto the span of

¹h.jxj/Y �

l
.x=jxj/ W 1 � � � �.l/; h 2 L2.RI rd�1dr/º:

�us writing x D r� , with r > 0 and � 2 Sd�1

.Plg/.r�/ D
�.l/
X

�D1

Z

Sd�1

g.r!/Y
�

l
.�/ xY �

l
.!/dS! : (4.3)

Lemma 4.5. Let V � 0, V 2 L1
comp.R

d / be a radial function, so that V.x/ D
f .jxj/ for some function f 2 L1

comp.Œ0;1//. �en for � > 0 su�ciently large,

with B1 D B1;˙;V the operator de�ned in (4.2),

k.V 1=2T .i�/V 1=2 � B1;˙;V .i�//Plk � C

�2
kV 1=2T .i�/V 1=2Plk

for a constant C depending on V but not � or l .

Proof. To simplify the notation, we write

A.i�/ D A˙;V .i�/ D I ˙ V 1=2R0.i�/V
1=2;

and note that for � > 0 su�ciently large,

kA�1.i�/ � Ik D O.1=�2/; kA�1=2.i�/ � Ik D O.1=�2/: (4.4)

Now with B1 the operator de�ned in (4.2),

B1 � V 1=2T V 1=2 D .A�1=2 � I /V 1=2T V 1=2A�1=2 C V 1=2T V 1=2.A�1=2 � I /:

(4.5)

Because V is radial, multiplication by either V or V 1=2 commutes with Pl . Since

R0 commutes with Pl , so do A, A�1, and A�1=2. �us

k.B1 � V 1=2T V 1=2/Plk

� k.A�1=2 � I /kkV 1=2T V 1=2PlkkA�1=2k
C kV 1=2T V 1=2Plkk.A�1=2 � I /k:

�us using (4.4) we are done.
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Using the notation of [20], let J� and Y� denote the Bessel functions of the

�rst and second kinds, respectively, and recall that H
.1/
� .z/ D J�.z/ C iY�.z/.

For l 2 N0, set �l D l C .d � 2/=2 and notice that �l is an integer since d is even.

We can now expand R0.�/ using spherical harmonics. When 0 < arg� < � and

g 2 L2.Rd /,

.R0.�/g/.r�/

D
1

X

lD0

�.l/
X

�D1

Z 1

0

Z

Sd�1

G�l
.r; r 0I�/Y �

l
.�/ xY �

l
.!/g.r 0!/.r 0/d�1dS!dr

0
(4.6)

with

G�l
.r; r 0I�/ D

8

ˆ

<

ˆ

:

�

2i
.rr 0/�.d�2/=2J�l

.�r/H .1/
�l
.�r 0/ if r < r 0;

�

2i
.rr 0/�.d�2/=2H .1/

�l
.�r/J�l

.�r 0/ if r � r 0:

(4.7)

As noted earlier, for compactly supported, bounded �, �R0.�/� has an analytic

continuation to ƒ, and G�l
.r; r 0I�/ does as well.

Now we use [20, 9.1.35, 9.1.36] to obtain

J�.e
i�z/ D ei��J�.z/:

Specializing [20, 9.1.36] to the case of � an integer we have

Y�l
.ei�z/ D e��l�i .Y�l

.z/C 2iJ�l
.z//

giving

H .1/
�l
.ei�z/ D ei�l�.�J�l

.z/C iY�l
.z//:

�us

zG�l
.r; r 0I�/ defD G�l

.r; r 0I ei��/ � G�l
.r; r 0I�/

D i�.rr 0/�.d�2/=2J�l
.�r/J�l

.�r 0/:
(4.8)

Together, (4.6) and (4.8) give us an expression for the Schwartz kernel of

R0.e
i��/ �R0.�/ in spherical coordinates: with r; r 0 > 0, � 2 Sd�1,

..R0.e
i��/ �R0.�//g/.r�/

D
1

X

lD0

�.l/
X

�D1

Z 1

0

Z

Sd�1

zG�l
.r; r 0I�/Y �

l
.�/ xY �

l
.!/g.r 0!/.r 0/d�1dS!dr

0:
(4.9)

We continue to denote by Pl the operator given in (4.3).
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Lemma 4.6. Let B1 be the operator de�ned in (4.2). Let V0 D ��a, where

�; a > 0 and �a is the characteristic function of the ball of radius a and cen-

ter 0. Fix a constant M > 3. �en there is a constant c > 0 independent of � so

that

kB1;˙;V0
.i�/Plk � c

ec�l

�l

for all l 2 N which satisfy a�=6 > �l > a�=M for all su�ciently large � > 0.

Before beginning the proof, we note that the constant c does depend on � and

on a.

Proof. From Lemma 4.5 it su�ces to prove an analogous lower bound for the

quantity kV 1=2
0 T .i�/V

1=2
0 Plk:

Recall iT .i�/ D R0.e
i� i�/ �R0.i�/. Set

 l .r�/ D �a.r�/Y
�

l
.�/r�.d�2/=2J�l

.i�r/

for any � 2 ¹1; :::; �.l/º; and note that

kV 1=2
0 T V

1=2
0 Plk � jhV 1=2

0 T V
1=2

0  l ;  lij
k lk2

:

By (4.8) and (4.9),

jhV 1=2
0 T V

1=2
0  l ;  lij

k lk2
D
�

� Z a

0

�1=2jJ�l
.i�r/j2r�.d�2/rd�1dr

�2

Z a

0

jJ�l
.i�r/j2r�.d�2/rd�1dr

D ��

Z a

0

jJ�l
.i�r/j2rdr

� ��

Z a

a=2

jJ�l
.i�r/j2rdr:

(4.10)

As in [20, 9.6.3], setting

I�.z/
defD e���i=2J�.ze

i�=2/; �� < arg z � �=2;

from [20, 9.7.7] there is a constant c > 0 so that for � su�ciently large

jI�.�s/j � c
ec�

p
�
; 3 � s � M:
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Here and below we denote by c a positive constant, independent of �, l , and � ,

which may change from line to line. Now we use that jJ�l
.i�z/j D jI�l

.�z/j and

apply these to (4.10). We �nd that if 3 � �r=�l � M for all r with a=2 � r � a,

then

jhV 1=2
0 T V

1=2
0  l ;  lij � c

Z a

a=2

e2�lc

�l

dr � c
e2�lc

�l

for all su�ciently large � . �us, this holds for l satisfying a�=6 > �l > a�=M if

� is su�ciently large, providing a lower bound on kV 1=2
0 T V

1=2
0 Plk, and thus on

kB1;˙V0
.i�/Plk.

Lemma 4.7. Let V0 D ��a, where �; a > 0 and �a is the characteristic function

of the ball of radius a and center 0. �en for m0 6D 0, m0 2 Z, there is a c > 0 so

that for � > 0 su�ciently large

Fm0;˙V0
.i�/ � c exp.c�d /:

�e constant c depends on a; �, and m0.

Proof. Recall that

jFm0;˙V0
.i�/j D j det.I ˙ im0B1;˙;V0

.i�//j

and that for su�ciently large � > 0 B1.i�/ is a self-adjoint operator. �us for

su�ciently large �

jFm0;˙V0
.i�/j D

1
Y

j D1

q

1Cm2
0�

2
j (4.11)

where �j are the nonzero eigenvalues of B1;˙;V0
.i�/. �e �j of course depend

on � , but we omit this in our notation.

A decomposition of B1;˙;V0
using spherical harmonics shows that B1;˙;V0

has

eigenvalue kB1;˙;V0
Plk with multiplicity (at least) �.l/. �us using (4.11) and the

fact that �2
j > 0, we get

jFm0
.i�/j2 �

1
Y

lD1

.1Cm2
0kB1;˙;V0

Plk2/�.l/
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for su�ciently large � . From Lemma 4.6, we see

jFm0
.i�/j2 �

Y

a�=6>�l >a�=M

�

1C cm2
0

ec�l

�2
l

��.l/

D exp
�

X

a�=6>�l >a�=M

�.l/ log
�

1C cm2
0

ec�l

�2
l

��

� exp
�

X

a�=6�.d�2/=2>l>a�=M �.d�2/=2

�.l/.cl � c.d � 2/=2

C log.cm2
0=�

2
l //

�

Now for l su�ciently large, �.l/ � ld�2=.d � 2/Š so we get

jFm.i�/j2 � exp.c�d � C/

for some constants C and c > 0 for all su�ciently large � .

Proof of Proposition 4.1. We are now ready to give the proof of Proposition 4.1.

Since if W is a translate of V , Fm;˙;V D Fm;˙;W , we may assume V can be

bounded below by V0 D ��Ba
, where �Ba

is the characteristic function of the ball

of radius a > 0 and center at the origin. �en using Lemmas 4.4 and 4.7 proves

the proposition immediately.

5. Proof of �eorem 1.1

Let V 2 L1
comp.R

d /; V � 0. We continue to assume d is even and to use the

function

Fm.�/ D Fm;˙V .�/ D det.I ˙ im.1˙ V 1=2R0.�/V
1=2/�1V 1=2T .�/V 1=2/

de�ned �rst by (3.2). Note that since .I ˙ V 1=2R0.�/V
1=2/�1 is a meromorphic

function on ƒ, Fm;˙V .�/ is meromorphic on ƒ. We shall be most interested in

the behavior of Fm;˙V .�/ inƒ0, since the zeros of Fm;˙V inƒ0 correspond to the

poles ofR˙V inƒm. In the proof of �eorem 1.1 we shall apply Proposition 2.4 to

a function obtained by multiplying Fm;˙V by a rational function. �us we begin

this section by checking properties of Fm;˙V .

Lemma 5.1. �e function Fm;˙V .�/ has only �nitely many poles in

¹� 2 ƒ W 0 � argƒ � �º

and only �nitely many zeros with argument 0 or � .
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Proof. We recall �rst the well-known estimate

kV 1=2R0.�/V
1=2k � C=j�j for � 2 ƒ; 0 � arg� � � (5.1)

(e.g. [1, 28, 29]). �us for j�j � 2=C , I˙V 1=2R0.�/V
1=2 is invertible, with norm

of the inverse bounded by 2. Since the function Fm;˙V cannot have a pole at �0

unless .I ˙V 1=2R0.�/V
1=2/�1 has a pole at �0, we see Fm;˙V .�/ has no poles in

the region ¹� 2 xƒ0; j�j � r0º for some constant r0 depending on V .

Moreover, from (5.1) kV 1=2T .�/V 1=2k � C=j�j for � 2 @xƒ0:�us, there is an

r0 � 0 so that Fm;˙V .�/ has no zeros in ¹� 2 @xƒ0; j�j � r0º.
�e bounds of Vodev [28, 29] ensure that there are only �nitely many poles

of R˙V .�/ in ¹� 2 ƒm W j�j � rº for any r . Since Fm;˙V has a pole at � 2 ƒ0

only if R˙V has a pole there, and has a zero at � 2 @ƒ0 only if R˙V has a pole at

eim��, this �nishes the proof of the claim.

Lemma 5.2. Let t 2 ƒ have arg t D 0 or arg t D � . �en there are constants C ,

r0 > 0 depending on V and m so that

ˇ

ˇ

ˇ

ˇ

ˇ

d
dt
Fm;˙V .t /

Fm;˙V .t /

ˇ

ˇ

ˇ

ˇ

ˇ

� C jt jd�2 for jt j � r0:

Proof. Note that

d
dt
Fm;˙V .t /

Fm;˙V .t /
D tr

�

˙ im.I ˙ imW.t//�1 d

dt
W.t/

�

(5.2)

where

W.t/ D W˙V .t / D .I ˙ V 1=2R0.t /V
1=2/�1V 1=2T .t/V 1=2:

Using (5.1) we see that that there is an r0 > 0 so that

k.I ˙ V 1=2R0.t /V
1=2/�1k � 2 for jt j > r0: (5.3)

For the values of t in question (on the boundary of the physical region), for any

� 2 C1
c .Rd / and any j 2 N0 there are constants Cj depending on � so that













d j

dt j
�R0.t /�













� Cj jt j�1; jt j � 1; (5.4)

see e.g. [14, Section 8] or [15, Section 16]. �is implies that for jt j su�ciently

large with arg t D 0; � , k dj

dtj W.t/k � Cj , j D 0; 1, for some new constant Cj

depending on V .
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Now we use an argument as in [12, Lemma 3.3] to bound both kW.t/k1 and

k d
dt
W.t/k1, where k � k1 is the trace class norm. We write, for � 2 L1

comp.R
d /

�T .�/� D ˛d�
d�2

E
t
�.e

i��/E�.�/ (5.5)

where

E�.�/.�; x/ D �.x/ei�x�� ; x 2 R
d ; � 2 S

d�1:

�en, just as in [12], we note that with k � k2 denoting the Hilbert-Schmidt norm,

kE�.t /k2
2 D

Z

Sd�1

Z

Rd

jeit!�x�.x/j2dxd! � C�; for .arg t /=� 2 Z

and

k d
dt

E�.t /k2
2 D

Z

Sd�1

Z

Rd

ji.! � x/eit!�x�.x/j2dxd! � C�; for .arg t /=� 2 Z:

�e same estimate holds for kEt
�.e

i� t /k2
2 and k d

dt
Et

�.e
i� t /k2

2. Putting this all to-

gether and using that kABk1 � kAk2kBk2, we see that













d j

dt j
W.t/













1

� C.1C jt jd�2/; for j D 0; 1:

�us

ˇ

ˇ

ˇ

ˇ

ˇ

d
dt
Fm;˙V .t /

Fm;˙V .t /

ˇ

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

tr
�

˙ im.I ˙ imW.t//�1 d

dt
W.t/

�

ˇ

ˇ

ˇ

ˇ

�












m.I ˙ imW.t//�1 d

dt
W.t/













1

� C jt jd�2

when jt j is su�ciently large.

�e next lemma gives a bound on Fm;˙V .z/, z 2 ƒ0, which is of a type which

has been repeatedly used in proofs of upper bounds on the number of resonances.

Closely related results can be found in [18, 32, 12], among others. We include the

proof for the convenience of the reader, although it is essentially a minor mod-

i�cation of arguments used in, for example, [32, 12] to, in the odd-dimensional

case, bound something like the determinant of the scattering matrix in the physi-

cal half-plane.
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Lemma 5.3. �ere are constants C , r0 > 0 depending on V and m so that

jFm;˙;V .�/j � C exp.C j�jd /; for all � 2 ƒ0; j�j > r0:

Proof. Using (5.5) and that det.I CAB/ D det.I CBA/ when both AB and BA

are trace class,

Fm;˙;V .�/ D det.I CK.�//

where

K.�/ W L2.Sd / �! L2.Sd /

is given by

K.�/ D ˙im˛d�
d�2

EV 1=2.�/.I ˙ V 1=2R0.�/V
1=2/�1

E
t
V 1=2.e

i��/:

Choose r0 � 0 so that

k.I ˙ V 1=2R0.�/V
1=2/�1k � 2 for � 2 ƒ0; j�j � r0:

By slight abuse of notation, we denote the Schwartz kernel of K by K as well.

�en there is some constant C so that for each j 2 N,

j�j

Sd�1;�
K.�/.�; !/j � C 2j C1.j�j2j C .2j /Š/eC j�j for � 2 ƒ0; j�j � r0

since

j�k
Sd�1e

i�x��V 1=2.x/j � C k.j�j2k C .2k/Š//eC j�j

and

j.I ˙ V 1=2R0.�/V
1=2/�1

EV 1=2.e
i��/t j � C exp.C j�j/;

when j�j � r0. �us by [32, Proposition 2],

j det.I CK.�//j � C 0eC 0j�jd ; � 2 ƒ0; j�j > r0:

We are now ready to give the proof of �eorem 1.1.

Proof. �e proof is by contradiction. So suppose for some �xed potential V sat-

isfying the hypotheses of the theorem and for some value of m 2 Z n ¹0º and for

choice of sign (positive or negative)

lim sup
r!1

log nm;˙V .r/

log r
< d: (5.6)

We work with this �xed value of m and �xed choice of sign for the remainder of

this proof. For this choice of m and sign consider the function

Fm;˙V .�/ D det.I ˙ im.1˙ V 1=2R0.�/V
1=2/�1V 1=2T .�/V 1=2/:
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We denote by Qn.r/ the number of zeros, counted with multiplicity, of Fm;˙V

in ƒ0 of norm at most r . �e assumption (5.6) means that there is a constant

d 0 < d so that nm;˙V .r/ D O.rd 0

/ for r ! 1. Since with at most �nitely many

exceptions the zeros of Fm;˙V in ƒ0 correspond, with multiplicity, to the poles

of R˙V in ƒm (see Section 3), Qn.r/ D nm;˙V .r/C O.1/ � C.1C rd 0

/ for some

constant C .

We identify ƒ0 with the upper half plane and use the variable z there. �us

we may think of Fm;˙V as function meromorphic in a neighborhood of

� D ¹z 2 C W jzj � 1; 0 � arg z � �º:

Let a1; :::; amp
be the poles of Fm;˙V in �, and let b1; :::; bm�

be the zeros of

Fm;˙V in @�, in both cases repeated according to multiplicity. Recall we know

there are only �nitely many by Lemma 5.1. Now set

h.z/
defD

mp
Y

j D1

.z � aj /

m�
Y

j D1

.z � bj /
Fm;˙V .z/:

If there are no poles or no real zeros, the corresponding product is omitted.

By applying Lemmas 5.2 and 5.3, we see that h satis�es the hypotheses of Propo-

sition 2.4 with � D max.d 0; d � 1C �/ for any � > 0. �us for some constant C ,

jFm;˙V .z/j � C exp.C jzj�/ for z 2 � and � < d . But this contradicts Proposi-

tion 4.1.
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