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1. Introduction

We are concerned with the one-dimensional discrete Schrödinger equation

i Pu.t/ D Hu.t/ WD .��L C q/ u.t/; t 2 R; (1.1)

and the corresponding discrete wave (resp. Klein–Gordon) equation

Ru.t/ D .�L � �2 � q/ u.t/; t 2 R; � � 0: (1.2)

with real potential q. Here �L is the discrete Laplacian given by

.�Lu/n D unC1 � 2un C un�1; n 2 Z:

To formulate our results we introduce the weighted spaces `
p
� D `

p
� .Z/, � 2 R,

associated with the norm

kuk`p
�

D

8

<

:

�
P

n2Z.1C jnj/p� ju.n/jp
�1=p

; p 2 Œ1;1/;

supn2Z.1C jnj/� ju.n/j; p D 1:

Of course, the case � D 0 corresponds to the usual `
p
0 D `p spaces without

weight.

As our �rst main result we will prove the following `1 ! `1 decay

ke�itHPck`1!`1 D O.t�1=3/; t ! 1; (1.3)

under the assumption q 2 `11. Here Pc is the orthogonal projection in `2 onto

the continuous spectrum of H . In this respect we recall that under the condition

q 2 `11 it is well-known [20] that the spectrum of H consists of a purely abso-

lutely continuous part covering Œ0; 4� plus a �nite number of eigenvalues located

in R n Œ0; 4�. In addition, there could be resonances at the edges of the continuous

spectrum.

�e dispersive decay (1.3) has been established by Pelinovsky and Stefanov

[16] under the assumption that there are no resonances and under the more restric-

tive condition jqnj � C.1C jnj/�ˇ with ˇ > 5. Cuccagna and Tarulli [1] establish

(1.3) under the assumption q 2 `11 if there are no resonances and under the as-

sumption q 2 `12 if there are resonances (which compares to the continuous case

established in [8]). Our main contribution here is to show that this extra decay

condition in the case of resonances is not necessary. Our novel proof is based

on a simple but useful generalization of the van der Corput lemma (Lemma 5.1)

together with the novel fact that the scattering data associated with H are in the
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Wiener algebra (�eorem 4.1). �e latter result being of independent interest in

scattering theory.

Moreover, (1.3) has some immediate consequences (under the same assump-

tion q 2 `11). First of all unitarity of exp.�itH/ W `2 ! `2 implies

ke�itHPc.H/k`2!`2 � 1

and interpolating between this and our `1 ! `1 estimate the Riesz–�orin theo-

rem gives

ke�itHPc.H/k`p0
!`p D O.t�1=3.1=p

0�1=p// (1.4)

for any p0 2 Œ1; 2� with 1
p

C 1
p0 D 1. Moreover, we also can deduce some corre-

sponding Strichartz estimates from �eorem 1.2 of [11]. To this end we introduce

the following space-time norms

kF kLq ;`p D
�Z

R

kF.t/kq
`pdt

�1=q

:

�en

ke�itHPc.H/f kLq ;`p � Ckf k`2 ; (1.5)

k
Z

R

e�isHPc.H/F.s/dsk`2 � CkF kLq0
;`p0 ; (1.6)

k
Z

s<t

e�i.t�s/HPc.H/F.s/dskLq ;`p � CkF kLq0
;`p0 ; (1.7)

where p; q � 2,
1

q
C 1

3p
� 1

6
;

and a prime denotes the corresponding dual index. Furthermore, (1.3) also implies

ke�itHPc.H/k`2
� !`2

��
D O.t�1=3/; t ! 1; � > 1=2:

However, we will in fact establish the stronger result

ke�itHPck`2
� !`2

��
D O.t�1=2/; t ! 1; � > 1=2; (1.8)

which has not been obtained previously.

For the remaining results we restrict ourselves to the case when the edges of

the spectrum ! D 0; 4 are no resonances for the operator H . �en for q 2 `12 we

show that

ke�itHPck`1
1

!`1
�1

D O.t�4=3/; t ! 1: (1.9)

Such asymptotics with decay rate t�3=2 were �rst established for continuous Schrö-

dinger equations by Schlag in [17] in the case when the potential has a �nite fourth
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moment and later re�ned by Goldberg [7] to the case of a �nite third moment. For

the discrete Schrödinger equations again asymptotics of the type (1.9) appear to

be new.

Moreover, for q 2 `12 in the non-resonant case we prove

ke�itHPck`2
� !`2

��
D O.t�3=2/; t ! 1; � > 3=2: (1.10)

Such a dispersive decay estimate was obtained for the �rst time in [13] for discrete

Schrödinger and Klein–Gordon equations with compactly supported potentials.

�e result has been generalized in [16] to discrete Schrödinger equation with non-

compactly supported potentials under the decay condition jqnj � C.1 C jnj/�ˇ
with ˇ > 5 and for � > 5=2.

Here we improve this result by both reducing the decay rate and the value of � .

Again, this reduction relies on our new approach based on properties of the Jost

functions and the scattering matrix.

Finally, we obtain similar asymptotics for the wave (resp. Klein–Gordon) equa-

tion (1.2) (except for the asymptotics in the resonant case when � D 0).

In addition, we mention that asymptotics of the type (1.3)–(1.10) play an im-

portant role in proving asymptotic stability of solitons in the associated discrete

nonlinear equations [10, 14, 15, 18]. Analogous results for the continuous one

dimensional Schrödinger and Klein–Gordon equations will be given in [5].

2. Free discrete Schrödinger equation

As a warm-up we will �rst consider the free equation (1.1) with q D 0 and denote

H0 D ��L. It is well-known ([20, Sect. 1.3]) that H0 is self-adjoint and the

discrete Fourier transform

Ou.�/ D
X

n2Z

une
i�n; � 2 T WD R=2�Z:

maps H0 to the operator of multiplication by �.�/ D 2 � 2 cos � :

� bH0u.�/ D �.�/yu.�/:

In particular, the spectrum Spec.H0/ D Œ0; 4� is purely absolutely continuous.
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Adopting the notation ŒK�n;k for the kernel of an operator K, that is,

.Ku/n D
X

k2Z

ŒK�n;kuk ; n 2 Z;

the kernel of the resolvent R0.!/ D .H0 � !/�1 is given by (cf. [13])

ŒR0.!/�n;k D 1

2�

Z

T

e�i�.n�k/

�.�/ � !
d� D e�i�.!/jn�kj

2i sin �.!/
; ! 2 „ WD C n Œ0; 4�; (2.1)

n; k 2 Z. Here �.!/ is the unique solution of the equation

2� 2 cos � D !; � 2 † WD ¹�� � Re � � �; Im � < 0º: (2.2)

Observe that � 7! ! D 2 � 2 cos � is a biholomorphic map from † ! „ with

identi�ed points � D �� � ia and � D � � ia, a � 0. �en the map z D e�i�

is one-to-one from † to the interior of the unit circle jzj < 1. Note that the

parameter z is the standard spectral parameter for the Jacobi di�erence equation

an�1un�1 C bnun C anunC1 D .z C z�1/un, where an ! 1 and bn ! 0 as

n ! ˙1. �e scattering theory of this equation can be found in [20].

�e kernel of the free propagator can be easily computed using the spectral

theorem

Œe�itH0 �n;k D 1

2�i

Z

Œ0;4�

e�it!ŒR0.! C i0/ � R0.! � i0/�n;k d!

D � 1

4�

Z

Œ0;4�

e�it!
�e�i�C.!/jn�kj

sin �C.!/
� e�i��.!/jn�kj

sin ��.!/

�

d! (2.3)

D 1

2�

Z �

��

e�it.2�2 cos�/e�i� jn�kjd�

where

�C.!/ D �.! C i0/ 2 Œ��; 0�; ��.!/ D �.! � i0/ 2 Œ0; ��; ! 2 Œ0; 4�: (2.4)

�e last integral in (2.3) is Bessel’s integral implying

Œe�itH0 �n;k D ei.�2tC �
2

jn�kj/Jjn�kj.2t/; (2.5)

where J�.z/ denotes the Bessel function of order �, [21].

For the free discrete Schrödinger equation the `1 ! `1 decay and the

`2� ! `2�� decay holds only with the rates t�1=3 and t�1=2, respectively (the latter

one being the same as in the continuous case). �is is caused by the presence of

resonances at the edge points ! D 0 and ! D 4.
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Proposition 2.1. �e following asymptotics hold

ke�itH0k`1!`1 D O.t�1=3/; t ! 1; (2.6)

ke�itH0k`2
� !`2

��
D O.t�1=2/; t ! 1; � > 1=2: (2.7)

Proof. Step i . To establish (2.6) consider t � 1 and set

v WD jn � kj=t � 0:

We start from

Œe�itH0�n;k D 1

2�

�
Z

��

e�it.2�2 cos�Cv�/d� (2.8)

which is an oscillatory integral with the phase function

�v.�/ D 2 � 2 cos � C v�: (2.9)

�e stationary points are the solution of the equation �0
v.�/ D 2 sin � C v D 0. If

v > 2 the phase function has no stationary points. For any v < 2 the phase function

has two stationary points �1;2, which are non-degenerate, i.e. �00
v .�1;2/ 6D 0. In the

case v D 2 the phase function has a unique degenerate stationary point � D ��=2
satisfying

�00
2 .��=2/ D 0; �000

2 .��=2/ D 2 6D 0: (2.10)

�en, since �00
v .�/ D 2 cos.�/ and �000

v .�/ D �2 sin.�/, we can split our domain

of integration into four intervals where either j�00
v .�/j �

p
2 or j�000

v .�/j �
p
2.

Applying the van der Corput lemma [19, page 334] on each interval gives (2.6).

Step i i . To establish (2.7) we represent e�itH0 as the sum

e�itH0 D 1

2�
.K.t/C zK.t//;

where

ŒK.t/�n;k D
Z

j�C �
2

j� �
6

e�it�v.�/d�; Œ zK.t/�n;k D
Z

j�C �
2

j� �
6

e�it�v.�/d�:

By the stationary phase method we infer

sup
n;k2Z

jŒ zK.t/�n;kj � C t�1=2; t � 1;

implying (2.7) for zK.t/. �e required estimate for K.t/ will follow from the next

lemma.
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Lemma 2.2. For any � > 1=2 the following estimate holds:

X

n;k2Z

ŒK.t/�2n;k
1

.1C jnj/2� .1C jkj/2� � C t�1: (2.11)

Proof. For any �xed � > 1=2, there exist an integer N > 0 such that

� > 1=2C .1=2/N : (2.12)

Denote tj D t�.
1
2
/j , 1 � j � N , t0 D 0, tNC1 D �=6, and represent K.t/ as the

sum

K.t/ D
N
X

jD0

Kj .t /;

where Kj .t /, 0 � j � N , is the integral over tj � j� C �
2

j � tjC1. We will

establish a bound of type (2.11) for each summand. ForK0.t / the bound evidently

holds. Furthermore, by the van der Corput lemma

sup
n;k2Z

j
Z

tj �j�C �
2

j�a

e�it�v.�/d� j � C t�1=2. min
tj �j�C �

2
j� �

6

j�00
v .�/j/�1=2� C.t tj /

�1=2

(2.13)

for any a 2 Œtj ; �=6� implying

sup
n;k2Z

jŒKj .t /�n;kj � C t�1=2t
�1=2
j ; j D 1; : : : ; N: (2.14)

To get the estimate (2.11) for eachKj .t /, 1 � j � N , we choose " D 2�N , so that

t " D t�1N , and consider two di�erent cases: j2� vj 2 Œ0; tj t "� and j2� vj 2 Œtj t "; 2�
separately.

In the �rst case we take

Tj D ¹.n; k/ 2 Z
2 W j2t � jn � kjj � tj t

1C"º

as the domain of summation. Since this domain is symmetric with respect to the

map .n; k/ 7! .�n;�k/, we can make the change of variablesp D n�k, q D nCk
and estimate

bj .t / WD
X

.n;k/2Tj

1

.1C jnj/2� .1C jkj/2�

as

bj .t / �
X

q2Z

b2tCtj t
1C"c

X

pDd2t�tj t
1C"e

2

.1C 1
2
jp C qj/2�.1C 1

2
jp � qj/2�

;
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where b�c, d�e denote the usual �oor and ceiling functions. �e sum with respect to

p is �nite with the number of summands less then 2btj t1C"cC2. Since tj t
1C" � t

for j D 1; : : : ; N we have p � t in the domain of summation. Consequently

p C q � t for q � 0 and p � q � t for q < 0. Using these estimates and

interchanging the order of summation we get

bj .t / � C
btj t1C"c
t2�

� C tj t
1C"�2� : (2.15)

�us, by (2.14), (2.15), and (2.12)

X

n;k2Tj

.ŒKj .t /�n;k/
2

.1C jnj/2� .1C jkj/2� � sup
n;k2Z

.ŒKj .t /�n;k/
2bj .t / � C t�2�C" � C t�1:

(2.16)

In the second case .n; k/ … Tj we have (using � C �=2 D  )

jŒKj .t /�n;kj D
ˇ

ˇ

ˇ

ˇ

ˇ

Z

tj �j j�tj C1

e�it.v �2 sin /d 

ˇ

ˇ

ˇ

ˇ

ˇ

D 2

ˇ

ˇ

ˇ

ˇ

ˇ

Z

tj � �tj C1

cos.t .v � 2 sin //d 

ˇ

ˇ

ˇ

ˇ

ˇ

:

Applying integration by parts we get

jŒKj .t /�n;kj � 2

t

� 1

jv � 2 cos tj j C 1

jv � 2 cos tjC1j
C
Z tj C1

tj

2 sin. /d 

.v � 2 cos /2

�

� 4

t

� 1

j4 sin2.tj=2/C v � 2j
C 1

j4 sin2.tjC1=2/C v � 2j

�

:

(2.17)

Since for j D 1; : : : ; N � 1 we have jv � 2j � tj t
" � t2jC1 D tj > t

2
j , we see

ˇ

ˇ

ˇ

ˇ

4 sin2
tjCs

2
C v � 2

ˇ

ˇ

ˇ

ˇ

� jv�2j�4 sin2
tjCs

2
� jv�2j� t2jCs � jv�2j� tj (2.18)

for s D 0; 1. But jv � 2j � tj � tj .t
" � 1/ � C tj , therefore

sup
.n;k/…Tj

jŒKj .t /�n;kj � C t�1t�1j � C t�1=2; j D 1; : : : ; N � 1: (2.19)
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For j D N we have jv � 2j � 1 and thus

sin2
� tNC1

2

�

D 4 sin2
� �

12

�

< jv � 2j=2:

Respectively, j4 sin2.tNC1=2/C v � 2j � jv � 2j=2; which implies jŒKN .t /�n;kj �
C t�1. Combining this with (2.16) we get (2.11) for eachKj .t / as 1 � j � N .

�is �nishes the proof of Proposition 2.1.

Remark 2.3. �e decay rate in (2.6) is “sharp” as can be seen from the following

asymptotics of the Bessel function

Jt .t / � t�1=3; t ! 1;

see [21, Section 8.2].

3. Jost solutions and the resolvent

Consider the Jost solutions f ˙.�/ to the equation

Hf WD .��L C q/f D !f;

normalized as

f ˙
n .�/ � e�in� ; n ! ˙1;

where ! 2 x„ and � D �.!/ 2 x† (cf. (2.2)). For q 2 `11 this solution exists every-

where in x„, but for q 2 `1 it exists outside of the edges of continuous spectrum.

Introduce

h˙
n .�/ D e˙in�f ˙

n .�/ (3.1)

and set
x†ı WD ¹� 2 x† W je�i� ˙ 1j > ıº; 0 < ı <

p
2:

Lemma 3.1. (i) Let q 2 `1s with s D 0; 1; 2. �en the functions h˙
n .�/ can be

di�erentiated s times on x†ı , and the following estimates hold:

j @
p

@�p
h˙
n .�/j � C.ı/max..�n/jnjp�1; 1/; n 2 Z; 0 � p � s; � 2 x†ı : (3.2)

(ii) If additionally q 2 `1sC1, then h˙
n .�/ can be di�erentiated s times on x†,

and the following estimates hold:
ˇ

ˇ

ˇ

ˇ

@p

@�p
h˙
n .�/

ˇ

ˇ

ˇ

ˇ

� C max..�n/jnjp; 1/; n 2 Z; 0 � p � s; � 2 x†: (3.3)
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Proof. �e proof of (3.2) is similar for “C " and “� " cases, hence we give it only

for the “ C " case. Denote hn.z/ D hC
n .�/ with z D e�i� , jzj � 1. Function hn.z/

satis�es the integral equation (see [20])

hn.z/ D 1C
1
X

mDnC1

G.n;m; z/hm.z/; G.n;m; z/ WD qm
z2m�2n � 1
z�1 � z : (3.4)

For � 2 x†ı we have jz2 � 1j � C.ı/ > 0. �en

jG.n;m; z/j � 2jzjjqmj
jz2 � 1j � C.ı/jqmj; m � n > 0;

and the method of successive approximations as in [3] implies jhn.z/j � C.ı/.

�en (3.2) with p D 0 follows. Further,

ˇ

ˇ

ˇ

ˇ

dp

dzp
G.n;m; z/

ˇ

ˇ

ˇ

ˇ

� C.ı/.m� n/pjqmj; p � 1; m � n > 0; � 2 x†ı : (3.5)

Now let q 2 `11. Consider the �rst derivative of hn.z/. We have

d

dz
hn.z/ D �n.z/C

1
X

mDnC1

G.n;m; z/
d

dz
hm.z/; (3.6)

where

�n.z/ WD
1
X

mDnC1

hm.z/
d

dz
G.n;m; z/

with j�n.z/j � C.ı/ as n � 0 and � 2 x†ı by (3.2) with p D 0 and (3.5).

Applying the method of successive approximations to (3.6) we get (3.2) with

p D 1. For the case p D 2 we proceed in the same way.

�e estimate (3.3) can be obtained from (3.4) by the same approach by virtue

of the estimate
ˇ

ˇ

dp

dzpG.n;m; z/
ˇ

ˇ � 2jqmj.m� n/pC1, which is valid for all jzj � 1

and m > n.

Corollary 3.2. In the case q 2 `1 Lemma 3.1 (i) implies in particular that for

any � 2 † n ¹0; �;��º we got the estimate jh˙
n .�/j � C.�/ for all n 2 Z, where

C.�/ can be chosen uniformly in compact subsets of x† avoiding the band edges.

Together with (3.1) this implies

jf ˙
n .�/j � C.�/e˙ Im.�/n; � 2 † n ¹0; �;��º; n 2 Z: (3.7)
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Given the Jost solutions we can express the kernel of the resolvent

R.!/ D .H � !/�1 W `2 �! `2

for ! 2 C n spec.H/ as (cf. [20, (1.99)])

ŒR.!/�n;k D 1

W.�.!//

8

<

:

f C
n .�.!//f

�
k
.�.!// for n � k;

f C
k
.�.!//f �

n .�.!// for n � k;
(3.8)

where

W.�/ WD W.f C.�/; f �.�// D f C
0 .�/f

�
1 .�/ � f C

1 .�/f
�
0 .�/ (3.9)

is the Wronskian of the Jost solutions. Recall that � 7! !.�/ is a biholomorphic

map † ! „.

�e representation (3.8), the fact that W.�/ does not vanish for ! 2 .0; 4/,

and the bound (3.7) imply the limiting absorption principle for the perturbed one-

dimensional Schrödinger equation.

Lemma 3.3. Let q 2 `1. �en the convergence

R.! ˙ i"/ �! R.! ˙ i0/; " ! 0C; ! 2 .0; 4/ (3.10)

holds in L.`2� ; `
2
��/ with � > 1=2.

Proof. For any ! 2 .0; 4/ and any n; k 2 Z, there exist the pointwise limit

ŒR.! ˙ i"/�n;k �! ŒR.! ˙ i0/�n;k ; " ! 0:

Moreover, the bound (3.7) implies that jŒR.! ˙ i"/�n;kj � C.!/. Hence, the

Hilbert–Schmidt norm of the di�erence R.!˙ i"/� R.!˙ i0/ converges to zero

in B.�;��/ with � > 1=2 by the Lebesgue dominated convergence theorem.

Corollary 3.4. For any ! 2 .0; 4/ and any �xed � > 1=2, the operators

R.! ˙ i0/ W `2� �! `2��

have integral kernels given by

ŒR.! ˙ i0/�n;k D 1

W.�˙/

8

<

:

f C
n .�˙/f

�
k
.�˙/ for n � k;

f C
k
.�˙/f

�
n .�˙/ for n � k;

(3.11)

where �C, and �� D ��C are de�ned by (2.4).
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At the end of this section we discuss an alternative de�nition of resonances.

De�nition 3.5. For ! 2 ¹0; 4º any nonzero solution u 2 `1.Z/ of the equation

Hu D !u is called a resonance function, and in this case the point ! is called a

resonance.

Lemma 3.6. Let q 2 `11. �en ! D 0 (or ! D 4) is a resonance if and only if

W.0/ D 0 (or W.�/ D 0).

Proof. We consider the case ! D 0. In this case f ˙
n D 1 C o.1/; as n ! ˙1:

Introduce another solution gC satisfying W.f C; gC/ D 1. Making the ansatz

gC
n D f C

n vn, where vn is unknown, we obtain .vnC1 � vn/f
C
n f

C
nC1 D 1 for

su�ciently large positive n0. Solving for v shows

gC
n D f C

n

n�1
X

jDn0

1

f C
j f

C
jC1

C vn0
f C
n D nC o.n/; n ! C1:

Hence f �
n D f̨ C

n C ˇgC
n and there is a bounded solution if and only if

ˇ D W.f C; f �/ D 0.

4. Properties of the scattering matrix

Recall that the Wiener algebra is the set of all integrable functions whose Fourier

coe�cients are integrable:

A D
°

f .�/ D
X

m2Z

Ofmeim�
ˇ

ˇ

ˇ k Of k`1 < 1
±

:

We set

kf kA D k Of k`1 : (4.1)

In the case q 2 `11 the functions h˙
n from (3.1) can be represented as

h˙
n .�/ D 1C

˙1
X

mD˙1

B˙
n;me�im� ; (4.2)
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where (see [20, Sect. 10.1]) B˙
n;m 2 R and

jB˙
n;mj � C˙

n

˙1
X

kDnCbm=2c

jqk j; (4.3)

with

C˙
n � C˙; ˙n � �1: (4.4)

�e estimate (4.3) implies

h˙
n .�/; f

˙
n .�/ 2 A if q 2 `11: (4.5)

Moreover, the Wronskian W.�/ (see (3.9)) of Jost solutions also belongs to the

Wiener algebra A if q 2 `11 and the same holds true for the Wronskians

W ˙.�/ D W.f �.�/; f ˙.��//:

Moreover, we have the scattering relations

T .�/f ˙
m .�/ D R�.�/f �

m .�/C f �
m .��/; � 2 Œ��; ��; (4.6)

where the quantities

T .�/ D 2i sin �

W.�/
; R˙.�/ D ˙W ˙.�/

W.�/
; (4.7)

which are known as the transmission and re�ection coe�cients, also belong to

this algebra:

�eorem 4.1. If q 2 `11, then T .�/, R˙.�/ 2 A.

Proof. �e Wronskian W.�/ can vanish only at the edges of continuous spectra,

i.e. when � D 0;˙� , which correspond to the resonant cases (see Lemma 3.6

below). Remind that we identify points � and �� , considering Jost solutions,

Wronskians and scattering data as functions on the unit circle. �us it is su�cient

to consider the points 0 and � . Since jT .�/j � 1 as � 2 Œ��; �� then the zeros

of the Wronskian at points 0; � can be at most of �rst order. Since W.�/ 2 A by

(4.5), then in the caseW.0/W.�/ ¤ 0we obtainW.�/�1 2 A by Wiener’s lemma.

�erefore, T;R˙ 2 A.

If W.0/W.�/ D 0 we need to work a bit harder. Suppose, for example,

W.0/ D 0. In [4], Lemma 4.1, formulas (4.12)–(4.14), the following representation

is obtained

V ˙.�/ WD f ˙
1 .�/f

˙
0 .0/ � f ˙

0 .�/f
˙
1 .0/ D .1 � ei� /‰˙.�/; (4.8)
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where

‰˙.�/ D
˙1
X

lD 1˙1
2

g˙
me�im� ; with g˙ 2 `1.Z˙/ if q 2 `11: (4.9)

In other words, ‰˙.�/ 2 A. Since

W.0/ D f C
0 .0/f

�
1 .0/ � f C

1 .0/f
�
0 .0/ D 0 (4.10)

we have two possible combinations (since the solutions f ˙
m .0/ cannot vanish at

two consecutive points): (a) f C
0 .0/f

�
0 .0/ ¤ 0 and (b) f C

1 .0/f
�
1 .0/ ¤ 0. Con-

sider the case (a). By (3.9), (4.8), and (4.10) we get

W.�/ D f C
0 .�/f

�
0 .�/

� V �.�/

f �
0 .0/f

�
0 .�/

� V C.�/

f C
0 .0/f

C
0 .�/

�

D .1� ei� /
�f C

0 .�/

f �
0 .0/

‰�.�/ � f �
0 .�/

f C
0 .0/

‰C.�/
�

D .1� ei� /ˆ.�/;

where ˆ.�/ 2 A by (4.9) and (4.5). We observe that if W.�/ D 0 then ˆ.�/ ¤ 0

for � 2 .��; �/ and if W.�/ ¤ 0 then ˆ.�/ ¤ 0 for � 2 Œ��; ��. �e same

result follows in a similar fashion in case (b). Since equality W.0/ D 0 implies

W ˙.0/ D 0 then we can also get similarly

W ˙.�/ D .1� ei� /ˆ˙.�/

with ˆ˙.�/ 2 A.

Analogously,W.�/ D 0 implies

W.�/ D .1C ei�/ ẑ .�/; W ˙.�/ D .1C ei�/ ẑ ˙.�/

with ẑ ; ẑ ˙ 2 A and ẑ .�/ ¤ 0 for � 2 Œ��; �� if W.0/ ¤ 0. �us if W vanishes

at only one edge of spectrum, this �nishes the proof. IfW vanishes at both edges,

then we can use a smooth cut-o� function to combine both representations into

W.�/ D .1�e2i�/ M̂ .�/ (respectively,W ˙.�/ D .1�e2i�/ M̂ ˙.�/) with M̂ ; M̂ ˙ 2 A

and M̂ .�/ ¤ 0 for � 2 Œ��; ��.
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5. Dispersive decay in the resonant case

We begin with a small variant of the van der Corput lemma.

Lemma 5.1. Consider the oscillatory integral

I.t/ D
Z b

a

eit�.�/f .�/d�; �� � a < b � �; (5.1)

where �.�/ is real-valued. If min
�2Œa;b�

j�.s/.�/j D ms > 0 for some s � 2 and f 2 A,

then

jI.t/j � Csk Of k`1

.mst /1=s
; t � 1; (5.2)

where Cs is a universal constant.

Proof. We rewrite

I.t/ D
Z b

a

eit�.�/
X

p2Z

Ofpeip�d� D
X

p2Z

OfpIp=t .t /;

Iv.t / D
Z b

a

eit.�.�/Cv�/d�:

By the van der Corput lemma [19, page 332] we have jIv.t /j � Cs.mst /
�1=s, where

Cs is a universal constant (independent of v) and the claim follows.

Remark 5.2. �e above lemma is usually found for the case when f is absolutely

continuous in the literature (cf. [19, page 333]) — in fact, the proof immediately

extends to functions of bounded variation. However, by the Riemann–Lebesgue

lemma the Fourier coe�cients of an absolutely continuous function must satisfy
Ofm D o.m�1/ (for functions of bounded variation one has O.m�1/) and consid-

ering lacunary Fourier coe�cients one obtains an element in the Wiener algebra

which is not absolutely continuous (of bounded variation). Conversely, since the

Fourier coe�cients of an integrable function can have arbitrary slow decay, there

are absolutely continuous functions which are not in the Wiener algebra. Finally,

note that for continuous f the decay can be arbitrary slow.

Now we come to our main result in this section.

�eorem 5.3. Let q 2 `11. �en the asymptotics (1.3) and (1.8) hold, i.e.,

ke�itHPck`1!`1 D O.t�1=3/; t ! 1; (5.3)

ke�itHPck`2
� !`2

��
D O.t�1=2/; t ! 1; � > 1=2: (5.4)
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Proof. Step i . We apply the spectral representation

e�itHPc D 1

2�i

Z

Œ0;4�

e�it!.R.! C i0/ � R.! � i0// d!: (5.5)

Expressing the kernel of the resolvent in terms of the Jost solutions (cf. [20,

(1.99)]), the kernel of e�itHPc reads:

Œe�itHPc�n;k D 1

2�i

Z 4

0

e�it!
hf C

k
.�C/f

�
n .�C/

W.�C/
�
f C
k
.��/f

�
n .��/

W.��/

i

d!

D � 1

�i

Z �

��

e�it.2�2 cos�/
f C
k
.�/f �

n .�/

W.�/
sin � d�

(5.6)

for n � k and by symmetry Œe�itHPc�n;k D Œe�itHPc �k;n for n � k. Hence,

for (5.3) it su�ces to prove that

Œe�itHPc �n;k D O.t�1=3/; t ! 1: (5.7)

independent of n; k. We suppose n � k for notational simplicity. �en

Œe�itHPc�n;k D 1

2�

Z �

��

e�it�v.�/hC
k
.�/h�

n .�/T .�/d�;

where �v is de�ned in (2.9) with v D k�n
t

� 0. We observe that the function

Yn;k.�/ D hC
k
.�/h�

n .�/T .�/ (5.8)

belongs to A, moreover, the `1-norm of its Fourier coe�cients OYn;k.�/ can be es-

timated by a value, which does not depend on n and k. To this end introduce

1C sup
˙n>0

˙1
X

mD1

jB˙
n;mj D zC˙ > 0:

By (4.3) and (4.4) this supremum is �nite. �en

k Oh˙
n .�/k`1 � zC˙ for ˙ n > 0: (5.9)

Now consider the three possibilities:

(a) n � k � 0,

(b) 0 � n � k, and

(c) n � 0 � k.
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In the case (c) the bound (5.9) and �eorem 4.1 imply

k OYn;k.�/k`1 � C: (5.10)

In the other two cases we use the scattering relations (4.6) to get the representation

Yn;k.�/ D

8

<

:

h�
n .�/.R

�.�/h�
k
.�/e2ik� C h�

k
.��// n � k � 0;

hC
k
.�/.RC.�/hC

n .�/e
�2in� C hC

n .��// 0 � n � k;
(5.11)

and again apply �eorem 4.1 together with (4.5) and (5.9) to obtain (5.10).

Now, as in the proof of (2.6) (see Step i in the proof of Proposition 2.1) we split

the domain of integration into regions where either the second or third derivative

of the phase is nonzero and apply Lemma 5.1 together with the estimates from

�eorem 4.1.

Step i i . Set

J WD
°

� 2 Œ��; �� W
ˇ

ˇ

ˇ� ˙ �

2

ˇ

ˇ

ˇ � �

6

±

:

To establish (5.4) we represent
�

e�itHPc
�

n;k
as the sum

�

e�itHPc
�

n;k
D ŒK˙.t /�n;k C Œ zK.t /�n;k;

where

ŒK˙.t /�n;k D 1

2�

Z

j�˙ �
2

j� �
6

e�it�v.�/Yn;k.�/d�;

Œ zK.t /�n;k D 1

2�

Z

�2Œ��;��nJ

e�it�v.�/Yn;k.�/d�;

and Yn;k.�/ D hC
k
.�/h�

n .�/T .�/ as above. Lemma 5.1 with s D 2 and the bound,

equation (5.10) imply

sup
n;k2Z

jŒ zK.t /�n;kj � C t�1=2; t � 1:

�en

k zK.t /k`2
� !`2

��
� C t�1=2; � > 1=2; t � 1:

It remains to obtain the same estimate for K˙.t /. Since W.�/ ¤ 0 for � 2 J ,

it follows from Lemma 3.1 that
ˇ

ˇ

ˇ

ˇ

d

d�
T .�/

ˇ

ˇ

ˇ

ˇ

;

ˇ

ˇ

ˇ

ˇ

d

d�
R˙.�/

ˇ

ˇ

ˇ

ˇ

� C; � 2 J: (5.12)
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Furthermore, we split K˙.t / as

K
˙.t / D K

˙
a .t /C K

˙
b .t /C K

˙
c .t /;

where K˙
a .t / are the restrictions of the operators K˙.t / to the case (a) n � k � 0

etc. First we estimate K˙
c .t /. �e bounds (3.2) and (5.12) imply

ˇ

ˇ

ˇ

ˇ

@

@�
Yn;k.�/

ˇ

ˇ

ˇ

ˇ

� C; � 2 J; n � 0 � k: (5.13)

�erefore, applying integration by parts, we obtain

jŒK�
c .t /�n;kj � C t�1; t � 1;

and then

kK�
c .t /k`2

�!`2
��

� C t�1; � > 1=2; t � 1:

To estimate KC
c .t / we apply the general scheme of Lemma 2.2. In particular, to

prove a bound of the type (2.13) for the integral with the additional factor Yn;k
we use Lemma 5.1. To get (2.17) we use the bounds (5.10) and (5.13). For the

other estimates we repeat literally the respective estimates of Lemma 2.2. �us,

we obtain

kKC
c .t /k`2

�!`2
��

� C t�1=2; � > 1=2; t ! 1:

Now consider the case (a). Using the �rst line of (5.11) and the fact

i.n � k/C 2ik D i.k C n/ D �ijk C nj; n � k � 0; (5.14)

we represent K˙
a .t / as

K
˙
a .t / D 1

2�

Z

j�˙ �
2 j� �

6

e�it�v.�/Y 1n;k.�/d� C 1

2�

Z

j�˙ �
2 j� �

6

e�it Q�v.�/Y 2n;k.�/d�

where

Y 1n;k.�/ D h�
n .�/h

�
k .��/;

Y 2n;k.�/ D R�.�/h�
n .�/h

�
k .�/;

and
Q�v.�/ D 2� 2 cos � C Qv�; with Qv D jnC kj=t � 0: (5.15)

Since
ˇ

ˇ

ˇ

ˇ

@

@�
Y
j

n;k
.�/

ˇ

ˇ

ˇ

ˇ

� C; � 2 J; n � k � 0; j D 1; 2;

then K˙
a .t / can be treated similarly to K˙

c .t /.

In the case (b) we have

i.n � k/ � 2in D �i.k C n/ D �ijk C nj; 0 � n � k: (5.16)

and then the proof is the same as in the case (a).
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6. Dispersive decay in the non-resonant case

�eorem 6.1. Let q 2 `12. �en in the non-resonant case the asymptotics (1.9)

hold, i.e.,

ke�itHPck`1
1

!`1
�1

D O.t�4=3/; t ! 1; (6.1)

Proof. It su�ces to show that

jŒe�itHPc �n;kj � C.1C jnj/.1C jkj/t�4=3; t � 1: (6.2)

�e representation (4.2) and the bounds (4.3)–(4.4) imply

h˙
n .�/;

@

@�
h˙
n .�/ 2 A if q 2 `12: (6.3)

�erefore, d
d�
W.�/ WD W 0.�/ 2 A. Since in the non-resonant case W.�/�1 2 A

we also infer
d

d�
T .�/;

d

d�
R˙.�/ 2 A (6.4)

by Wiener’s lemma. For the derivatives of h˙
k

bounds of the type (5.9) hold,

namely,








@

@�
h˙
n .�/









A

� zC for ˙ n > 0: (6.5)

For n � k we represent the jump of the resolvent across the spectrum as

R.!C i0/�R.!� i0// D
T .�/f C

k
.�/f �

n .�/C T .�/f C
k
.�/ f �

n .�/

�2i sin �
; � 2 Œ0; ��:

�e scattering relations (4.6) imply

f �
n .�/ D T .��/f C

n .��/ �R�.��/f �
n .��/;

f C
k
.�/ D T .�/f �

k .�/ � RC.�/f C
k
.�/:

�en using the consistency relation TR� C xTRC D 0 we come to the formula

(cf. [17, p.13])

R.!Ci0/�R.!�i0// D jT .�/j2
�2i sin �

Œf C
k
.�/f C

n .��/Cf �
k .�/f

�
n .��/�; � 2 Œ0; ��:
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Inserting this into (5.5) and integrating by parts we get

Œe�itHPc�n;k

D 1

�

Z �

��

e�it.2�2 cos �/jT .�/j2Œf C
k
.�/f C

n .��/C f �
k .�/f

�
n .��/�d�

D i

2�t

Z �

��

e�it.2�2 cos �/ d

d�

h jT .�/j2
sin �

.f C
k
.�/f C

n .��/C f �
k .�/f

�
n .��//

i

d�

D Œe�itHPc�
C
n;k

C Œe�itHPc �
�
n;k:

Evaluating the derivative we further obtain

�

e�itHPc
�˙

n;k
D i

2�t

Z �

��

e�it.2�2 cos�/ d

d�

h jT .�/j2
sin �

e�i�.k�n/h˙
k .�/h

˙
n .��/

i

d�

D ˙.k � n/
2�t

Z �

��

e�it.2�2 cos �/e�i�.k�n/ jT .�/j2
sin �

h˙
k .�/h

˙
n .��/d�

� i

2�t

Z �

��

e�it.2�2 cos�/e�i�.k�n/ cos �
jT .�/j2
sin2 �

h˙
k .�/h

˙
n .��/d�

C i

2�t

Z �

��

e�it.2�2 cos �/e�i�.k�n/
d
d�
ŒjT .�/j2h˙

k
.�/h˙

n .��/�
sin �

d�:

(6.6)

Next, observe that formula (4.3) implies that if q 2 `12, then B˙
m;s 2 `11.Z˙/ for

any �xed m, and consequently

S˙
m .j / WD

˙1
X

sDj

jB˙
m;s j; S˙

m .�/ 2 `1.Z˙/: (6.7)

Based on this observation we prove the following

Lemma 6.2. Let q 2 `12 and W.0/W.�/ ¤ 0. �en T .�/h˙
m.�/= sin � 2 A, and







T .�/h˙
m.�/

sin �







A

� C.1C jmj/; m 2 Z: (6.8)

Proof. Since T .�/= sin � D 2i=W.�/ then for m 2 Z˙ the bound (6.8) follows

from (5.9) and �eorem 4.1. Hence it remains to consider the case m 2 Z�. �e

scattering relations (4.6) imply

T .�/h˙
m.�/ D .R�.�/C 1/h�

m.�/e
˙2im�

� .h�
m.�/ � h�

m.��//e˙2im�

C h�
m.��/.1� e˙2im� /:

(6.9)
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Using (4.2) we obtain

h�
m.�/ � h�

m.��/
sin �

D
�1
X

sD�1

B�
m;s

e�is� � e˙is�

sin �

D �2i
�1
X

sD�1

B�
m;s

s�1
X

jD�.s�1/

eij�

D �2i
1
X

jD�1

�

�1
X

sD�jj j�1

B�
j;s

�

eij� :

Property (6.7) then implies









h�
m.�/ � h�

m.��/
sin �









A

� C; m 2 Z�: (6.10)

and we get

f �
0 .�/ � f �

0 .��/
sin �

;
f C
1 .�/ � f C

1 .��/
sin �

;
f �

�1.�/ � f �
�1.��/

sin �
2 A; q 2 `12;

as well as

R�.�/C 1

sin �
D 1

W.�/

W.�/�W �.�/

sin �
2 A: (6.11)

Furthermore,










1 � e˙2im�

sin �











A

� 2jmj: (6.12)

Finally, substituting (6.10), (6.11), and (6.12) into (6.9) we get (6.8).

To obtain (6.2) for the �rst summand in (6.6) note that k�n � 2max¹jnj; jkjº.
Hence we apply (6.8) to the factor T .��/h˙

m.��/= sin � , where jmjD min¹jnj; jkjº.
�en we split the domain of integration into regions where either the second or

third derivative of the phase is nonzero and apply Lemma 5.1 together with esti-

mate from �eorem 4.1 and Lemma 6.2. To obtain (6.2) for the second summand

in (6.6) we apply (6.8) to both T .��/h˙
n .��/= sin � and T .�/h˙

k
.�/= sin � .

To complete the proof of (6.1) we need one more property.
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Lemma 6.3. Let q 2 `12 and W.0/W.�/ ¤ 0. �en d
d�
.T .�/h˙

m.�// 2 A with









d

d�
.T .�/h˙

m.�//









A

� C.1C jmj/; m 2 Z: (6.13)

Proof. Since T 0.�/ and d
d�
h˙
m.�/ are elements of A for q 2 `12, then for m 2 Z˙

the statement of the lemma is evident in view of (6.5). To get it for m 2 Z� we

use (6.4), (6.5), and formula

d

d�
.T .�/h˙

m.�//

D d

d�
.R�.�/h�

m.�// e˙2im� ˙ 2ime˙2im�R�.�/h�
m.�/C d

d�
h�
m.��/:

�e bound (6.2) for the third summand in (6.6) now follows combining �eo-

rem 4.1, Lemmas 5.1, 6.2, and 6.3.

�eorem 6.4. Let q 2 `12. �en in the non-resonant case the asymptotics (1.8)

hold, i.e.,

ke�itHPck`2
� !`2

��
D O.t�3=2/; t ! 1; � > 3=2: (6.14)

Proof. We will derive (6.14) for Œe�itHPc�
C, de�ned in (6.6). For Œe�itHPc �

� the

proof is similar. Abbreviate

Zn;k.�/ D jT .�/j2hC
k
.�/hC

n .��/: (6.15)

Due to (6.6) it su�ces to consider the operators Mj .t /, j D 1; 2; 3, with the

kernels

ŒMj .t /�n;k D
Z �

��

e�it�v.�/Z
j

n;k
.�/d�; �v.�/ D 2�2 cos �Cv�; v D jk�nj=t;

where

Z1n;k.�/ D k � n
sin �

Zn;k.�/; (6.16a)

Z2n;k.�/ D cos �

sin2 �
Zn;k.�/; (6.16b)

Z3n;k.�/ D
d
d�
Zn;k.�/

sin �
(6.16c)
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and obtain the bound

X

n;k2Z

ŒMj .t /�
2
n;k

1

.1C jnj/2� .1C jkj/2� � C t�1 (6.17)

for any � > 3=2 and su�ciently large t � 1. As in the proof of �eorem 5.3,

step ii, we consider the integrals over

J WD ¹� W j� ˙ �=2j � �=6º

and over Œ��; �� n J .

For the integrals over Œ��; �� n J we apply Lemma 5.1 with s D 2 together

with the fact that kZj
n;k

kA � C.1C jnj/.1C jkj/, j D 1; 2; 3 and obtain

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Z

Œ��;��nJ

e�it�v.�/Z
j

n;k
.�/d�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� C t�1=2.1C jnj/.1C jkj/; t � 1:

�en the bound (6.17) for

Œ zMj .t /�n;k D
Z

Œ��;��nJ

e�it�v.�/Z
j

n;k
.�/d�

follows. To estimate the integrals over J we consider the three possibilities (a)

n � k � 0, (b) 0 � n � k and (c) n � 0 � k.

Consider the case (b). Lemma 3.1 (ii) for s D 2 imply

ˇ

ˇ

ˇ

ˇ

d2

d�2
T .�/

ˇ

ˇ

ˇ

ˇ

;

ˇ

ˇ

ˇ

ˇ

d2

d�2
R˙.�/

ˇ

ˇ

ˇ

ˇ

� C; � 2 J: (6.18)

Respectively,

j @
@�
Z
j

n;k
.�/j � C.1C k/; � 2 J; 0 � n � k:

�en we obtain (6.17) by the same arguments as for the proof of �eorem 5.3, Step

ii.

Consider the case (c). Using the scattering relations (4.6) and equality (5.16)

we obtain

ŒM˙
j .t /�n;k W D

Z

J

e�it�v.�/Z
j

n;k
.�/d�

D
Z

J

e�it�v.�/Z
j

n;k;1
.�/d� C

Z

J

e�it Q�v.�/Z
j

n;k;2
.�/d�
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where Q�v.�/ is de�ned in (5.15), and

Z1n;k;j .�/ D k � n
sin �

Zn;k;j .�/; Z2n;k;j .�/ D cos �

sin2 �
Zn;k;j .�/;

Z3n;k;1.�/ D
d
d�
Zn;k;1.�/

sin �
; Z3n;k;2.�/ D

d
d�
Zn;k;2.�/ � 2inZn;k;2

sin �

with

Zn;k;1.�/ D T .�/hC
k
.�/h�

n .�/;

Zn;k;2.�/ D T .�/R�.��/hC
k
.�/h�

n .��/:
Lemma 3.1 (ii) and (6.18) imply

ˇ

ˇ

ˇ

ˇ

@

@�
Z
j

n;k;1
.�/

ˇ

ˇ

ˇ

ˇ

;

ˇ

ˇ

ˇ

ˇ

@

@�
Z
j

n;k;2
.�/

ˇ

ˇ

ˇ

ˇ

� C.1C max¹jnj; jkjº/; � 2 J:

Hence (6.17) for the case (c) also follows.

It remains to consider the case (a). Denote

O�v.�/ D 2 � 2 cos � C Ov�; where Ov.�/ D �jk � nj=t � 0:

�e scattering relations (4.6) now imply

ŒM˙
j .t /�n;k W D

Z

J

e�it�v.�/Z
j

n;k
.�/d�

D
Z

J

e�it�v.�/X
j

n;k;1
.�/d�

C
Z

J

e�it Q�v.�/X
j

n;k;2
.�/d�

C
Z

J

e�it O�v.�/X
j

n;k;3
.�/d�;

where

X1n;k;j .�/ D k � n
sin �

Xn;k;j .�/;

X2n;k;j .�/ D cos �
Xn;k;j .�

sin2 �
;

X3n;k;1.�/ D
d
d�
Xn;k;1.�/

sin �
;

X3n;k;3.�/ D
d
d�
Xn;k;3.�/C 2i.k � n/Xn;k;3

sin �

X3n;k;2.�/ D
d
d�
Xn;k;2.�/C 2ikR�.�/h�

k
.�/h�

n .�/ � 2inR�.��/h�
k
.��/h�

n .��/
sin �
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and

Xn;k;1.�/ D h�
k .��/h�

n .�/;

Xn;k;2.�/ D R�.��/h�
k .��/h�

n .��/CR�.�/h�
k .�/h

�
n .�/;

Xn;k;3.�/ D jR�.�/j2h�
k .�/h

�
n .��/:

From Lemma 3.1 (ii) and (6.18) it follows that
ˇ

ˇ

ˇ

ˇ

@

@�
X
j

n;k;m
.�/

ˇ

ˇ

ˇ

ˇ

� C.1C jnj/.1C jkj/; � 2 J:

�e integrals with the phase functions �v.�/ and Q�v.�/ can been estimated simi-

larly as in the previous cases. Since Ov � 0, then in order to estimate the integrals

with the phase functions O�v.�/ we can interchange the methods for j� � �=2j �
�=6 and for j� C �=2j � �=6.

7. Wave equation

Here we extend our main results to the wave equation (1.2).

7.1. Free wave equation. Set

un.t / D .un.t /; Pun.t //:

�en (1.2) with q D 0 reads

i Pu.t / D H0u.t /; t 2 R; (7.1)

where

H0 D
 

0 i

i.�L � �2/ 0

!

:

�e continuous spectrum of H0 coincides with x�, where

� D .�
p

�2 C 4;��/ [ .�;
p

�2 C 4/:

�e resolvent

R0.!/ D .H0 � !/�1

can be expressed in terms of R0.!/ D .H0 � !/�1, see [13],

R0.!/ D
 

!R0.!
2 � �2/ iR0.!

2 � �2/
�i.1C !2R0.!

2 � �2// !R0.!
2 � �2/

!

: (7.2)
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Note that factorizing H0 according to H0 � �2 D A�A (cf. [20, Sect. 11.1]) we

can use
�

un.t /; A Pun.t /
�

to write (7.1) in self-adjoint form. We refer to [6] and the

references therein for further details.

Denote by l
p
� D `

p
� ˚ `

p
� , p � 1, � 2 R.

Lemma 7.1. Let � > 0. �en the following asymptotics hold

ke�itH0kl1!l1 D O.t�1=3/; t ! 1; (7.3)

ke�itH0kl2� !l2��
D O.t�1=2/; t ! 1; � > 1=2: (7.4)

Proof. As in the proof of Proposition 2.1 we consider t � 1 and apply the spectral

representation:

e�itH0 D 1

2�i

Z

�

e�it!.R0.! C i0/ � R0.! � i0// d!:

We prove asymptotics (7.3) and (7.4) only for the entry Œe�itH0 �12. �e other en-

tries of the matrix e�itH0 can be treated similarly.

Let �C D �C.!
2 ��2/ 2 Œ��; 0� be the solution of 2� 2 cos � D !2 ��2 and

�� D ��C. Due to (2.1) we have

Œe�itH0�12n;k D 1

2�

Z

�

e�it!
�e�i�Cjn�kj

sin �C

� e�i��jn�kj

sin ��

�

d! D I� C IC; (7.5)

where

I˙ WD � 1

2�

�
Z

��

e˙it g.�/�i� jn�kjd�

g.�/
; g.�/ WD

p

2� 2 cos � C �2: (7.6)

Step 1 . To prove (7.3) it su�ces to obtain the bound

sup
n;k

jŒe�itH0�12n;k j � C t�1=3; t � 1: (7.7)

We consider only the integral I�. Abbreviate

v WD jn � kj
t

� 0
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and set

~ D .2C �2 �
p

4�2 C �4/=2;

0 < ~ < 1. It is easy to check that if

v 6D v0 WD
p
~

then the phase function

ˆv.�/ D g.�/C v�; (7.8)

where g.�/ is de�ned in (7.6), has at most two non-degenerate stationary points. In

the case v D v0 there exists a unique degenerate stationary point �0 D � arccos~,

��=2 < �0 < 0, such that ˆ000.�0/ D p
~ 6D 0. Moreover, g.�/ > � > 0,

and therefore g�1.�/ is a smooth function. Hence (7.7) follows from the van der

Corput lemma.

Step 2. To prove (7.4) we divide the domain of integration in I� into the domains

J D ¹� W j� � �0j � �j�0jº and Œ��; �� n J , where � D �.�/, 0 < � � 1, will be

speci�ed below. We further divide the domain J into subdomains tj � j� � �0j �
tjC1, 0 � j � N , where tj for j D 1; : : : ; N is chosen as in Lemma 2.2, and

tNC1 D �j�0j. �e asymptotics (7.4) for the part over Œ��; �� n J follow from the

stationary phase method. To get (7.4) for

ŒKj .t /�n;k D
Z

tj �j���0j�tj C1

e�itˆv.�/
d�

g.�/
; 1 � j � N;

we consider jv0 � vj � 1
2
v0tj t

" and jv0 � vj � 1
2
v0tj t

" separately. �e �rst case is

identical to the �rst case of Lemma 2.2. In the second case we apply integration

by parts similarly to (2.17). Namely, we have to estimate: (a) jˆ0
v.�/j�1 at the

points �0˙ tj and �0˙ tjC1, and (b) the integral of the function jˆ00
v.�/j.ˆ0

v.�//
�2

between these points. But since the function ˆ00
v.�/ does not change its sign on

the intervals Œ�0 C tj ; �0 C tjC1� and Œ�0 � tjC1; �0 � tj �, then the antiderivative

of the function jˆ00
v.�/j.ˆ0

v.�//
�2 is equal up to a sign to the function .ˆ0

v.�//
�1.

�us, it is su�cient to consider the case (a) only.

We have ˆv.�/ D g.�/C v� , therefore

ˆ0
v.�/ D g0.�/C v

D g0.�0/C 1

2
g000. Q�/.� � �0/2 C v

D 1

2
g000. Q�/.� � �0/

2 C v � v0:
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Here we used formulas g0.�0/ D �v0 and g00.�0/ D 0. Hence for large t

jˆ0
v.�0 ˙ tjCs/j � jv � v0j � C t2jCs

� tj

�1

2
v0t

" � C
�

� C1tj ; j D 1; : : : ; N � 1; s D 0; 1;

and then

jŒKj .t /�n;kj � C t�1t�1j � C t�1=2; j D 1; :::; N � 1

as in (2.19).

In the case j D N we have jv � v0j � 1
2
v0. Further,

ˆ0
v.�0 ˙ tNC1/ D 1

2
g000. Q�/.�j�0j/2 C v � v0

Since jg000.�/j � G D G.�/, � 2 Œ��; ��, then we can choose

� D min

²

1;

s

2v0

3G�20

³

to obtain jˆ0
v.�0 ˙ tNC1/j � 1

6
v0. Respectively, jˆ0

v.�0 ˙ tNC1/j�1 � 6=v0, and

hence

jŒKN .t /�n;kj � C t�1:

Remark 7.2. �e solution of the free wave equation (7.1), corresponding to � D
0, does not decay as t ! ˙1. In fact, the �rst component of the solution is given

by

un.t / D
X

m2Z

cn�m.t /um.0/C sn�m.t / Pum.0/; (7.9)

where

cn.t / D 1

2�

Z �

��

cos.
p
1� cos �

p
2t/ei�nd� D J2jnj.2t/; (7.10)

sn.t / D 1

2�

Z �

��

sin.
p
1� cos �

p
2t/p

1� cos �
ei�nd� D

Z t

0

cn.s/ds

D t2jnjC1

2jnj.jnj C 1/Š
1F2

�2jnj C 1

2
I
�2jnj C 3

2
; 2jnj C 1

�

I �t2
�

: (7.11)

Here Jn.x/, pFq.uI vI x/ denote the Bessel and generalized hypergeometric func-

tions, respectively. In particular, while cn.t / D O.t�1=2/ for �xed n, we have

sn.t / D 1
2

CO.t�1=2/ for �xed n.
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7.2. Perturbed wave equation. In matrix form (1.2) reads

i Pu.t / D Hu.t /; t 2 R; (7.12)

where

H D
 

0 i

i.�L � �2 � q/ 0

!

:

�e resolvent R.!/ D .H�!/�1 can be expressed in terms of R.!/ D .H �!/�1
(see [13]):

R.!/ D
 

!R.!2 � �2/ iR.!2 � �2/
�i.1C !2R.!2 � �2// !R.!2 � �2/

!

: (7.13)

Representation (7.13) and Lemma 3.3 imply the limiting absorption principle for

the perturbed resolvent:

Lemma 7.3. Suppose q 2 `1. �en for ! 2 � the convergence

R.! ˙ i"/ ! R.! ˙ i0/; " ! 0C;

holds in L.l2� ; l
2
��/ with � > 1=2.

For the dynamical group associated with the perturbed wave equation (7.12)

the spectral representation of type (5.5) holds:

e�itHPc D 1

2�i

Z

�

e�it!.R.! C i0/ � R.! � i0// d!: (7.14)

Here Pc is the projection onto the continuous spectrum of H2. Next, we prove

asymptotics of type (1.3) and (1.8) for (7.12).

�eorem 7.4. Let � > 0 and q 2 `11. �en the following asymptotics holds

ke�itHPckl1!l1 D O.t�1=3/; t ! 1: (7.15)

and

ke�itHPckl2� !l2��
D O.t�1=2/; t ! 1; � > 1=2: (7.16)



692 I. Egorova, E. Kopylova, and G. Teschl

Proof. Step i . Due to the representation (7.14) and formula (3.11) it su�ces to

obtain (7.15)–(7.16) for the operator with the kernel

ŒK.t /�n;k D

p
�2C4
Z

�

e�it!
hf C

k
.�C/f

�
n .�C/

W.�C/
�
f C
k
.��/f

�
n .��/

W.��/

i

d!

D �
�
Z

��

e�itg.�/
f C
k
.�/f �

n .�/

W.�/

sin � d�

g.�/
(7.17)

D i

2

�
Z

��

e�itˆv.�/ hC
k
.�/h�

n .�/T .�/
d�

g.�/
; n � k;

where the phase function ˆv.�/ is de�ned in (7.8). For (7.15) we need to prove

that

sup
n�k

ˇ

ˇ

ˇŒK.t /�n;k

ˇ

ˇ

ˇ � C t�1=3; t � 1: (7.18)

Just as in the proof of �eorem 5.3 (i) we consider three di�erent cases (a), (b)

and (c). Using the properties of the phase function obtained in Lemma 7.1 one can

now proceed as in the proof of �eorem 5.3 (i).

Step i i . Recall that ��=2 < �0 < 0. Denote J WD ¹� W j� ˙ �0j � �j�0jº, where

� D �.�/ is de�ned in Lemma 7.1. We represent ŒK.t /�n;k as the sum

ŒK.t /�n;k D ŒK˙.t /�n;k C ŒzK.t /�n;k

where

ŒK˙.t /�n;k D 1

2�

Z

j�˙�0j�ı

e�itˆv.�/Yn;k.�/
d�

g.�/
;

ŒzK.t /�n;k D 1

2�

Z

�2Œ��;��nJ

e�itˆv.�/Yn;k.�/
d�

g.�/
;

and Yn;k.�/ D hC
k
.�/h�

n .�/T .�/ as above. Note that the bound (5.13) holds for

� 2 J also. Hence one can now proceed as in the proof of �eorem 5.3 (ii) to

obtain (7.15).

Remark 7.5. In the case � D 0 the factor sin.�=2/ in the denominator of (7.17)

implies that we cannot get (7.15) and (7.16) for Œe�itHPc �
12 in this case. Never-

theless, the analogous expression for the other entries of Œe�itHP� does not contain

this factor in the denominator and hence asymptotics (7.15) and (7.16) with the

decay rate t�1=3 hold for these entries.
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Now we consider the non-resonant case and obtain asymptotics of type (1.9)

and (1.10) for equation (7.12). To this end note that H has a resonance at a bound-

ary point of the continuous spectrum x� if and only if H has a resonance at the

corresponding boundary point of its continuous spectrum Œ0; 4�.

�eorem 7.6. i) Let � � 0, q 2 `12. �en in the non-resonant case the following

asymptotics hold

ke�itHPckl1
1

!l1�1
D O.t�4=3/; t ! 1: (7.19)

ii) Let � > 0 and q 2 `12. �en in the non-resonant case and for any � > 3=2 the

following asymptotics hold

ke�itHPckl2� !l2��
D O.t�3=2/; t ! 1: (7.20)

iii) In the case � D 0 the asymptotics (7.20) hold under the stronger conditions

q 2 `13 and � > 5=2.

Proof. We consider Œe�itHPc �
12 and the case n � k only. As in the proof of

�eorems 6.1 and 6.4 we need to consider the operators Mj .t / with the kernels

ŒMj .t /�n;k D t�1
Z �

��

e�itˆv.�/Z
j

n;k
.�/d�;

whereZn;k andˆv.�/ are de�ned in (6.15)–(6.16) and (7.8), and obtain the asymp-

totics

kMj .t /kl1
1

!l1�1
D O.t�4=3/; t ! 1; (7.21)

kMj .t /kl2�!l2��
D O.t�3=2/; t ! 1; � > 3=2: (7.22)

�e asymptotics (7.21) for � � 0 and the asymptotics (7.22) in the case � > 0

can be established as in the proofs of �eorems 6.1 and 6.4.

In the case � D 0 we have �0 D 0 and J D J0 D ¹� W j� j � �=6º. �e integrals

over Œ��; �� n J0 can be estimated as in the case � > 0. Concerning the integral

over J0 we will not split it as in (6.6) but consider the whole integral

ŒM.t /�n;k D t�1
Z

J0

e�2it sin.�=2/ d

d�

�

e�i�.k�n/ jT .�/j2
sin �

hC
k
.�/hC

n .��/
�

d�:

We apply integration by parts once more and obtain the asymptotics of type (7.22)

for M.t / with decay rate t�2 and with � > 5=2 if we prove that

ˇ

ˇ

ˇ

ˇ

d2

d�2

� jT .�/j2
sin2 �

hC
k
.�/hC

n .��/ sin �
�

ˇ

ˇ

ˇ

ˇ

� C.1C jnj2/.1C jkj2/; � 2 J0:
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Since T .�/= sin.�/ D 2i=W.�/ and its �rst and second derivatives are bounded

for q 2 `13, it su�ces to prove that

ˇ

ˇ

ˇ

ˇ

d2

d�2
.hC
k
.�/hC

n .��/ sin �/

ˇ

ˇ

ˇ

ˇ

� C.1C jnj2/.1C jkj2/; � 2 J0; (7.23)

which follows from (3.3) with p D 0; 1 and from the following bound

ˇ

ˇ

ˇ

ˇ

d2

d�2
.hC
m.�/ sin �/

ˇ

ˇ

ˇ

ˇ

� C max¹�m2; 1º; � 2 J0:

�e last bound in the casem � 0 follows from (3.3) with p D 2. In the casem < 0

one needs to apply the scattering relation as before.
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