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1. Introduction

We consider pseudodi�erential operators whose symbol p is dilated by a large

scaling parameter r and “smoothed out” by a convolution factor W 2 S.R2d /

whose integral is 1. Explicitly, using the Weyl quantisation (see §2.1), we consider

operators acting on L2.Rd / of the form

Tr Œp� WD opŒW � pr �; where for z 2 R
2d we set pr.z/ WD p.z=r/:

�e main interest in these operators arises from generalised anti-Wick operators.

�e generalised anti-Wick operator with windows '1; '2 2 L2.Rd / and symbol

p 2 L1.Rd / is de�ned to be �F'2
pF'1

, where F' W L2.Rd / ! L2.R2d / is the

short-time Fourier transform and p acts by multiplication on L2.R2d / (see §2.4).

�ese are a special case of operators the form Tr Œp�; that is, for suitable windows

'1; '2, there is a corresponding W such that

Tr Œp� D �
F'2

prF'1
; where for z 2 R

2d we set pr .z/ WD p.z=r/:

�e result is part of the asymptotic expansion of tr f .Tr Œa���/ as r ! 1,

where � � R2d , a is a function acting on R2d and f is a function such that

f .0/ D 0. Since the symbol a�� is discontinuous, this is referred to as a Szegő-

type expansion in analogue with such formulae for Toeplitz matrices. Such a result

is already known (discussed below) but only for the �rst term, which is a standard

Weyl-type term of order r2d . �e result proved here (see §2.2) gives an explicit

expression for the second asymptotic term, which is a boundary-related term of

order r2d�1.

An important special case of this is where a � 1 and f is an indicator func-

tion, which gives the asymptotics of the eigenvalue counting function of Tr Œ���.

�e �rst term of this expansion shows how many eigenvalues are close to 1, and

the second term shows how many eigenvalues are between 0 and 1 (in what is

sometimes called the “plunge region”). �is gives some quantitative detail to the

idea that Tr Œ��� acts somewhat like a projection, in that it “projects” the time-

frequency representation of functions on to �. As with the general result, pre-

viously known results about the eigenvalue counting function (discussed below)

only give an explicit expression for the �rst asymptotic term, whereas the result

proved here (see §2.3) gives an explicit expression for the second term.

�e semiclassical calculus for operators whose Weyl symbol is smooth is al-

ready well known [17, �eorem (III-11)]. However, although the Weyl symbol of

interest here W � pr is smooth, even when p is discontinuous, it is not of the

correct asymptotic form to apply that theory. In the terminology of Robert [17,
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De�nition (II-13)], it is not an h-admissible operator (with the natural choice of

h D 1=r2). �e problem is that symbol depends upon two di�erent scales in the

phase space variable z: when z is far from the boundary of �, .a��/r .z/ varies

asymptotically like ar .z/, so changes in z proportional to r are important; when

z is near to the boundary it varies like W � �r�.z/, so changes in z on a constant

scale are important.

�e proof (outlined more precisely in §3.1) begins in a similar way to that of the

usual semiclassical calculus: we prove a Weyl composition result with the usual

formula for the approximating symbol, but the remainder is shown to satisfy trace

norm and operator norm bounds that are more delicate than usual (Lemma 3.4).

�e author hopes that these estimates may be of independent interest. In §3.2 this

result is proved and combined with facts about the geometry of � to show that we

may compose Tr Œa��� with itself with su�ciently small remainder. In §3.3 the

trace asymptotics of the resulting operator are established using further geometri-

cal facts. �e relevant geometrical theory of tubular neighbourhoods is collected

in §4.

Related Szegő-type theorems. �e original Szegő theorems are results about

the asymptotic expansion of log det Tn (that is, tr log Tn) as n ! 1, where Tn is

an n � n Toeplitz matrix [22, 23]; see also [12, Chapter 5]. (�e parameter r used

here is analogous to n2 in such problems.) Similar theorems have been proved for

Wiener–Hopf operators, which are a continuous analogue of Toeplitz operators:

whereas Toeplitz operators involve discrete convolution with a sequence and trun-

cation to a �nite length, Wiener–Hopf operators involve the standard convolution

with a function and truncation to a bounded domain. Szegő theorems for both

types of operator have been the subject of extensive study; see, for example, [3].

�e intention here is just to highlight a few of the most directly relevant results.

A generalization of Wiener–Hopf operators is pseudodi�erential operators with

discontinuous symbol (without the convolution factor W as in the operators con-

sidered here, and usually with the left quantisation rather than the Weyl quantisa-

tion). If zTr is a pseudodi�erential operator with symbol of the form a.x; �/��.x/

where a is smooth, i.e. the discontinuity is in the con�guration variable but not the

frequency variable, the complete asymptotic expansion of tr f . zTr/ is known for

quite general functions [25]. �e terms in this expansion are of the order r2.d�k/,

where k takes non-negative integer values. �e coe�cients depend on the geom-

etry of �, and it is possible to obtain geometrical insights into these coe�cients

[18, 19] by using geometrical ideas broadly similar to the ones used in this paper,

particularly Lemma 4.8.
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When there is also a discontinuity in the frequency variable, i.e. the symbol

is of the form a��1��2
where �1; � � Rd , two terms of the asymptotic expan-

sion of tr f . zTr/ are known (proved by Widom [24] in one dimension and Sobolev

[21, 20] in higher dimensions). �e �rst term is equal to the one in the result

proved here (in particular it is of order r2d ). However, the second term is of order

r2d�2 log r and depends on the value of a on @�1 � @�2, in contrast to the result

proved here where the second term is of order r2d�1 and depends on the value of

a on @�.

For generalised anti-Wick operators, which are a subclass of the operators

Tr Œp� considered here, a one-term Szegő theorem was found by Feichtinger and

Nowak [8]. (�ey called these operators Gabor–Toeplitz operators.) Compared

to the requirements here, their regularity requirements are very mild: the symbol

merely has to be in L1 \L1, rather than possessing a discontinuity of the speci�c

form ��, and the window function merely has to be in L2.Rd / rather than S.Rd /.

However the symbol must also be positive and the two windows must be equal,

which implies that the operator is positive. �at result is for the �rst term in the

asymptotic expansion, with o.r2d / remainder.

Related eigenvalue counting function results. �e asymptotics of the eigen-

value counting function is a consequence of the Szegő theorem for Tr Œ���, but

has also been studied in its own right.

Anti-Wick operators (which are generalised anti-Wick operators with Gaussian

windows) were �rst studied systematically by Berezin [1]. �is included a result

(�eorem 12 of that paper) giving one asymptotic term of the eigenvalue counting

function in roughly the inverse situation to the one of interest here: he considered

eigenvalues below a �xed value, for symbols that are bounded below by a positive

value.

Anti-Wick operators were introduced into the time–frequency community by a

paper of Daubechies [5], which she called time–frequency localization operators

when the symbol is an indicator function. �is included two asymptotic terms

of the eigenvalue counting function (Remark 2 and Remark 3 in §IV.B of that

paper) for a speci�c operator: the anti-Wick operator whose symbol is the indicator

function of the unit disc. She proved this by explicitly �nding the eigenvalues

and eigenfunctions of this operator, using the fact that these are known for Weyl

pseudodi�erential operators with spherically symmetric symbols.

For generalised anti-Wick operators whose symbol is a general indicator func-

tion, only the �rst asymptotic term of the eigenvalue counting function was pre-

viously known. �is was shown for one dimensional operators by Ramanathan and
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Topiwala [16, �eorem 2 and Corollary 1], and in higher dimensions by

Feichtinger and Nowak [8, Corollary 2.3 and Comment (iii) in §2] using their

Szegő result. De Mari, Feichtinger and Nowak [6, Example (a) on p. 731] showed

that the asymptotic order of the second term is r2d�1 (including a lower bound

for it), but did not �nd an explicit expression.

Notation. Here are a few notational conventions used throughout. We denote

the space of Schwartz functions on Rm by S.Rm/. �e function �ƒ is the indica-

tor function of a set ƒ. We denote the k-dimensional Hausdor� measure by �k; in

particular �m�1.du/ is the surface element in Rm, and when k equals the ambient

dimension �k is simply the Lebesgue measure. �e set of natural numbers includ-

ing zero is denoted by N0, so that the set of m-dimensional multi-indices is Nm
0 .

�e boundary of a set � is denoted by @� and its complement by �c. �e tubular

radius �.@�/ and tubular neighbourhood tub.@�; t/ of @� are de�ned in §4.1.

Acknowledgements. It is the author’s pleasure to thank A.V. Sobolev for sug-

gesting the problem and his tireless support, especially his observation that a

rougher version of Lemma 3.4 (similar to [21, Lemma 3.12 and Corollary 3.13])
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progress on under somewhat di�erent conditions to those considered here.

�is work was supported by the Engineering and Physical Sciences Research
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2. Statement of results

2.1. Weyl quantisation preliminaries. We will use the Weyl quantisation: for a

suitable symbol q, we de�ne the operator opŒq� for each u 2 S.R2d / by

.opŒq�u/.x/ WD 1

.2 /d

Z

Rd

Z

Rd

ei.x�y/��q.1
2
.x C y/; �/u.y/ dy d�;
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and extend this to L2.Rd / by density. �is satis�es the operator norm and trace

norm estimates ([4, Corollary 2.5(i)] and [7, �eorem 9.4] respectively)

kopŒq�k 6 Cd

X

j˛j6dC2

k@˛qkL1.R2d /; kopŒq�k1 6 C 0
d

X

j˛j62dC1

k@˛qkL1.R2d /;

where Cd and C 0
d

are constants depending only on the dimension and the sums are

taken over multi-indices ˛ 2 N2d
0 . (�is operator norm estimate is slightly weaker

than the one in the cited work, but is su�cient for our purposes.) When the trace

norm estimate is �nite, the trace exists and equals

tr opŒq� D 1

.2 /d

Z

R2d

q.z/ dz:

�e adjoint of the operator is given by [9, Proposition (2.6)]

.opŒq�/� D opŒ Nq�I

in particular, if q is real-valued then opŒq� is self-adjoint.

As stated in the introduction, the operators of interest here depend on a discon-

tinuous symbol p, dilated by a factor r and convolved with a Schwartz function

W 2 S.R2d /, so that

Tr Œp� WD opŒW � pr �; where for z 2 R
2d we set pr.z/ WD p.z=r/:

Applying the Weyl operator norm and trace norm estimates to Tr Œp� we obtain

kTr Œp�k 6 Cd

X

j˛j6dC2

k@˛W kL1.R2d /kpkL1.R2d /;

kTr Œp�k1 6 C 0
d r2d

X

j˛j62dC1

k@˛W kL1.R2d /kpkL1.R2d /:

Since we will be interested in the e�ects of varying the scale of the discontinuous

part of the symbol, rather than varying W, we will often use the notation

x . y () there exists CW > 0 such that x 6 CW y;

where CW is some constant depending only on W and the dimension d (not on p

or r). Using this notation, the above inequalities are

kTr Œp�k . kpkL1.R2d /; kTr Œp�k1 . r2d kpkL1.R2d /:

�e trace formula, combined with the fact that the integral of W is 1, gives

tr Tr Œp� D r2d

.2 /d

Z

R2d

p.z/ dz:
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2.2. Szegő theorem. In this subsection we state �eorem 2.4, the Szegő theorem

for operators of the form Tr Œa���. It has the following regularity conditions on the

symbol.

Condition 2.1. Let all of the following be satis�ed.

� Let W 2 S.R2d / satisfy
R

R2d W.z/ dz D 1.

� Let � � R2d have a boundary that is C 2 and has a tubular neighbourhood

(see §4).

� Let a be a twice continuously di�erentiable function on R2d satisfying

@˛a 2 L1.R2d / \ L1.R2d / for all ˛ 2 N2d
0 such that j˛j 6 2.

Remark 2.2. Whenever Condition 2.1 is satis�ed we can conclude that that a

satis�es the boundary integrability properties @˛a 2 L1.@�/ for j˛j 6 1. �is can

be seen by applying Lemma 4.11 with g � 1.

We also need a condition on the regularity of f . �is depends on whether we

de�ne f .Tr Œa���/ using the holomorphic functional calculus or the Borel func-

tional calculus. In the latter case we impose additional restrictions on W and a to

ensure that the operator Tr Œa��� is self-adjoint (by ensuring that its Weyl symbol

is real).

Condition 2.3. For functions a and W, let f be a function satisfying f .0/ D 0

and one of the following.

(1) Let f be a holomorphic function on C.

(2) Let a be real-valued, let W be real-valued and let f be an in�nitely di�eren-

tiable function on R.

�e boundary term depends on a type of directional antiderivative of W. Specif-

ically, for any W 2 S.R2d / with
R

R2d W.z/ dz D 1, we de�ne

Q!.�/ WD
Z

¹z2R2d Wz�!6�º

W.z/ dz .! 2 S
2d�1/:

�is satis�es lim�!1 Q!.�/ D
R

R2d W.z/ dz D 1, and so

1 � Q!.�/ D
Z

¹z2R2d Wz�!>�º

W.z/ dz .! 2 S
2d�1/:
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�eorem 2.4. Let W, a, �, f satisfy Condition 2.1 and Condition 2.3. �en

tr f .Tr Œa���/ D r2d A0.a; �; f / C r2d�1A1.a; �; f / C O.r2d�2/

as r ! 1, where

A0.a; �; f / D 1

.2 /d

Z

�

f .a.z// dz;

A1.a; �; f / D 1

.2 /d

Z

@�

Z

R

.f .Qn.u/.�/a.u//

� Qn.u/.�/f .a.u/// d� �2d�1.du/ :

�e proof is given in §3, including an overview in §3.1. In the case of gener-

alised anti-Wick operators, the conditions and conclusions can be explicitly

expressed in terms of the windows instead of W ; see §2.4.

We now observe why the quantities in �eorem 2.4 are well de�ned. �e oper-

ator f .Tr Œa���/ is trace class since, using the fact that f .0/ D 0, we have

kf .Tr Œa���/k1 6 kTr Œa���k1 sup
jt j6kTr Œa���k

jf 0.t /j;

and the bounds in §2.1 show that this is �nite. Let

Qmax WD sup
!2S2d�1

sup
�2R

jQ!.�/j;

which in particular satis�es Qmax 6
R

R2d jW.z/j dz. �e two asymptotic terms are

absolutely integrable with bounds

jA0.a; �; f /j 6
1

.2 /d
kakL1.�/ sup

jt j6kakL1.�/

jf 0.t /j;

jA1.a; �; f /j 6
2

.2 /d
kakL1.@�/

Z

R2d

jz0W.z0/j dz0 sup
jt j6QmaxkakL1.@�/

jf 0.t /j:

�e bound on A0 is immediate, and the bound on A1 uses the easily checked fact

that for any ! 2 S2d�1 we have
Z

R

jQ!.�/ � �Œ0;1/.�/j d� 6

Z

R2d

j! � z0W.z0/j dz0:

2.3. Eigenvalue counting function. In this subsection we give a precise state-

ment of the special case discussed in the introduction: two terms of the asymptotic

expansion of the eigenvalue counting function for operators of the form Tr Œ���.

We use the notation N.Tr Œ���; Œı; 1// to mean the number of eigenvalues of

Tr Œ��� in the interval Œı; 1/: �e proof is a standard approximation argument

applied to �eorem 2.4, and is detailed at the end of this subsection.
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Corollary 2.5. Let � � R2d be a compact set with C 2 boundary and ı 2 .0; 1/.

Let W 2 S.R2d / be real valued and satisfy
R

R2d W.z/ dz D 1 and

�1.¹� 2 R W Q!.�/ D ıº/ D 0 for all ! 2 S
2d�1:

�en

N.Tr Œ���; Œı; 1// D r2d A0.1; �; �Œı;1// C r2d�1A1.1; �; �Œı;1// C o.r2d�1/

as r ! 1. Speci�cally, these terms satisfy

A0.1; �; �Œı;1// D 1

.2 /d
�2d .�/;

A1.1; �; �Œı;1// D 1

.2 /d

Z

@�

gn.u/.ı/ �2d�1.du/;

where for each ı 2 .0; 1/, ! 2 S2d�1 we set

g!.ı/ WD �1.¹� 2 .�1; 0� W Q!.�/ > ıº/ � �1.¹� 2 Œ0; 1/ W Q!.�/ < ıº/:

Remark 2.6. �e statement of Corollary 2.5 is somewhat simpler when Q! is a

non-decreasing function for all ! 2 S2d�1. A su�cient condition for this is that

W is non-negative; for another su�cient condition see Remark 2.8. In this case:

� �e condition relating Q! and ı holds if and only if for each ! 2 S2d�1 there

exists a unique � 2 R such that Q!.�/ D ı; we denote such a � by Q�1
! .ı/,

even if Q! is not invertible on its whole domain.

� We then have g!.ı/ D �Q�1
! .ı/, so the boundary term simpli�es to

A1.1; �; �Œı;1// D � 1

.2 /d

Z

@�

Q�1
n.u/.ı/ �2d�1.du/ :

Proof of Corollary 2.5. We have N.Tr Œ���; Œı; 1// D tr �Œı;1/.Tr Œ���/; however,

we cannot immediately apply �eorem 2.4 with f WD �Œı;1/ because this function

is not su�ciently smooth to satisfy Condition 2.3.

Let " > 0 such that " < ı. Let f�" and fC" be smooth increasing functions sat-

isfying f˙".t / D �Œı;1/.t / except when t 2 .ı; ıC"/ and t 2 .ı�"; ı/ respectively.

�us 0 6 f�" 6 �Œı;1/ 6 fC" 6 1 and

tr f�".Tr Œ���/ 6 tr �Œı;1/.Tr Œ���/ 6 tr fC".Tr Œ���/:
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Applying �eorem 2.4 to f˙".Tr Œ���/ (with a � 1), we have

lim
r!1

tr..fC" � f�"/.Tr Œ���//

r2d�1

D 1

.2 /d

Z

@�

Z

R

.fC".Qn.u/.�// � f�".Qn.u/.�/// d� �2d�1.du/

6
1

.2 /d
�2d�1.@�/ sup

u2@�

�1.¹� 2 R W ı � " 6 Qn.u/.�/ 6 ı C "º/:

�e limit of this bound is 0 as " ! 0, so the result follows.

It remains to show that A1 satis�es the given form. First set

zA1 WD 1

.2 /d

Z

@�

Z

R

.�Œı;1/.Qn.u/.�// � �Œ0;1/.�// d� �2d�1.du/ :

A straightforward calculation shows that

A1 � zA1 D 1

.2 /d

Z

@�

n.u/ �2d�1.du/ �
Z

R2d

z0W.z0/ dz0;

which by the divergence theorem is zero. It is easily seen that zA1 satis�es the stated

form.

2.4. Generalised anti-Wick operators. De�ne the short-time Fourier transform

with window ' 2 L2.Rd / by

F' W L2.Rd / ! L2.R2d /; F'u.x; �/ WD 1

.2 /d=2

Z

Rd

e�iy ��u.y/'.y � x/ dy :

When the window is Gaussian, F' is also known as the Fourier–Bros–Iagolnitzer

transform. (See, for example, [13, Chapter 3] or [14, §3.1] for more information.)

�e generalised anti-Wick operator with symbol p and windows '1; '2 is de-

�ned to be �
F'2

pF'1
. �ese operators are known under several names, including

Gabor–Toeplitz operators, short-time Fourier transform multipliers and time–fre-

quency localization operators. �e case where '1 D '2 is most often of interest.

Generalised anti-Wick operators are bounded on L2.Rd / when p 2 L1.R2d /

and '1; '2 2 L2.R2d /. Furthermore, if p is constant then the operator is a multiple

of the identity. Speci�cally,

k �
F'2

pF'1
k 6 k'1kL2.Rd /k'2kL2.Rd /kpkL1.R2d /;

�
F'2

F'1
D h'2; '1iL2.Rd / IdL2.Rd / :
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�ese relationships can easily be proved from the Fourier inversion theorem, or

see for example [13, Corollary 3.2.2 and Corollary 3.2.3].

�eorem 2.4 and Corollary 2.5 apply to generalised anti-Wick operators; that

is, there exists a suitable W (depending on the windows) such that

Tr Œp� D �
F'2

prF'1
; where for z 2 R

2d we set pr .z/ WD p.z=r/:

�e following two remarks explain how all references to W in these results may

be replaced by references directly to the windows. Afterwards we will describe

this W and explain why the remarks are true.

Remark 2.7. �e conditions on W can be replaced by requirements on the win-

dow functions:

� For all the conditions on W in �eorem 2.4 and Corollary 2.5 to hold (includ-

ing that W is real-valued), it su�ces that '1 D '2 (which we write simply as

'), ' 2 S.R2d /, and k'kL2.Rd / D 1.

� For the conditions on W in �eorem 2.4 to hold except that W be real-valued

(so we require Condition 2.3(1), the holomorphic f case), it su�ces that

'1; '2 2 S.R2d / and h'2; '1iL2.Rd / D 1.

Remark 2.8. It is possible to express Q! directly in terms of the windows. First

consider the one-dimensional case. We will use the fractional Fourier transform

F
t , de�ned for t 2 R using the functional calculus for unitary operators; thus

F0 D F4 D IdL2.R/ and F1 is the usual Fourier transform. We can instead index

by direction ! 2 S1, so that F.1;0/ D IdL2.R/ and F
.0;1/ D F. �e expression for

Q! is

Q!.�/ D
Z �

�1

F
!'2.�/F!'1.�/ d�:

In the higher-dimensional case, for each ! 2 S2d�1 there exists a unitary operator

T! and Q! 2 Sd�1 such that

Q!.�/ D
Z �

�1

Z

¹x2Rd Wx� Q!D�º

T!'2.x/T!'1.x/ �d�1.dx/ d�:

In particular, for any dimension, if '1 D '2 then Q! is a non-decreasing function

and Remark 2.6 applies.

�e key fact that allows us to apply �eorem 2.4 and Corollary 2.5 to gener-

alised anti-Wick operators is their connection to the Weyl transform, given by

�
F'2

pF'1
D opŒW'2;'1

� p�;
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where

W'2;'1
.x; �/ D 1

.2 /d

Z

Rd

e�it��'2.x C 1
2
t/'1.x � 1

2
t/ dt:

�e functionW'2;'1
is called the Wigner transform of '2; '1. �is relationship can

be found for example in [9, Proposition (3.5)] when '1 D '2 or [2, Lemma 2.4].

Proof of Remark 2.7. We use the following properties of W'2;'1
.

(1) If '1; '2 2 S.R2d / then W'2;'1
2 S.R2d /.

(2) For all x 2 Rd we have
R

Rd W'2;'1
.x; �/ d� D '2.x/'1.x/.

(3) We have W'2;'1
.z/ D W'1;'2

.z/.

�ese properties follow easily from the de�nition of W'2;'1
(see for example [9,

§1.8]). Remark 2.7 is an immediate consequence.

Proof of Remark 2.8. We �rst work in one dimension. We use another property

of W'2;'1
.

(4) For each ! 2 S1, let �! W R2 ! R2 be the rotation that maps .1; 0/ 7! !;

then for all z 2 R2 we have W'2;'1
.�!z/ D WF!'2;F!'1

.z/.

In others words, the fractional Fourier transform is the metaplectic operator

corresponding to rotation. For example, in [9] see Proposition (1.94)(c) for the

! D .1; 0/ case (the usual Fourier transform) and Chapter 4 for discussion of

metaplectic operators (especially Proposition (4.28) for the relationship to the

Wigner transform). For more information on the fractional Fourier transform, see

for example [15].

Combining property 4 with property 2 we obtain

Z

¹z02R2Wz0�!D�º

W'2;'1
.z0/ �1.dz0/ D F

!'2.�/F!'1.�/:

(�is is sometimes call the Radon–Wigner transform, since it is the Radon trans-

form of the Wigner distribution.) But Q! is the antiderivative of this expression,

so Remark 2.8 is immediate from this. For higher dimensions, we apply similar

reasoning component-wise, so that T! is the composition of component-wise frac-

tional Fourier transform operators.
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3. Proof

3.1. Overview. �ere are two steps to the proof of �eorem 2.4, which are dis-

tilled into the two lemmas in this subsection.

To avoid dealing with the scaling parameter r throughout the whole proof, we

will give names to the rescaled versions of a and �. We write

Tr Œa��� D opŒW � .b�†/�; where b WD a.�=r/; † WD r�:

�e two lemmas will be proved in terms of general b, † without explicit reference

to the fact that they are rescaled versions of other objects. However, in each lemma

the remainder scales in such a way that it is O.r2d�2/ when b and † are of this

form.

�e �rst step is composition, where we �nd an approximation of the Weyl

symbol of f .Tr Œa���/.

Lemma 3.1. Let W; b; †; f satisfy Condition 2.1 and Condition 2.3, and let @†

have tubular radius of at least 1. �en there exists R such that

kf .opŒW � .b�†/�/ � opŒf .W � .b�†//�k1 6 R.b; †I W; f /;

where R satis�es the scaling property

R.b; †I W; f / D r2d�2R.a; �I W; f /; for b D a.�=r/; † D r�:

�is is proved in §3.2. First, in Lemma 3.4, we will prove a trace norm bound

for the composition of general Weyl operators. Next, in Lemma 3.6, we will apply

this to the operator opŒW � .b�†/�. A naive application would result in a trace

norm bound that includes the four terms

krbkL1.†/krbkL1.†/; krbkL1.†/kbkL1.@†/;

kbkL1.@†/krbkL1.†/; kbkL1.@†/kbkL1.@†/:

�e �rst three terms are O.r2d�2/ as required, but the �nal one is O.r2d�1/. �e

proof of Lemma 3.6 involves some delicate cancellation using the geometry of @†

to obtain a better bound. �is completes the proof of Lemma 3.1 in the case that

f .t/ D t2; at the end of §3.2 the proof is given for general f .
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Combined with the fact that jtr Aj 6 kAk1 for every trace class operator A,

Lemma 3.1 tells us that

tr f .Tr Œa���/ D tr opŒf .W � .b�†//� C O.r2d�2/:

�e trace is given by the integral of the Weyl symbol (see §2.1). �e proof of

�eorem 2.4 is thus completed by �nding the asymptotics of this integral, which

is done in the following lemma.

Lemma 3.2. Let W; b; †; f satisfy Condition 2.1 and Condition 2.3. �en there

exists R such that, in the notation of �eorem 2.4, we have
ˇ

ˇ

ˇ

ˇ

Z

R2d

f .W � .b�†/.z// dz �.A0.b; †; f / C A1.b; †; f //

ˇ

ˇ

ˇ

ˇ

6 R.b; †I W; f /;

where R satis�es the scaling property

R.b; †I W; f / D r2d�2R.a; �I W; f /; for b D a.�=r/; † D r�:

�is is proved in §3.3. �e proof begins by noting that, because the integral of

W is 1 and f .0/ D 0, the integral of f .W � .b�†/.z// equals
Z

†

f .b.z// dz C
Z

R2d

.f .W � .�†b/.z// � W � .�†f .b//.z// dz:

�e �rst term is simply A0.b; †; f /, which equals r2d A0.a; �; f /. �e second

term is very similar to A1.b; †; f /; in particular its integrand is concentrated near

to @†. However, unlike A1, it is not of the correct asymptotic form; that is, it does

not equal r2d�1 multiplied by its unscaled version. �e proof proceeds by using

the local geometry of @† to show that this integral is indeed approximately equal

to A1.

3.2. Step 1: Composition. In this subsection we prove Lemma 3.1, proceeding

as discussed in §3.1.

Notation 3.3. In this subsection we frequently decompose vectors z 2 R2d as

z D .z1; z2/, where z1; z2 2 Rd . Furthermore, we use the notation

hxi WD .1 C jxj2/1=2:

We start by proving trace norm and operator norm bounds for the error in

replacing the Weyl symbol of composition by a �nite number of terms in the series

expansion. In fact we only need the trace norm bound, and only for n D 0, but the

full result is no harder to prove and the author hopes that it may be of general

interest.
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Lemma 3.4. Let p; q be in�nitely di�erentiable functions on R2d such that @˛p,

@˛q 2 L1.R2d / for each ˛ 2 N2d
0 . Let n 2 N0, G 2 N0. Set

Fj .x; y/ WD ij

j Š2j
.rx1

� ry2
� rx2

� ry1
/j .p.x/q.y//; cn.z/ WD

n
X

j D0

Fj .z; z/:

�en

kopŒp� opŒq� � opŒcn�k1 6 Cd;G

X

˛2N4d
0

j˛j6GC4dC2

Z

R2d

Z

R2d

j@˛FnC1.x; y/j
hx � yiG

dx dy;

kopŒp� opŒq� � opŒcn�k 6 C 0
d;G

X

˛2N4d
0

j˛j6GC3dC3

Z

R2d

�

sup
x;y2R2d

x�yDv

j@˛FnC1.x; y/j
hx � yiG

�

dv:

�e constants Cd;G and C 0
d;G

depend only on d and G (not n).

�e proof contains ideas used in the usual Weyl calculus adapted for use in

these norm bounds. However, care has been taken to explicitly express the estimate

in terms of the symbol rather than symbol class seminorms, and to preserve the

cancellation between the terms within FnC1. See the remark following the proof

for a more detailed comparison.

Proof. It su�ces to prove the result for p; q 2 S.R2d /. Let p # q denote the Weyl

symbol of opŒp� opŒq�. We have [9, (2.44b)]

p # q.z/ D 1

 2d

Z

R2d

Z

R2d

p.z � x/q.z � y/ e2i�.x;y/ dy dx;

sometimes called the twisted product or Moyal product of p and q, where

�.x; y/ WD x1 � y2 � y1 � x2:

We apply Taylor’s theorem to p. �e corresponding term of p # q.z/ is

Tj .z/ WD 1

 2d

Z

R2d

Z

R2d

1

j Š
.�x � rp/j p.z/q.z � y/ e2i�.x;y/ dy dx;

where rp indicates that the gradient is being taken only of p. Denote

zry WD .ry2
; �ry1

/;

so that 2ixe2i�.x;y/ D zrye2i�.x;y/; then integrating by parts gives

Tj .z/ D 1

 2d

Z

R2d

Z

R2d

.�1/j

j Š.2i/j
.rp � zrq/j p.z/q.z � y/ e2i�.x;y/ dy dx:
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By the Fourier inversion theorem we conclude that

Tj .z/ D .�1/j

j Š.2i/j
.rp � zrq/j p.z/q.z/ D Fj .z; z/:

Denote the symbol of the remainder by

RnC1.z/ WD a # b.z/ � cn.z/;

which equals

1

 2d

Z

R2d

Z

R2d

Z 1

0

1

nŠ
.1 � t /n.�x � rp/nC1p.z � tx/q.z � y/ e2i�.x;y/ dt dy dx:

Integrating by parts in the same way as the other terms, we �nd that

RnC1.z/ D 1

 2d

Z 1

0

Z

R2d

Z

R2d

.nC1/.1�t /nFnC1.z�tx; z�y/ e2i�.x;y/ dy dx dt:

Change variables tx D tuC 1
2
v and y D tu� 1

2
v. �is has Jacobian 1 and satis�es

�.x; y/ D �.v; u/, so

RnC1.z/ D 1

 2d

Z 1

0

Z

R2d

Z

R2d

fnC1.z; u; vI t / e2i�.v;u/ du dv dt;

where

fnC1.z; u; vI t / WD .n C 1/.1 � t /nFnC1.z � .tu C 1
2
v/; z � .tu � 1

2
v//:

De�ne the operator

Px;y WD
1 C 1

2
iy � zrx

1 C jyj2 H) P T
x;y D

1 � 1
2
iy � zrx

1 C jyj2 ;

so that Pv;ue2i�.v;u/ D e2i�.v;u/ and P T
u;ve2i�.v;u/ D e2i�.v;u/, and so and so the

remainder RnC1.z/ equals

1

 2d

Z 1

0

Z

R2d

Z

R2d

..Pu;v/M .P T
v;u/LfnC1.z; u; vI t // e2i�.v;u/ du dv dt:
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For the interactions between Pu;v and P T
v;u we use the fact that for all jˇj 6 L and

j
 j 6 M we have
ˇ

ˇ

ˇ

ˇ

@

u

�

uˇ

hui2L

�
ˇ

ˇ

ˇ

ˇ

6 CL;M

1

huiL
;

for some constant CL;M ; thus j@˛RnC1.z/j is bounded by a constant multiple of

X

jˇ j6L

X

j
 j6M

Z 1

0

Z

R2d

Z

R2d

j@˛
z@



u@

ˇ
v fnC1.z; u; vI t /j
huiLhviM

du dv dt:

Now choose L D 2d C 1, M D G and use the trace norm and operator norm

bounds for Weyl operators (see §2.1). Translating z0 WD z � tu and evaluating the

dt integral (which cancels with n C 1) gives the stated result.

Remark 3.5. We compare the above lemma with the usual symbolic calculus for

Weyl operators. �e decay in the integrand of Rn could have been obtained with-

out changing variables from .x; y/ to .u; v/; this bounds j@˛Rn.z/j by a constant

multiple of

X

jˇ j6L

X

j
 j6M

Z 1

0

Z

R2d

Z

R2d

j@˛
z @



x@

ˇ
y

QfnC1.z; x; yI t /j
hxiLhyiM

dx dy dt;

where

QfnC1.z; x; yI t / WD .n C 1/.1 � t /nFnC1.z �
p

tx; z �
p

ty/:

Using the notation of [9, Chapter 2], this is the bound used to show that if p 2 S
m1

�;0 ,

q 2 S
m2

�;0 then p#q � cn 2 S
m1Cm2��.nC1/
�;0 , see [9, �eorem (2.49)], although it is

not computed explicitly there. �is only gives the result when ı D 0; the general

case could be handled in a similar way, but derivatives in x1 and x2 etc. would

need to be tracked separately.

�e next lemma, in combination with the previous one, proves Lemma 3.1 in

the special case that f .t/ D t2, and contains the essential idea of the general case.

To simplify its statement and use, introduce the notation

M
G;D.F / WD

X

˛2N4d
0

j˛j6D

Z

R2d

Z

R2d

j@˛F.x; y/j
hx � yiG

dx dy :
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In particular, the trace norm bound in Lemma 3.4 is a constant multiple of

M
G;GC4dC2.Fn/.

Lemma 3.6. Let W; b; † satisfy Condition 2.1 and let the boundary of † satisfy

�.@†/ > 1 (see §4). Set

F.x; y/ WD .rx1
� ry2

� rx2
� ry1

/.W � .b�†/.x/W � .b�†/.y//:

Set G WD 2d C 2, D WD 6d C 4. �en

M
G;D.F / . krbkL1.†/.krbkL1.†/ C kbkL1.@†// C

kbkL1.@†/kbkL1.@†/

�.@†/
:

(Recall from §2.1 that the constant implicit in . depends on W, but not on b

or †.)

Proof. We have

F.x; y/ D
d

X

j D1

.@.x1/j @.y2/j � @.x2/j @.y1/j /.W � .b�†/.x/W � .b�†/.y//:

For j 2 ¹1; : : : ; dº we have

@.z1/j W � .b�†/.z/ D g1;j .z/ C h1;j .z/;

where

g1;j .z/ WD
Z

@†

W.z � z0/b.z0/.n1/j .z0/ dz0; h1;j .z/ WD W � .�† @.z1/j b/.z/;

and similarly for @.z2/j W � .b�†/.z/. �us, using the symmetry and subadditivity

of M. � /, we have

M
G;D.F / 6

d
X

j D1

�

M
G;D.g1;j .x/g2;j .y/ � g2;j .x/g1;j .y//

C 2MG;D.g1;j .x/h2;j .y// C 2MG;D.g2;j .x/h1;j .y//

C 2MG;D.h1;j .x/h2;j .y//
�

:

It is easy to check that

M
G;D.g1;j .x/h2;j .y// . kbkL1.@†/krbkL1.†/;

M
G;D.g2;j .x/h1;j .y// . kbkL1.@†/krbkL1.†/;

M
G;D.h1;j .x/h2;j .y// . krbkL1.†/krbkL1.†/:
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It remains to bound the �rst term. First note that

g1;j .x/g2;j .y/ � g2;j .x/g1;j .y/

D
Z

@†

Z

@†

W.x � x0/b.x0/W.y � y 0/b.y 0/m.x0; y 0/ dx0 dy 0;

where for each x0; y 0 2 @† we set

m.x0; y 0/ WD .n1/j .x0/.n2/j .y 0/ � .n2/j .x0/.n1/j .y 0/

D ..n1/j .x0/ � .n1/j .y 0//.n2/j .y 0/

C ..n2/j .y 0/ � .n2/j .x0//.n1/j .y 0/:

Let `.x0; y 0/ be the line segment connecting x0 to y 0. When jx0 � y 0j 6 �.@†/=2

we have `.x0; y 0/ � tub.@†; �.@†/=2/ so by Lemma 4.12 (using the extension of

n de�ned in §4.1) we have

j.n1/j .x0/ � .n1/j .y 0/j 6 jx0 � y 0j sup
z2`.x0;y 0/

jrn.z/j 6
2jx0 � y 0j

�.@†/
:

When jx0 � y 0j > �.@†/=2 we have

j.n1/j .x0/ � .n1/j .y 0/j 6 2 6
4jx0 � y 0j

�.@†/
:

Similar bounds hold for n2, so

jm.x0; y 0/j 6
8jx0 � y 0j

�.@†/
6

24hx � x0ihx � yihy � y 0i
�.@†/

:

We also bound (using Lemma 4.13 with U.z/ WD hzi@˛W.z/ for the dx0 integral)
Z

@†

hx � x0ij@˛W.x � x0/b.x0/j dx0
. kbkL1.@†/;

Z

R2d

Z

@†

hy � y 0ij@˛W.y � y 0/b.y 0/j dy 0 dy . kbkL1.@†/:

We therefore obtain

M
G;D.g1;j .x/g2;j .y/ � g2;j .x/g1;j .y// .

kbkL1.@†/kbkL1.@†/

�.@†/
:

Proof of Lemma 3.1. �e way we complete this proof for general f depends on the

functional calculus in use; in other words, it depends on which of the two parts

of Condition 2.3 is satis�ed. In both cases we set q WD W � .b�†/, G WD 2d C 2,

D WD 6d C 4, and

F.x; y/ WD .rx1
� ry2

� rx2
� ry1

/.q.x/q.y//:
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Condition 2.3(1). For j > 2 by Lemma 3.4 we have

kopŒqj C1� � opŒqj � opŒq�k1 . M
G;D..rx1

� ry2
� rx2

� ry1
/..q.x//j q.y///

6 .j � 1/D.cd;W kbkL1.†//
j �1

M
G;D.F /;

where cd;W is a constant. Summing from j D 1 to k�1 and bounding the operator

norm of opŒq� as in §2.1 we obtain

k.opŒq�/k � opŒqk�k1 . .1 C .k � 2/DC2/.cd;W kbkL1.†//
k�2

M
G;D.F /:

�us

kf .opŒq�/ � opŒf .q/�k1

6

1
X

kD1

jf .k/.0/j k.opŒq�/k � opŒqk�k1

. M
G;D.F /

�

1
X

kD2

jf .k/.0/j
kŠ

.1 C .k � 2/DC2/.cd;W kbkL1.†//
k�2

�

;

which is convergent. Using Lemma 3.6 to bound MG;D.F / gives the result.

Condition 2.3(2). We may assume that f is compactly supported because only

its values on a compact interval a�ect the meaning of f .opŒq�/. It follows from

the properties of the propagator eit opŒq� that

kf .opŒq�/ � opŒf .q/�k1

6
1p
2 

Z

R

� Z

Œ0;t�

kopŒeisq � opŒq� � opŒeisqq�k1 ds

�

j Of .t/j dt:

(�is may be seen by di�erentiating the operator eis opŒq� opŒeisq� with respect to s

and integrating on Œ0; t �.) But by Lemma 3.4 we have

kopŒeisq� opŒq� � opŒeisqq�k1

. M
G;D..rx1

� ry2
� rx2

� ry1
/.eisq.x/q.y///

D M
G;D.iseisq.x/.rx1

� ry2
� rx2

� ry1
/.q.x/q.y///

. hsiDC1hkbkL1.†/iD
M

G;D.F /:

�e result then follows from Lemma 3.6.
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3.3. Step 2: Trace asymptotics. In this subsection we prove Lemma 3.2. Set

I1 WD
Z

R2d

.f .W � .�†b/.z// � W � .�†f .b//.z// dz;

I5 WD
Z

@†

Z

R

.f .Qn.u/.�/b.u// � Qn.u/.�/f .b.u/// d� �2d�1.du/ :

As discussed in §3.1, we must show that when b D a.�=r/ and † D r�, we have

I1 D I5 C O.r2d�2/.

Notation 3.7. In this subsection we will refer to the tubular radius of the boundary

of † very often, so instead of using the full notation �.@†/ (which for † D r�

equals r�.@�/) we will refer to it simply as � .

Proof of Lemma 3.2. Step 1. Restrict support of f . Depending on which part of

Condition 2.3 is satis�ed, either f is a smooth function on R and b; W are real-

valued, or f is a smooth function on C. In both cases, I1 and I5 only depend on

the value of f .t/ for

jt j 6 kbkL1.†/

Z

R2d

jW.z/j dz;

so we may restrict the support of f to a compact set. In the remainder of the proof

we refer to kf kL1 for the supremum of jf j over that set, and similarly for kf 0kL1

and kf 00kL1 .

Step 2: Restrict support of W. Let zW be the function de�ned for each z 2 R2d

by

zW .z/ WD

8

<

:

W.z/ C KW;� if jzj 6 1
2
�;

0 if jzj > 1
2
�;

with KW;� chosen so that the integral of zW is 1. �e error in replacing W by zW
in I1 and I5 (including the reference to W in the de�nition of Q) is bounded by

2kf 0kL1kbkL1.†/

Z

R2d

jW.z/ � zW .z/j dz

C 2kf 0kL1kbkL1.@†/ sup
!2S2d�1

Z

R

jQ!.�/ � QQ!.�/j d�:

Since W 2 S.R2d / these integrals can be bounded by any negative power of � ;

choosing to bound them by 1=�2 and 1=� respectively will su�ce to satisfy the

required scaling property.
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�is will be useful later in the proof where certain integrals will be non-zero

outside of a tubular neighbourhood of @† so long as W has su�ciently small

compact support, and this will allow us to apply the results in §4. We also have,

for each k 2 N0,

Z

R2d

.1 C jz0j/k j zW .z0/j dz0
6

Z

R2d

.1 C jz0j/k jW.z0/j dz0;

so any bound depending on zW in this way can be replaced by one depending on W

uniformly in � . For the rest of the proof we use zW in place of W without further

comment.

Step 3: Extract b from convolution. Let

I2 WD
Z

R2d

.f .W � �†.z/b.z// � W � �†.z/f .b.z/// dz:

We will bound jI1 � I2j. We can rewrite

I1 � I2 D
Z

R2d

.D1.z/ � D2.z// dz;

where

D1.z/ WD f .W � .�†b/.z// � f .W � �†.z/b.z//;

D2.z/ WD W � .�†f .b//.z/ � W � �†.z/f .b.z//:

Using two terms of the Taylor expansion of b and two terms of the Taylor expan-

sion of f , we obtain

Z

R2d

jD1.z/ � .�z0W.z0// � �†.z/ � rb.z/f 0.W � �†.z/b.z//j dz

. kf 00kL1krbkL1.R2d /krbkL1.R2d / C kf 0kL1kr.rb/kL1.R2d /:

Using two terms of the Taylor expansion of f .b/, we obtain

Z

R2d

jD2.z/ � .�z0W.z0// � �†.z/ � rb.z/f 0.b.z//j dz

. kf 00kL1krbkL1.R2d /krbkL1.R2d / C kf 0kL1kr.rb/kL1.R2d /:
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It thus remains to bound
Z

R2d

j.z0W.z0// � �†.z/ � rb.z/.f 0.W � �†.z/b.z// � f 0.b.z///j dz:

�is integral is zero outside of tub.@†; �=2/. Set V.z0/ WD .1 C jz0j/W.z0/. By

Lemma 4.11 and Lemma 4.14, it is thus bounded by

kf 00kL1

Z

tub.@†;�=2/

j.z0W.z0// � �†.z/ � rb.z/W � �†c.z/b.z/j dz

6 kf 00kL1kbkL1.R2d /

Z

tub.@†;�=2/

jV � �†.z/V � �†c.z/rb.z/j dz

. kf 00kL1kbkL1.R2d /.krbkL1.@†/ C kr.rb/kL1.R2d //:

Step 4: Approximate b by its value on @†. Let

I3 WD
Z

tub.@†;�=2/

.f .W � �†.z/b.u// � W � �†.z/f .b.u/// dz;

where for each z 2 tub.@†; �/ we de�ne u WD z � ı.z/n.z/ 2 @† (the signed

distance function ı is de�ned in §4.1). �e integrand of I2 is zero outside of

z 2 tub.@†; �=2/, so by Lemma 4.11 (essentially Taylor’s theorem on b in the

n.u/ direction) and Lemma 4.14 we have

jI2 � I3j

6 kf 00kL1kbkL1.R2d /

Z

tub.@†;�=2/

jb.z/ � b.u/jjW � �†.z/jjW � �†c.z/j dz

. kf 00kL1kbkL1.R2d /.krbkL1.@†/ C kr.rb/kL1.R2d //:

Step 5: Approximate † locally by a half space. Let

I4 WD
Z

tub.@†;�=2/

.f .Qn.z/.ı.z//b.u// � Qn.u/.ı.z//f .b.u/// dz;

where as before we de�ne u WD z�ı.z/n.z/ 2 @†. By Lemma 4.8 and Lemma 4.10

we have

jI3 � I4j

. kf 0kL1

Z

@†

Z �=2

��=2

jb.u/jjW � �†.u C �n.u// � Qn.u/.�/j d� �2d�1.du/

6 kf 0kL1kbkL1.@†/ sup
u2@�

J.u/;
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where for each u 2 @� we set

J.u/ WD
Z �=2

��=2

jW � �†.u C �n.u// � Qn.u/.�/j d�:

We will show that J.u/ . 1=� . We have

Qn.u/.�/ D W � �H .u C �n.u//; H WD ¹z0 2 R
2d W .z0 � u/ � n.u/ > 0º:

So, denoting symmetric di�erence by �, we have

J.u/ 6

Z �=2

��=2

jW j � �†�H .u C �n.u// d�

D
Z �=2

��=2

Z

†�H

jW.u C �n.u/ � z0/j dz0 d�:

�is integrand is non-zero only when juC�n.u/�z0j < �=2 and j�j < �=2, so only

when ju � z0j < � . We may therefore use Remark 4.4 with z0 D u C v?n.u/ C Qv.

�is says that z0 2 †�H only when jv?j 6 j Qvj2=� , so

J.u/ 6

Z �=2

��=2

Z

n.u/?

Z j Qvj2=�

�jQvj2=�

jW.�n.u/ � v?n.u/ � Qv/j dv? �2d�1.d Qv/ d�:

Translating � to � WD � � v? and then setting x WD �n.u/ � Qv, we obtain

J.u/ 6

Z

n.u/?

Z j Qvj2=�

�jQvj2=�

Z

R

jW.�n.u/ � Qv/j d� dv? �2d�1.d Qv/

6
2

�

Z

R2d

jxj2jW.x/j dx .
1

�
:

Step 6: Neglect Jacobian. By Lemma 4.8 we have

I4 D
Z

@†

Z �=2

��=2

.f .Qn.z/.�/b.u//�Qn.u/.�/f .b.u/// det.I ��Su/ d� �2d�1.du/ :

In I5 the integrand is zero except for when ��=2 < � < �=2, so using Lemma 4.10

to replace det.I � �Su/ with 1, we have

jI4 � I5j .
1

�

Z

@†

Z �=2

��=2

j�j
ˇ

ˇf .Qn.z/.�/b.u// � Qn.u/.�/f .b.u//
ˇ

ˇ d� �2d�1.du/

6
2

�
kf 0kL1

Z

@†

jb.u/j �2d�1.du/

Z

R

j�j
ˇ

ˇQn.z/.�/ � �Œ0;1/.�/
ˇ

ˇ d�

.
1

�
kf 0kL1kbkL1.@†/:
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4. Appendix: Tubular neighbourhood properties

4.1. De�nition and properties. Here we recall the de�nition of tubular neigh-

bourhoods and some of their basic properties. �roughout this subsection let � �
Rm be a closed set with C 2 boundary. In practice we will only need the results

when m is even, but everything applies equally to odd m. �e material below is

well known; see for example [10, Appendix; moved to §14.6 in 1983 second edition]

or [11].

Notation 4.1. Denote the inward normal vector �eld by n W @� ! Rm.

De�nition 4.2. Let t > 0. De�ne the open line segments

`nor.u; t; @�/ WD ¹u C �n.u/ 2 R
m W � 2 .�t; t /º

and de�ne the set

tub.@�; t/ WD
[

u2@�

`nor.u; t; @�/:

When the `nor.u; t; @�/ are disjoint for all distinct u 2 @� we call tub.@�; t/ a

tubular neighbourhood of radius t .

For any t > 0, the set tub.@�; t/ is is precisely the set of points within distance

t of @�. When � is compact, there always exists a t > 0 such that @� has a tubular

neighbourhood of radius t ; this fact is called the tubular neighbourhood theorem.

We denote maximum such radius that exists by �.@�/ (or set �.@�/ WD 0 if no

such t exists); it satis�es the scaling relationship, for � > 0,

�.�@�/ D ��.@�/:

When �.@�/ > 0 we write simply tub.@�/ for the tube of this radius; that is,

tub.@�/ WD tub.@�; �.@�//:

Notation 4.3. For any z 2 Rm and t > 0, we denote the open ball in Rm centred

on z with radius t by B.z; t /.

Remark 4.4. An equivalent condition to @� having a tubular neighbourhood of

radius t is that for each u 2 @� the balls B.u ˙ tn.u/; t / do not intersect @�.

�is implies that locally the surface @� is approximately �at with uniform qua-

dratic error. To state this explicitly, for u 2 @�, z 2 B.u; �.@�// set v WD z � u,

v? WD v � n.u/, Qv WD v � v?n.u/, so that z D u C v?n.u/ C Qv. (�en Qv 2 n.u/?

i.e. Qv is in the tangent space at u.) �en

z 2 @� H) jv?j 6 j Qvj2=�.@�/:
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De�nition 4.5. �e signed distance function (also called the oriented distance

function) is

ı�.z/ WD
´

dist.z; @�/ if z 2 �;

� dist.z; @�/ if z … �:

Lemma 4.6. Let � have a boundary satisfying �.@�/ > 0. �en ı� is twice

continuously di�erentiable on tub.@�/. Further, let z 2 tub.@�/, and set u 2 @�

to the (unique) nearest point to z in @�; then

rı�.z/ D rı�.u/ D n.u/; z D u C ı�.z/n.u/:

Lemma 4.6 shows that rı� is a continuously di�erentiable extension of the

inward normal vector �eld, so we write without ambiguity

n.z/ WD rı�.z/ for all z 2 tub.@�/:

In particular, jn.z/j D 1 and .n.z/ � r/n.z/ D 0 for all z 2 tub.@�/.

�e primary use of tubular neighbourhoods in this article is to reparametrise

points near to @� in terms of points on @� and the signed distance. To write the

Jacobian for this we need to use the shape operator.

De�nition 4.7. For each u 2 @�, de�ne the shape operator, also known as the

Weingarten map, by

Su WD rn.u/ D r.rı�/.u/:

�e associated quadratic form is called the second fundamental form.

�e shape operator is usually de�ned as zSu WD rTu@�n.u/ (the gradient of

the normal vector �eld in the tangent hyperplane), which is a square matrix of

size m � 1. However, because .n.u/ � r/n.u/ D 0 we have Su D zSu ˚ 0, so the

distinction will not a�ect what follows.

Since Su is the Hessian of a real-valued function, it is a real symmetric matrix,

and hence diagonalizable with real eigenvalues (called the principal curvatures).

�e operator norm of Su equals its (absolutely) largest principal curvature and

satis�es

jSuj 6
1

�.@�/
:
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Lemma 4.8. For any 0 < t 6 �.@�/, the change of variables

� WD ı�.z/ 2 .�t; t /; u WD z � ı�.z/n.z/ 2 @�

() z D u C �n.u/ 2 tub.@�; t/;

has Jacobian det.I � �Su/. In other words, for any f 2 L1.tub.@�; t// we have
Z

tub.@�;t/

f .z/ dz D
Z

@�

Z

.�t;t/

f .u C �n.u// det.I � �Su/ d� �m�1.du/:

We will need one �nal fact, which will be used to bound the di�erence between

nearby normals (Lemma 4.12).

Lemma 4.9. Let z 2 tub.@�/. Set u 2 @� to be the nearest point on @� to z, and

set U to an orthogonal matrix that diagonalises Su i.e.

Su D U �1 diag¹�1; : : : ; �m�1; 0ºU

where �j are the principal curvatures at u. �en

rn.z/ D U �1 diag

² ��1

1 � ı�.z/�1

; : : : ;
��m�1

1 � ı�.z/�m�1

; 0

³

U:

4.2. Some basic consequences. �is subsection collects some simple conse-

quences of the tubular neighbourhood theory described in §4.1, used in §3 to

prove �eorem 2.4. We will �rst need a pair of simple bounds on the Jacobian

in Lemma 4.8.

Lemma 4.10. For all j�j 6 �.@�/=2 and u 2 @� we have

�

1

2

�m�1

6 det.I � �Su/ 6

�

3

2

�m�1

;

jdet.I � �Su/ � 1j 6 .2m�1 � 1/
j�j

�.@�/
:

Proof. �ese follow immediately by writing det.I � �Su/ as the product of

1 � ��j , where �j are the principal curvatures (in particular, j�j j 6 1=�.@�/ so

j��j j 6 1).

One use of these bounds is the following lemma, which allows Taylor’s theo-

rem in the direction normal to @� to be written with straightforward error terms,

rather than using an awkward bound like
Z

@�

sup
�2.�t;t/

jra.u C �n.u//j du:
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Lemma 4.11. Let t 6 �.@�/=2, and let g be a function on tub.@�; t/. For each

z 2 tub.@�; t/ set u WD z � ı�.z/n.z/ 2 @�. Set

T WD
Z

tub.@�;t/

ja.z/ � a.u/jjg.z/j dz:

�en we have

T 6 3m�1.krakL1.@�/ C kr.ra/kL1.Rm// sup
u2@�

Z t

�t

j�g.u C �n.u//j d�;

T 6 3m�1krakL1.Rm/ sup
u2@�

Z t

�t

jg.u C �n.u//j d�:

Proof. By Lemma 4.8 and Lemma 4.10 we have

T 6

�

3

2

�m�1 Z

@�

Z t

�t

ja.u C �n.u// � a.u/jjg.u C �n.u//j d� �m�1.du/ :

Applying Taylor’s theorem to a in the normal direction, we �nd

a.u C �n.u// � a.u/ D �n.u/ � ra.u/ C
Z 1

0

.1 � s/�2.n.u/ � r/2a.u C s�n.u// ds:

But changing variables s0 D �s for j�j < t we have
ˇ

ˇ

ˇ

ˇ

Z 1

0

.1 � s/�2.n.u/ � r/2a.u C s�n.u// ds

ˇ

ˇ

ˇ

ˇ

6

Z t

�t

j�.n.u/ � r/2a.u C s0n.u//j ds0;

so using Lemma 4.8 and Lemma 4.10 again (this time on �m�1.du/ ds0 rather than

�m�1.du/ d�) gives the �rst inequality.

�e second inequality follows in exactly the same way, except using one less

term of the Taylor expansion.

�e following two results are used in the composition step (§3.2).

Lemma 4.12. For all z 2 tub.@�; �.@�/=2/ we have the operator norm bound

jrn.z/j 6
2

�.@�/
:

Proof. �is follows from Lemma 4.9 using that each j�j j 6 1=�.@�/.

Lemma 4.13. Let z 2 Rm, W 2 S.Rm/. Let � � Rm have boundary satisfying

�.@�/ > 1. �en
Z

@�

jU.z � u/j �m�1.du/ 6 Cd;U ;

where Cd;U is a �nite constant depending only on d and U (not on z or �).
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Proof. Set zU .u/ WD supx2B.u;1=2/jU.x/j. �en

Z

@�

jU.z � u/j �m�1.du/

6 2m�1

Z 1=2

�1=2

Z

@�

jU.z � u/j det.I � �Su/ �m�1.du/ d�

6 2m�1

Z

tub.@�;1=2/

zU .z � z0/ dz0

6 2m�1

Z

Rm

zU .z0/ dz0:

�e following lemma is used in the trace asymptotics (§3.3) to show that certain

integrands are concentrated close to the boundary of �.

Lemma 4.14. Let V 2 L1.Rm/, let k 2 N0, and let t < �.@�/. �en for all

u 2 @� we have

Z t

�t

j�kV � ��.u C �n.u//V � ��c.u C �n.u//j d�

6
2

k C 1

Z

Rm

jV.z0/j dz0

Z

Rm

jz0jkC1jV.z0/j dz0:

Proof. For z 2 � we have �c � B.z; dist.z; @�//c, so

jV � ��.z/j 6 Vrad.0/; jV � ��c.z/j 6 Vrad.dist.z; @�//;

where

Vrad.�/ WD
Z

jz0j>�

jV.z0/j dz0:

Similar relationships hold for z 2 �c. But for j�j < �.@�/ we have

dist.u C �n.u/; @�/ D j�j;

so the integral in the lemma statement is bounded by

2Vrad.0/

Z t

0

j�jkVrad.�/ d�:

Interchanging the order of integration (between d� and dz0) gives the result.
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