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1. Introduction

When is a boundary point of the numerical range of a linear operator contained

in the spectrum of the operator? �is is the main question this paper is concerned
with. Let us recall that the numerical range of a linear operator A in the complex
Hilbert space .H; h:; :i/ is de�ned as

Num.A/ D ¹hAf; f i W f 2 D.A/; kf k D 1º (1)

and that by the Toeplitz-Hausdor� theorem it is always a convex set. In the �nite
dimensional case the numerical range is also compact, but in the above generality
it needs neither be bounded nor closed. In most circumstances (more about that
below) the spectrum of A is contained in the closure of the numerical range.
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�e above question already has a long history and goes back, in the in�nite-
dimensional case, to a paper of Donoghue [8], who dealt with bounded operators
and showed that corner points of the boundary of the numerical range, if they
are elements of the numerical range, are eigenvalues of the operator. For corner
points which are not elements of the numerical range, Hildebrandt [16] (and also
Sims [26]) showed that they are contained in the approximate point spectrum.
Some decades later, Hübner [17] generalized Hildebrandt’s result to points where
the boundary of the numerical range is non-round (i.e. where the boundary has
in�nite curvature). Even more recently, Hübner’s results where re�ned, somewhat
independently, by Farid [9], Spitkovsky [27] and Salinas and Velasco [24]. Among
other things, they showed that non-round points of the boundary of the numerical
range, which are not corner points, are elements of the essential spectrum.

All of the above results have one feature in common: they were proved for
bounded operators only. It is the aim of this paper to extend these results, as far
as possible, to the case of unbounded operators. As we will see, this is not a
straightforward task since most of the proofs of the above results (only the proof
of Donoghue’s theorem being an exception) rely heavily on the boundedness of
the operators and on the fact that they are everywhere de�ned.

In the second part of this paper, we will apply the results of the �rst part to the
study of non-selfadjoint Schrödinger operators ��CV in L2.Rd /, with a complex
valued potential V . While these operators have received a lot of attention in recent
times, see e.g. [1, 11, 20, 5, 23, 22, 12, 10, 14, 7, 6], as compared to their selfadjoint
counterparts they are still far from being well understood. For instance, while
it is not too di�cult to obtain bounds on the numerical range of these operators
(see [4]), it is usually quite hard, or impossible, to determine the numerical range
exactly. We will shed a little more light on the structure of the numerical range
of �� C V by showing that under very mild assumptions on the imaginary part
of the potential, the boundary of the numerical range can be non-round only at
points where it hits the essential spectrum. In particular, if the spectrum is purely
discrete, then the boundary of the numerical range will consist entirely of round
points.

�e plan for this paper is as follows. In Section 2, we gather some preliminary
material about convex sets and their boundary points. In Section 3 and 4 we will
state and prove our general results about boundary points of the numerical range.
Finally, the non-selfadjoint Schrödinger operator will be considered in Section 5.
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2. Preliminaries about convex sets and their boundary points

Let � � C be a closed, convex set with an interior point and let � 2 @�. �en
there exists at least one supporting line l� for � passing through �. If there exists
more than one such line, then � is called a corner point of @� and � is contained
in a closed sector with vertex � and semivertical angle less than �=2. While there
always exists more than one such sector, we will simply pick the smallest sector
with these properties and choose the supporting line l� which is orthogonal to the
axis of this sector. Having �xed the supporting line, we now choose a rectangular
system of coordinates .�; �/ with an origin at �, the �-axis coinciding with l� and
directed such that � � ¹.�; �/ W � � 0º. In the following, when using coordinates
it will always refer to this coordinate system.

Let
D0

" WD ¹.�; �/ W �2 C �2 � "2; � ¤ 0º

and note that @�\D0
" ¤ ; for all " > 0. We de�ne the right-hand upper curvature

of @� at � as

C
u .�/ WD lim sup

� ! 0; � # 0

.�; �/ 2 @�

�

�2
WD lim

"#0
sup

²

�

�2
W .�; �/ 2 @� \ D0

"; � > 0

³

: (2)

�e right-hand lower curvature of @� at � is de�ned as

C
l

.�/ WD lim inf
� ! 0; � # 0

.�; �/ 2 @�

�

�2
: (3)

If C
l

.�/ D C
u .�/, then the joint value is called the right-hand curvature, C.�/,

of @� at �. �e left-hand (upper/lower) curvatures �
u .�/; �

l
.�/; �.�/ are de-

�ned analogously. Moreover, the upper and lower curvatures, u.�/ and l .�/, of
@� at � are de�ned as in (2) and (3), but with the right-limit � # 0 replaced
by the ordinary limit � ! 0. Equivalently, l .�/ D min.C

l
.�/; �

l
.�// and

u.�/ D max.C
u .�/; �

u .�//. If the lower- and upper curvatures of @� at � co-
incide, then the joint value is called the curvature .�/ of @� at �. Note that our
de�nition of curvature di�ers from the usual one by a factor of 1=2. However, as
we will mainly be interested in points where the curvature is in�nite, this should
not lead to much confusion.

We call � a point of in�nite curvature, if .�/ D 1 (which is the case if
and only if l .�/ D 1) and a point of in�nite upper curvature, if u.�/ D 1.
With our choice of supporting line, if � is a corner point then it is a point of
in�nite curvature. Finally, we say that � is of unilateral in�nite curvature if the
right- or left-hand curvatures, or both, of @� at � are in�nite. Note that if � is
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of unilateral in�nite curvature, then it is of in�nite upper curvature. We will see
below (Example 1.(iii)) that the converse need not be true.

Remark 1. In Hübner’s paper [17] points of in�nite curvature where called non-

round points and for reasons of brevity we borrowed this term for the title and
introduction of this paper. In the following, however, we will not use this term
again and speak about curvature instead.

Example 1. In the following examples we choose � � R
2 as the epigraph of a

convex function f W Œ�1; 1� ! RC.

(i) f .�/ D j�j˛ . �en .0/ D 0 if ˛ > 2 and .0/ D 1 if ˛ D 2. If 1 < ˛ < 2

then 0 is a point of in�nite curvature and if ˛ D 1 it is a corner point.

(ii) f .�/ D .��/3=2 for � < 0 and f .�/ D �2 for � � 0. Here C.0/ D l .0/ D 1

and �.0/ D u.0/ D 1.

(iii) l .0/ can be di�erent from u.0/ also in case that the function f is even. Let
g W Œ0; 1� ! Œ0; 1� be a monotone increasing, polygonal curve which satis�es
x2 � g.x/ �

p
x for all x 2 Œ0; 1� and such that 0 is a limit point of both

¹x W g.x/ D
p

xº and ¹x W g.x/ D x2º. Let f .�/ D
R �

0 g.t/dt for � 2 Œ0; 1�

and f .�/ WD f .��/ for � 2 Œ�1; 0/. �en f 2 C 1Œ�1; 1� is convex, u.0/ D
˙

u .0/ D 1 and l .0/ D ˙
l

.0/ D 0.

In view of the last example we should remark that in [28] it was actually shown
that for most convex bodies and for most of their boundary points � (in each case
meaning all except those in a set of �rst Baire category) one has u.�/ D 1 and
l .�/ D 0.

�e following equivalence is probably well known among experts.

Lemma 1. Let � � C be a closed, convex set with an interior point and let

� 2 @�. �en the following are equivalent:

(1) � is a point of in�nite upper curvature;

(2) there does not exist a closed, non-degenerate disk D such that � 2 D � �.

Proof. Note that � is a point of �nite upper curvature if and only if � contains
a piece of parabola touching the boundary at �. �e domain bounded by this
parabola contains a small non-degenerate disk D � � such that � 2 @D.

Concerning the other direction we note that if there exists a closed, non-de-
generate disk D with � 2 D � �, then this disc contains a piece of parabola with
the above properties.
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3. Main results

Let A be a densely de�ned, closed operator in the complex Hilbert space .H; h:; :i/.
As remarked above, by the Toeplitz-Hausdor� theorem its numerical range
Num.A/, and hence its closure Num.A/, is a convex set. In the following, without
further mentioning, we assume that Num.A/ does contain an interior point and
that Num.A/ ¤ C.

Remark 2. If Num.A/ does not have interior points then it is an interval. In this
case there exist ˛; ˇ 2 C such that the operator ˛A C ˇ1 is symmetric, and all
known spectral results for symmetric operators easily translate into corresponding
results for A.

�eorem 1. Let � 2 @ Num.A/ be a point of in�nite upper curvature. If � 2
Num.A/, then � is an eigenvalue of A.

A version of this theorem has �rst been established by Donoghue [8], who con-
sidered the case of corner points of bounded operators (in [19] this was
extended to corner points of the quadratic numerical range). While we haven’t
found the above generalization to unbounded operators and to points of in�nite up-
per curvature in the literature, the result might be known to the experts in the �eld
as its proof doesn’t require much changes as compared to Donoghue’s original
result. Our proof follows along the lines of the proof of Donoghue’s theorem
given in [25].

Proof. Let f 2 D.A/ with kf k D 1 such that hAf; f i D �. If we can show that
f is an eigenfunction of f , then necessarily Af D �f and we are done.

Let us suppose that f is not an eigenfunction of A, i.e. f and Af are linearly
independent, and derive a contradiction. To this end, let P denote the orthogonal
projection onto the two-dimensional Hilbert space H0 D span¹f; Af º and let
A0 D PAP , acting on H0. �en Num.A0/ is an ellipse (possibly degenerated to
a line segment or even to a point) whose foci are the eigenvalues of A0, see [13]
Section 1.1. Since � is a point of in�nite upper curvature of @ Num.A/, Lemma 1
implies that there does not exist a non-degenerate ellipse E such that � 2 E �
Num.A/. But � 2 Num.A0/ � Num.A/, so Num.A0/ must be a proper line
segment or a single point. If it is a single point, then Num.A0/ D ¹�º and A0 D
�1, which implies that Af D A0f D �f and leads to a contradiction. On the
other hand, if Num.A0/ is a proper line segment, then, since � is an extreme point
of Num.A/ (as a point of in�nite upper curvature), it must be one of the endpoints
of this line segment and hence is an eigenvalue of A0. If � ¤ � denotes the other



736 M. Hansmann

eigenvalue of A0, then the corresponding normalized eigenfunctions f� and f�

are orthogonal, as follows from the fact that there exist ˛; ˇ 2 C; ˛ ¤ 0 such that
˛A0 C ˇ1 is symmetric. Since H0 D span¹f�; f�º we can write f D f� C ıf�,
where j j2 C jıj2 D kf k2 D 1, and Af D A0f D �f� C ı�f�. But this shows
that � D hAf; f i D j j2� C jıj2�, which implies that ı D 0 and so Af D �f ,
again leading to a contradiction.

�eorem 1 immediately leads to the question what one can expect if the as-
sumption that � is an element of the numerical range is removed.

�eorem 2. Suppose that D.A/ � D.A�/. If � 2 @ Num.A/ is a point of unilateral

in�nite curvature, then � 2 �.A/.

Hübner [17] proved this theorem for bounded operators and points of in�nite
curvature. Still considering the case of bounded operators, Salinas and Velasco
[24] generalized it to points of unilateral in�nite curvature.

Question 1. Does the conclusion of �eorem 2 remain valid if � is only a bound-
ary point of in�nite upper curvature? (�e answer to this question seems to be
unknown even in the bounded case.)

Question 2. As we will see below, the assumption that D.A/ � D.A�/ will enter
our proof of �eorem 2 rather naturally. However, is it really necessary?

�e proof of �eorem 2, which requires considerable changes as compared
to the proof of the bounded case, will be given in the next section. First, let us
discuss some of the consequences of this theorem. Recall that the approximate
point spectrum of A is de�ned as

�ap.A/ D ¹� 2 C W 9.un/ � D.A/; kunk D 1; .A � �1/un ! 0º: (4)

It is well known that the topological boundary of �.A/ is contained in �ap.A/.

Corollary 1. Suppose that D.A/ � D.A�/ and that �.A/ � Num.A/. If � 2
@ Num.A/ is a point of unilateral in�nite curvature, then � 2 �ap.A/.

�e assumption �.A/ � Num.A/ is satis�ed whenever C n Num.A/ is con-
nected and contains a point which is not in the spectrum of A, see [18]. In partic-
ular, in the bounded case it is always satis�ed.

Proof of Corollary 1. From �eorem 2 we know that � is in �.A/ \ @ Num.A/.
Since �.A/ � Num.A/ by assumption, it follows that � 2 @�.A/ � �ap.A/.
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We recall that the essential spectrum of A is de�ned as

�ess.A/ D ¹� 2 C W A � �1 is not a Fredholm operator º (5)

and that a linear operator in H is called a Fredholm operator if it has closed range
and its kernel and cokernel are �nite dimensional.

�eorem 3. Suppose that D.A/ � D.A�/ and that �.A/ � Num.A/. If � 2
@ Num.A/ is a point of unilateral in�nite curvature, but not a corner point, then

Ran.A � �1/ is not closed. In particular, � 2 �ess.A/.

In the bounded case this theorem has been proved independently by Farid [9],
Spitkovsky [27] and Salinas and Velasco [24]. Our proof will follow along the
lines of Spitkovsky’s proof, but, once again, it will require some adaptions to
work for the unbounded case. We will need the following two lemmas.

Lemma 2. Let D.A/ � D.A�/ and suppose that � 2 @ Num.A/. �en

Ker.A � �1/ � Ker.A� � �1/: (6)

Proof. See [15], �eorem 1.

Note that in case that A 2 B.H/, i.e. A is a bounded operator with D.A/ D H,
one has equality in (6), see the paper of Spitkovsky [27].

Lemma 3. Let � 2 �ap.A/ and let A � �1 be injective. �en Ran.A � �1/ is not

closed.

Proof. Let us assume that Ran.A � �1/ is closed. �en by the closed graph the-
orem the closed operator .A � �1/�1 W Ran.A � �1/ ! H would be bounded.
However, since � 2 �ap.A/ there exists .un/ � D.A/; kunk D 1; with vn WD
.A � �1/un ! 0. But then wn WD vn=kvnk 2 Ran.A � �1/; kwnk D 1 and
k.A � �1/�1wnk ! 1, which leads to a contradiction.

Proof of �eorem 3. Using a suitable translation of the operator it is no restriction
to consider the case � D 0 only. Let us assume that Ran.A/ is closed and derive a
contradiction.

First, since 0 2 �ap.A/ by Corollary 1, Lemma 3 shows that A cannot be injec-
tive, so dim.Ker.A// > 0. Since A is closed, its kernel is closed and we have

H D Ker.A/ ˚ Ker.A/?:
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Let us set H1 D Ker.A/ and H2 D Ker.A/?, which are both Hilbert spaces with
the induced scalar product. Clearly, H1 is an invariant subspace for A, AjH1

D 0

and Num.AjH1
/ D ¹0º. Moreover, by Lemma 2 we have Ker.A/ � Ker.A�/ and

so
Ran.A/ D Ran.A/ D Ker.A�/? � Ker.A/?;

which shows that H2 is an invariant subspace for A as well. Let us set B D AjH2
,

which is an injective and closed operator in H2. Moreover, Ran.B/ D Ran.A/ is
closed. Now let us note that

Num.A/ D conv.Num.AjH1
/; Num.AjH2

// D conv.¹0º; Num.B//:

Since 0 (as a point of unilateral in�nite curvature) is an extreme point of Num.A/,
but not a corner point, it follows that 0 2 Num.B/ and so Num.A/ D Num.B/.
Hence � D 0 is a point of unilateral in�nite curvature of @ Num.B/ as well and
Corollary 1 implies that 0 2 �ap.B/. But since B is injective, Lemma 3 then
implies that Ran.B/ is not closed, which leads to a contradiction.

4. Proof of �eorem 2

We assumed that � is a point of unilateral in�nite curvature of @ Num.A/. Using
an a�ne transformation of A, it is no restriction to assume that � D 0, that R is
a supporting line for Num.A/, that Num.A/ � CC D ¹z W Im.z/ � 0º and that in
case of a corner point the imaginary axis coincides with the axis of the smallest
sector containing Num.A/. Moreover, it is no restriction to assume that 0 is a point
of right-hand in�nite curvature for @ Num.A/.

Since we assumed that Num.A/ contains an interior point, there exists an in-
terior point ˛ 2 Num.A/ with

0 < Re.˛/ < 1; 0 < Im.˛/ < 1; and j˛j < 1 (7)

and such that the half open line segment .0; ˛� is contained in Num.A/. Now let
0 < "n < 1 be any null sequence (i.e. "n ! 0 for n ! 1). �en we can �nd
.un/ � D.A/; kunk D 1; such that

hAun; uni D "n˛: (8)

Remark 3. In the bounded case, Hübner et al. now introduce a sequence .en/ �
H, with kenk D 1 and hun; eni D 0, by setting

Aun DW "n˛un C xnen
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and, using the boundedness of A extensively, show that xn D hAun; eni ! 0. In
particular, this implies that Aun ! 0 and so 0 2 �.A/. In the unbounded case we
will not be able to show that Aun ! 0 and have to go along a di�erent route.

Question 3. Is it true that Aun ! 0 for n ! 1?

�e main tool in our proof of �eorem 2 is the following new result. Recall
that by assumption we have D.A/ � D.A�/.

Proposition 1. Let .un/ be as de�ned in (8) and let .fn/ � D.A/ such that

max.sup
n

kfnk; sup
n

kAfnk; sup
n

kA�fnk/ < 1:

�en

lim
n!1

�

jhfn; Aunij C jhfn; A�unij
�

D 0:

Remark 4. If A 2 B.H/, then we can choose fn D Aun and fn D A�un, respec-
tively, and the proposition implies that Aun ! 0 and A�un ! 0, recovering the
known results mentioned above.

�e proof of this proposition is rather lengthy and will be given below. First,
let us show how the proposition can be used to prove �eorem 2.

Proof of �eorem 2. We want to prove that 0 2 �.A/. So let us assume that this is
not the case, i.e. A is boundedly invertible, and derive a contradiction. To this end,
let us choose fn D A�1un, with un as above. �en .fn/ � D.A/; kfnk � kA�1k
and kAfnk D 1. Moreover, since D.A/ � D.A�/, the operator A�A�1 is de-
�ned on H. Since A�1 is bounded and A� is closed, it is easy to see that also
A�A�1 is closed and then the closed graph theorem implies that A�A�1 2 B.H/.
In particular, this implies that kA�fnk � kA�A�1k. We can now apply Proposi-
tion 1 to conclude that

lim
n!1

.jhfn; Aunij C jhfn; A�unij/ D 0:

But

hfn; A�uni D hAfn; uni D hun; uni D 1

for all n, which leads to the desired contradiction, showing that our assumption
that 0 … �.A/ must have been wrong.
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�e proof of Proposition 1 requires a series of preparatory lemmas. First, let
us introduce a sequence .vn/ � D.A/ (whose precise form will be chosen below)
which satis�es

max.sup
n

kvnk; sup
n

kAvnk; sup
n

kA�vnk/ � 1; (9)

and
sup

n
j Re.hAvn; vni/j � Re.˛/=2; (10)

with ˛ as given in (7). Moreover, let us de�ne a sequence .cn/ � ¹�1; 1º, depend-
ing on .un/ (as de�ned in (8)) and .vn/, as follows:

cn WD

8

<

:

1; if Re.hAvn; uni C hAun; vni/ � 0;

�1; if Re.hAvn; uni C hAun; vni/ < 0:
(11)

Finally, let us set
wn WD un C p

"ncnvn 2 D.A/; (12)

where 0 < "n < 1 was de�ned above.

Lemma 4. For every n 2 N

1 � p
"n � kwnk � 1 C p

"n: (13)

Proof. Use the triangle inequality and the fact that kunk D 1 and kcnvnk � 1.

Since hAun; uni D "n˛ and c2
n D 1, a short computation shows that

hAwn; wni D "n˛ C p
"ncn .hAvn; uni C hAun; vni/ C "nhAvn; vni: (14)

Lemma 5. For all n 2 N we have

jhAwn; wnij � 4
p

"n: (15)

Proof. �is follows from (14) and the Cauchy–Schwarz inequality, using that 0 <

"n <
p

"n < 1, jcnj D 1, kunk D 1; j˛j < 1 and max.kvnk; kAvnk; kA�vnk/ �
1.

Lemma 6. For all n 2 N we have

Im.hAwn; wni/ � 4"n (16)

and

jIm.hAvn; uni C hAun; vni/j � 2
p

"n: (17)

In particular,

Im.hAvn; uni C hAun; vni/ ! 0 .n ! 1/:
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Proof. First, note that by (14)

Im.hAwn; wni/

D "n Im.˛/ C p
"ncn Im.hAvn; uni C hAun; vni/ C "n Im.hAvn; vni/:

(18)

Since Num.A/ � CC by assumption, the left-hand side is non-negative, so we
obtain

0 � "n Im.˛/ C p
"ncn Im.hAvn; uni C hAun; vni/ C "n Im.hAvn; vni/

and so

�cn Im.hAvn; uni C hAun; vni/ � p
"n.Im.˛/ C Im.hAvn; vni//:

Now we do the same computations with w0
n WD un � p

"ncnvn and arrive at

cn Im.hAvn; uni C hAun; vni/ � p
"n.Im.˛/ C Im.hAvn; vni//;

so taken together, and using that jcnj D 1, we obtain

j Im.hAvn; uni C hAun; vni/j � p
"n.Im.˛/ C Im.hAvn; vni//:

Since max.kvnk; kAvnk/ � 1 and j˛j < 1, an application of Cauchy–Schwarz
concludes the proof of (17). �e validity of (16) follows from (17), (18) and a similar
application of Cauchy–Schwarz.

We assumed that 0 is a point of right-hand in�nite curvature for @ Num.A/,
which means that for every positive null sequence .an/ we have K.an/ ! 1 for
n ! 1, where

K.a/ WD inf

²

Im.hAv; vi/
Re2.hAv; vi/

W v 2 D.A/; kvk D 1; 0 < jhAv; vij < a; Re.hAv; vi/ > 0

³

:

In order to apply this curvature assumption in our proof of Proposition 1, we �rst
need the following result.

Lemma 7. For all n 2 N we have

Re.hAwn; wni/ > 0: (19)

Proof. From (14) we obtain

Re.hAwn; wni/

D "n Re.˛/ C p
"ncn Re.hAvn; uni C hAun; vni/ C "n Re.hAvn; vni/:
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Estimating the last term in the sum by its negative absolute value and using as-
sumption (10) we can estimate

Re.hAwn; wni/ � "n.Re.˛//=2 C p
"ncn Re.hAvn; uni C hAun; vni/

D "n.Re.˛//=2 C p
"nj Re.hAvn; uni C hAun; vni/j

> 0:

(20)

For the equality we used the de�nition of .cn/ (see (11)) and in the last step we
used that Re.˛/ > 0 and "n > 0.

Lemma 8. We have

Re.hAvn; uni C hAun; vni/ �! 0 .n ! 1/:

Proof. From Lemma 5 and Lemma 4 we know that for all n 2 N

ˇ

ˇ

ˇ

ˇ

D

A
wn

kwnk ;
wn

kwnk

E

ˇ

ˇ

ˇ

ˇ

� 4
p

"n

kwnk2
� 4

p
"n

.1 � p
"n/2

DW xn;

so by the de�nition of K.xn/ and the fact that Re.hAwn; wni/ > 0 by Lemma 7,
we see that

Im
�D

A
wn

kwnk ;
wn

kwnk

E�

Re2
�D

A
wn

kwnk ;
wn

kwnk

E� � K.xn/ .n 2 N/: (21)

Since kwnk � .1 C p
"n/ this implies that

Im .hAwn; wni/
Re2 .hAwn; wni/

� K.xn/

.1 C p
"n/2

.n 2 N/

and so we can use Lemma 6 to obtain

Re .hAwn; wni/ �
p

K.xn/ � 2
p

"n.1 C p
"n/ .n 2 N/: (22)

From (20) we know that

Re.hAwn; wni/ � p
"nj Re.hAvn; uni C hAun; vni/j:

Plugging this into (22) we arrive at

j Re.hAvn; uni C hAun; vni/j
p

K.xn/ � 2.1 C p
"n/ .n 2 N/:

Here the right-hand side tends to 2 for n ! 1. Moreover, since xn & 0 we have
K.xn/ ! 1. But this implies that Re.hAvn; uni C hAun; vni/ ! 0.
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We are �nally prepared for the proof of Proposition 1. To begin, note that we
can assume that

s1 WD sup
n

kfnk > 0 and s2 WD max.sup
n

kAfnk; sup
n

kA�fnk/ > 0;

since otherwise the implication in the proposition is trivial. Let

R WD Re.˛/

2 max.s1; s2/
> 0;

where ˛ was de�ned in (7). Now we choose �n 2 Œ0; 2�/ such that the complex
numbers zn D Rei�nhAfn; uni and �n D Re�i�nhAun; fni have the same phase.
If one of hAfn; uni or hAun; fni is zero, then we choose �n arbitrary. With

vn WD Rei�nfn

we then obtain

R .jhAfn; unij C jhAun; fnij/

D jznj C j�nj

D jzn C �nj

D
q

Re2.hAvn; uni C hAun; vni/ C Im2.hAvn; uni C hAun; vni/:

(23)

Now note that

max.sup
n

kvnk; sup
n

kAvnk; sup
n

kA�vnk/ � Re.˛/=2 � 1

and

sup
n

j Re.hAvn; vni/j � sup
n

kAvnkkvnk � .Re.˛/=2/2 � Re.˛/=2;

i.e. with this choice of .vn/ the estimates (9) and (10) are satis�ed. We can thus
apply Lemma 8 and 6 to conclude that the right-hand side in (23) tends to 0 for
n ! 1. Since R > 0 this shows that

jhfn; Aunij C jhfn; A�unij D jhAfn; unij C jhAun; fnij �! 0 .n ! 1/

and concludes the proof of Proposition 1.
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5. Non-selfadjoint Schrödinger operators

Now we are going to apply our results to non-selfadjoint Schrödinger operators
�� C V in L2.Rd /. We will make the following assumptions.

(A1) V W Rd ! C is a locally integrable function such that the sesquilinear form

E.f; g/ D hrf; rgi C
Z

Rd

V.x/f .x/g.x/dx;

D.E/ D H 1.Rd / \ ¹f 2 L2.Rd / W V jf j2 2 L1.Rd /º;

is closed and sectorial (since V 2 L1
loc

it is also densely de�ned).

Given this assumption, by the �rst representation theorem (see [18]) we can
uniquely associate to E an m-sectorial operator H DW �� C V . �e numeri-
cal range of H is contained in a sector ¹� W j arg.� � /j � ˛º for some  2 R and
˛ 2 Œ0; �=2/ and the spectrum of H is contained in the closure of its numerical
range.

(A2) D.H/ � ¹f 2 L2.Rd / W Im.V /f 2 L2º.

Given (A1) and (A2), we have D.H/ � D.H �/, see [15], Lemma 6.

Example 2. For instance, using Sobolev embedding theorems it can be shown
that (A1) is satis�ed if V 2 Lp.Rd / C L1.Rd /, where p D d=2 if d � 3,
p > 1 if d D 2 and p D 1 if d D 1, and (A2) is satis�ed if Im.V / 2 Lq.Rd /

where q D d if d � 3, q > 2 if d D 2 and q D 2 if d D 1. However, both
these conditions are not necessary for (A1) and (A2) to hold. In particular, V need
not decay at in�nity (in a generalized sense). To mention just one such example,
note that in case d D 1 the potential V.x/ D cx2; Re.c/ > 0, is among the
potentials satisfying (A1) and (A2) and so the non-selfadjoint harmonic oscillator
Hcf D �f 00Ccx2f , probably the most well-studied non-selfadjoint Schrödinger
operator (see, e.g. [3, 2, 21]), can also be treated by our methods.

Finally, in case d � 2 we need a further assumption, which allows one to
invoke a unique continuation argument.

(A3) Re.V / 2 L
p

loc
.Rd / where p D d=2 if d � 3 and p > 1 if d D 2.

�e following theorem was proven in [15]. Here �p.H/ denotes the set of all
eigenvalues of H .
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�eorem. Assume (A1)–(A3). If aCib 2 @ Num.H/\�p.H/, then for every non-

empty open set U � R
d the set ¹x 2 U W Im.V .x// D bº has non-zero Lebesgue

measure.

Remark 5. To be precise, in [15] we proved this theorem under a slightly less
general assumption, namely that in (A1) we have D.E/ D H 1.Rd /. However, a
short inspection of the relevant proofs shows that this change has no in�uence on
the validity of the results of [15].

For simplicity, instead of working with the previous theorem directly, we will
concentrate on one of its corollaries. To this end, let us introduce two further
conditions. It is no exaggeration to say that at least one of them (in particular the
�rst) is satis�ed by the majority of potentials arising in applications.

(C1) �ere exist x1; x2 2 R
d ; x1 ¤ x2; such that Im.V / is continuous at x1 and

x2 and Im.V .x1// ¤ Im.V .x2//.

(C2) V.x/ ! 0 for kxk ! 1.

Note that (C1) implies that Num.H/ does contain an interior point. Moreover,
(C2) implies that �ess.H/ D �ess.��/ D Œ0; 1/.

Corollary 2. Assume (A1)–(A3). �en the following holds:

(1) if V satis�es (C1), then �p.H/ \ @ Num.H/ D ;I

(2) if V satis�es (C2), then �p.H/ \ @ Num.H/ � R.

Proof. See [15], Corollary 6 and 7, respectively.

Now we are prepared for our �rst theorem about points of in�nite curvature of
@ Num.H/. In particular, it provides a necessary criterion for the closedness of
Num.H/.

�eorem 4. Assume (A1)–(A3) and (C1). If � 2 @ Num.H/ \ Num.H/, then the

upper curvature of @ Num.H/ at � is �nite. In particular, if @ Num.H/ has a point

of in�nite upper curvature, then Num.H/ is not closed.

Proof. �is is an immediate consequence of �eorem 1 and Corollary 2.
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Example 3. Let W 2 C 1
0 .Rd ;RC/; W ¤ 0 and consider H D �� C .1 C i/W .

�en

Num.H/ D ¹krf k2 C hWf; f i C ihWf; f i W f 2 D.H/; kf k D 1º

� ¹x C iy W x � y � 0º:

On the other hand, we have �ess.H/ D Œ0; 1/ � Num.H/. �is shows that 0 is a
corner point of @ Num.H/. In particular, Num.H/ is not closed.

Question 4. �e previous theorem provides a necessary criterion for the closed-
ness of Num.H/. Is it possible to obtain some nice su�cient conditions as well?

Before stating our second result, let us remark that while generally it need not
be true that �.H/ is the union of the discrete spectrum �d .H/ (which consists of
all isolated eigenvalues of �nite algebraic multiplicity) and the essential spectrum
of H , for boundary points of the spectrum we do have that

@�.H/ � �d .H/ P[ �ess.H/:

�is follows from the fact that for an open, connected component U of Cn�ess.H/

we either have U � �.H/ or �.H/\U � �d .H/, see [4]. If � 2 @�.H/n�ess.H/

and U denotes the component of C n �ess.H/ that contains �, then obviously the
�rst case cannot happen and so � 2 �d .H/.

�e next theorem will show that in Example 3 it is no coincidence that the
corner point is an element of the essential spectrum of H .

�eorem 5. Assume (A1)–(A3) and (C1). If � 2 @ Num.H/ is a point of unilateral

in�nite curvature, then � 2 �ess.H/. In particular, if �ess.H/ D ;, then @ Num.H/

does not have points of unilateral in�nite curvature.

Proof. Corollary 1 implies that � 2 @�.H/\@ Num.H/. Since �d .H/\@ Num.H/

is empty by Corollary 2, we must have � 2 �ess.H/ by the discussion preceding
the theorem.

Example 4. It is well known that the non-selfadjoint harmonic oscillator Hcf D
�f 00 C cx2f; Re.c/ > 0 has compact resolvents and so �ess.Hc/ D ;. �e pre-
vious theorem implies that @ Num.Hc/ does not have points of unilateral in�nite
curvature. In this case this does not come by surprise since Hc is one of the few
operators whose numerical range is actually known. As has been shown in [2],
we have

Num.Hc/ D ¹t1 C ct2 W t1; t2 � 0; t1t2 � 1=4º:
In particular, we see that in this case Num.Hc/ is closed.
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We conclude with a result about potentials satisfying (C2). Here we assume
that Num.H/ does contain an interior point.

�eorem 6. Assume (A1)–(A3) and (C2). Let

�0 WD inf.�.H/ \ .�1; 0�/:

�en the following holds:

(1) if �0 … @ Num.H/, then @ Num.H/ does not have points of unilateral in�nite

curvature;

(2) if �0 2 @ Num.H/, then �0 is the only possible point of unilateral in�nite

curvature of @ Num.H/.

Proof. From �eorem 2 and the above discussion we know that if � 2 @ Num.H/

is a point of unilateral in�nite curvature, then

� 2 �ess.H/ [ �d .H/ D Œ0; 1/ [ �d .H/:

But from Corollary 2 we know that

�p.H/ \ @ Num.H/ � R;

so

�d .H/ \ @ Num.H/ � .�1; 0/:

By convexity of Num.H/ we thus obtain � D �0.

Remark 6. In view of the previous theorem, we see that in Example 3 the corner
point at 0 is actually the only point of unilateral in�nite curvature of @ Num.H/.

Question 5. Above we have seen an example where @ Num.H/ has no point of
in�nite curvature and an example where it has exactly one such point. For every
positive integer n, is it possible to construct H such that @ Num.H/ has exactly n

points of in�nite curvature?
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