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L -estimates for eigenfunctions of the Dirichlet Laplacian

Michiel van den Berg, Rainer Hempel, and Jiirgen Voigt

Abstract. For d € IN and Q # @ an open set in R, we consider the eigenfunctions ® of
the Dirichlet Laplacian —A g, of Q. If ® is associated with an eigenvalue below the essential
spectrum of —A g we provide estimates for the L 1-norm of ® in terms of its L,-norm and
spectral data. These L -estimates are then used in the comparison of the heat content of ©
at time ¢ > 0 and the heat trace at times ¢’ > 0, where a two-sided estimate is established.
We furthermore show that all eigenfunctions of —A g which are associated with a discrete
eigenvalue of Hg, belong to L1(2).
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Introduction

We study the eigenfunctions & of the Dirichlet Laplacian Hg on an open set
Q C R4, associated with a (discrete) eigenvalue A € R. Our main interest is
to provide bounds on ||®||;, the norm of ® in L{(f2), in terms of the L,-norm
of ® and spectral data. In many cases this is an improvement over the elemen-
tary estimate [lu|? < vol(Q2)||u||3, valid for  of finite volume (and all functions
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u € L,(R2), not just eigenfunctions). Roughly speaking, we advocate here to re-
place the factor vol(€2) with )Ll_d/ 2N2 A, (Hg), where A1 denotes the lowest eigen-
value of Hg and N; counts the (repeated) eigenvalues of Hg less than or equal
to ¢. Our actual estimates are more complicated than that, and they only hold for
eigenvalues below the essential spectrum. That spectral information can be used
instead of volume doesn’t come as a complete surprise: indeed, the uncertainty
principle has found various expressions in spectral terms as in Weyl’s Law and
other well-known results that connect volumes in phase space with the counting
of eigenvalues [13]. Estimates for the L-norm of eigenfunctions as presented here
have been a desideratum for several decades now because they yield bounds on
the heat content of 2 in terms of the heat trace; see also [4, p. 2065].

Throughout this paper, Hg will be defined as the Friedrichs extension of —A
on C°(L2); Hg is self-adjoint and non-negative. More precisely, the form domain
of Hg is given by the Sobolev space Hj (Q2), and Hg satisfies

(Hou ,v) :/ Vu-Voudx, 0.1
Q

for all u € D(Hg) and all v € HJ(Q). The eigenfunctions ® of Hg, associated
with an eigenvalue A, are smooth and bounded and obey a well-known estimate

1®lI2, < CAY2 | 0|3, 0.2)

with a constant C depending on d only. Theorem 1.6 below gives an explicit con-
stant. This estimate is a direct consequence of the domain monotonicity of the
heat kernel [8]. Interpolation then yields bounds on ||®||, for any g € (2, 00). An
immediate consequence of (0.2) is a lower bound for ||®||; of the form

113 = CA™4/2|| @13, (0.3)

where C is a strictly positive constant depending on d only. Note that the esti-
mates (0.2) and (0.3) hold for all eigenvalues.

We now complement the L -estimate (0.2) by upper bounds on || ®||;, where
we have to make the stronger assumption that ® is an eigenfunction associated
with a discrete eigenvalue Ay located below the essential spectrum of Hg. Here
the A are numbered in increasing order and repeated according to their respective
multiplicity. One of our basic estimates reads as follows:
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0.1 Theorem. For any d € N there exists a constant C (depending on d only)
with the following property: If Q # @ is an open subset of R with oess(Hg) = @,
we have

1 < C27%2((55)" og Moz, (o) Nas, () + (35) ) a3

Al A1
0.4)

for all eigenfunctions ® of Hgq associated with the eigenvalue Ay.

A slightly more general version is given in Corollary 1.4. The estimate (0.4)
is structured in the following way: there is a global factor Al_d/ 2 up front which
comes from scaling; this factor appears if one looks at the ground state eigenfunc-
tions of balls of radius » > 0. The factors of Ax/A; deal with the behavior of
the estimate for large eigenvalues as compared to small eigenvalues. The discrep-
ancy between the lower bound (0.3) and the upper bound (0.4) is, at least in part,
due to the fact that the lower bound (0.3) seems to be far off in situations with
large clouds of eigenvalues close to A, as can be seen in simple examples like
our Example 1.8(3). This difficulty can be overcome by introducing the eigenvalue
counting function N, (Hg) into the estimates. An improved estimate — in partic-
ular avoiding the second term on the right hand side in (0.4) — has recently been
obtained by H. Vogt [26] by methods which are partially different from ours.

There are similar, but somewhat more complicated estimates for the case where
Oess(Hq) # @ and A < inf ges(Hg); cf. Corollary 1.7. Along these lines it would
also be possible to give estimates for || ®||; that involve the gap length A1 — A,
provided Ax4; > Ag, for eigenfunctions ® of Hg associated with the eigenvalue
Ax. We refer to the comment after Corollary 1.4. We emphasize that our bounds
do not depend on the volume of €.

We furthermore show that the eigenfunctions ® of Hg belong to L;(S2) if
they are associated with a discrete eigenvalue A, and s0 @ € ()< <00 Lp(£2).
There is no reason to expect a similar result for eigenfunctions associated with
an eigenvalue which belongs to the essential spectrum; see e.g. Example 1.8(2)
below.

Let us briefly indicate why estimates as in Theorem 0.1 are possible. They are
essentially based on three facts which we describe in terms of a covering of R¢
by cubes O, ; (forn e Nand j € 74), where each On,; has edge length 2n and
is centered at nj. Let us consider 2, A; and ® as in Theorem 0.1.

(1) We first observe that there can only be a finite number of cubes O ; such
that the Dirichlet Laplacian of Q2 N O, ; has eigenvalues below 2. In fact, the
number of these cubes can be estimated in terms of N,,, . We let F,, denote the
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union of these cubes. The contribution to the L;-norm of ® coming from F,, (or
a slightly larger set) can now be estimated in terms of vol(F}) and, thus, in terms
of n and Ny;, .

(2) Letting G, := Q\ F,,, we use a partition of unity (subordinate to the covering
by the cubes O, ;) and the IMS-localization formula to show that the Dirichlet
Laplacian of G, has no eigenvalues below 34 /2.

(3) The third fact concerns the decay of the eigenfunctions ¢ associated with the
eigenvalue A; as we move away from F,,. Here we use a rather precise, quantitative
version of exponential decay which takes into account the distance from the set
F,. A standard decay estimate holding just outside some large ball containing F;,
would clearly be insufficient for our purposes. Since exponential decay takes place

on a larger scale we also have to introduce the sets 17,, and F » that are somewhat
larger than F;,.

The estimate given in Theorem 0.1 can be applied in the comparison of the heat
content Qg of an open set 2 C R4,

0al(t) :=/Q/Qm(x,y;z)dydx

at time ¢t > 0, where pg: Q x Q x (0,00) — [0, 00) is the Dirichlet heat kernel
for 2, and the heat trace Zq,

Za(t) = Z ekt

k=1

attime ¢ > 0, where it is assumed that Hg has compact resolvent and that (A1) is
the sequence of all eigenvalues of Hg. We shall show in Section 5 that Qg (f) < oo
forall ¢ > Ois equivalentto Zg(¢) < oo for all ¢ > 0, and that there is a two-sided
estimate. Note that our upper bound for Qg () involves Zg(1/2) and Zgq(t/6)3.
The interest in a bound on Qg in terms of Zg lies in the fact that the quantity Zg
is much simpler (and also simpler to compute) than Qg because only information
from the Hilbert space L,(£2) is needed.

Similar estimates on the L;-norm of eigenfunctions of Schrodinger operators
will be the subject of a forthcoming paper. It would also be of great interest and
importance to generalize our results to the case of domains on Riemannian man-
ifolds with sub-exponential growth at infinity [25]. The case of hyperbolic mani-
folds poses different challenges as can be seen from [9].
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Our paper is organized as follows. In Section 1 we first consider the case where
A1(Hg) = 1 and present a basic estimate in its most general form (viz. Proposition
1.1); the proof of Proposition 1.1 is deferred to Section 2. We then derive several
estimates from Proposition 1.1 by scaling and a judicious choice of parameters in
Proposition 1.1. In Section 2 we construct IMS-partitions of unity, depending on
a parameter n, and prove Proposition 1.1; here we rely on an exponential decay
estimate stated in Lemma 2.3. Section 3 is devoted to a proof of Lemma 2.3.

In Section 4 we combine some results from the theory of the Laplacian in
L,($2), defined as the generator of the heat semigroup acting in L,(£2), to show
that the Riesz projection, associated with the eigenspace of a discrete eigenvalue,
is independent of p, for 1 < p < oo. It is then easy to conclude that the range of
this projection must be contained in L (£2). This part of the paper has been moti-
vated by the work [16,17] of two of the authors on the L,-spectrum of Schrodinger
operators.

In Section 5, finally, we discuss a two-sided estimate for the heat content and
the heat trace, using the kernel pq (x, y;t) of the heat semigroup. We also give a
proof of the lower bound of Theorem 1.6.

Disclaimer. In much of this text we let C denote a generic non-negative constant
the value of which may change from line to line.

Acknowledgement. The authors are indebted to Hendrik Vogt for useful discus-
sions.

1. Estimates for the L ;-norm of eigenfunctions

Let d € N. For an open set @ # Q C R? we let Hg denote the (self-adjoint
and non-negative) Dirichlet Laplacian of 2, i.e., Hg is the unique self-adjoint
operator with form domain given by the Sobolev space H| (), and satisfying

(Hou,v) = (Vu,Vv) (u € D(Hg), v e Hy(RQ)),

where D(Hg) € H{ () denotes the domain of Hg. By construction, C>(Q) is
a form core of Hg. Furthermore, D(Hg) € HZ (2) and Hou = —Au € L»()
for any u € D(Hg). In general, D(Hg) need not be contained in the Sobolev

space H?(Q).
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Definition. For A > 0, we let O, denote the set of all open sets Q < R4 that
enjoy the property

A = info(Hg) < inf oess (Hg).

The sets 2 € O may be unbounded, and they may have infinite volume. Also,
they may consists of countably many components. No regularity of the boundary
02 will be required.

The spectrum of Hg below Xq := inf 0. (Hg) is purely discrete. It consists
of a countable set of eigenvalues A (Hg) (with 1 < k < K for some K € IN, or
for k € IN), which we assume to be numbered such that

A =A(He) < A2(Hg) <--- < M(He) < M1(He) < Zq,

where each eigenvalue is repeated according to its multiplicity. If there is an in-
finite number of eigenvalues, we have A, — Xgq if 0ess(Hg) # 9, and A — oo
if Hg has compact resolvent. If € is connected the ground state eigenfunction is
unique (up to scalar multiples) and A < A5.

Our results pertain in particular to the case where Hg has compact resolvent.
If ©Q has finite volume then Hg has compact resolvent. Furthermore it is well-
known that even if Q2 has infinite volume Hg may have compact resolvent. Nec-
essary and sufficient criteria for Hg to have compact resolvent in terms of 2 have
been obtained in Section 15.7.3 of [20] and in [21]. For concrete estimates for the
counting function we refer to [3] and the references therein. We also refer to the
elementary Example 1.8(1) below.

Note that, for A > 0, the set O can be obtained from the set O; by scaling;

QeOr < VAQeO,,

for all A > 0. Therefore, we will first derive an estimate on || ®||; for  in the set
1. The general result will then easily follow by scaling. In our basic estimate for
the set O; we will work with parameters r, ¢ satisfying

1<r<t<Xgq;

as usual, we let Yo =inf oegs(Hg) = 00 if 0egs (Hg) = .

Below, we will derive estimates for all eigenfunctions ® of Hg associated with
eigenvalues A € [1, r]. These estimates will depend on the number of eigenvalues
of Hgq in the interval [1,¢], counting multiplicities. Here we use the following
definition: for a self-adjoint operator 7" and t € R we write

N:(T) :=tr E7((—00,t]),
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where tr denotes the trace, and E7 (/) is the spectral projection of T associated
with the interval I/ € R. In particular, if T is semi-bounded from below and if
t < inf oegs(T'), then N,(T) denotes the number of eigenvalues of T less than or
equal to ¢, counting multiplicities. If, in our enumeration of eigenvalues, Ag4+; >
Ay for some k, we have Ny, (T) = k.

In order to express a certain quantity occurring in the estimate derived below,
we fix (throughout the whole paper) a function o € C° (R%), 0 = 0, with spto €
B(0,1/2) and [ o(x) dx = 1, and we define

mo :=max{l, [|Agl|1}. (1.1)

The following proposition contains our basic estimate for sets 2 € O;. In the
statement we will use, for given 1 < r < ¢, the quantities & and $ (depending on
r and t) defined by

B:=@—-r)/2
and
o= M (1.2)
16mgr

with mg from (1.1).

1.1 Proposition. For any d € N there exist constants C,c > 0, such that for all
Qe Oy, foralll <r <t <infoes(Hg), and for all n = max{1,2d/2c/\/ﬁ} we
have

2 n2d—2 nd—l B
|@lh < c(n' N:(HQ)+%( — + ) N (He) ) [, (13)

for all eigenfunctions ® of Hq associated with an eigenvalue A, (Hg) € [1,r].

The presence of N; = N;(Hg) takes care of situations where there is a “cloud”
of eigenvalues below ¢. Examples of dumb-bell type show that at least a factor
/N; appears to be necessary. We emphasize that the trivial estimate, valid for
all sets © of bounded volume, || ®||; < |2]'/2|®||,, is often inadequate, and an
estimate in terms of spectral data seems to be more appropriate and desirable.

The constant ¢ appearing in the assumptions of Proposition 1.1 depends solely
on the IMS-partition of unity (¥;);cz« introduced at the beginning of Section 2.
The partition of unity can be constructed in such a way that the constant c is easy
to compute. The constant C appearing on the right hand side of (1.3) could be
explicitly computed as a function of the dimension d. A proof of Proposition 1.1
will be given in Section 2.

In the next step we will reduce the number of free parameters specifying » first.
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1.2 Theorem (Case of Q). For any d € N there exists a constant C (depending
on d only) such that for any Q € Oy and any r,t € [1,Xq) withr <t < 3r, we
have

01 < € (=) dog NN, + () Yjolr )

—r
for all eigenfunctions ® of Hq associated with an eigenvalue Ay € [1,r].
Proof. With n = l‘2;rr we obtain 0 < n < 1,t = (1 —+ 27]);' andﬁ = nr.

We will apply Proposition 1.1 with two different choices of n. We will also use
the elementary estimate 1 < 1/« < 16m0%.

(1) For log N; < max{1,2%/27¢}, the choice n := max{1,29/%¢//B} yields

1®]l1 < C max{rd=1/2y=d=1 pd/2)=Gd+D/2y g,

(1.5)
< Crd_1/27;_(3d+1)/2||d>||2.
(As a hint for the computation we mention that it is advantageous to write
\/;(nzd_2 ”d_l) VT oaas d-1
and to note that 1/(ef) < C/n?.)
(2) For log N; > max{1,2%/>71¢} we choose n := 210%71\”, where we note

that the condition n > max{l1,24/%¢ /\/B} is easily verified. We then have
e “"N; = 1/N; so that

(log Np)K -e™@" . N; < C (k € IN),

where C := max{(logu)*u="; u > 1}.

In the first term on the right hand side of (1.3) we simply estimate n4/2 <
C(r/n)?*(log N;)?/2. As for the second term in the right hand side of (1.3) we
first observe that

n n 1 _ _ _ _
o + qd g2d-1 (2?72 (log N1)**7% + 247 (log N)* ™)
so that
2d—2 d—1
C
S A T VA
B\ « o NG
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with C 1= (16m)??~1(22972Cpq_5 + 2¢471C4_1). Now Proposition 1.1 gives
1@ll1 < C((r/m¥*(log NYY? /Ny + r=32(r/0)*?) | @] 2. (1.6)

(3) Note that the estimate (1.5) implies (1.6). Inserting the definition of n and
taking squares one obtains (1.4). O

We now pass from the set O; to the sets O, with A > 0, by a straightforward
scaling argument.

1.3 Theorem. (Case of Op) For any d € N there exists a constant C (depending
on d only) such that for any A > 0 and Q2 € Op the following estimate holds.
Ifr,t € [A, Xq) satisfy r <t < 3r, we have

2
o)} < ca2((

O] r))d(log NN, + (%)_3(ﬁ)4d)||q>||§,

for all eigenfunctions ® of Hgq associated with an eigenvalue Ay € [A, r].

As will become clear later on, the factor #ir) in the above theorem should

r r
be read as X =

Proof. LetQ := +/AQ (€ 01). Theninf ocss(Hg) = + g and to each eigenvalue
A of Hg below Xq there corresponds precisely one eigenvalue A, of Hg below
+ Zq; in fact,

~ 1

Ax = —Ak.

k= oy Ak
For the associated eigenfunctions of Hg we take
B(x) = A"*d(x/VA)  (x €Q),
so that, in particular,
1901, = 1Pl and @], &) = A4l @)

Setting 7 := r/A, i :=t/A and using the estimate (1.4) of Theorem 1.2 for ® we
obtain

1L, @ = A4, @)

< en-4((5) " tog Nt )
+ 7—3/2(%)%) 19, @)

and the desired result follows since N;(Hg) = N;(Hg). U
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From Theorem 1.3 we immediately get bounds on || ®||, for any p € [1,2] as,
trivially, [| @[5 < ||®|l1+||D||3. A finer estimate is obtained through the inequality

2 2(1—-1)
[l < @7 NP, ~

In the special case where oess(Hg) = @, we may take A := Ay, r := Ay and
t:={1+PHr = (1 4+ A, with 0 < ¢ < 1, in Theorem 1.3, which gives the
following.

1.4 Corollary. Foranyd € N there exists a constant C = 0 such that the following
holds: If @ # @ is an open subset of R? with oess(Hg) = @, we have

_ A g A\ 43
0l < Ca72 (974 (35) oz Ny ) Nasorny + 074 (55) ") I@15,

for all 0 < ¢ < 1 and for all eigenfunctions ® of Hg associated with the eigen-
value A.

The estimate given above will be applied in Section 5 to obtain a bound for the
heat content Q¢ in terms of the heat trace Zg.

In many cases one will be satisfied with the choice ¢ := 1, while smaller ¢
may be of interest if N, is of fast growth. Small ¢} > 0 are also important if one is
interested in an estimate which depends on the gap length Ag4; — Ax (if Ag4q >
Ak); choosing ¢ > 0 sosmall that (1+9)Ax < Ax41 we get Ny9)n, = N, = k.

1.5 Remark. In the special case d = 1 one can obtain a sharper estimate by direct
calculation, and it is instructive to do that. Any open set 2 C R can be written as
a countable union of pairwise disjoint open intervals I # &. If one of these in-
tervals has infinite length, we have oess(Hg) = [0, 00) and we thus assume that all
I have finite length £ . In this case the operator Hg has pure point spectrum and
there is an orthonormal basis of eigenfunctions, each having support /; for some k.
Furthermore, inf 0 (Hg) = 72 infy 1/£7 andinf oegs(Hg) = w2 liminfy_,o 1/£3.
Assume that inf 0 (Hg) < inf oess(Hg), and let A € [inf o (Hg), inf oess(Hg)) be
an eigenvalue of Hg. Then there is a finite subset of the intervals /i, which we

may denote as [y, ..., [ for simplicity, with the property that A is an eigenvalue
of Hy,. This means that foreachk = 1, ..., K there is a number j; € IN such that
2272
r="Jk. 1.7)
14
k

the associated normalized eigenfunction of Hj, is given by
. Tk
P (x) = +/2/L sin Z(X — ag),

if Iy = (ax,by). Here ||gi|l1 = znﬁ%
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Any eigenfunction ® of L,-norm 1 of Hg associated with the eigenvalue A
can be written as ® = Zle ar@r with o € C and Zle lax |? = 1. As for the
L1-norm of ®, we now estimate

/
190 = Yol = 22 Y el VB < 22 ()"
k k

k
by the Schwarz inequality. From (1.7) we get

Tjk /4
0 = =2k = Z_N,(H)),

whence ), {x < %N 1 (Hg). This leads to the estimate

|®[2 < CATV2N; (Hg)|| @2,

with C = % Comparing this last estimate with Theorem 0.1, we see that the lead-
ing power —d /2 of the eigenvalue and a factor N, (Hg) are there. However, the
one-dimensional estimate above is stronger than the estimate given in Theorem 0.1,
which was to be expected because there is no coupling between the Hjy, .

The following theorem gives an upper bound on the L-norm and a lower
bound for the L;-norm of the eigenfunctions of the Dirichlet Laplacian. It is a
direct consequence of the domain monotonicity of the heat kernel ([22], [8, The-
orem 2.1.6], [24, Theorem B.2]) and corresponding heat kernel bounds. Note that
these bounds are valid for all eigenvalues and eigenfunctions. We include this
well-known material chiefly for the sake of completeness.

1.6 Theorem. Let Q € R? be open, and suppose that A € (0, 00) is an eigenvalue
of Hg. Then

e \d4/4
19loe < (5) A7 *1®l2. (1.8)
and
2rwdN\d/A
[ol = (Z5) 7 A0, (1.9)

Jor any eigenfunction ® of Hgq associated with the eigenvalue A.

We defer the proof to the end of Section 5 where we will work with heat kernel
estimates anyway.

We next look at the case where gess(Hg) # @. Choosing A <r € [2q/4, Xq)
and letting ¢t := (r +2Xgq)/3 in Theorem 1.3, we obtain estimates that display the
dependence on the distance between A; and Xg.
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1.7 Corollary. For any d € NN there exists a constant C = 0 such that the
following holds: If Q # @ is an open set in R? with oess(Hg) # @, and if
r € [max{A, Xq/4}, Xq), we have, writing also t, := (r +2Xq)/3,

1®)3 < CA_d/z((A(%é_r))d(log Ni, )Ny,
(227 (e —n) )10l

for all eigenfunctions ® of Hq associated with an eigenvalue Ay € [A,r].

The above estimate is mainly of interest for eigenvalues A, close to Y. For
eigenvalues Ay close to A, a better, but also more complicated, estimate would be
obtained by choosing r € [A, ¥g) and ¢ := min{3r, (r + 2Xgq)/3}.

The following examples illustrate various points made in the preceding text.

1.8 Examples. (1) There are domains Q2 C R4 such that Hg has compact resol-
vent while R¢ \ Q has measure zero. In fact, consider a sequence of pairwise
disjoint open cubes Qx € R?, k € IN, enjoying the properties
(i) diam(Qy) — 0, as k — o0;
(i) Ugen Qk = R%.
Then the Dirichlet Laplacian of Q@ := |J;en Qx has compact resolvent.
In addition to properties (i) and (ii) one may require that any compact subset
K C R¢ meets only finitely many of the Q.
To obtain a connected Q from the above 2 it is enough to open small “doors”
in the surfaces that separate the cubes.

(2) Here we discuss examples of eigenfunctions which are not in L. Let Q =
UT° Ix € R be the disjoint union of open intervals of length 1, go the normalized
eigenfunction of H(o 1) to the lowest eigenvalue A¢. Then Ag € oess(Hg). Let i
be the translate of ¢ to /i, and let o« € €5 \ £;. Then

9= apr € La(Q)
k
is an eigenfunction of Hg to the eigenvalue Ag, but ¢ ¢ L1(2).

It is easy to generalize this idea to higher dimensions. Finding examples of
domains Q in R?, for d > 2, with the property that Hg has an eigenfunction
which is not in L; seems to be much harder. One might think of a quantum wave
guide perturbed in such a way that an eigenvalue is generated right at a boundary
point of the essential spectrum.
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For the sake of comparison we note that there are examples of Schrodinger
eigenfunctions on (0, co) which are notin L; (see [12]); the associated eigenvalues
belong to the essential spectrum.

(3) It is illuminating to compare the situation of m disjoint balls with the case
where m balls are connected by thin passages, as in a dumb-bell domain for m = 2.
Here one can see several aspects of the presence of N,;, (Hg) in our estimates.

We begin with a (disconnected) open set Q,, € R¢ consisting of m pairwise
disjoint open balls of radius 1, say. Let A; denote the lowest eigenvalue of the
Dirichlet Laplacian on the unit ball with the associated normalized eigenfunc-
tion &9 = 0, and let ¢p := ||Po|l;. Then the lowest eigenvalue of Hg,, is A4
and the associated eigenspace has dimension m. It is easy to see that there is an
eigenfunction ® of Hg,, to the eigenvalue A; with the properties ||®||, = 1 and
|®]l1 = co/m. Here an estimate involving N, (Hg,,) (instead of Ny, (Hg,,))
would be possible.

We now generalize domains of dumb-bell type. For 2 < m € IN, we place
m balls of radius 1 at the corners of a regular m-gon with edge length 3, and
connect each of these balls with its two neighbors by narrow passages of width
0 < ¢ < 1 along the edges. Call these domains €2,, .. By Perron-Frobenius theory,
the ground state eigenvalue A 1., . of 2, ¢ is simple and the associated eigenfunc-
tion @,  can be chosen strictly positive; furthermore, @1, ¢ is invariant under
rotation of the corners. Let | P, ]2 = 1. As ¢ | 0, monotone convergence of
quadratic forms, combined with compactness, implies that || ®1.,.¢|1 — co/m.

In the disconnected case, we have Ny, (Hg) = m, while N, (Hg,, ,) is equal
to one in the connected case. In the connected case, however, there is a cluster
of m eigenvalues close to A; (for & > 0 small), and N, (Hg,,,) - mase | 0.
Therefore, in the connected case the estimate should better contain a factor like
N:(Hg,, .), with suitable r > A;.

Note that, in both cases, the lower bound of Theorem 1.6 does not capture the
above behavior since it provides a constant which is independent of m.

(4) Examples of open sets @ C R? with discrete eigenvalues located in a gap
of the essential spectrum can be obtained by suitable perturbations of periodic
quantum wave-guides. Consider open, connected, periodic sets 2o € R? of the
form

Qo ={(x,y) € R*; fi(x) <y < fo(x)}
where fi and f, are smooth periodic functions of the same period satisfying

S1(x) < fa(x). The spectrum of Hgq, is pure essential spectrum. In this class
it is easy to find domains with a spectral gap. The simplest examples are obtained
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by joining discs B((k,0), 1/4) (k € Z) by narrow passages along the x-axis, but
there are also more demanding examples like the ones studied by Yoshitomi [27].
Local perturbations of the boundary of €y may produce discrete eigenvalues be-
low the essential spectrum, but also discrete eigenvalues inside a given gap of the
essential spectrum. See for example [23].

(5) We finally discuss a class of examples which are closely related to Remark 1.5.
Let Qo € R? be open and bounded. Let ({x )ren be a sequence in (0, oc), and let
Q2 be the disjoint union of a sequence (£2x), where Q. is a translate of £;Q,, for
all k € IN. For a dilation £2¢, with £ > 0, it follows from the lower bound given
in (1.10) below that

Ni(Hygy) = Ng2; (Hg,) = cot? 242

for all eigenvalues A of Hyq,, with a positive constant co.

Assume that inf 0 (Hg) < inf 0.ss(Hg), and let A € [inf o (Hg), inf 0e5s(Hg))
be an eigenvalue of Hg, with associated eigenfunction ®. Arguing as in Re-
mark 1.5, one then obtains that

D2 < %{fz())k_d/zNa(HQ)Hq’H%-

For completeness we include here a simple lower bound for the eigenvalue
counting function N, (Hg) which does not invoke Weyl’s Theorem and which
comes with an explicit constant.

Let © be an open set in R4 and suppose that oess(Hg) = @. Let C(€2) be the
collection of open cubes contained in €2 and define

y(2) := sup{vol(4); A € C(RQ)}.
Let A € €(R), vol(4) = a. By domain monotonicity of the Dirichlet eigenvalues
we have that
N:(Hgq) = N:(Ha)
= [{(k1,....kg) e N¥; n2(k} + -+ k3) < ta?}]
> |tk € N; dn?k? < ta?})?
1/2
> [—a[ ]d.
wd1/2

Since max{[x], 1} = x/2, we conclude that

1/2 4
N,(Hg))(a[ )" = @ la P vol(Ayd? = ).

27d1/2
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Taking the supremum over all A € C(2) we finally obtain the lower bound

Ni(Hq) = @rn)~4d=42y)%? (= 1). (1.10)

2. Proof of Proposition 1.1

We define coverings of R4 by cubes Q,,; (j € 74), for n € N, and subordinate
IMS-partitions of unity (Wy,;);eza- Let Qo := (-1, 1)¢ denote the standard cube
of side length 2 centered at the point 0 € R, and let Q; := Q¢ + j, for j € Z9,
denote the translates of Q. Pick some non-negative function ¥ € C°(Qy), with
¥ (x) = 1forall x € $Qo. Let y; € C°(Q;) be defined by ¥ (x) := yo(x — ).
Extending the v/, by zero to all of R4, we note that the function

wi= ) v}
jezd
is periodic and positive. We now define the IMS-partition of unity (V;);cza ([7])
by
_ W
Jw
sothat ) eza \Iljz (x) = 1forall x € R¥. (Notice the square; this is not a standard
partition of unity!) Obviously sptW; € Q, for all j € Z¢. Furthermore, ¥; is a
translate of ¥y, and thus

I (j ez,

¢ = V¥lloo = IV¥lloo  (j € Z9). 2.1)

(It would be easy to indicate an upper bound for ¢ in terms of | V{/ | o)
We finally produce scaled versions defined as

W, =¥(s) (el jez)

n
notice that W, ; has support in the cube Q, ; :=nQ; =nQo + nj. Then
DoV =1 (xeRY,
jezd
and
VU, il =c/n (neN, j eZ?). (2.2)
For 1 <t < infoes(Hg) and n € IN, we now let

J(n,1):={j ez, r(Hang, ;) <t}



844 M. van den Berg, R. Hempel, and J. Voigt

We then define

Fn = U Qn,j-

jeJ (1)

For later use we also introduce

00:=2Q00=(-22% 0n;:=nQo+nj, Fo= ] On,

jeJ (1)

300=(-3.3)% 0,;=n0¢+nj. Fn:i= |J 0,;
jeJ(n,t)

Qn

We then have F,, C 17,, C Fn, and
dist(F,, dF,) = n, dist(F,,0F,) =n,

forall n € IN.

The following lemma shows that there is only a finite number of “cells” O ;
such that the infimum of the spectrum of the Dirichlet Laplacian of @ N O, ; is
smaller than 7.

2.1 Lemma. Let 1 <t < infoess(Hg) and let n € IN. Then J(n,t) is finite and
[ J(n.1)] < 3¢ Ni(Hg).

where |J(n, t)| denotes the number of elements in J(n,t).

Proof. Let J < J(n,t) be finite. There exists J' < J such that the cubes
(On.j)jes are pairwise disjoint and nJ < \J;c;s On.;. The latter property im-
plies that |J| < 34|J’|.

For each of the cubes Q,,; (j € J’) there exists a function ¢; € CX(QNQy, ;)

with [|¢;|| = 1 and ||Vg;||*> < . Then the min-max principle, applied to the
subspace spanned by the set {¢;; j € J’}, implies that |J'| < N;(Hg). The
assertions follow from these two inequalities. O

Below we obtain a lower bound for the spectrum of the Dirichlet Laplacian in
Gp = Q\ F,.
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22 Lemma. Let 1 <5 <t < infoes(Hq) andn = ng := 2%/2¢/\/t — s, with ¢
from (2.1). Let Hg, denote the Dirichlet Laplacian of G, := Q \ F,. Then

info(Hg,) = s.

Proof. By the IMS-localization formula [7, Theorem 3.2] and (2.2) we have for
any ¢ € C°(Gy)

(Ho,9.0) = Y (Ho, Wi ¥ j0) = [ 3 19,5l ds

jezd jezd
ac’
>0 ) [Wnjel® =2 Sl
jezd
2dc2
= (1= =5)llel* = slig

In the estimate we have used that ¥, j¢ = O for j € J(n,t). The factor 29 takes
into account the fact that at most 2¢ functions W, ; can be simultaneously non-
zero at any given point x. O

‘We next consider a smoothed version of the indicator function of ﬁn, defined as
Eni=0x1g . (2.3)

with o defined in Section 1. For n € IN we have spt§, C Fp and &,(x) = 1 for
x € F,. Furthermore, 0 < &,(x) < 1 and |[VE,(X)|loo < C, [|AE(X) |00 < C for
some constant C = 0 which is independent of n and 2. Also,

sptVE, € {x € R?; dist(x, dF,) < 1/2}.

It will be convenient to cover the support of V§&, by (non-overlapping) cubes
of side length 1, given by

Qo= (—=1/2,1/2)%, Qp:= 0o+ (eZ%), (2.4)

and we will write
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We then let
Zy =79 N03F,. (2.5)
Note that this implies spt V&, € (Jyez, Q. We then have
|Zal < [J (.01 |Z4 N 80n0| < Cn?™" Ni(Ha), (2.6)

by Lemma 2.1, with C = 239234 We furthermore let
={j €z’ 0; N (Q\ Fu) # 2},

sothat Q \ F, C Ujey, 0;.
We now quantify the exponential decay of & as we move away from the
set Fy.

2.3 Lemma. There exists a constant C = 0 with the following property. If 1 <
r <t <infoes(Hg), if n = ng (with ng from Lemma 2.2), and if &, from (2.3),
then

1% (1 — £ @1 < C— Y et (jez?)
(eZ,,

(with « from (1.2)), for all normalized eigenfunctions ® associated with an eigen-
value Ay € [1,r].

We defer the proof of Lemma 2.3 to Section 3.

Proof of Proposition 1.1. First we treat the case where n € IN, starting from

||<1>||1=/ i |<1>(x)|dx+/ O Ay = Ly + Tz 2T)

QNF, Q\F,

By the Schwarz inequality and Lemma 2.1, the first term on the right hand side
of (2.7) can be estimated as follows:

Iy < vola (Fy) 21 @]12 < [7(r. )2 (6m)¥/? < 39 242 012 /N, (Hg). (2.8)

As for the second term on the right hand side of (2.7), we note that for j € Y,
and £ € Z,, we have

lj—4€l=zn—1.
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It now follows by Lemma 2.3 that

Lia< ) 1H(1—&)9|

J€Yn

s e

JjE€Yn LeZ,

AL Y e

LeZ, jeYy

=C

<Y (sup M(n.0) - |Zn].
I—=r ez,

where M(n,£) = } iy, e~l/=t for ¢ € Z,. Here |Z,| < Cn? ' N,(Hgq)
by (2.6), and

M(n,0) < > el

J€z4, |jlzn—1

<exVd el gg
{¢eR?;|E|zn—1}
d—1
< C(n + L)e_"‘",
Old

for all n € N and £ € Z,,. We therefore obtain the estimate

d—1
1

Iz < €Y NGt (P + ),
t—r o o

(2.9)

Now (1.3) follows from (2.8) and (2.9).

Finally, we reduce the case of non-integer n to the case treated above. If n €
(0, 00) satisfies the required inequality, then 71 := [n] (the smallest integer > n)
belongs to IN, and the asserted inequality holds for n replaced with 7. Readjusting
the constant C, one then obtains the estimate with 7. O

3. Exponential decay estimates

This section is devoted to quantitative exponential decay estimates and a proof
of Lemma 2.3. We use the method of boosting, a well-known tool in the study
of eigenfunctions of Schrodinger operators (cf. [11] or [18] for a survey of the lit-
erature). Here the operator is sandwiched between e”* and e 7* for y € R¢.
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This method dates from the early seventies and yields exponential decay in the
L,-sense. Below, we follow to some extent the proof of [10, Lemma 6]. To avoid
discussing operator domains we will not work with e*?** directly but rather with
smoothed cut-offs of these functions.

We first consider general real-valued functions f € C*®(R?) with f, V f and
A f bounded; only later on we will specify f to coincide with y - (x — k) on a
large ball. Let G € R¢ open. By [19, Theorem VI-2.1], it is then easy to see that
fu e D(Hg) for all u € D(Hg); furthermore,

e/ Hgel = Hg—2Vf -V—Af —|Vf|?

Here we note that the perturbation —2V f -V — Af — |V f|? has relative form-
bound zero with respect to Hg on HO1 (G). We let Hg, s denote the (unique) m-
sectorial closed operator associated with Hg — 2V f -V — Af — |V f|? by [19,
Theorem VI-3.4 or 3.9]. Also, using [19, Theorem VI-2.1(iii)], one can easily see
that D(Hg, r) = D(Hg). From the inequalities

1
252
valid for all ¢ € D(Hg) and all § > 0, we see that Hg, r — Hg is relatively
bounded with respect to Hg in the operator sense, with relative bound zero.

52
IVl = hgle. ¢] = (Hop.¢) < ?IIHGQDII% + 55 lell3, (3.1

3.1 Lemma. Let G € R? be open and let Hg, the Dirichlet Laplacian of G, be
such that oy == info(Hg) > 1. For 1 <r <s < o9 andm = 1 define
_ min{s —r, 1}

3.2
l16mr (3-2)

Let f € C®(R%;R) be bounded with ||V f|lec <m and |Af]leo < m.
We then have [1,r] C o(Hg,qf), and
2

I(Hgor —A) 7 < :
S —r

forall A € [1,r). Furthermore, for the same A, one has
(Hoor — V) =™ (Hg — 1) 7'e.

Proof. We are going to apply [19, Theorem IV-1.16] to T := Hg — A and
S := Hgar — A. In estimating the term containing V f - V we use (3.1) with
8 := 1 so that

2IVf -Vola < V2m|(Hg — Vgl2 + vV2m( + 1)]¢]l2.
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It is not difficult to see that the numbers a := 2m|a|(2 + A) + |«|?>m? and
b := /2|a|m satisfy the condition a||(Hg — A)~!| + b < 1/2. We thus see that
any A € [1, r] belongs to the resolvent set of Hg o ; furthermore, [19, eq. IV-(1.31)]
yields the estimate ||[(Hg,qr — A)7! < ﬁ Direct computation shows that
e * (Hg — 1)~'e*/ is the inverse of HGop — A O

For the application of Lemma 3.1 we need to construct specific functions f.
Consider first

1
Pre(x) = m(x—k,ﬁ—k) (x eR?, k. ezl k #1),

so that g ¢ (k) = 0 and ¢ ¢(£) = |£ — k|. We next take, for R > 1,

SRkt = 0rR * (¢t N R) V (—R)),
with ¢ defined in Section 1 and gr := 770(%); recall that spto € B(0,1/2).
We then have ||V frk¢lloo < 1 and [|Africlloo < %Al

3.2 Lemma. Let G € R? be an open set with oy := info(Hg) > 1, and let
1<r<s <oy Let

__ min{s —r, 1}
o 16mgr
with mo from (1.1). Finally, let Qk asin 2.4), and yi = lék fork e 74.
Then there exists a constant C = 0, depending only on d, such that
. 1. C -
1%k (He =) fell < —e™* (k. L ez,
forany A € [1,r].

Proof. In the cases where k = £, the inequality holds with C = 1.
Letk,£ € Z4, k # {, and let R := 2|k — £|. With f := afri and Ef
denoting multiplication by the function e/, we compute
1Xx(He — )™ Xell = i Ef E—y (He — M) Ef E_z 4|
< 17k’ llool B (He — M) Ef [llle™ Felloo

Co , _r.
< le™ %elloo
s—r

by Lemma 3.1. Since 0 < o < 1 we have | yxe’ [0 < ev4/2 and we may thus
choose Cy := 9e¥4/2, Furthermore,
le™ Felloo < sup e k() < g=a—kKI=Vd/2) _ ¢, oelk—t]

xEég

with € := e@Vd/2, O
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Proof of Lemma 2.3. In this proof we specify the number s, occurring in Lem-

ma 2.2 and in Lemma 3.2, as
r+t

2

With this definition the quantity & occurring in Lemma 3.2 becomes « from (1.2),
and no from Lemma 2.2 becomes the lower bound for » in Proposition 1.1.

Letn = ny (from Lemma 2.2), and let &, € C;’O(Rd ) be as defined in (2.3). As
in Lemma 2.2 we consider G = G, := 2 \7,,, and we conclude from Lemma 2.2
that inf 0 (Hg) = s, for the Dirichlet Laplacian Hg of G.

Let ® be a normalized eigenfunction of Hg, associated with an eigenvalue
Ax € [1,r]. Itis easy to see that (1 —&,)® belongs to D(Hg) N D(Hg). The usual
calculation yields

(He — A)((1 = £)®) = (Ho — Ap) (1 = §,)®)
= 2VE, - VO + (A, D =: 1.

(3.3)

Here spty) € spt V&, € ez, Oc, with Z, from (2.5), and

Inll2 < CA + [[V®|2) = C(1 + V),

with a constant C = 0 depending only on || V&, ||e and ||A&, || (and therefore
not depending on n and €2), and (3.3) yields

(1—£)® = (Hg — M)~ '1. (3.4)

We now obtain

Xi(1—=6)® = );(Hg — l)_1< > )?m)
teZy

forany j € 74 so that, by Lemma 3.2 and (3.4),

171 = &)@l < D 175 (He =)~ Xelllnll2

teZ,
C .
< > e 01+ V)
t—r
teZ,
VT —alj—t
<C alj—tl
t—r Z ©
teZy

From Holder’s inequality we obtain || y; (1 — &,)®||1 < ||x; (1 —&,)®|», and this
completes the proof. U
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4. A general result for discrete eigenvalues

Here we show that it is a very general property that eigenfunctions of the Dirich-
let Laplacian corresponding to isolated eigenvalues of finite multiplicity are in-
tegrable. This is more general than what is proved in the previous sections and
applies also to eigenvalues above the infimum of the essential spectrum, lying in
gaps of the essential spectrum. However, this general result does not give infor-
mation about L;-bounds of the eigenfunctions, which is the most important point
in the previous sections (and in fact in the present paper).

It would be of interest to obtain L;-estimates for eigenfunctions associated
with a discrete eigenvalue located in a gap of oess(Hg) above the infimum of the
essential spectrum.

Let H (= —A) denote the Laplacian in Lg(Rd ),andlet Q C R4 be open. Then
the Cy-semigroup generated by — Hg, is dominated by the Cy-semigroup generated
by —H ; seee.g. [22], [8, Theorem 2.1.6], [24, Theorem B.2]. This implies that the
Co-semigroup generated by —Hg is associated with an integral kernel satisfying
a Gaussian estimate.

4.1 Theorem. Letr @ C RY be an open set, and assume that A is an eigenvalue
of Hq of finite algebraic multiplicity (or in other words, A is an isolated point
of the spectrum of Hq and an eigenvalue of Hg of finite multiplicity). Then the
eigenspace corresponding to A is a subspace of L,(S2), for all p € [1, oo].

Proof. For 2 < p < oo, the assertion follows from the facts that the eigenspace
corresponding to A is invariant under the Cy-semigroup generated by Hg and that
the Gaussian estimate of the semigroup kernel implies that L,(2) is mapped to
L, ($2) for positive times (p-g-smoothing property of the semigroup for 1 < p <
q < 00). For 1 < p < 2 we recall from [l, Corollary 4.3 and Example 5.1(a)]
that the component oo (—Hg,p) of the L,-resolvent set of —Hg containing the
right half-plane (which for p = 2 is equal to the resolvent set of Hg, because the
spectrum is a subset of (—oo, 0]) is independent of 1 < p < oco. Moreover, it is
shown in [1] that the resolvents are consistent in o( Hg).

Now, the hypothesis states that A is a pole of the resolvent of Hg, with finite
rank residuum (which is just the corresponding spectral projection). Then we con-
clude from [17, Theorem 1.3] (see also [2]) that A is an eigenvalue of finite algebraic
multiplicity of Hg , (where —Hg , denotes the generator of the L,-semigroup),
forall 1 < p < oo, and that the range of the residuum is independent of p. As the
eigenspace corresponding to the eigenvalue A is just the range of the residuum we
conclude that it is a subspace of L,(2) for all p € [1, c0). U
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5. Heat content and heat trace

We let (e7*f2;¢ > 0) denote the Co-semigroup generated by Hg in L,(2). For
f continuous and bounded, (e "2 f;+ > 0) provides a (weak) solution of the
initial boundary value problem for the heat equation, given by

a—u:Au (xeQ,t>0),

ot

where lim; o u(-;¢) = f, locally uniformly, and u(.;¢) = 0 on 0S2 for ¢ > 0 in the
usual weak sense that u(+;¢) € H} (). As is well-known [15], there is a smooth
function

QxQx(0,00)3 (x,y;t) —> palx,y;t),
called the Dirichlet heat kernel for 2, such that

e f)(x) = /stz(x,y:l)f(y)dy (x €2, 1>0).

In particular
u(x;t) :=/ palx,yi)dy (x €, 1>0)
Q

solves the above initial boundary value problem for the constant function f = 1.
At regular boundary points xo € 92 we have u(x;t) — 0as Q > x — xg, for
any ¢t > 0. Physically, u(x;t) represents the temperature at a point x at time ¢ if
Q initially has constant temperature 1, while the boundary is kept at temperature
0 forall # > 0.

The heat content of Q at time ¢ > 0 is defined by

Qg(z):=/Qu(x;z)dx=/Q/Qm(x,y;z)dydx (t > 0).

This quantity has been studied extensively in the general setting of open bounded
sets with smooth boundaries in complete Riemannian manifolds. See for exam-
ple [6,14].

For Hg with compact resolvent, we let (®f)xen denote an orthonormal basis
of real eigenfunctions of Hg, associated with the increasing sequence of eigen-
values (Ar)ren. Then

pa(x,y;it) = ) e MO (x) Dk (y), (5.1)
k=1

in the sense that

e f =Y e [ o101y o
k=1 @
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for all f € L,(R2), with convergence of the sum in L,(£2). Assuming in addition
that Y 32, etk |®x |2 < oo, one obtains that the series (5.1) also converges
absolutely in L (2 x ), and thus

o0

0a() = Y ei( /Q O (x) dx)2 < ) M. (5.2)
k=1

k=1

The trace of the heat semigroup, denoted by Zq (¢) and defined by
o0
Za)i= Y e = [ patr.xindr
Q
k=1

has been studied in great detail too ([14]). It is well-known that heat content or
heat trace may be finite for all # > 0 even if the volume of Q is infinite. See for
example [5] for an early paper on this subject. The main result of this section reads
as follows.

5.1 Theorem. Let Q be an open set in R such that Hg has compact resolvent.
Then Zgo(t) < oo forallt > 0 if and only if Qq(t) < oo for all t > 0. In either
case we have that both

Za(t) < 2nt)™2Qq(1/2), (5.3)

and

Oa(t) < CAT 179 Zo(t/6)* + A0D1234d 701 /2)),  (5.4)

where C is a constant depending upon d only.

In the proof of this result it will be shown that the hypothesis that Zg(¢) < co
for all # > 0 implies that Y g2, e Ak || Dy |3 < oo for all 7 > 0, and therefore the
expression for Qg (¢) stated in (5.2) is valid.

We will need the following lemma where we use the above notation and the
assumptions of Theorem 5.1.

5.2 Lemma. Forany T > 0, we have

Nyj, < Zo(T)e?Tx, (5.5)
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Proof. From

k k
ZQ(T) > Ze le > Ze_TAk _ ke_TAk
j=1 j=1
we get
A T 'log K
k = ZQ (T) ,
and thus
— . -, o—1 -] 2T A
Naz, = 11 A < 24} < Hj T og s < Zkk}‘ < Zo(T)e?TH.
which concludes the proof of (5.5). O

Proof of Theorem 5.1. 'The proof of (5.3) is an immediate consequence of Lemma
2.6 in [5].

The proof of (5.4) relies on the L;-bounds for the eigenfunctions in Theo-
rem 0.1 or Corollary 1.4 (with ¥ = 1) which gives the estimate

- Ar\3@-1)
1@l < €A (Gog Nax ) Nas +(35) ) 66)

Hence by (5.2) and (5.6) we have that

o0
_ . Ay 3D
0a) < CATM S e mkkg((log No ) Nas, + (f) ) (5.7)
k=1

It is easily seen that log x < dx'/? (x = 1) so that

—3d/2 ad —tdrd( ad Ar\3@-1)
Qo) < CAT2 Y e Ml (44N, + (A_l) ) G
k=1

The following inequality is useful to bound the polynomial terms in A in (5.8):
e xY < (a/e)*t™® (x>0,1>0, a>0). (5.9)

The application of this inequality with x = A /2 and @ = 4d — 3 gives that
o
D e AT < ((8d — 6)/e)* 134 Zo(1/2).
k=1

Hence the second term in (5.8) is bounded by

((8d — 6)/e)*=2C A e2D/23=4d 7, (1 /2). (5.10)
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By Lemma 5.2, the first term in (5.8) is bounded by

00
ddCAl_3d/ZZQ(T)2 Z e—tlk+4T/lk A]i

k=1 5.11)

1)
< dd(6d/e)dCll_3d/ZZQ (T)zl_d Z e—5t/lk/6+4T/lk ’
k=1

where we have used (5.9) with x = A;/6 and « = d. We next choose T = ¢/6 so
that the right hand side in (5.11) equals

(6d>/e)C AT Zg(1/6)% 1. (5.12)

Putting the two contributions under (5.10) and (5.12) together one obtains the
bound under (5.4) with

C = C max{(6d?/e)?, ((8d — 6)/e)*4 73}, O
We finally give a proof of Theorem 1.6.

Proof of Theorem 1.6. Using the domain monotonicity of the Dirichlet heat kernel
0 < pa(x,y;t) < pra(x,y;t) and the Schwarz inequality, we first obtain

e P(x) = e o (x)
Z/stz(x,y:t)ﬂb(y)dy

s/ﬂpsz(x,y;t)@(y)ldy

1/2
< (/Qp]ﬁd(x,y;t)dy) 1|2,

where [, p2, (x,y;t)dy = (871)~4/2 since (27t)™4/? [14 e~ =yIP/@0 gy = 1.
The choiceof r ast := % then leads to the desired estimate. Furthermore, | ®|% =
Jo |®1? dx < [|®lo[|®@]l1, so that (1.8) implies (1.9). O
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