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Universal measurability and the Hochschild class
of the Chern character

Alan L. Carey, Adam Rennie, Fedor Sukochev, and Dmitriy Zanin

Abstract. We study notions of measurability for singular traces, and characterise universal
measurability for operators in Dixmier ideals. This measurability result is then applied
to improve on the various proofs of Connes’ identification of the Hochschild class of the
Chern character of Dixmier summable spectral triples.

The measurability results show that the identification of the Hochschild class is in-
dependent of the choice of singular trace. As a corollary we obtain strong information
on the asymptotics of the eigenvalues of operators naturally associated to spectral triples
(A, H, D) and Hochschild cycles for A.
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1. Introduction

In this article we exploit recent progress in the theory of singular traces to char-
acterise operators in Dixmier ideals which are measurable with respect to wide
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classes of singular traces. The independence of the value obtained by applying
a singular trace in one of these classes to a measurable operator places strong
constraints on the asymptotics of the eigenvalues of such an operator.

We apply these measurability results to obtain improvements on Connes’
Hochschild character theorem, [7, Theorem 8, IV.2.y] and [1, 3, 10], identifying
the Hochschild class of a (p, co)-summable spectral triple, p € IN. In particular
we prove:

(i) Connes’ result for arbitrary traces on £;  (other proofs hold only for the
original trace discovered by Dixmier). This has interesting implications for
the eigenvalues of the Hochschild cycles;

(ii) the analogue of this theorem for the (Macaev-Dixmier) ideal M » as well
as the p-convexifications Mﬁpgo (introduced in [5], and denoted there by Z,).
The latter ideal strictly contains £, . Our proof holds for a wide class of
traces on M, which we describe in the text.

The definition of (p, co)-summability involves one of two ideals, denoted here
by £1,00 and M o, or the related ideals £, o and Mﬁ" go This is where potential
confusion can arise, as well as much difficulty since the ideal M, is more subtle
than £; . The key technical improvement in this paper is the identification of a
criterion guaranteeing measurability with respect to families of traces on these
ideals.

As an indication of the improvements we have obtained, we state a conse-
quence of our results which is applicable to numerous examples in the literature,
including the case of Dirac operators on compact manifolds and the noncommu-
tative torus.

Theorem. Let (A, H, D) be a spectral triple with (1 + D?)~1/2 ¢ Lp.00, Where p
is an integer of the same parity as the spectral triple. If the spectral triple is even
we let T be the grading, and otherwise let I' = 1. For every Hochschild cycle
ce A®Pt e =Yl @ ®---®ch set Qc) = Y Teg[D. ci]---[D.chl. Then
denoting the (suitably ordered)' eigenvalues of 2(c)(1 4+ D?)™P/2 by A we have

> Ak = Ch(c) log(n) + O(1),
k=0

where Ch is the Chern character of the K-homology class of (A, H, D). In par-
ticular, Q(c)(1 + D?)~P/2 s universally measurable in the sense of Definition 3.

!'The eigenvalues are counted with algebraic multiplicities and arranged so that their absolute
values are non-increasing.
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We remark that we began this investigation because there is a gap in the proof
of Lemma 14 in [3] for the case p = 1 and the ideal denoted (and defined) below
by M1,00. Rather than simply produce an erratum, we decided to revisit the whole
argument in the light of progress made in the last 10 years [5, 6, 9, 12] which
provides, amongst other contributions, a more powerful algebraic approach.

Moreover we make an interesting technical innovation in this current approach
by exploiting recently discovered connections? between Dixmier traces and heat
kernel functionals exposed in [19]. These connections result in a streamlining of
the proof and a major reduction in the number of estimates needed (compared to
the proof in [3]).

Our results are presented in the context of operator ideals in £(H ) for a separa-
ble infinite dimensional Hilbert space. All of our results carry over to the general
case of operator ideals of a semifinite von Neumann algebra although we do not
present the argument in that generality here. We have simplified our approach,
compared to [3], by assuming that our spectral triples (introduced in Section 3)
are smooth, however, by taking more care in Lemma 30 we can recover the mini-
mal smoothness requirements of [3, Lemma 2].

The necessary background on operator ideals, traces and measurability is pre-
sented in Section 2, and a key abstract measurability criterion is established in
Subsection 2.4. Section 3 summarises what we need about spectral triples, Chern
characters and Hochschild cohomology. We state our main results, Theorem 16
and Corollary 17 together with an outline of the proof in Subsection 3.2. Section 4
presents the proofs. An appendix shows how certain Hochschild coboundaries are
computed.

Acknowledgements. All authors were supported by the Australian Research
Council. AC also acknowledges the Alexander von Humboldt Stiftung and thanks
colleagues at the University of Miinster for support while this research was under-
taken.

2. Preliminaries on operator ideals, traces and measurability

2.1. General notation. Fix throughout a separable infinite dimensional Hilbert
space H. We let L(H ) denote the algebra of all bounded operators on H. For
a compact operator 7 on H, let A(k, T) and u(k, T') denote its k-th eigenvalue!
and k-th largest singular value (these are the eigenvalues of |T'|). The sequence

2 For a detailed exposition of the connections, we refer the reader to [14].
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w(T) = {u(k, T)}k>o is referred to as the singular value sequence of the oper-
ator 7. The standard trace on £L(H) is denoted by Tr. For an arbitrary operator
0<TelL(H), we set

nr(t) :=Tr(Er(t,00)), t >0,

where ET(a, b) stands for the spectral projection of a self-adjoint operator T cor-
responding to the interval (a, ). Fix an orthonormal basis in H (the particular
choice of a basis is inessential). We identify the algebra [, of bounded sequences
with the subalgebra of all diagonal operators with respect to the chosen basis.
For a given sequence « € /o, we denote the corresponding diagonal operator by
diag().

2.2. Principal ideals £, o, and the Macaev-Dixmier ideal M . Fora given
0 < p < oo, we let £, « denote the principal ideal in £(H) generated by the
operator diag({(k + 1)~'/?}x=0). Equivalently,

Lpoo =1{T € L(H): p(k.T) = O((k + 1)7/7)}.

These ideals, for different p, all admit an equivalent description in terms of spectral
projections, namely

T €Lpo < Tr(Er|(1/n,00)) = 0n?). €))
We also have
ITIP € L1oo &= Wk, T)=0(k+1)7") &= T €Ly
We equip the ideal £, «, 0 < p < oo, with a quasi-norm?

IT|p.oo = suptk + DYPu(k,T), T € Lpoo.
k>0

The following Holder property is widely used throughout the paper:

n n
1 1
Am € Lppoor 1=m=n, = [[Am€lpo. —=> —. @
V4 — Pm

m=1
We also need the Macaev-Dixmier ideal M o, also known as a Lorentz space,
given by

1 n
Mioco=14€ L(H): _ k, A .
oo = {4 € L(H) Z‘;lzlog@m),;“( ) < oo

3 A quasinorm satisfies the norm axioms, except that the triangle inequality is replaced by
[lx + y|| < K(||x|| + ||y|]) for some uniform constant K > 1.
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The ideal M(lp go initially considered in [5] is the p-convexification of M; o, defined
as follows.

MP) = {A € L(H): |A]P € Moo}
The ideal Jv[ﬁ” ) strictly contains £, . We refer the reader to the book [14] for a

,00
detailed discussion of the ideals £1,00 and M .

2.3. Traceson L1 .

Definition 1. If J is an ideal in £(H ), then a unitarily invariant linear functional
¢:J — Cis said to be a trace.

Since UT!TU —T = [U™!, TU]forall T € Jand for all unitaries U € £(H),
and since the unitaries span £(H), it follows that traces are precisely the linear
functionals on J satisfying the condition

o(TS) = ¢(ST), T eJ,SeL(H).

The latter may be reinterpreted as the vanishing of the linear functional ¢ on the
commutator subspace* which is denoted [J, £L(H)] and defined to be the linear
span of all commutators [T, S]: T € J, S € L(H). Itis shownin [14, Lemma 5.2.2]
that ¢(T;) = ¢(T») whenever 0 < T;,T, € J are such that the singular value
sequences u(77) and w(73) coincide. For p > 1, the ideal £, o does not admit
a non-zero trace while for p = 1, there exists a plethora of traces on £} (see
e.g. [9] or [14]). An example of a trace on £ « is the restriction (from M ) of
the Dixmier trace introduced in [8] that we now explain.

Definition 2. The dilation semigroup on /., is defined by setting

Ok (X0, X1,-++) = (X0, , X0, X1, , X1,**)

k times  k times

for every k > 1. In this paper a dilation invariant extended limit means a state on
the algebra /, invariant under oy, k = 2,3, . ...

4 The commutator subspace of the ideal is, in general, not an ideal in £ (H). For example, it
follows from Theorem 5 below that

diag({ D

k+1}k20 1

) € Lo D), ding({is)

) £ [£1.00, £CED].

However, the commutator subspace of the ideal £  is an idealin £ o (as opposed to £(H)).
We refer the reader to [15] for the study of such subideals.
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Example. Let w be a dilation invariant extended limit. Then the functional
Try, : J\/[too — C

defined by setting

Tr, (4) = w({m Xn: ik, A)}n>0), 0< A€M
k=0 -

is additive and, therefore, extends to a trace on M . We call such traces Dixmier
traces. These traces clearly depend on the choice of the functional w on /. Using
a slightly different definition, this notion of trace was applied by Connes [7] in
noncommutative geometry. We also remark that the assumption used by Dixmier
of translation invariance for the functional w is redundant [14, Theorem 6.3.6].
An extensive discussion of traces, and more recent developments in the theory,
may be found in [14] including a discussion of the following facts.

(1) All Dixmier traces on £, are positive.
(2) All positive traces on £ o are continuous in the quasi-norm topology.

(3) There exist positive traces on £; « which are not (restrictions to £, 0, from
M,00 of) Dixmier traces (see [18]).

(4) There exist traces on £;  which fail to be continuous (see [9]).

We are mostly interested in normalised traces ¢ : £1,00 — C, thatis, satisfying
@(T) = 1 whenever 0 < T is such that u(k,T) = 1/(k + 1) for all k > 0. We do
not require continuity of a normalised trace.

The following definition, extending that originally introduced in [7], plays an
important role here.

Definition 3. An operator T € £ o Will be said to be universally measurable if
all normalised traces take the same value on 7.

The following lemma characterises the universally measurable operators.

Lemma 4. All normalised traces on L1, take the value z € C on the operator
T if and only if

T—z 'diag<{k;+l}kzo> € [£1,00, L(H)].



Universal measurability and the Hochschild class of the Chern character 7

Proof. Suppose that all normalised traces on £, take the value z on the op-
erator 7. For brevity we write Ty = diag({ﬁ}kio). If T — zTy is not in the
commutator subspace, then it follows from Zorn’s lemma that there exists a linear
functional ¢ on L1, such that ¢|jc, . c(m) = 0 and such that (T — zTp) = 1.
By Definition 1, ¢ is a trace. Fix a normalised trace ¢o. The normalised trace
¢ + (1 — o(Ty))po takes the value z 4+ 1 at 7', which contradicts the assumption.
This proves that T — zTy € [£L1,00, £L(H)]. The converse assertion follows from
the definitions. [l

The description of the commutator subspace initially appeared in [11] in a very
general situation. The statement below appeared first in [12] and for a detailed
proof we refer the reader to Theorem 5.7.6 and Theorem 10.1.3 in [14].

Proposition 5. An operator T € L « is universally measurable if and only if
n

D Ak, T)=zlog(n+ 1)+ O(1), n =0,

k=0
for some constant z € C. In this case, (T) = z for every normalised trace ¢. In
particular

n
T € [L100. L(H)| <= Y AK.T)=0(1), n=0.

k=0

2.4. A universal measurability result. In this subsection, we prove a measura-
bility criterion for operators of the form AV, A € L(H),V € L1,00,0rV € M| .
This result links measurability with the heat semigroup, thus significantly improv-
ing the main result of [6]. More information on these links can be found in [14]
(see also [19]). The precise statement of our measurability criterion is as follows.

Proposition 6. Let0 <V € L(H), A € L(H) and o > 1 be such that
Tr(AVe~ "™ = z1og(n) + 0(1), n — . (3)

(@) IfV € L1,00, then o(AV) = z for every normalised trace ¢ on L .

(b) If V e My o0, then Tr,(AV) = z for every Dixmier trace Try, on M 0.

We require several Lemmas before presenting the proof of Proposition 6.
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Lemma 7. If0 <V € £ o, then, for every oo > 1, we have

Tr(VE(1 —e ™)) = 0(n'™), Tr(e ™) = 0(n), n — oco.

Proof. By the assumption, we have u(k,V) < ||V|1,00/(k + 1) for all k > 0.
Select W > V (with the same eigenbasis) such that u(k, W) = ||V|1,00/(k + 1)
for all kK > 0. An elementary computation shows that the mapping

-1

g:x—x(1—-e™ ), x>0,

is increasing. Since V and W commute, (nV)* < (nW)® for all n > 1 and it
follows that g((nV)%) < g((nW)%*). Therefore,

Tr(V(1—e"™) = n™*Tr(g((1V)™) < n~*Tr(g((nW)®))

= V1§00 Y k(1 = exp(—= ][V ]|1,00) k%))
k=1

o0
<vie. /0 (1 = exp(— (]| V |1.00) ")) ds

= 1V 100 / u~(1 — exp(—u®))du.
0

Here, in the last step we used the substitution s = n||V||1,00u. This proves the first
equality.
The second equality is proved as follows:

Tr(e=™)7™)) < Tr(e=@"™"))

=Y exp(—(]|V[l1,00) k%)

k=1

o0
< / exp(—=(n [V [[1.00)~s%)ds
0
= 1|V ll00 / exp(—u®)du.
0

In the last step we again used the substitution s = n||[V||1,00u. O
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Lemma 8. If0 <V € L, andif A € L(H), then
z 1
3 Ak, AV) = Tr(AVEV[—,oo)) +0(), n— oo
k=0 n

Proof. Recall that a Hilbert-Schmidt operator W is said to be V-modulated (in
the sense of [14, Definition 11.2.1]) if

supt 2| W(1 + V)Y, < oo,
t>0
We show that the operator AV is V-modulated. Indeed, we have
sup ' AV (L +1V) M2 < [|Alleosupt V(A +1V) 72
t>0

>0

1
< |4 z1/2H —_—
< ||oo§1>113 {M(k, e +t}k20

2
< Q.

Let e, kK > 0, be an eigenbasis of V. Since AV is V' -modulated and since V' > 0,
it follows from Theorem 11.2.3 in [14] that

D Ak, AV) =) u(k. V)(Aer. ex) + O(1).
k=0 k=0

By definition, EV[%,oo) is the projection onto ex, 0 < k < m(n), where
m(n) = Tr(Ey[l/n,00)). Since V € L1 0, we have u(k,V) < kLH for some
constant C > 0 and all k¥ > 0. This inequality guarantees that m(n) = O(n)
as n — oo, by equation (1), in particular, there is a constant C < oo such that
m(n) < Cn, for all n > 1. It may also happen that m(n) < n.

If m(n) < n, then (since pu(k, V) < 1 for k > m(n)), we have

n n 1
> onwkys Y —<L
k=m(n)+1 k=m(n)+1
If m(n) > n, then
m(n) Cn Cn 1
YooukVys Yo pk V)= [Vieo Y £ =000,
k=n+1 k=n+1 k=n+1

In either case, we have

m(n)

Y nle V)= 3 e V)| = o).
k=0 k=0
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With these observations, we have the equality

m(n)

Tr(AVEV[%,oo)) = Z wik, V)(Aeg, er).
k=0

It follows that

‘ Xn:A(k,AV) —Tr(AVEV[%,oo))‘

k=0
n m(n)
= | 2 i, V)(Aex ex) + 0() = 3 pulh, V) (Aex. ex)
k=0 k=0

m(n)

[4lleo| Y- 1k V)= Y- e, V)| + 0()
k=0 k=0

IA

= 0(1). O
The above Lemmas allow us to prove the first statement of Proposition 6.
Proof of Proposition 6 (a). We start by showing that
ITr(AVe™ ")™Y — Tr(AVEy([1/n,00)) = O(1), n — . 4)
Indeed,
‘Tr (AVe—("V)‘”) — Tr(AVEy[l/n, oo))‘
< |Tr(AV (™™ — D Ey[1/n,0)|
+ [Te(ave= ™ By j0,1/m)|
< Al [Tr(V (™™™ ~ D Ev[1/n.00))
+ ‘Tr(Ve_(”V)_aEV[O, 1 /n))‘ )
In order to complete the proof, we observe that the spectral theorem yields
VEy[0,1/n) < 1/n.
Similarly, for any o > 1 we have the inequality

A)((l/n,oo) 1) =< na—lka’
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where ¥ (1/n,00) is the indicator function of the interval (1/n, 00), and so the spec-
tral theorem yields VEy[1/n, 00) < n® 1V,
It now follows that

ITr(AVe™ ™)™y — Tr(AVEy[1/n, 00))|
—a 1 _a
< [ Alloo (M TRV (1 — &™) 4 T )
n

= 0(1).

Here, the last equality holds by Lemma 7. Appealing to the assumption (3) and
Lemma 8, we rewrite the preceding inequality as

> Ak, AV) = zlog(n) + O(1)
k=0

and conclude using Proposition 5. U

To prove the second part of Proposition 6, we need the following lemmas.

Lemma 9. Let w be a dilation invariant extended limit on | »,. For every0 <V €
Mi,00 and o > 1, we have

C')({n lozlg(n)Tr(e_(nV)_a)}nzo) =0

Proof. Fix ¢ € [0, 1] and observe that

e <4er?, 0<t<e
Hence, for every ¢ > 0, we have
T < K00 (1) + 4611?10, £1(1) = K (5,000 (1) + de(mingnt, 1))
Applying the functional calculus, we infer from the inequality above that
e~ < Ey(e/n, 00) + 4emin{(nV), 1}>.

Hence, using the fact that w is a positive functional, we obtain

@ ({ n lo}g(n) Tr(e_(nV)_a)}nzo)

(£) in{(nV), 1}*
= ")({nnlzg(n) }nzo> + 480)({%}”30)

Here, the second term is well defined thanks to Lemma 8.4.2 (b) in [14].
By Lemma 8.2.8 in [14], the first term vanishes for every ¢ > 0. Letting ¢ — 0,
we conclude the proof. U
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Lemma 10. Let w be a dilation invariant extended limit on l, o > 1, and intro-
duce the notation Ty for the positive part of a self adjoint operator T. For every
A € L(H) and for every 0 <V € M 0, we have

<{log( )Tr(AVe—("V) a)}nzo) - ({10 g(n )Tr(A(V_ 1/”)+)} 0).

Proof. Without loss of generality, the operator A is positive. Fix ¢ > 0. Applying
the functional calculus to the numerical inequality

o — 1 o
T =1 em)y < 1e”T < (= 1/my + -y w)(z)+ om0,

(the subscripted + again denotes the positive part) we obtain an inequality involv-
ing trace class operators

o —o 1 1 o
eV =1/en)y < Ve "™ < (V=1/n)y+—Eyp[l/n,00)+—e" " (5)
n n
For any trace class operator T, cyclicity of the trace gives
Tr(AY/2TAY?) = Tr(AT).

We apply this observation to the second inequality in (5) to infer that

”A”oo

T(AVe D) < e (AW — 1 /) + P82 1y 4 Doy ooy

It follows from Lemma 8.2.8 in [14] and Lemma 9 that

w({logl(n)Tr(Ave_(nV)_a)}nzo) = w({logl(n)Tr AV =1/m)+) }nzo)' ©

Now we apply Tr(4'/2TA'Y/2) = Tr(AT) to the first inequality in (5) to insert a
positive operator A under the trace. So we infer that

Tr(AVe_(”V) a)}n>0> >e o ({

Taking into account that w is dilation invariant and passing to the limit ¢ — 0, we
infer that

Tr (A(V — 1/n8)+)} 0).

({log(n) log(n)

Tr(AVe~ @)™ a)}n>0) > a)({ ()

The assertion follows by combining (6) and (7). O

<{10g(n) Tr (A(V = 1/n)4) } 0). @)

We can now complete the proof of Proposition 6.
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Proof of Proposition 6 (b). For every dilation invariant extended limit  on /o,
we define a heat semigroup functional

W —> (wo M)({%Tr(e_("w)_l)}po), 0<W e Moo

By Theorem 8.2.5 in [14], the functional &, extends to a Dixmier trace on M .
For every dilation invariant extended limit @, we infer from Lemma 10 that

w({logl(n)Tr(A(V _ %>+)},,Zo) _ w({logl(n)Tr(AVe-m-a)}nzo) -

Then, by Lemma 8.5.3 in [14], we have &,(AV) = z for every dilation invariant
extended limit . Finally, by Theorem 8.3.6 in [14], the set of all Dixmier traces
coincides with the set of all functionals &,, where w runs through all dilation
invariant extended limits on /. The assertion follows immediately. Ol

3. Preliminaries on noncommutative geometry
and the statements of the main results

3.1. Spectral triples and Hochschild (co)homology. Let D: dom(D) — H be
a self-adjoint operator with dom(D) C H a dense linear subspace. An operator
D admits a polar decomposition D = F|D|, where the phase F is a self-adjoint
unitary operator defined by

F := Ep(J0,0)) — Ep(—00,0)
and
|D|: dom(D) — H

is a self-adjoint operator. The following definitions should be compared with Def-
inition 1.20 in [2].
Definition 11. A spectral triple (A, H, D) consists of a subalgebra A of L(H)
such that

(a) a: dom(D) — dom(D) for all a € A;

(b) [D,a]: dom(D) — H extends to an operator d(a) € L(H) for alla € A;

(¢) a(1 4 D?)~'/2 is a compact operator for all a € A.

In what follows, if a: dom(D) — dom(D), then the (a priori unbounded)
operator [| D], a]: dom(D) — H is denoted by §(a).
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Definition 12. A spectral triple is Q C* if
(a) a: dom(D") — dom(D") for all a € A and
(b) for all n > 0 the operators

§"(a): dom(D") — H, §"(d(a)): dom(D"*') — H
extend to bounded operators for all # > 0 and for all a € A.

Definition 13. A spectral triple is said to be

(a) even if there exists ' € £(H) such that ' = T'*, T2 = 1 and such that
[[,a] =0foralla € A, {D,T"} = 0. Here {-, -} denotes anticommutator.

(b) odd if no such I' exists. In this case, we set I' = 1.
(¢) (p.oo)-summable if (1 + D2)77/2 € £} .
(d) M) _summable if (1 + D?)"7/2 € M o.

,O0

The following assertion is proved in many places, e.g. [4, Corollary 0.5], [3],
and [16]. We prove a related statement in Lemma 30.

Proposition 14. If (A, H, D) is a spectral triple that is QC > and (p, 00)-sum-
mable, then [F,a) and [F, 8 (a)] lie in £ o for alla € A and k > 1.

Define multilinear mappings

ch: A®P+D 5 £(H)

and
Q: A®PTD 4
by setting
P
ch(ao ® ---®ap) = FT [ [[F. axl,
k=0
and

?
Q(ap ® - ® ap) = Tag [ [[D, axl.
k=1
If a spectral triple (A, H, D) is (p, co)-summable, then it follows from Propo-
sition 14 and the Holder inequality in equation (2) that ch(c) € £,/(p+1),00 C L1
for all ¢ € A®P+1D_This justifies the following definition.
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Definition 15. If (A, H, D) is a (p, oo)-summable spectral triple, then Connes’
Chern character A®P+1 . (s ‘is defined (up to a constant factor) by setting

1
Ch(c) = STr(ch(c)), c € A®@PFD,

In fact the Chern character is the class of Ch in periodic cyclic cohomology,
but we shall ignore this distinction in the sequel.

We now turn to Hochschild (co)homology. The algebra A is equipped with the
5-topology, [17], determined by the seminorms

qn: A —>[0,00)
given by
n
dn(@) = 3" 185 @)| + 185 ((D. aD) .
k=0
The tensor powers of A are completed in the projective tensor product topol-
ogy. If 9: A®" — ( is a continuous multilinear functional, then the multilinear

functional
bo: A®HD s ¢

is defined by

(bO)(ao @ -+ ® an)
= 6(apa1 ® az @ --- ® ay)

n—1
+ D D 0@ ® a1 ® - ar—1 @ axag41 ® dis1 ® -+ ® an)
k=1

+ (=D)"0(anao ® a1 @ ar @ - Q ay—1).

We call 6 the Hochschild coboundary of 6. If 56 = 0, then we call 6 a Hochschild
cocycle. We also need the dual notion of Hochschild cycle. The Hochschild
boundary

b: ABCHD _, g®n

is defined by setting
b(a0®...®an) =apa;1 ®ar» ®--- R ay
n—1
+ Z(—l)kao Ra1 Q- --ap—1 Qarar41 Qap+1 Q- ay
k=1

+(—D)"apa0®a1 Q@ar @+ @ ap_1.
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If ¢ € A®(+1D g such that be = 0, then ¢ is called a Hochschild cycle. For
example, if n = 1, then b(ap ® a1) = [ao,a1]. Hence, an elementary tensor
ap ® a; is a Hochschild cycle if and only if a¢ and a; commute. The definitions
are dual in the sense that for any multilinear functional 8, (b0)(a) = 6(ba). In
particular, a Hochschild coboundary vanishes on every Hochschild cycle.

3.2. The main results and the plan of the proofs. For the statement of our main
theorem, and the remainder of the paper, we assume that p € IN.

Theorem 16. Let (A, H, D) be a Q C®™ spectral triple which is even or odd ac-
cording to whether p is even or odd, and let ¢ € A®PTV be a Hochschild cycle.

(a) If the spectral triple is (p, oo)-summable, then for every normalised trace ¢
on Ll,oo
¢(Q(c)(1+ D?)77/?) = Ch(c). ®)

(b) If the spectral triple is M&p cZo-summable, then
Tro(R(e)(1 + D*)77/?) = Ch(c)

for every Dixmier trace on M .

Let us illustrate the assertion for p = 1. If elements ag, a; € A commute, then
the elementary tensor ag ® a; is a Hochschild 1-cycle and

plaolD. an)(1 + D)) = ST(FIF, agl[F, )

for every trace ¢ on £; . The corollary below follows from Theorem 16 and
Proposition 5.

Corollary 17. Suppose that the assumptions of Theorem 16 (a) hold. Suppose that
c € A®@PtY s q Hochschild cycle. Then

(@) Qc)(1 + D> 7?2 € [L1.00. L(H)] if and only if Ch(c) = 0, and more
generally

Q(e)(1 + D?)~P/? € Ch(c) - diag({k%rl}m) + [ 1200 S(H)];

(b) there is an equality

> Am.Q(c)(1 + D*)7P/?) = Ch(c) log(n) + O(1), n > 0.

m=0
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Theorem 16 is initially proved under the assumption of invertibility of D in
Subsection 4.4, after proving some intermediate steps. The first step is to replace
Q(c)|D|™? by a new operator. More specifically, for | < m < p, we define the
multilinear mappings

W, : A+ L(H)

by setting
m—1 )/
Walao ®-+ @ ap) = Tao( [T1F.axl)s@n)( [T [Foaxl). )
k=1 k=m+1

By Proposition 14 and by the Holder property in equation (2), Wy, (¢)D™! € L4,
(respectively, W, (c) D™ € M;j,o0). Then, by exploiting Hochschild cohomology
(see Appendix A), we show in Subsection 4.1 that (for D! € £ o)

Q()|DI7? — pWy(c) D™ € [L1,00, L(H)].

We prove the analogous result for D! € Mi,00 also. Then, in Subsection 4.2,
we obtain a number of commutator estimates which allow us to prove, in Subsec-
tion 4.3, that for every Hochschild cycle ¢ € A®P+D,

Te(W, (c) D~ ¢IPD"™hy — Ch(c) log (1/5) + O(1), s — 0.

By invoking our abstract measurability criterion, Proposition 6, we can then as-
semble the pieces to prove the main result in Subsection 4.4. We also show at this
point how to remove the invertibility assumption.

4. Proofs

Until Subsection 4.4, we will suppose that the operator D of a spectral triple
(A, H, D) is invertible.

4.1. Exploiting Hochschild cohomology. Our aim in this subsection is to prove
the following result, by refining the approach of [3, Section 3.5].

Proposition18. Let (A, H, D) be an odd (respectively, even) Q C*® spectral triple
and let p be odd (respectively, even). For every Hochschild cycle ¢ € A®@+D),

(@) if D7 € L1,00. then Q(c)| D77 — pWp(c) D! € [£1,00, L(H)],
(b) if D77 € Mi,co. then Q(c)| D|™7 — pWy(c) D™ € [My,00, L(H).
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We consider auxiliary multilinear mappings which generalise the mappings
Wi, 1 <m < p, introduced above in equation (9). For A C {1, ..., p} define the
multilinear mapping

Wiy A®(P+l) — L(H)

by setting
14
Walao ® - ®ap) :=Tap [ [Ibr.axl. ao® - ®a, e AZPHY,
k=1

where by = |D|, for k € A, and by = F, for k ¢ A. Evidently, if A = {m}, then
Wy = W,,. It follows from Proposition 14 and the Holder property in equation (2)
that

Wa@)D e L0, AC{l,.... p)
For every A C {1, ..., p}, define the number
na =0 J)i<j. i€, j¢nA}

The following assertion explains the introduction of the mappings Wy,
A C {1,..., p} that are used for the proof of Proposition 18. We denote the cardi-
nality of 4 by |A|.

Lemma 19. If (A, H, D) is QC* spectral triple with D™ € L] «, then for all
c € A®P+D

QOIDITP— Y (D" Wae) DT e £y,

Proof. We will proceed by proving thatfor 1 < g < pandc =ao®a; ®---Qay,
Tao[D.a1] - [D.a]IDI™ = Y (=1)"*Wa(c)D ™ mod £,/+1).00-

(10)
For ¢ = 1, we consider ¢ = ag ® a; € A®2. We have
[D’al] = [F|D|’a1]
= Fé(a1) + [F,a1]| D]
= [F,8(a1)] + d(a1)F + [F,a1]| D]
= ([F.8(a)]|D|™" + 8(a)D~" + [F.a1])|D|.
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By Proposition 14 and the assumption, the operator [F,§(a;)]|D|™! is in
Lpoo - Lpoo C Lpj2,00, While the other terms in parentheses are in £, o, and
give the right hand side of equation (10). Thus we have proved the case ¢ = 1.

Suppose then that we have proved the claim for some g < p. Since commuta-
tors with | D|~! improve summability, it follows that

q+1 q+1

(TT.ax) D™ = 1D (TTID. axl) mod £p2,00-

Therefore,
q+1
Fao( [T(D. al)IDI7~"
k=1
q+1
= Tao[ D, a)(( [T(D.ax)IDI ") DI~
k=2
q+1
= Tao[D.a] (1D ( [TP. ax] mod £,/.00) ) 1D
k=2
q+1
= Tao[D.ar]| D™ (( [P ax])IDI™) mod £pyg-2).000
k=2
By induction, we have
g+1
([Tip.axl) DI = &
k=2
where
= > TWu(laa....age)(=D)"* D7 mod £,/g41).00-
AC{2,..sq+1}
Thus,
q+1
Fao( TP, al)IDI7~"
k=1

= TLao[D,a1]|D[™'&
= Fao(8(a1)F + [F,a1]|D|)|D|7'6&.
Since commutators with | D|~! improve summability, it follows that
|IDI ' TWu(1,a2,...,a4+1)

=TWu(l,as,..., aq+1)|D|_1 mod Lp/(q+2—|a‘o|),oo-
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Since [F, §(a)] € £, for all a € A, it follows that
FTWy(1,az,...,a441)
= (—DTMIWL (1, as, . .. ag1) F mod L4 1-)4)),00-

Indeed, we have F[F,a] = —[F,a]F for every a € A and there are exactly g — | A|
commutators [F, a;] in W 4.
Therefore,
q+1

Fao( [0, axl) 1|~

k=1

= Y (D" (=) as(a)TWa(l.az. . .. ag4) DA

AC{2,...,q+1}
+ ) (=D"Tao[F.ai]
AC{2,...,q+1}

TWa(l,az,...,az+1)D 7 mod £,/(42).00-
For each A C {2,...,q + 1} define

A=AU{}C{l,....q+1}

and
A=AC{l,....qg+1}.
Then
ng=gq—|Al +ngs
while

ng&:n,,‘,.

By definition, we have

Faoé(al)FW,A,(l, az, ..., Clq_H) = WU@(C‘)

and
LCao[F,a1]TWa(1,az,...,ag4+1) = W;(c).
Hence,
q+1
Fao( [0, al)1 D17
k=1

— Z (—1)"*"WJ£(C)+ Z (—1)"%@WJ£(C) mod Lp/(q+2),00'
AC{2,...,q+1} AC{2,...,q+1}
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Since every 8 C {1,...,q + 1} coincides either with A or else with A for a
unique A C {2,...,q + 1}, the equation (10) follows for ¢ + 1. This proves the
Lemma. ]

Lemma 20. Let (A, H, D) be a QC® spectral triple and let ¢ € A®P+D pe q
Hochschild cycle. Suppose that |A| > 2 and m — 1, m € A for some m.

(@) If D™P € L1 00, then Wy (c)D7I* € [L1 00, L(H)].

() If D7 € M 00, then Wy (c)D7I* € [My o0, L(H)].

Proof. Letgbeatraceon £ o (respectively, on M o). The mapping on A®(P+1)
given by
¢ — p(Wy(c)D71#)

is the Hochschild coboundary (see Appendix A) of the multilinear mapping de-
fined by

aO ® e ® ap—l
(R = Pl
— T(p<ra0 kl_ll bk » ak]82(am—l) kl_[ [bk+1,ak]D_|'A’|),
= =m

Since a Hochschild coboundary vanishes on every Hochschild cycle, it follows
that ¢(W 4 (c) D~1*l) = 0 for every Hochschild cycle ¢ € A®P+D _Since ¢ is an
arbitrary trace, the assertion follows. U

Lemma 21. Let (A, H, D) be a QC® spectral triple and let ¢ € A®@P+D pe g
Hochschild cycle. Suppose that |A1| = |A2| > 2 and that the symmetric difference
A1 AAr = {m — 1, m} for some m.

(@) If D™P € L1 00, then Wy, (c) D71 - Wy (0) D142l € (£ o0, L(H)].
() If D77 € M 00, then Wy, () D7IMI £ Wy (@) D712 € [My 00, L(H)].
Proof. Letgbeatraceon £ o (respectively, on M o). The mapping on A®P+1)

given by
¢ > (Wi, () D141 4 (W, (c) D7142])
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is the Hochschild coboundary (see Appendix A) of the multilinear mapping
defined by

ap® - ap—1
— (=1)"p(Ta 1‘[ bk, axlIF, 8am1)] [] besr, @D~ ).
k=1 k=m

The proof is concluded by using the same argument as in the preceding lemma.
O

Corollary 22. Let (A, H, D) be a Q C® spectral triple and let ¢ € APV pe g
Hochschild cycle. Suppose that |A| > 2.

(@) If D™P € L1 00, then Wy (c) DM € [L1 00, L(H)].

() If D77 € M 00, then Wu(c)D7I* € [My o0, L(H)].

Proof. Let n < m be such that n,m € A. Without loss of generality, i + n ¢ A
forall0 <i <m —n. Set

=(A\{nPHhU{i+n}, 0<i<m-—n.
We have
(1) |A;| = |A| and |A; AA;—1| =2forall 1 <i <m —n.
(2) Ag=Aandm —1,m € Ayu_p_1.

It follows from Lemma 21 that Wy, ,(a)D™! € [£1,00, L(H)] (respectively,
Wa,,_,_ (@Dt € [My,00, L(H)]). The assertion follows by applying Lemma 20
m —n — 1 times. O

Lemma 23. Let (A, H, D) be a QC® spectral triple and let ¢ € A®P+D pe q
Hochschild cycle.

@) If D™P € L1 00, then Wes(c) € [£1.00. L(H)].

(b) If D7 € M oo, then Wg(c) € [M1.00. £(H)].
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Proof. We prove (a) only (the proof of (b) is identical). Letao ® --- ® a, €
A®@FD We have

p p p
2Tao [ [[F.ar) = [F.FTao [ [[F.acll + (=1)P'FT [ [[F.ax] (1)
k=1 k=1 k=0

so that

2Wg(c) = [F, FWg(c)] + (—1)P" L ch(c). (12)
Since Wg(c) € L£1,00, it follows that [F, FWg(c)] € [£1,00, L(H)]. By Propo-
sition 14 and the Holder property in equation (2), ch(c) € £1 C [£1,00, L(H)].
Thus, Wg(c) € [L1,00, L(H)]. O

We are now ready to prove the main result of this subsection.

Proof of Proposition 18. As in preceding lemma, we prove (a) only (the proof
of (b) is identical). For every Hochschild cycle ¢ € A®®*D it follows from
Lemma 19 that

QOIDIT e Y (=D Wa@DTH 4+ £y,

Applying Corollary 22 to every summand in the sum }_, 4., and Lemma 23,
we infer that

QD[P € Y (1) Wa(e) D™ + [£1,00, L(H)].
|A|=1

If A = {m}, then n4 = p — m. Therefore,

D
QAP € Y (=D)P " Win(c) D™ + [£1,00, L(H)].

m=1

Applying Lemma 21 p — m times, we obtain
Wi (©)D™' = (=1)?7"W,(c)D™" € [L1.00, L(H)], 1<m < p.

This suffices to conclude the proof. O

4.2. Some commutator estimates. Our method of proof of Proposition 29 ex-
ploits some heat semigroup asymptotics. For this we need to introduce, in this
subsection, a number of technical estimates for commutators involving the oper-
ator valued function s — f(s|D|), where f(s) = e_|s|p+l, and s € R. As before
in the text, p € IN. We make essential use of the fact that f " e Ly(—o00, 00) (this
fact follows from Lemma 7 in [16]).
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Lemma 24. If (A, H, D) is a QC* spectral triple, then

1L/ 51Dy, al = sf"(sI DS @)oo < 5[ F" 111187 (@)oo

ILf(s1D]). al = 58(a) f'(sIDDlloo < s21 " 1116%(@)lloo
forall s > 0 and for alla € A.
Proof. We use the method of [1, 3]. It is clear that
f6lDD.al = [ Fale. aldu (13)
—0oQ
An elementary computation shows that
1
[eiuleI’a] — ius/ eiuvsIDIS(a)eiu(l—v)leIdv_ (14)
0
Combining (13) and (14), we obtain
o] 1 R . .
[f(s|D]),a] = s/ / F1()e™IP1§(q) e A=sIPl gy gy
—o0 J0

Therefore,
[f(sID]),a] = sf'(s|DDé(a)
00 1
= S/ / f/(u)(eiquIDIa(a)eiu(l—v)lel —ei'”lDlS(a))dvdu
—o0 J0
00 1 . )
— S/ / f/(u)(eluvlel[S(a),em(l_v)lel])dvdu_
—o0 J0
As in equation (14), we have
[S(a)’eiu(l—v)lel]

1
— —iu(l . U)S/ eiu(l—v)sw|D|82(a)eiu(l—v)s(l—w)|DIdw'
0
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Hence,

[f(s|D]).al = sf'(s| D])S(a)

1 1
— —S2 /OO / / f”(u)(l _ v)ei"(l_v)swlD|52(a)ei"(1_v)s(1_w)lD|dwdvdu.
—o0 J0 0

The first inequality follows immediately. The proof of the second inequality is
similar so we omit it. O

Lemma 25. Let D be an invertible unbounded self-adjoint operator.
@) If D7? € L,00, then
Te(f(s|D])) = OGs~P),  Te(ID[7P~1(1 = f(s|D])) = O(s),
as s — 0,
(b) If D% € M o, then, for every e > 0,
Te(f(s|D])) = OGs™P7%), Te(ID|7P7'(1 = f(s|D])) = O(s'™°),
as s — 0.
Proof. Using Lemma 7 with V' = |D|7? and @ = 1 + 1/p, we obtain (a).

We now prove (b). Since D77 € M; o, it follows that

k
(k + Dp(k,D™P) < > p(m, D7) < const - log(k + 2).

m=0

Hence,

log(k + 2))(p+s)/p - const
k+1 “k+ 1
Select an operator Dy < D (using the same eigenbasis) such that

wlk, D7P7%) < (const .

const
k+1
In what follows, we assume, to reduce the notation, that const = 1. For the first
equality,

pu(k, Dy~ =

k>0.

Te(f(s|DD) = Te(f(s|Dol))

00
_ Z e_(skl/(p+s))p+l
k=1

00
— 1/(p+eyp+1
5/ e~ bsu 7 du
0

o0
e o+ (p+e)
=s? 8/ e’ dv.
0
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In order to prove the second equality, note that the mapping s — s~1(1 — ™)
is decreasing on (0, c0) and so is the mapping s — s~ ?~1(1 — f(s)). It follows
that

Te(| D[P~ (1 = f(s|D))) < Tr(|Do| 771 (1 = f (5] Dol)))

o0
—p— —(sk1/(P+e)yp+1
— Z(kl/(p+8)) r1l(1—e (sk ) )
k=1

o0
< / (D (pe) (1 _ gt/ HPEL gy
0

o0
_ Sl—s/ v—(p+1)/(p+8)(1 — e—v(”+”/(p+8))dv.D
0

Lemma 26. Let (A, H, D) be a QC > spectral triple and let a € A.
(@) If D77 € L1 ,00, then
I/ sIDD. 8@)]ll = O(s'=7)
as s — 0.
(b) If D72 € My,00 then (for every e > 0)
I/ sIDD. 8(@)]ll = O(s'P79),

ass — 0.

Proof. Suppose first that p > 4 or that p = 2. Define a positive function % by
setting

£'(t) = —sgn(t)h* (1)

for all 1. We have 1/, h"’ € L,(—00, 00). It follows now from Lemma 7 in [16] that
h' € Li(—o00,00). Repeating the argument in the beginning of Lemma 24, we
obtain

0o 1
[h(s|D)),8(a)] = s/ / ' (u)e V5IP1§2 (@) 101Dl gy gy
—00 J0

and, therefore,
1[2(s| D), 8(@)]lloo < SIA1111162(@) oo
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On the other hand, we have
[f'(s| D). 8(a)] = [h*(s| D). 8(a)]
= h(s|DD[h(s|DI),é(@)] + [ (s| DI), §(@)]h(s| DI).
Therefore,
ILf(sIDD), 8@l < 2l DDl (s| D)), 8(@)]lloo = I (s|DDIl1 - OCs).

Recall that h(s) < const- f(s/2) foralls € R. If D77 € £ o, then it fol-
lows from Lemma 25 (a) that [|A(s|D|)[ly = O(s™?). Similarly, if D7 € M, o,
then it follows from Lemma 25 (b) that |2 (s|D])|l1 = O(s~?~¢). This proves the
assertion for p > 4 or p = 2.

If p = 1 or p = 3, then Lemma 7 in [16] is inapplicable and we have to proceed
with a direct computation. Assume, for simplicity, that p = 1 and D! € £} o
(the proof is similar for p = 3 and for M ). Repeating the argument above, we
obtain

L Y2(sIDD), 8@l = Os), L Y2(sIDD). 82(@)]]l = OCs).

Using the elementary equality

—%[f’(SIDI),S(a)] = 8%(a) - sf(s|D|)
+s|DIfYV2(s| D)) - [fV/2(s|D]). §(a)]
+[f2(s| D)), 8(a)] - s| D] f/*(s| D))
+[fY2(s| D)), 8*(@)] - sf /2 (s| D)),

we infer that

1L/ (sID). 8(a)]lly
< const- Tr(s f(s|D|) + 2s2|D| f /2 (s|D|) + s> f1/%(s| D))).

Recall that sf(s), f'/2(s) < const- f(s/2) for all s > 0. By Lemma 25 (a),
we have

sTe(f(s| D)) = O(1),
sTe(s|D| f1/2(s| D)) = O(1),
sTe(fV2(s|D))) = 0(1).

This proves the assertion for p = 1. O
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Lemma 27. Let (A, H, D) be a QC spectral triple and let a € A.
@) If D7? € L,00, then
I/ (s|D1), a] = s8(a) f'(s| D)y = O(s*7P),
ass — 0.
(b) If D72 € M,0, then (for every e > 0)

ILf 51D, al = s8(a) f'(s|DDIly = O(s>7P7°),

as s — 0.

Proof. Let f = h?. Since h can be obtained from f by rescaling, the assertion of
Lemma 24 also holds for . We have

[f(s|D]),a] — %{f’(SIDI),5(a)} = h(s|D|)([h(s|DI),a] — sh'(s| D])é(a))
+ ([1(s|D|), a] — s8(a)h'(s| D]))h(s| D).
It follows that

L GIDD).al = S/ GID D). S@)

< A DD (I (sI D), a] — sh'(s| D)é(a) oo + II[A(s]D]). a]
— 58(a)’(s|D)loo)-

We infer from Lemma 24 that the expression in brackets is O(s?).If D=7 € £ 1,005
then it follows from Lemma 25 (a) that ||h(s|D|)||1 = O(s~?). Therefore,

ILf 1D, a] = %{f/(S|D|)18(a)}”1 = 0(s*77).

The assertion (a) follows now from Lemma 26. Similarly, if D™ € M, o, then it
follows from Lemma 25 (b) that ||A(s|D|)||1 = O(s~?~%). This proves the asser-
tion (b). O
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Proposition 28. Let (A, H, D) be a Q C™ spectral triple and let a € A.
(@) If D77 € L1 ,00, then

ILf(sID]). a] = 58(a) f'(s|DDlp.1 = O(s),

ass — 0.

(b) If D™? € My oo, then (for every & > 0)
ILf(s|D)).a] — s8(a) f'(s|D])|lp—e = O(s'72%),
ass — 0.

Proof. We prove only the first assertion, as the proof of the second one is identical.
If p = 1, then the assertion is proved in Lemma 27. Suppose p > 1 and set

T =[f(s|D]).a] - sé(a) f'(s|D]).

We infer from Lemma 24 that |T|lec = O(s?) and from Lemma 27 that
IT|l1 = O(s?>7P)ass — 0. The assertion follows from the interpolation inequality
(see e.g. Theorem 2.g.18 and Corollary 2.g.14 in [13])

1 — — _
1T N1 < ITIYPITNSY? = 0@ 2P 20710y = o). O

4.3. Asymptotics for the heat semigroup and the proof of Proposition 29.
In order to study the operator W, (c) D~1, which was introduced in Proposition 18,
we now establish the following heat semigroup estimate.

Proposition 29. Let (A, H, D) be a QC*> spectral triple with D77 € M .
If the spectral triple and the integer p are both odd (respectively, even), then

Tr(W,(c) DL 61PD"™) = Ch(c) log (1/5) + O(1), s — 0,
for every Hochschild cycle c € A®P+D,

In Lemma 30 and Lemma 31, we prepare the ground for the proof of Proposi-
tion 29.

Lemma 30. If (A, H, D) is a QC spectral triple, then

m
(H[F, ak])|D|m+1 e L(H), apeA 0<k<m.
k=0
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Proof. Define the algebra
B={AeL(H): A: dom(D") —> dom(D"), §"(A) € L(H) for all n > 0}.

An inductive argument shows that, for every A € B and for every n > 0, there
exists B € B suchthat A|D|" = |D|" B. For all k < m and for all a; € A, we have
[D,ax] € B and F[|D|,ax] € B (here, we used the fact that our spectral triple is
0 C). Therefore,

[F.ar] = [D.ag]|DI™" = F[ID].ax]|D|™" = A|D|™,

where A € B. Therefore,

m m—1
[TiF.adipr™" = (TTIF. axl)Anl DI".
k=0 k=0
Note that A, |D|~! - |D|™*! = |D|™ B,, for some B,, € B. It follows that
m m—1
[TiF.adip™* = (TTIF.al)1DI" B
k=0 k=0
The right hand side is bounded by induction. O

Note that the condition D™? € M o guarantees that D~P72 ¢ . Hence,

Mp+1
3P+ D ppyr2 e,
e

0=<—f'(s|D|) <
In particular, we have f'(s|D]) € L.

Lemma 31. Let (A, H, D) be a QC™ spectral triple and let ¢ € A®@+D pe q
Hochschild cycle. Suppose that the spectral triple and p are both odd (respec-
tively, even).

(@) If D77 € L1 ,00, then
sTr(Wp(c) Ff'(s|D])) = —Ch(c) + O(s),

ass — 0.

(b) If D72 € My,00, then, for every e > 0,
sTe(W,(c)Ff'(s| D)) = —Ch(c) + O(s'™®),

ass — 0.

Here, f(s) = e ISP s eR.
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Proof. We only prove the first assertion. The proof of the second one is identical.
Define the multilinear mappings

Ky, Hy: APPTD 5 £(H)

by setting

p—1

Ky(ao ® -+ ® ap) = Tao( [ [IF.ax])[Ff(sID).ap)
k=1

and
p—1
H,(ao @ -+ ® ap) = Pao( [ [[F.a]) FIfGIDD), ).
k=1
For all ¢ € A®P+1 we have (see p. 293 in [7] for the second equality)
Wg(c) f(s|D]) = Ks(c) — Hs(c), ch(c) =Wg(c) + FWg(c)F.
Therefore,

Tr(ch(c) f(s|D]) = 2Tr(Wg(c) f(s| D])) = 2Tr(Ks(c)) — 2Tr(Hs(c)).  (15)

The mapping ¢/ — Tr(Xs(c’)) on A®P+1D s the Hochschild coboundary of
the multilinear mapping defined by

p—1
a0 ® -+ ®ap1 > (~1)PTr(Tao( [[IF.a]) F£(sIDD).
k=1

5 For the sake of illustration, let p = 2 and let the multilinear mapping
0: A®2 — £(H)
be defined by setting
0(ao ® a1) = Tr(T'ao[F,a:]T)
with T € £. We then have

b0)(ao ® a1 ® az) = H(aoa1 ® az) —0(ao ® araz) + 6(azao ® ar)
= Tr(Taga[F,a>]T —Taol[F,a1a>1T) + Tr(Tasaol[F,a]1T)
= —Tr(Tao[F,a]laxT) + Tr(Tao[F,a1]Taz)
= Tr(Tao[F, a1][T, a>)).
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Hence, it vanishes on every Hochschild cycle. On the other hand, we have
Tr(Hs(c") = sTe(Wp () Ff'(sID])) + O(s) (16)

as may be seen by evaluating on ap ® - -+ ® a,, using Proposition 28 to obtain

‘Tr(Fa ]:[ F,a]F] (s|D|),a,,]) —sTr(Faoﬁ[F, ak]FS(ap)f/(s|D|))‘

k=1
-1
< |Tao [ [[F, ax]F llg.0 L (s|D1). ap] = 58(ap) £ (s|D Dl p1
k=1

= 0(s)

and, since,

p—1
Tr(Tao 1‘[[F, ak)F8(ap) f'(s|D])) = Ti(Wp(@) /' (s| D))

< [ITao 1‘[ [F.ax]) F.8@p)lIDI”lloo - 11DI77 £ /(51D

= 0(1),

the equality (16) follows. Combining the equalities (15), (16) and the fact that
Tr(K,(c)) = 0 for every Hochschild cycle ¢ € A®®P+D  we infer that

Tr(ch(c) f(s|D])) = =25Te (W, () Ff(s|D])) + O(s) a7

for every Hochschild cycle ¢ € A®@*D_ The operator B = ch(c)|D|P+! is
bounded by Lemma 30. Using Lemma 25 (a), we obtain

ITe(B £ (s|DD|D[7P) = Te(BID|P7Y)| < [|BllooTr((1 — f(s|D)|D[7P71)
= 0(s).

Therefore,
Tr(ch(c) f(s| D)) = Ch(c) + O(s). (18)

By combining (17) and (18), we conclude the proof. O
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Proof of Proposition 29. By Lemma 31, we have

1
(p+1

Tr(W, (c)F|D|Pe~CIPD7 Ty = Ch(c)s™?~' + O(s7P).

Setting u = s?*!, we obtain

Tr(W, (c)F|D|Pe 21"y = Ch(c) + O(u~®=9/@+D)

~ (p+ Du

Integrating over u € [s, 1], we obtain

Tr(W, (c)F|D| ™ (e SIPI"T — =117 Thyy = Ch(c) log (%) + 0(1).

1
(r+1D
Taking into account that D™? € M , implies that \/\7,,(c)F|D|_1e_|DIerl e L.

Replacing s with s?T!, we conclude the proof. O

4.4. Proof of the main result. In this subsection, we prove Theorem 16. Recall
that the multilinear mapping W, is defined in Section 3.2.

Lemma 32. Let (A, H, D) be an odd (respectively, even) QC° spectral triple
and let c € A®P+Y be q Hochschild cycle. Suppose that p is odd (respectively,
even).

(@) If D77 € L1 c0, then
Ch(c)

¢(Wp(c)D71) =
for every normalised trace ¢ on L .
(b) If D77 € Mj,00, then

Tro(Wy(c) DY) = Ch(e)

for every Dixmier trace on M .



34 A. L. Carey, A. Rennie, F. Sukochev, and D. Zanin

Proof. Recall the algebra
B={Ae€L(H): A: dom(D) — dom(D), §"(A) € L(H) for all n > 0}.

It follows from Lemma 30 that W,(a)|D|?~! € B and is, therefore, bounded.
Set V =|D|7? and o = 1 + 1/ p. It follows from Proposition 29 that

_ Ch(e)

Tr(W,(c) D te= @)™ log(n) + O(1)

as n — oo. By the previous paragraph, we have
A=W,(c)F|D|’™" € L(H)

and, by assumption, V € £  (respectively, V € M ). Therefore, Proposi-
tion 6 is applicable and yields

P(Wy (D7) = )
for every normalised trace ¢ on £; o or
Try (Wy(e) D) = )
for every Dixmier trace on M o, respectively. O

Lemma 33. If (A, H, D) is a QC® spectral triple, then so is (A, H, Dy), where
Dy = F(1 4+ D?)'/2,

Proof. Set D1 = Dy — D € L(H). Define the operations
80: a —> [|Dol,a], 81:a —>[|Du],al.
Noting that | Do| = |D| + | D], we infer that
8o = 8 + 61.

Since the operations §y and §; commute, it follows that

n

@ =Y ()i et @,

k=0
Since 8% (a) is well defined and since §;: L(H) — L(H) is a bounded mapping,
it follows that 8§ (a) is well defined. Similarly, 83 (d(a)) is well defined. Define the
operations dg: a — [Dg,a] and d1: a — [D1, a]. We have
85 (do(a)) = 85(9(a)) + 85(d1(a)) = 85(3(a)) + 31(85(a)).
By Definition 12, (A, H, Dy) is a Q C* spectral triple. U
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We are now ready to prove the main result of the paper. We present the detailed
argument for the first part of the theorem.

Casek 1. Suppose that (A, H, D)isa QC* odd (p, oo)-summable spectral triple
and that p is even.
Let ¢ be a trace on £ . The mapping defined on A®P+1 by

¢ — @(Q(c)(1 + D?)7P/?)

is the Hochschild coboundary (see Appendix A) of the multilinear mapping de-
fined by

1= R
e - -p/2
Qo ®  ® ap-1 —> 2so(k]j[0[D,ak1(1 + D?)7P/2).
Every Hochschild coboundary vanishes on every Hochschild cycle, so that

e(Qc)(1+ D*)7P%) =0

for every Hochschild cycle ¢ € A®P*D  Thus, the left hand side of (8) vanishes.
Forc¢’ =ag ® --- ® ap, with p even,

p p
F[TIF.a] = = []1F.axlF
k=0 k=0

and, therefore,
P P

Ch(c') = Tr(F [TIF. ak]> — —Tr( [TIF. ak]F> — —Ch(c).

k=0 k=0

Hence, Ch(c’) = 0 for all ¢/ € A®P+D Thus, the right hand side of (8) vanishes.

Caske 2. Suppose that (A, H, D)isa QC° even (p, co)-summable spectral triple
and that p is odd.

Let ¢ be a trace on £1,0. By Definition 13, we have I'[D, a] = —[D, a]I" and
I'a = aTl for all a € A. Since p is odd, it follows that

p p
Fao [ [[D.ax)(1+ D?)~7% = aoT [[[D.ax](1 + D*)~7"2
k=1 k=1

14
= —ao [ [[D.ax]T(1 + D?)77/2
k=1

p
= —ao [ [[D.ax)(1 + D> 7P°T.
k=1
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Applying the trace ¢, we obtain

L4 p
cp(Fao l_[[D,ak](l + Dz)_”/z) = —go(Fao H[D,ak](l + D2)—p/2)_
k=1 k=1

Hence, the left hand side of (8) vanishes. Repeating the argument in Step 1, we
infer that the right hand side of (8) vanishes as well.

Caske 3. Suppose that p and the (p, co)-summable spectral triple (A, H, D) are
simultaneously odd (or even).
If D is invertible, then we infer from Proposition 18 and Lemma 32 that

9(Q(c)|D[7?) = pp(Wp(c)D™") = Ch(c)

and the assertion is proved. Suppose now that D is not invertible and consider the
invertible operator
Do = F(1 4+ D»)'?.

It follows from Lemma 33 that (A, H, Do) is a spectral triple with D, P e L1,00-
Clearly,
Dy:=Dog—-D
= F(1+|D»)"? D))
= F(ID|+ 1+ D)%) 7! € Lp .

We claim that

p p
ao [ [[D.arl|Dol™ —ao [ [[Do. axllDol ™ € L4 (19)
k=1 k=1

forap ® --- ® a, € AP+ To see the claim, let us write

P |[D,ar] forke A

p
[TPo.al=" > T[]
k=1

AC{1,2,...py k=1 |[D1,ar] fork ¢ A

The summand corresponding to the case A& = {1,2,..., p} coincides with
do ]_[,le[D, ar]|Do|™?, while all other summands belong to £;. Indeed, since
there exists k ¢ 4, it follows that the product contains the term [Dy, ax] € £, c0.
Thus, such a summand belongs to £, - £1,00 C £1 (by equation (2)). Since the
assertion holds for the spectral triple (A, H, Dg), we infer that it also holds for the
spectral triple (A, H, D).
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CasEg 4. If the spectral triple is Mg” go-summable, then the proof of Theorem 16 (b)

follows that of Theorem 16 (a) (see Cases 1, 2, 3 above) mutatis mutandi.

A. Computation of coboundaries

Computation 1. Let A C {1,..., p} be such that m — 1, m € 4. Let ¢ be a trace
on L1 o (respectively, on M o). The mapping on A®(P+1) defined by

¢ = ¢(Wa(e) D7)
is a Hochschild coboundary of the multilinear mapping

0:a0®@ - Qap—1
m—2 p—1

(_l)m_l 2 —|A|
— T(p(Fao [Tibe. axls?@n-1) [ [brsr. ar]D™).
k=1 k=m

Proof. For brevity, we prove the assertion for p = 2 as the proof in the general
case is very similar. We have

(b0)(ao,a1,az) = O(apay,az) — 0(ao, araz) + 0(azap, ar)

1
= —§¢(F000152(a2)|1)|_2)

1
+ §¢(F0052(01a2)|D|_2)

1
— Ew(Faza052(a1)|D|‘2)-

Since I' commutes with a, and since ¢ is a trace, it follows that

¢(Tazap8(a1)|D| %) = ¢(Taos*(a1)|D|2az)
= ¢(Tagé*(a1)az| D7) + ¢(Tags*(a1)[|D|7>, az]).

We have

[[D|72,a2] = —|D|7'8(a2)|D|7> — |D|28(a2)|D|™" € L1300 C £1.



38 A. L. Carey, A. Rennie, F. Sukochev, and D. Zanin
Therefore,
¢(Cazags*(ar)|D|7%) = p(Taed*(a1)az| D[ az).

Finally, we have

(bB)(ap,ar,az) = %GD(Fao(Sz(alaz) —a18%(az) — 8*(a1)a2)|D|7?)

and since

52(611612) — 61152(612) — 52(611)612 = 25(01)8(612),

the assertion follows. Ol

Computation 2. Let A, A, C {1,..., p} be such that |A;| = |A,| and
eAlAeA)z = {I’I’l — l,m}.

Let ¢ be a trace on £ o (respectively, on M; o). The mapping on A®@+1) de-
fined by

¢ > @(Wy, () D141 + (W4, (c) D142
is a Hochschild coboundary of the multilinear mapping

0:a0Q - ®ap—
p—1

— (=" g (Tao 1‘[ [br ai[F. 8(@m-1)] [ ] besr.aD~411).
k=1 k=m

Proof. For brevity, we prove the assertion for p = 2 as the proof in the general
case is a slight extension of this argument. We have

(b9)(@o, a1, a2) = 0(aoar, a2) = (@, a1a2) + O(a2ao, a1)
= —¢(Taoa1[F.8(az)]|D|™")
+ ¢(Tao[F, 8(araz)]|D|™")
—o(TaszaolF.8(a))]|D|™).
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Since I' commutes with a, and since ¢ is a trace, it follows that

p(TazaoF,8(a)]|D|™") = @(Tao[F. 8(a1)]|D]| ™ az)
= ¢(Tag[F.8(ar)]az|D|™")
+ @(Tao[F., §(a)][|D|™", az]).

We have
(1D az] = —|D|7'8(az)|D|™" € L1200 C L1.
Therefore,
@(TazaolF,8(a)]|D|™") = ¢(Tag[F.8(ar)]az| D|™).
Finally, we have
(bO)(ao,a1.a2) = ¢(Tag([F,8(araz)] — ai[F.8(az)] — [F.8(ar)]az)| D[7").
Since
[F,8(araz2)] — ai1[F,8(az)] — [F, 8(a1)]az = [F,a1]8(az) + 8(a1)[F, az],

the assertion follows. Ol
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