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Abstract. We study notions of measurability for singular traces, and characterise universal

measurability for operators in Dixmier ideals. �is measurability result is then applied

to improve on the various proofs of Connes’ identi�cation of the Hochschild class of the

Chern character of Dixmier summable spectral triples.

�e measurability results show that the identi�cation of the Hochschild class is in-

dependent of the choice of singular trace. As a corollary we obtain strong information

on the asymptotics of the eigenvalues of operators naturally associated to spectral triples

.A; H; D/ and Hochschild cycles for A.

Mathematics Subject Classi�cation (2010). 46L51, 46L87.

Keywords. Singular trace, operator ideal, measurability, Chern character, spectral triple.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Preliminaries on operator ideals, traces and measurability . . . . . . . . 3

3 Preliminaries on noncommutative geometry and the statements

of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A Computation of coboundaries . . . . . . . . . . . . . . . . . . . . . . . 37

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1. Introduction

In this article we exploit recent progress in the theory of singular traces to char-

acterise operators in Dixmier ideals which are measurable with respect to wide
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classes of singular traces. �e independence of the value obtained by applying

a singular trace in one of these classes to a measurable operator places strong

constraints on the asymptotics of the eigenvalues of such an operator.

We apply these measurability results to obtain improvements on Connes’

Hochschild character theorem, [7, �eorem 8, IV.2.] and [1, 3, 10], identifying

the Hochschild class of a .p; 1/-summable spectral triple, p 2 N. In particular

we prove:

(i) Connes’ result for arbitrary traces on L1;1 (other proofs hold only for the

original trace discovered by Dixmier). �is has interesting implications for

the eigenvalues of the Hochschild cycles;

(ii) the analogue of this theorem for the (Macaev-Dixmier) ideal M1;1 as well

as the p-convexi�cationsM
.p/
1;1 (introduced in [5], and denoted there by Zp).

�e latter ideal strictly contains Lp;1. Our proof holds for a wide class of

traces on M1;1, which we describe in the text.

�e de�nition of .p; 1/-summability involves one of two ideals, denoted here

by L1;1 and M1;1, or the related ideals Lp;1 and M
.p/
1;1. �is is where potential

confusion can arise, as well as much di�culty since the ideal M1;1 is more subtle

than L1;1. �e key technical improvement in this paper is the identi�cation of a

criterion guaranteeing measurability with respect to families of traces on these

ideals.

As an indication of the improvements we have obtained, we state a conse-

quence of our results which is applicable to numerous examples in the literature,

including the case of Dirac operators on compact manifolds and the noncommu-

tative torus.

�eorem. Let .A; H; D/ be a spectral triple with .1 C D2/�1=2 2 Lp;1, where p

is an integer of the same parity as the spectral triple. If the spectral triple is even

we let � be the grading, and otherwise let � D 1. For every Hochschild cycle

c 2 A
˝pC1, c D

P

i ci
0 ˝ ci

1 ˝ � � �˝ ci
p set �.c/ D

P

i �ci
0ŒD; ci

1� � � � ŒD; ci
p�. �en

denoting the (suitably ordered)1 eigenvalues of �.c/.1 C D2/�p=2 by �k we have

n
X

kD0

�k D Ch.c/ log.n/ C O.1/;

where Ch is the Chern character of the K-homology class of .A; H; D/. In par-

ticular, �.c/.1 C D2/�p=2 is universally measurable in the sense of De�nition 3.

1 �e eigenvalues are counted with algebraic multiplicities and arranged so that their absolute

values are non-increasing.
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We remark that we began this investigation because there is a gap in the proof

of Lemma 14 in [3] for the case p D 1 and the ideal denoted (and de�ned) below

by M1;1. Rather than simply produce an erratum, we decided to revisit the whole

argument in the light of progress made in the last 10 years [5, 6, 9, 12] which

provides, amongst other contributions, a more powerful algebraic approach.

Moreover we make an interesting technical innovation in this current approach

by exploiting recently discovered connections2 between Dixmier traces and heat

kernel functionals exposed in [19]. �ese connections result in a streamlining of

the proof and a major reduction in the number of estimates needed (compared to

the proof in [3]).

Our results are presented in the context of operator ideals in L.H/ for a separa-

ble in�nite dimensional Hilbert space. All of our results carry over to the general

case of operator ideals of a semi�nite von Neumann algebra although we do not

present the argument in that generality here. We have simpli�ed our approach,

compared to [3], by assuming that our spectral triples (introduced in Section 3)

are smooth, however, by taking more care in Lemma 30 we can recover the mini-

mal smoothness requirements of [3, Lemma 2].

�e necessary background on operator ideals, traces and measurability is pre-

sented in Section 2, and a key abstract measurability criterion is established in

Subsection 2.4. Section 3 summarises what we need about spectral triples, Chern

characters and Hochschild cohomology. We state our main results, �eorem 16

and Corollary 17 together with an outline of the proof in Subsection 3.2. Section 4

presents the proofs. An appendix shows how certain Hochschild coboundaries are

computed.

Acknowledgements. All authors were supported by the Australian Research

Council. AC also acknowledges the Alexander von Humboldt Stiftung and thanks

colleagues at the University of Münster for support while this research was under-

taken.

2. Preliminaries on operator ideals, traces and measurability

2.1. General notation. Fix throughout a separable in�nite dimensional Hilbert

space H . We let L.H/ denote the algebra of all bounded operators on H: For

a compact operator T on H , let �.k; T / and �.k; T / denote its k-th eigenvalue1

and k-th largest singular value (these are the eigenvalues of jT j). �e sequence

2 For a detailed exposition of the connections, we refer the reader to [14].
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�.T / D ¹�.k; T /ºk�0 is referred to as the singular value sequence of the oper-

ator T . �e standard trace on L.H/ is denoted by Tr. For an arbitrary operator

0 � T 2 L.H/, we set

nT .t / WD Tr.ET .t; 1//; t > 0;

where ET .a; b/ stands for the spectral projection of a self-adjoint operator T cor-

responding to the interval .a; b/. Fix an orthonormal basis in H (the particular

choice of a basis is inessential). We identify the algebra l1 of bounded sequences

with the subalgebra of all diagonal operators with respect to the chosen basis.

For a given sequence ˛ 2 l1; we denote the corresponding diagonal operator by

diag.˛/:

2.2. Principal ideals Lp;1 and the Macaev-Dixmier ideal M1;1. For a given

0 < p � 1; we let Lp;1 denote the principal ideal in L.H/ generated by the

operator diag.¹.k C 1/�1=pºk�0/: Equivalently,

Lp;1 D ¹T 2 L.H/ W �.k; T / D O..k C 1/�1=p/º:

�ese ideals, for di�erent p, all admit an equivalent description in terms of spectral

projections, namely

T 2 Lp;1 () Tr.EjT j.1=n; 1// D O.np/: (1)

We also have

jT jp 2 L1;1 () �p.k; T / D O..k C 1/�1/ () T 2 Lp;1:

We equip the ideal Lp;1; 0 < p � 1, with a quasi-norm3

kT kp;1 D sup
k�0

.k C 1/1=p�.k; T /; T 2 Lp;1:

�e following Hölder property is widely used throughout the paper:

Am 2 Lpm;1; 1 � m � n; H)

n
Y

mD1

Am 2 Lp;1;
1

p
D

n
X

mD1

1

pm

: (2)

We also need the Macaev-Dixmier ideal M1;1, also known as a Lorentz space,

given by

M1;1 D
°

A 2 L.H/ W sup
n�0

1

log.2 C n/

n
X

kD0

�.k; A/ < 1
±

:

3 A quasinorm satis�es the norm axioms, except that the triangle inequality is replaced by

jjx C yjj � K.jjxjj C jjyjj/ for some uniform constant K > 1.
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�e idealM
.p/
1;1 initially considered in [5] is the p-convexi�cation ofM1;1 de�ned

as follows.

M
.p/
1;1 D ¹A 2 L.H/ W jAjp 2 M1;1º:

�e ideal M
.p/
1;1 strictly contains Lp;1: We refer the reader to the book [14] for a

detailed discussion of the ideals L1;1 and M1;1.

2.3. Traces on L1;1.

De�nition 1. If I is an ideal in L.H/; then a unitarily invariant linear functional

' W I ! C is said to be a trace.

Since U �1T U �T D ŒU �1; T U � for all T 2 I and for all unitaries U 2 L.H/;

and since the unitaries span L.H/; it follows that traces are precisely the linear

functionals on I satisfying the condition

'.TS/ D '.ST /; T 2 I; S 2 L.H/:

�e latter may be reinterpreted as the vanishing of the linear functional ' on the

commutator subspace4 which is denoted ŒI;L.H/� and de�ned to be the linear

span of all commutators ŒT; S� W T 2 I; S 2 L.H/: It is shown in [14, Lemma 5.2.2]

that '.T1/ D '.T2/ whenever 0 � T1; T2 2 I are such that the singular value

sequences �.T1/ and �.T2/ coincide. For p > 1; the ideal Lp;1 does not admit

a non-zero trace while for p D 1; there exists a plethora of traces on L1;1 (see

e.g. [9] or [14]). An example of a trace on L1;1 is the restriction (from M1;1) of

the Dixmier trace introduced in [8] that we now explain.

De�nition 2. �e dilation semigroup on l1 is de�ned by setting

�k.x0; x1; � � � / D .x0; � � � ; x0
„ ƒ‚ …

k times

; x1; � � � ; x1
„ ƒ‚ …

k times

; � � � /

for every k � 1: In this paper a dilation invariant extended limit means a state on

the algebra l1 invariant under �k , k D 2; 3; : : : .

4 �e commutator subspace of the ideal is, in general, not an ideal in L.H/: For example, it

follows from �eorem 5 below that

diag
�° .�1/k

k C 1

±

k�0

�

2 ŒL1;1;L.H/�; diag
�° 1

k C 1

±

k�0

�

… ŒL1;1;L.H/�:

However, the commutator subspace of the ideal L1;1 is an ideal in L1;1 (as opposed to L.H/).

We refer the reader to [15] for the study of such subideals.
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Example. Let ! be a dilation invariant extended limit. �en the functional

Tr! W MC
1;1 �! C

de�ned by setting

Tr!.A/ D !
�° 1

log.2 C n/

n
X

kD0

�.k; A/
±

n�0

�

; 0 � A 2 M1;1;

is additive and, therefore, extends to a trace on M1;1: We call such traces Dixmier

traces. �ese traces clearly depend on the choice of the functional ! on l1. Using

a slightly di�erent de�nition, this notion of trace was applied by Connes [7] in

noncommutative geometry. We also remark that the assumption used by Dixmier

of translation invariance for the functional ! is redundant [14, �eorem 6.3.6].

An extensive discussion of traces, and more recent developments in the theory,

may be found in [14] including a discussion of the following facts.

(1) All Dixmier traces on L1;1 are positive.

(2) All positive traces on L1;1 are continuous in the quasi-norm topology.

(3) �ere exist positive traces on L1;1 which are not (restrictions to L1;1 from

M1;1 of) Dixmier traces (see [18]).

(4) �ere exist traces on L1;1 which fail to be continuous (see [9]).

We are mostly interested in normalised traces ' W L1;1 ! C; that is, satisfying

'.T / D 1 whenever 0 � T is such that �.k; T / D 1=.k C 1/ for all k � 0: We do

not require continuity of a normalised trace.

�e following de�nition, extending that originally introduced in [7], plays an

important role here.

De�nition 3. An operator T 2 L1;1 will be said to be universally measurable if

all normalised traces take the same value on T:

�e following lemma characterises the universally measurable operators.

Lemma 4. All normalised traces on L1;1 take the value z 2 C on the operator

T if and only if

T � z � diag
�° 1

k C 1

±

k�0

�

2 ŒL1;1;L.H/�:
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Proof. Suppose that all normalised traces on L1;1 take the value z on the op-

erator T . For brevity we write T0 D diag.¹ 1
kC1

ºk�0/. If T � zT0 is not in the

commutator subspace, then it follows from Zorn’s lemma that there exists a linear

functional ' on L1;1 such that 'jŒL1;1;L.H/� D 0 and such that '.T � zT0/ D 1.

By De�nition 1, ' is a trace. Fix a normalised trace '0. �e normalised trace

' C .1 � '.T0//'0 takes the value z C 1 at T , which contradicts the assumption.

�is proves that T � zT0 2 ŒL1;1;L.H/�. �e converse assertion follows from

the de�nitions.

�e description of the commutator subspace initially appeared in [11] in a very

general situation. �e statement below appeared �rst in [12] and for a detailed

proof we refer the reader to �eorem 5.7.6 and �eorem 10.1.3 in [14].

Proposition 5. An operator T 2 L1;1 is universally measurable if and only if

n
X

kD0

�.k; T / D z log.n C 1/ C O.1/; n � 0;

for some constant z 2 C: In this case, '.T / D z for every normalised trace ': In

particular

T 2 ŒL1;1;L.H/� ()

n
X

kD0

�.k; T / D O.1/; n � 0:

2.4. A universal measurability result. In this subsection, we prove a measura-

bility criterion for operators of the form AV; A 2 L.H/; V 2 L1;1; or V 2 M1;1:

�is result links measurability with the heat semigroup, thus signi�cantly improv-

ing the main result of [6]. More information on these links can be found in [14]

(see also [19]). �e precise statement of our measurability criterion is as follows.

Proposition 6. Let 0 � V 2 L.H/; A 2 L.H/ and ˛ > 1 be such that

Tr.AVe�.nV /�˛

/ D z log.n/ C O.1/; n ! 1: (3)

(a) If V 2 L1;1; then '.AV / D z for every normalised trace ' on L1;1:

(b) If V 2 M1;1; then Tr!.AV / D z for every Dixmier trace Tr! on M1;1:

We require several Lemmas before presenting the proof of Proposition 6.



8 A. L. Carey, A. Rennie, F. Sukochev, and D. Zanin

Lemma 7. If 0 � V 2 L1;1; then, for every ˛ > 1; we have

Tr.V ˛.1 � e�.nV /�˛

// D O.n1�˛/; Tr.e�.nV /�˛

// D O.n/; n ! 1:

Proof. By the assumption, we have �.k; V / � kV k1;1=.k C 1/ for all k � 0:

Select W � V (with the same eigenbasis) such that �.k; W / D kV k1;1=.k C 1/

for all k � 0: An elementary computation shows that the mapping

g W x �! x.1 � e�x�1

/; x � 0;

is increasing. Since V and W commute, .nV /˛ � .nW /˛ for all n � 1 and it

follows that g..nV /˛/ � g..nW /˛/. �erefore,

Tr.V ˛.1 � e�.nV /�˛

// D n�˛Tr.g..nV /˛// � n�˛Tr.g..nW /˛//

D kV k˛
1;1

1
X

kD1

k�˛.1 � exp.�.nkV k1;1/�˛k˛//

� kV k˛
1;1

Z 1

0

s�˛.1 � exp.�.nkV k1;1/�˛s˛//ds

D n1�˛kV k1;1

Z 1

0

u�˛.1 � exp.�u˛//du:

Here, in the last step we used the substitution s D nkV k1;1u: �is proves the �rst

equality.

�e second equality is proved as follows:

Tr.e�.nV /�˛

// � Tr.e�.nW /�˛

//

D

1
X

kD1

exp.�.nkV k1;1/�˛k˛/

�

Z 1

0

exp.�.nkV k1;1/�˛s˛/ds

D nkV k1;1

Z 1

0

exp.�u˛/du:

In the last step we again used the substitution s D nkV k1;1u:
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Lemma 8. If 0 � V 2 L1;1 and if A 2 L.H/; then

n
X

kD0

�.k; AV / D Tr
�

AVEV

h 1

n
; 1

��

C O.1/; n ! 1:

Proof. Recall that a Hilbert-Schmidt operator W is said to be V -modulated (in

the sense of [14, De�nition 11.2.1]) if

sup
t>0

t1=2kW.1 C tV /�1k2 < 1:

We show that the operator AV is V -modulated. Indeed, we have

sup
t>0

t1=2kAV.1 C tV /�1k2 � kAk1 sup
t>0

t1=2kV.1 C tV /�1k2

� kAk1 sup
t>0

t1=2




° 1

�.k; V /�1 C t

±

k�0





2

< 1:

Let ek, k � 0, be an eigenbasis of V: Since AV is V -modulated and since V � 0;

it follows from �eorem 11.2.3 in [14] that

n
X

kD0

�.k; AV / D

n
X

kD0

�.k; V /hAek ; eki C O.1/:

By de�nition, EV Œ 1
n
; 1/ is the projection onto ek, 0 � k � m.n/, where

m.n/ D Tr.EV Œ1=n; 1//. Since V 2 L1;1, we have �.k; V / � C
kC1

for some

constant C > 0 and all k � 0. �is inequality guarantees that m.n/ D O.n/

as n ! 1, by equation (1), in particular, there is a constant C < 1 such that

m.n/ � C n, for all n � 1. It may also happen that m.n/ < n.

If m.n/ < n; then (since �.k; V / < 1
n

for k > m.n/), we have

n
X

kDm.n/C1

�.k; V / �

n
X

kDm.n/C1

1

n
� 1:

If m.n/ � n; then

m.n/
X

kDnC1

�.k; V / �

Cn
X

kDnC1

�.k; V / � kV k1;1

Cn
X

kDnC1

1

k
D O.1/:

In either case, we have

ˇ
ˇ
ˇ

n
X

kD0

�.k; V / �

m.n/
X

kD0

�.k; V /
ˇ
ˇ
ˇ D O.1/:
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With these observations, we have the equality

Tr
�

AVEV

h 1

n
; 1

��

D

m.n/
X

kD0

�.k; V /hAek ; eki:

It follows that

ˇ
ˇ
ˇ

n
X

kD0

�.k; AV / � Tr
�

AVEV

h 1

n
; 1

��ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ

n
X

kD0

�.k; V /hAek; eki C O.1/ �

m.n/
X

kD0

�.k; V /hAek; eki
ˇ
ˇ
ˇ

� kAk1

ˇ
ˇ
ˇ

n
X

kD0

�.k; V / �

m.n/
X

kD0

�.k; V /
ˇ
ˇ
ˇ C O.1/

D O.1/:

�e above Lemmas allow us to prove the �rst statement of Proposition 6.

Proof of Proposition 6 (a). We start by showing that

jTr.AVe�.nV /�˛

/ � Tr.AVEV Œ1=n; 1// D O.1/; n ! 1: (4)

Indeed,
ˇ
ˇ
ˇTr

�

AVe�.nV /�˛
�

� Tr.AVEV Œ1=n; 1//
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇTr.AV.e�.nV /�˛

� 1/EV Œ1=n; 1//
ˇ
ˇ
ˇ

C
ˇ
ˇ
ˇTr.AVe�.nV /�˛

EV Œ0; 1=n//
ˇ
ˇ
ˇ

� kAk1

� ˇ
ˇ
ˇTr.V .e�.nV /�˛

� 1/EV Œ1=n; 1//
ˇ
ˇ
ˇ

C
ˇ
ˇ
ˇTr.Ve�.nV /�˛

EV Œ0; 1=n//
ˇ
ˇ
ˇ

�

:

In order to complete the proof, we observe that the spectral theorem yields

VEV Œ0; 1=n/ � 1=n:

Similarly, for any ˛ > 1 we have the inequality

��.1=n;1/.�/ � n˛�1�˛;
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where �.1=n;1/ is the indicator function of the interval .1=n; 1/, and so the spec-

tral theorem yields VEV Œ1=n; 1/ � n˛�1V ˛ .

It now follows that

jTr.AVe�.nV /�˛

/ � Tr.AVEV Œ1=n; 1//j

� kAk1

�

n˛�1Tr.V ˛.1 � e�.nV /�˛

// C
1

n
Tr.e�.nV /�˛

/
�

D O.1/:

Here, the last equality holds by Lemma 7. Appealing to the assumption (3) and

Lemma 8, we rewrite the preceding inequality as

n
X

kD0

�.k; AV / D z log.n/ C O.1/

and conclude using Proposition 5.

To prove the second part of Proposition 6, we need the following lemmas.

Lemma 9. Let ! be a dilation invariant extended limit on l1: For every 0 � V 2

M1;1 and ˛ > 1, we have

!
�° 1

n log.n/
Tr.e�.nV /�˛

/
±

n�0

�

D 0:

Proof. Fix " 2 Œ0; 1� and observe that

e�t�˛

� 4"t2; 0 � t � ":

Hence, for every t > 0; we have

e�.nt/�˛

� �. "
n ;1/.t / C 4".nt/2�Œ0; "

n �.t / � �. "
n ;1/.t / C 4".min¹nt; 1º/2:

Applying the functional calculus, we infer from the inequality above that

e�.nV /�˛

� EV ."=n; 1/ C 4" min¹.nV /; 1º2:

Hence, using the fact that ! is a positive functional, we obtain

!
�° 1

n log.n/
Tr.e�.nV /�˛

/
±

n�0

�

� !
�° nV . "

n
/

n log.n/

±

n�0

�

C 4"!
�°min¹.nV /; 1º2

n log.n/

±

n�0

�

:

Here, the second term is well de�ned thanks to Lemma 8.4.2 (b) in [14].

By Lemma 8.2.8 in [14], the �rst term vanishes for every " > 0: Letting " ! 0;

we conclude the proof.
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Lemma 10. Let ! be a dilation invariant extended limit on l1, ˛ > 1, and intro-

duce the notation TC for the positive part of a self adjoint operator T . For every

A 2 L.H/ and for every 0 � V 2 M1;1; we have

!
�° 1

log.n/
Tr.AVe�.nV /�˛

/
±

n�0

�

D !
�° 1

log.n/
Tr.A.V � 1=n/C/

±

n�0

�

:

Proof. Without loss of generality, the operator A is positive. Fix " > 0: Applying

the functional calculus to the numerical inequality

e�"˛

.t � 1="n/C � te�.nt/�˛

� .t � 1=n/C C
1

n
�Œ 1

n
;1/.t / C

1

n
e�.nt/˛

;

(the subscripted C again denotes the positive part) we obtain an inequality involv-

ing trace class operators

e�"˛

.V �1="n/C � Ve�.nV /�˛

� .V �1=n/C C
1

n
EV Œ1=n; 1/C

1

n
e�.nV /˛

: (5)

For any trace class operator T , cyclicity of the trace gives

Tr.A1=2TA1=2/ D Tr.AT /:

We apply this observation to the second inequality in (5) to infer that

Tr.AVe�.nV /�˛

/ � Tr .A.V � 1=n/C/ C
kAk1

n
nV .1=n/ C

kAk1

n
Tr.e�.nV /˛

/:

It follows from Lemma 8.2.8 in [14] and Lemma 9 that

!
�° 1

log.n/
Tr.AVe�.nV /�˛

/
±

n�0

�

� !
�° 1

log.n/
Tr .A.V � 1=n/C/

±

n�0

�

: (6)

Now we apply Tr.A1=2TA1=2/ D Tr.AT / to the �rst inequality in (5) to insert a

positive operator A under the trace. So we infer that

!
�° 1

log.n/
Tr.AVe�.nV /�˛

/
±

n�0

�

� e�"˛

!
�° 1

log.n/
Tr .A.V � 1=n"/C/

±

n�0

�

:

Taking into account that ! is dilation invariant and passing to the limit " ! 0, we

infer that

!
�° 1

log.n/
Tr.AVe�.nV /�˛

/
±

n�0

�

� !
�° 1

log.n/
Tr .A.V � 1=n/C/

±

n�0

�

: (7)

�e assertion follows by combining (6) and (7).

We can now complete the proof of Proposition 6.
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Proof of Proposition 6 (b). For every dilation invariant extended limit ! on l1;

we de�ne a heat semigroup functional

�! W W �! .! ı M/
�°1

n
Tr.e�.nW /�1

/
±

n�0

�

; 0 � W 2 M1;1:

By �eorem 8.2.5 in [14], the functional �! extends to a Dixmier trace on M1;1:

For every dilation invariant extended limit !; we infer from Lemma 10 that

!
�° 1

log.n/
Tr

�

A.V �
1

n
/C

�±

n�0

�

D !
�° 1

log.n/
Tr.AVe�.nV /�˛

/
±

n�0

�

D z:

�en, by Lemma 8.5.3 in [14], we have �!.AV / D z for every dilation invariant

extended limit !: Finally, by �eorem 8.3.6 in [14], the set of all Dixmier traces

coincides with the set of all functionals �! ; where ! runs through all dilation

invariant extended limits on l1: �e assertion follows immediately.

3. Preliminaries on noncommutative geometry

and the statements of the main results

3.1. Spectral triples and Hochschild (co)homology. Let D W dom.D/ ! H be

a self-adjoint operator with dom.D/ � H a dense linear subspace. An operator

D admits a polar decomposition D D F jDj; where the phase F is a self-adjoint

unitary operator de�ned by

F WD ED.Œ0; 1// � ED.�1; 0/

and

jDj W dom.D/ �! H

is a self-adjoint operator. �e following de�nitions should be compared with Def-

inition 1.20 in [2].

De�nition 11. A spectral triple .A; H; D/ consists of a subalgebra A of L.H/

such that

(a) a W dom.D/ ! dom.D/ for all a 2 A;

(b) ŒD; a� W dom.D/ ! H extends to an operator @.a/ 2 L.H/ for all a 2 A;

(c) a.1 C D2/�1=2 is a compact operator for all a 2 A.

In what follows, if a W dom.D/ ! dom.D/; then the (a priori unbounded)

operator ŒjDj; a� W dom.D/ ! H is denoted by ı.a/:
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De�nition 12. A spectral triple is QC 1 if

(a) a W dom.Dn/ ! dom.Dn/ for all a 2 A and

(b) for all n � 0 the operators

ın.a/ W dom.Dn/ �! H; ın.@.a// W dom.DnC1/ �! H

extend to bounded operators for all n � 0 and for all a 2 A:

De�nition 13. A spectral triple is said to be

(a) even if there exists � 2 L.H/ such that � D ��; �2 D 1 and such that

Œ�; a� D 0 for all a 2 A; ¹D; �º D 0: Here ¹�; �º denotes anticommutator.

(b) odd if no such � exists. In this case, we set � D 1:

(c) .p; 1/-summable if .1 C D2/�p=2 2 L1;1:

(d) M
.p/
1;1-summable if .1 C D2/�p=2 2 M1;1:

�e following assertion is proved in many places, e.g. [4, Corollary 0.5], [3],

and [16]. We prove a related statement in Lemma 30.

Proposition 14. If .A; H; D/ is a spectral triple that is QC 1 and .p; 1/-sum-

mable, then ŒF; a� and ŒF; ık.a/� lie in Lp;1 for all a 2 A and k � 1.

De�ne multilinear mappings

ch W A˝.pC1/ �! L.H/

and

� W A˝.pC1/ �! A

by setting

ch.a0 ˝ � � � ˝ ap/ D F �

p
Y

kD0

ŒF; ak�;

and

�.a0 ˝ � � � ˝ ap/ D �a0

p
Y

kD1

ŒD; ak�:

If a spectral triple .A; H; D/ is .p; 1/-summable, then it follows from Propo-

sition 14 and the Hölder inequality in equation (2) that ch.c/ 2 Lp=.pC1/;1 � L1

for all c 2 A
˝.pC1/: �is justi�es the following de�nition.
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De�nition 15. If .A; H; D/ is a .p; 1/-summable spectral triple, then Connes’

Chern character A˝.pC1/ ! C is ‘is de�ned (up to a constant factor) by setting

Ch.c/ D
1

2
Tr.ch.c//; c 2 A

˝.pC1/:

In fact the Chern character is the class of Ch in periodic cyclic cohomology,

but we shall ignore this distinction in the sequel.

We now turn to Hochschild (co)homology. �e algebra A is equipped with the

ı-topology, [17], determined by the seminorms

qn W A �! Œ0; 1/

given by

qn.a/ D

n
X

kD0

kık.a/k C kık.ŒD; a�/k:

�e tensor powers of A are completed in the projective tensor product topol-

ogy. If � W A˝n ! C is a continuous multilinear functional, then the multilinear

functional

b� W A˝.nC1/ �! C

is de�ned by

.b�/.a0 ˝ � � � ˝ an/

D �.a0a1 ˝ a2 ˝ � � � ˝ an/

C

n�1
X

kD1

.�1/k�.a0 ˝ a1 ˝ � � � ak�1 ˝ akakC1 ˝ akC1 ˝ � � � ˝ an/

C .�1/n�.ana0 ˝ a1 ˝ a2 ˝ � � � ˝ an�1/:

We call b� the Hochschild coboundary of �: If b� D 0; then we call � a Hochschild

cocycle. We also need the dual notion of Hochschild cycle. �e Hochschild

boundary

b W A˝.nC1/ �! A
˝n

is de�ned by setting

b.a0 ˝ � � � ˝ an/ D a0a1 ˝ a2 ˝ � � � ˝ an

C

n�1
X

kD1

.�1/ka0 ˝ a1 ˝ � � � ak�1 ˝ akakC1 ˝ akC1 ˝ � � � ˝ an

C .�1/nana0 ˝ a1 ˝ a2 ˝ � � � ˝ an�1:
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If c 2 A
˝.nC1/ is such that bc D 0; then c is called a Hochschild cycle. For

example, if n D 1; then b.a0 ˝ a1/ D Œa0; a1�: Hence, an elementary tensor

a0 ˝ a1 is a Hochschild cycle if and only if a0 and a1 commute. �e de�nitions

are dual in the sense that for any multilinear functional � , .b�/.a/ D �.ba/. In

particular, a Hochschild coboundary vanishes on every Hochschild cycle.

3.2. �e main results and the plan of the proofs. For the statement of our main

theorem, and the remainder of the paper, we assume that p 2 N:

�eorem 16. Let .A; H; D/ be a QC 1 spectral triple which is even or odd ac-

cording to whether p is even or odd, and let c 2 A
˝.pC1/ be a Hochschild cycle.

(a) If the spectral triple is .p; 1/-summable, then for every normalised trace '

on L1;1

'.�.c/.1 C D2/�p=2/ D Ch.c/: (8)

(b) If the spectral triple is M
.p/
1;1-summable, then

Tr!.�.c/.1 C D2/�p=2/ D Ch.c/

for every Dixmier trace on M1;1:

Let us illustrate the assertion for p D 1: If elements a0; a1 2 A commute, then

the elementary tensor a0 ˝ a1 is a Hochschild 1-cycle and

'.a0ŒD; a1�.1 C D2/�1=2/ D
1

2
Tr.F ŒF; a0�ŒF; a1�/

for every trace ' on L1;1: �e corollary below follows from �eorem 16 and

Proposition 5.

Corollary 17. Suppose that the assumptions of �eorem 16 (a) hold. Suppose that

c 2 A
˝.pC1/ is a Hochschild cycle. �en

(a) �.c/.1 C D2/�p=2 2 ŒL1;1;L.H/� if and only if Ch.c/ D 0, and more

generally

�.c/.1 C D2/�p=2 2 Ch.c/ � diag
�° 1

k C 1

±

k�0

�

C ŒL1;1;L.H/�I

(b) there is an equality

n
X

mD0

�.m; �.c/.1 C D2/�p=2/ D Ch.c/ log.n/ C O.1/; n � 0:
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�eorem 16 is initially proved under the assumption of invertibility of D in

Subsection 4.4, after proving some intermediate steps. �e �rst step is to replace

�.c/jDj�p by a new operator. More speci�cally, for 1 � m � p; we de�ne the

multilinear mappings

Wm W A˝.pC1/ �! L.H/

by setting

Wm.a0 ˝ � � � ˝ ap/ D �a0

� m�1
Y

kD1

ŒF; ak�
�

ı.am/
� p

Y

kDmC1

ŒF; ak�
�

: (9)

By Proposition 14 and by the Hölder property in equation (2), Wm.c/D�1 2 L1;p

(respectively, Wm.c/D�1 2 M1;1). �en, by exploiting Hochschild cohomology

(see Appendix A), we show in Subsection 4.1 that (for D�1 2 L1;1)

�.c/jDj�p � pWp.c/D�1 2 ŒL1;1;L.H/�:

We prove the analogous result for D�1 2 M1;1 also. �en, in Subsection 4.2,

we obtain a number of commutator estimates which allow us to prove, in Subsec-

tion 4.3, that for every Hochschild cycle c 2 A
˝.pC1/,

Tr.Wp.c/D�1e�.sjDj/pC1

/ D Ch.c/ log
�

1=s
�

C O.1/; s ! 0:

By invoking our abstract measurability criterion, Proposition 6, we can then as-

semble the pieces to prove the main result in Subsection 4.4. We also show at this

point how to remove the invertibility assumption.

4. Proofs

Until Subsection 4.4, we will suppose that the operator D of a spectral triple

.A; H; D/ is invertible.

4.1. Exploiting Hochschild cohomology. Our aim in this subsection is to prove

the following result, by re�ning the approach of [3, Section 3.5].

Proposition 18. Let .A; H; D/ be an odd (respectively, even) QC 1 spectral triple

and let p be odd (respectively, even). For every Hochschild cycle c 2 A
˝.pC1/,

(a) if D�p 2 L1;1; then �.c/jDj�p � pWp.c/D�1 2 ŒL1;1;L.H/�;

(b) if D�p 2 M1;1; then �.c/jDj�p � pWp.c/D�1 2 ŒM1;1;L.H/�:
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We consider auxiliary multilinear mappings which generalise the mappings

Wm; 1 � m � p, introduced above in equation (9). For A � ¹1; : : : ; pº de�ne the

multilinear mapping

WA W A˝.pC1/ �! L.H/

by setting

WA.a0 ˝ � � � ˝ ap/ WD �a0

p
Y

kD1

Œbk ; ak�; a0 ˝ � � � ˝ ap 2 A
˝.pC1/;

where bk D jDj; for k 2 A; and bk D F; for k … A: Evidently, if A D ¹mº; then

WA D Wm: It follows from Proposition 14 and the Hölder property in equation (2)

that

WA.a/D�jAj 2 L1;1; A � ¹1; : : : ; pº:

For every A � ¹1; : : : ; pº; de�ne the number

nA D j¹.i; j / W i < j; i 2 A; j … Aºj:

�e following assertion explains the introduction of the mappings WA;

A � ¹1; : : : ; pº that are used for the proof of Proposition 18. We denote the cardi-

nality of A by jAj.

Lemma 19. If .A; H; D/ is QC 1 spectral triple with D�p 2 L1;1; then for all

c 2 A
˝.pC1/

�.c/jDj�p �
X

A�¹1;:::;pº

.�1/nAWA.c/D�jAj 2 L1:

Proof. We will proceed by proving that for 1 � q � p and c D a0 ˝a1 ˝� � �˝aq,

�a0ŒD; a1� � � � ŒD; aq�jDj�q D
X

A�¹1;:::;qº

.�1/nAWA.c/D�jAj mod Lp=.qC1/;1:

(10)

For q D 1; we consider c D a0 ˝ a1 2 A
˝2: We have

ŒD; a1� D ŒF jDj; a1�

D F ı.a1/ C ŒF; a1�jDj

D ŒF; ı.a1/� C ı.a1/F C ŒF; a1�jDj

D .ŒF; ı.a1/�jDj�1 C ı.a1/D�1 C ŒF; a1�/jDj:
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By Proposition 14 and the assumption, the operator ŒF; ı.a1/�jDj�1 is in

Lp;1 � Lp;1 � Lp=2;1, while the other terms in parentheses are in Lp;1, and

give the right hand side of equation (10). �us we have proved the case q D 1.

Suppose then that we have proved the claim for some q < p. Since commuta-

tors with jDj�1 improve summability, it follows that

� qC1
Y

kD2

ŒD; ak�
�

jDj�1 D jDj�1
� qC1

Y

kD2

ŒD; ak�
�

mod Lp=2;1:

�erefore,

�a0

� qC1
Y

kD1

ŒD; ak�
�

jDj�q�1

D �a0ŒD; a1�
�� qC1

Y

kD2

ŒD; ak�
�

jDj�1
�

jDj�q

D �a0ŒD; a1�
�

jDj�1
� qC1

Y

kD2

ŒD; ak� mod Lp=2;1

��

jDj�q

D �a0ŒD; a1�jDj�1
�� qC1

Y

kD2

ŒD; ak�
�

jDj�q
�

mod Lp=.qC2/;1:

By induction, we have
� qC1

Y

kD2

ŒD; ak�
�

jDj�q D S

where

S D
X

A�¹2;:::;qC1º

�WA.1; a2; : : : ; aqC1/.�1/nAD�jAj mod Lp=.qC1/;1:

�us,

�a0

� qC1
Y

kD1

ŒD; ak�
�

jDj�q�1

D �a0ŒD; a1�jDj�1
S

D �a0.ı.a1/F C ŒF; a1�jDj/jDj�1
S:

Since commutators with jDj�1 improve summability, it follows that

jDj�1�WA.1; a2; : : : ; aqC1/

D �WA.1; a2; : : : ; aqC1/jDj�1 mod Lp=.qC2�jAj/;1:
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Since ŒF; ı.a/� 2 Lp;1 for all a 2 A; it follows that

F �WA.1; a2; : : : ; aqC1/

D .�1/q�jAj�WA.1; a2; : : : ; aqC1/F mod Lp=.qC1�jAj/;1:

Indeed, we have F ŒF; a� D �ŒF; a�F for every a 2 A and there are exactly q �jAj

commutators ŒF; aj � in WA:

�erefore,

�a0

� qC1
Y

kD1

ŒD; ak�
�

jDj�q�1

D
X

A�¹2;:::;qC1º

.�1/nA.�1/q�jAj�a0ı.a1/�WA.1; a2; : : : ; aqC1/D�jAj�1

C
X

A�¹2;:::;qC1º

.�1/nA�a0ŒF; a1�

�WA.1; a2; : : : ; aqC1/D�jAj mod Lp=.qC2/;1:

For each A � ¹2; : : : ; q C 1º de�ne

QA D A [ ¹1º � ¹1; : : : ; q C 1º

and

OA D A � ¹1; : : : ; q C 1º:

�en

n QA
D q � jAj C nA

while

n OA
D nA:

By de�nition, we have

�a0ı.a1/�WA.1; a2; : : : ; aqC1/ D W QA
.c/

and

�a0ŒF; a1��WA.1; a2; : : : ; aqC1/ D W OA
.c/:

Hence,

�a0

� qC1
Y

kD1

ŒD; ak�
�

jDj�q�1

D
X

A�¹2;:::;qC1º

.�1/n QAW QA
.c/C

X

A�¹2;:::;qC1º

.�1/n OAW OA
.c/ mod Lp=.qC2/;1:
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Since every B � ¹1; : : : ; q C 1º coincides either with QA or else with OA for a

unique A � ¹2; : : : ; q C 1º; the equation (10) follows for q C 1: �is proves the

Lemma.

Lemma 20. Let .A; H; D/ be a QC 1 spectral triple and let c 2 A
˝.pC1/ be a

Hochschild cycle. Suppose that jAj � 2 and m � 1; m 2 A for some m:

(a) If D�p 2 L1;1; then WA.c/D�jAj 2 ŒL1;1;L.H/�:

(b) If D�p 2 M1;1; then WA.c/D�jAj 2 ŒM1;1;L.H/�:

Proof. Let ' be a trace onL1;1 (respectively, onM1;1). �e mapping onA˝.pC1/

given by

c 7�! '.WA.c/D�jAj/

is the Hochschild coboundary (see Appendix A) of the multilinear mapping de-

�ned by

a0 ˝ � � � ˝ ap�1

7�!
.�1/m�1

2
'

�

�a0

m�2
Y

kD1

Œbk ; ak�ı2.am�1/

p�1
Y

kDm

ŒbkC1; ak�D�jAj
�

:

Since a Hochschild coboundary vanishes on every Hochschild cycle, it follows

that '.WA.c/D�jAj/ D 0 for every Hochschild cycle c 2 A
˝.pC1/: Since ' is an

arbitrary trace, the assertion follows.

Lemma 21. Let .A; H; D/ be a QC 1 spectral triple and let c 2 A
˝.pC1/ be a

Hochschild cycle. Suppose that jA1j D jA2j � 2 and that the symmetric di�erence

A1�A2 D ¹m � 1; mº for some m:

(a) If D�p 2 L1;1; then WA1
.c/D�jA1j C WA2

.c/D�jA2j 2 ŒL1;1;L.H/�:

(b) If D�p 2 M1;1; then WA1
.c/D�jA1j C WA2

.a/D�jA2j 2 ŒM1;1;L.H/�:

Proof. Let ' be a trace onL1;1 (respectively, onM1;1). �e mapping onA˝.pC1/

given by

c 7�! '.WA1
.c/D�jA1j/ C '.WA2

.c/D�jA2j/
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is the Hochschild coboundary (see Appendix A) of the multilinear mapping

de�ned by

a0 ˝ � � � ˝ ap�1

7�! .�1/m�1'
�

�a0

m�2
Y

kD1

Œbk ; ak�ŒF; ı.am�1/�

p�1
Y

kDm

ŒbkC1; ak�D�jA1j
�

:

�e proof is concluded by using the same argument as in the preceding lemma.

Corollary 22. Let .A; H; D/ be a QC 1 spectral triple and let c 2 A
˝.pC1/ be a

Hochschild cycle. Suppose that jAj � 2:

(a) If D�p 2 L1;1; then WA.c/D�jAj 2 ŒL1;1;L.H/�:

(b) If D�p 2 M1;1; then WA.c/D�jAj 2 ŒM1;1;L.H/�:

Proof. Let n < m be such that n; m 2 A: Without loss of generality, i C n … A

for all 0 < i < m � n: Set

Ai D .An¹nº/ [ ¹i C nº; 0 � i < m � n:

We have

(1) jAi j D jAj and jAi�Ai�1j D 2 for all 1 � i < m � n:

(2) A0 D A and m � 1; m 2 Am�n�1:

It follows from Lemma 21 that WAm�n�1
.a/D�1 2 ŒL1;1;L.H/� (respectively,

WAm�n�1
.a/D�1 2 ŒM1;1;L.H/�). �e assertion follows by applying Lemma 20

m � n � 1 times.

Lemma 23. Let .A; H; D/ be a QC 1 spectral triple and let c 2 A
˝.pC1/ be a

Hochschild cycle.

(a) If D�p 2 L1;1; then W¿.c/ 2 ŒL1;1;L.H/�:

(b) If D�p 2 M1;1; then W¿.c/ 2 ŒM1;1;L.H/�:
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Proof. We prove (a) only (the proof of (b) is identical). Let a0 ˝ � � � ˝ ap 2

A
˝.pC1/: We have

2�a0

p
Y

kD1

ŒF; ak� D ŒF; F �a0

p
Y

kD1

ŒF; ak�� C .�1/p�1F �

p
Y

kD0

ŒF; ak� (11)

so that

2W¿.c/ D ŒF; FW¿.c/� C .�1/p�1 ch.c/: (12)

Since W¿.c/ 2 L1;1; it follows that ŒF; FW¿.c/� 2 ŒL1;1;L.H/�. By Propo-

sition 14 and the Hölder property in equation (2), ch.c/ 2 L1 � ŒL1;1;L.H/�:

�us, W¿.c/ 2 ŒL1;1;L.H/�:

We are now ready to prove the main result of this subsection.

Proof of Proposition 18. As in preceding lemma, we prove (a) only (the proof

of (b) is identical). For every Hochschild cycle c 2 A
˝.pC1/; it follows from

Lemma 19 that

�.c/jDj�p 2
X

A�¹1;:::;pº

.�1/nAWA.c/D�jAj C L1:

Applying Corollary 22 to every summand in the sum
P

jAj�2 and Lemma 23,

we infer that

�.c/jDj�p 2
X

jAjD1

.�1/nAWA.c/D�1 C ŒL1;1;L.H/�:

If A D ¹mº; then nA D p � m: �erefore,

�.c/jDj�p 2

p
X

mD1

.�1/p�m
Wm.c/D�1 C ŒL1;1;L.H/�:

Applying Lemma 21 p � m times, we obtain

Wm.c/D�1 � .�1/p�m
Wp.c/D�1 2 ŒL1;1;L.H/�; 1 � m < p:

�is su�ces to conclude the proof.

4.2. Some commutator estimates. Our method of proof of Proposition 29 ex-

ploits some heat semigroup asymptotics. For this we need to introduce, in this

subsection, a number of technical estimates for commutators involving the oper-

ator valued function s ! f .sjDj/; where f .s/ D e�jsjpC1

; and s 2 R: As before

in the text, p 2 N: We make essential use of the fact that Of 00 2 L1.�1; 1/ (this

fact follows from Lemma 7 in [16]).
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Lemma 24. If .A; H; D/ is a QC 1 spectral triple, then

kŒf .sjDj/; a� � sf 0.sjDj/ı.a/k1 � s2k Of 00k1kı2.a/k1

kŒf .sjDj/; a� � sı.a/f 0.sjDj/k1 � s2k Of 00k1kı2.a/k1

for all s > 0 and for all a 2 A:

Proof. We use the method of [1, 3]. It is clear that

Œf .sjDj/; a� D

Z 1

�1

Of .u/ŒeiusjDj; a�du: (13)

An elementary computation shows that

ŒeiusjDj; a� D ius

Z 1

0

eiuvsjDjı.a/eiu.1�v/sjDjdv: (14)

Combining (13) and (14), we obtain

Œf .sjDj/; a� D s

Z 1

�1

Z 1

0

Of 0.u/eiuvsjDjı.a/eiu.1�v/sjDjdvdu:

�erefore,

Œf .sjDj/; a� � sf 0.sjDj/ı.a/

D s

Z 1

�1

Z 1

0

Of 0.u/.eiuvsjDjı.a/eiu.1�v/sjDj � eiusjDjı.a//dvdu

D s

Z 1

�1

Z 1

0

Of 0.u/.eiuvsjDjŒı.a/; eiu.1�v/sjDj�/dvdu:

As in equation (14), we have

Œı.a/; eiu.1�v/sjDj�

D �iu.1 � v/s

Z 1

0

eiu.1�v/swjDjı2.a/eiu.1�v/s.1�w/jDjdw:
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Hence,

Œf .sjDj/; a� � sf 0.sjDj/ı.a/

D �s2

Z 1

�1

Z 1

0

Z 1

0

Of 00.u/.1 � v/eiu.1�v/swjDjı2.a/eiu.1�v/s.1�w/jDjdwdvdu:

�e �rst inequality follows immediately. �e proof of the second inequality is

similar so we omit it.

Lemma 25. Let D be an invertible unbounded self-adjoint operator.

(a) If D�p 2 L1;1; then

Tr.f .sjDj// D O.s�p/; Tr.jDj�p�1.1 � f .sjDj/// D O.s/;

as s ! 0,

(b) If D�p 2 M1;1; then, for every " > 0,

Tr.f .sjDj// D O.s�p�"/; Tr.jDj�p�1.1 � f .sjDj/// D O.s1�"/;

as s ! 0.

Proof. Using Lemma 7 with V D jDj�p and ˛ D 1 C 1=p; we obtain (a).

We now prove (b). Since D�p 2 M1;1; it follows that

.k C 1/�.k; D�p/ �

k
X

mD0

�.m; D�p/ � const � log.k C 2/:

Hence,

�.k; D�p�"/ �
�

const �
log.k C 2/

k C 1

�.pC"/=p

�
const

k C 1
; k � 0:

Select an operator D0 � D (using the same eigenbasis) such that

�.k; D
�p�"
0 / D

const

k C 1
; k � 0:

In what follows, we assume, to reduce the notation, that const D 1: For the �rst

equality,

Tr.f .sjDj// � Tr.f .sjD0j//

D

1
X

kD1

e�.sk1=.pC"//pC1

�

Z 1

0

e�.su1=.pC"/pC1

du

D s�p�"

Z 1

0

e�v.pC1/=.pC"/

dv:
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In order to prove the second equality, note that the mapping s ! s�1.1 � e�s/

is decreasing on .0; 1/ and so is the mapping s ! s�p�1.1 � f .s//: It follows

that

Tr.jDj�p�1.1 � f .sjDj/// � Tr.jD0j�p�1.1 � f .sjD0j///

D

1
X

kD1

.k1=.pC"//�p�1.1 � e�.sk1=.pC"//pC1

/

�

Z 1

0

u�.pC1/=.pC"/.1 � e�.su1=.pC"//pC1

/du

D s1�"

Z 1

0

v�.pC1/=.pC"/.1 � e�v.pC1/=.pC"/

/dv:

Lemma 26. Let .A; H; D/ be a QC 1 spectral triple and let a 2 A:

(a) If D�p 2 L1;1; then

kŒf 0.sjDj/; ı.a/�k1 D O.s1�p/

as s ! 0.

(b) If D�p 2 M1;1 then (for every " > 0)

kŒf 0.sjDj/; ı.a/�k1 D O.s1�p�"/;

as s ! 0.

Proof. Suppose �rst that p � 4 or that p D 2: De�ne a positive function h by

setting

f 0.t / D �sgn.t /h2.t /

for all t: We have h0; h00 2 L2.�1; 1/: It follows now from Lemma 7 in [16] that
Oh0 2 L1.�1; 1/: Repeating the argument in the beginning of Lemma 24, we

obtain

Œh.sjDj/; ı.a/� D s

Z 1

�1

Z 1

0

Oh0.u/eiuvsjDjı2.a/eiu.1�v/sjDjdvdu

and, therefore,

kŒh.sjDj/; ı.a/�k1 � sk Oh0k1kı2.a/k1:
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On the other hand, we have

Œf 0.sjDj/; ı.a/� D Œh2.sjDj/; ı.a/�

D h.sjDj/Œh.sjDj/; ı.a/� C Œh.sjDj/; ı.a/�h.sjDj/:

�erefore,

kŒf 0.sjDj/; ı.a/�k1 � 2kh.sjDj/k1kŒh.sjDj/; ı.a/�k1 D kh.sjDj/k1 � O.s/:

Recall that h.s/ � const � f .s=2/ for all s 2 R: If D�p 2 L1;1; then it fol-

lows from Lemma 25 (a) that kh.sjDj/k1 D O.s�p/: Similarly, if D�p 2 M1;1;

then it follows from Lemma 25 (b) that kh.sjDj/k1 D O.s�p�"/: �is proves the

assertion for p � 4 or p D 2:

If p D 1 or p D 3, then Lemma 7 in [16] is inapplicable and we have to proceed

with a direct computation. Assume, for simplicity, that p D 1 and D�1 2 L1;1

(the proof is similar for p D 3 and for M1;1). Repeating the argument above, we

obtain

kŒf 1=2.sjDj/; ı.a/�k1 D O.s/; kŒf 1=2.sjDj/; ı2.a/�k1 D O.s/:

Using the elementary equality

�
1

2
Œf 0.sjDj/; ı.a/� D ı2.a/ � sf .sjDj/

C sjDjf 1=2.sjDj/ � Œf 1=2.sjDj/; ı.a/�

C Œf 1=2.sjDj/; ı.a/� � sjDjf 1=2.sjDj/

C Œf 1=2.sjDj/; ı2.a/� � sf 1=2.sjDj/;

we infer that

kŒf 0.sjDj/; ı.a/�k1

� const � Tr.sf .sjDj/ C 2s2jDjf 1=2.sjDj/ C s2f 1=2.sjDj//:

Recall that sf .s/; f 1=2.s/ � const � f .s=2/ for all s > 0: By Lemma 25 (a),

we have

sTr.f .sjDj// D O.1/;

sTr.sjDjf 1=2.sjDj// D O.1/;

sTr.f 1=2.sjDj// D O.1/:

�is proves the assertion for p D 1:
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Lemma 27. Let .A; H; D/ be a QC 1 spectral triple and let a 2 A:

(a) If D�p 2 L1;1; then

kŒf .sjDj/; a� � sı.a/f 0.sjDj/k1 D O.s2�p/;

as s ! 0:

(b) If D�p 2 M1;1; then (for every " > 0)

kŒf .sjDj/; a� � sı.a/f 0.sjDj/k1 D O.s2�p�"/;

as s ! 0.

Proof. Let f D h2: Since h can be obtained from f by rescaling, the assertion of

Lemma 24 also holds for h: We have

Œf .sjDj/; a� �
s

2
¹f 0.sjDj/; ı.a/º D h.sjDj/.Œh.sjDj/; a� � sh0.sjDj/ı.a//

C .Œh.sjDj/; a� � sı.a/h0.sjDj//h.sjDj/:

It follows that

kŒf .sjDj/; a� �
s

2
¹f 0.sjDj/; ı.a/ºk1

� kh.sjDj/k1.kŒh.sjDj/; a� � sh0.sjDj/ı.a/k1 C kŒh.sjDj/; a�

� sı.a/h0.sjDj/k1/:

We infer from Lemma 24 that the expression in brackets is O.s2/: If D�p 2 L1;1;

then it follows from Lemma 25 (a) that kh.sjDj/k1 D O.s�p/: �erefore,

kŒf .sjDj/; a� �
s

2
¹f 0.sjDj/; ı.a/ºk1 D O.s2�p/:

�e assertion (a) follows now from Lemma 26. Similarly, if D�p 2 M1;1; then it

follows from Lemma 25 (b) that kh.sjDj/k1 D O.s�p�"/: �is proves the asser-

tion (b).
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Proposition 28. Let .A; H; D/ be a QC 1 spectral triple and let a 2 A:

(a) If D�p 2 L1;1; then

kŒf .sjDj/; a� � sı.a/f 0.sjDj/kp;1 D O.s/;

as s ! 0:

(b) If D�p 2 M1;1; then (for every " > 0)

kŒf .sjDj/; a� � sı.a/f 0.sjDj/kp�" D O.s1�2"/;

as s ! 0:

Proof. We prove only the �rst assertion, as the proof of the second one is identical.

If p D 1; then the assertion is proved in Lemma 27. Suppose p > 1 and set

T D Œf .sjDj/; a� � sı.a/f 0.sjDj/:

We infer from Lemma 24 that kT k1 D O.s2/ and from Lemma 27 that

kT k1 D O.s2�p/ as s ! 0: �e assertion follows from the interpolation inequality

(see e.g. �eorem 2.g.18 and Corollary 2.g.14 in [13])

kT kp;1 � kT k
1=p
1 kT k1�1=p

1 D O.s.2�p/=p � s2.1�1=p// D O.s/:

4.3. Asymptotics for the heat semigroup and the proof of Proposition 29.

In order to study the operator Wp.c/D�1, which was introduced in Proposition 18,

we now establish the following heat semigroup estimate.

Proposition 29. Let .A; H; D/ be a QC 1 spectral triple with D�p 2 M1;1:

If the spectral triple and the integer p are both odd (respectively, even), then

Tr.Wp.c/D�1e�.sjDj/pC1

/ D Ch.c/ log .1=s/ C O.1/; s ! 0;

for every Hochschild cycle c 2 A
˝.pC1/:

In Lemma 30 and Lemma 31, we prepare the ground for the proof of Proposi-

tion 29.

Lemma 30. If .A; H; D/ is a QC 1 spectral triple, then

� m
Y

kD0

ŒF; ak�
�

jDjmC1 2 L.H/; ak 2 A; 0 � k � m:
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Proof. De�ne the algebra

B D ¹A 2 L.H/ W A W dom.Dn/ �! dom.Dn/; ın.A/ 2 L.H/ for all n � 0º:

An inductive argument shows that, for every A 2 B and for every n � 0; there

exists B 2 B such that AjDjn D jDjnB: For all k � m and for all ak 2 A; we have

ŒD; ak� 2 B and F ŒjDj; ak� 2 B (here, we used the fact that our spectral triple is

QC 1). �erefore,

ŒF; ak� D ŒD; ak�jDj�1 � F ŒjDj; ak�jDj�1 D AkjDj�1;

where Ak 2 B: �erefore,

m
Y

kD0

ŒF; ak�jDjmC1 D
� m�1

Y

kD0

ŒF; ak �
�

AmjDjm:

Note that AmjDj�1 � jDjmC1 D jDjmBm for some Bm 2 B: It follows that

m
Y

kD0

ŒF; ak�jDjmC1 D
� m�1

Y

kD0

ŒF; ak�
�

jDjmBm:

�e right hand side is bounded by induction.

Note that the condition D�p 2 M1;1 guarantees that D�p�2 2 L1: Hence,

0 � �f 0.sjDj/ �
4.p C 1/

e
.sjDj/�p�2 2 L1:

In particular, we have f 0.sjDj/ 2 L1:

Lemma 31. Let .A; H; D/ be a QC 1 spectral triple and let c 2 A
˝.pC1/ be a

Hochschild cycle. Suppose that the spectral triple and p are both odd (respec-

tively, even).

(a) If D�p 2 L1;1; then

sTr.Wp.c/Ff 0.sjDj// D � Ch.c/ C O.s/;

as s ! 0:

(b) If D�p 2 M1;1; then, for every " > 0,

sTr.Wp.c/Ff 0.sjDj// D � Ch.c/ C O.s1�"/;

as s ! 0:

Here, f .s/ D e�jsjpC1

; s 2 R:
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Proof. We only prove the �rst assertion. �e proof of the second one is identical.

De�ne the multilinear mappings

Ks ; Hs W A˝.pC1/ �! L.H/

by setting

Ks.a0 ˝ � � � ˝ ap/ D �a0

� p�1
Y

kD1

ŒF; ak�
�

ŒFf .sjDj/; ap�;

and

Hs.a0 ˝ � � � ˝ ap/ D �a0

� p�1
Y

kD1

ŒF; ak�
�

F Œf .sjDj/; ap�:

For all c 2 A
˝.pC1/; we have (see p. 293 in [7] for the second equality)

W¿.c/f .sjDj/ D Ks.c/ � Hs.c/; ch.c/ D W¿.c/ C FW¿.c/F:

�erefore,

Tr.ch.c/f .sjDj// D 2Tr.W¿.c/f .sjDj// D 2Tr.Ks.c// � 2Tr.Hs.c//: (15)

�e mapping c0 ! Tr.Ks.c0// on A
˝.pC1/ is the Hochschild coboundary5 of

the multilinear mapping de�ned by

a0 ˝ � � � ˝ ap�1 7�! .�1/pTr.�a0

� p�1
Y

kD1

ŒF; ak �
�

Ff .sjDj//:

5 For the sake of illustration, let p D 2 and let the multilinear mapping

� W A˝2 �! L.H/

be de�ned by setting

�.a0 ˝ a1/ D Tr.�a0ŒF; a1�T /

with T 2 L1: We then have

.b�/.a0 ˝ a1 ˝ a2/ D �.a0a1 ˝ a2/ � �.a0 ˝ a1a2/ C �.a2a0 ˝ a1/

D Tr.�a0a1ŒF; a2�T � �a0ŒF; a1a2�T / C Tr.�a2a0ŒF; a1�T /

D �Tr.�a0ŒF; a1�a2T / C Tr.�a0ŒF; a1�Ta2/

D Tr.�a0ŒF; a1�ŒT; a2�/:
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Hence, it vanishes on every Hochschild cycle. On the other hand, we have

Tr.Hs.c
0// D sTr.Wp.c0/Ff 0.sjDj// C O.s/ (16)

as may be seen by evaluating on a0 ˝ � � � ˝ ap; using Proposition 28 to obtain

ˇ
ˇ
ˇTr

�

�a0

p�1
Y

kD1

ŒF; ak�F Œf .sjDj/; ap�
�

� sTr
�

�a0

p�1
Y

kD1

ŒF; ak�F ı.ap/f 0.sjDj/
�ˇ
ˇ
ˇ

� k�a0

p�1
Y

kD1

ŒF; ak�F kq;1 kŒf .sjDj/; ap� � sı.ap/f 0.sjDj/kp;1

D O.s/

and, since,

ˇ
ˇ
ˇTr

�

�a0

p�1
Y

kD1

ŒF; ak�F ı.ap/f 0.sjDj/
�

� Tr.Wp.a/Ff 0.sjDj//
ˇ
ˇ
ˇ

� k�a0

� p�1
Y

kD1

ŒF; ak�
�

ŒF; ı.ap/�jDjpk1 � kjDj�pf 0.sjDj/k1

D O.1/;

the equality (16) follows. Combining the equalities (15), (16) and the fact that

Tr.Ks.c// D 0 for every Hochschild cycle c 2 A
˝.pC1/; we infer that

Tr.ch.c/f .sjDj// D �2sTr.Wp.c/Ff 0.sjDj// C O.s/ (17)

for every Hochschild cycle c 2 A
˝.pC1/: �e operator B D ch.c/jDjpC1 is

bounded by Lemma 30. Using Lemma 25 (a), we obtain

jTr.Bf .sjDj/jDj�p�1/ � Tr.BjDj�p�1/j � kBk1Tr..1 � f .sjDj//jDj�p�1/

D O.s/:

�erefore,

Tr.ch.c/f .sjDj// D Ch.c/ C O.s/: (18)

By combining (17) and (18), we conclude the proof.
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Proof of Proposition 29. By Lemma 31, we have

Tr.Wp.c/F jDjpe�.sjDj/pC1

/ D
1

.p C 1/
Ch.c/s�p�1 C O.s"�p/:

Setting u D spC1; we obtain

Tr.Wp.c/F jDjpe�ujDjpC1

/ D
1

.p C 1/u
Ch.c/ C O.u�.p�"/=.pC1//:

Integrating over u 2 Œs; 1�; we obtain

Tr.Wp.c/F jDj�1.e�sjDjpC1

� e�jDjpC1

// D
1

.p C 1/
Ch.c/ log

�1

s

�

C O.1/:

Taking into account that D�p 2 M1;1 implies that Wp.c/F jDj�1e�jDjpC1

2 L1:

Replacing s with spC1; we conclude the proof.

4.4. Proof of the main result. In this subsection, we prove �eorem 16. Recall

that the multilinear mapping Wp is de�ned in Section 3.2.

Lemma 32. Let .A; H; D/ be an odd (respectively, even) QC 1 spectral triple

and let c 2 A˝.pC1/ be a Hochschild cycle. Suppose that p is odd (respectively,

even).

(a) If D�p 2 L1;1; then

'.Wp.c/D�1/ D
Ch.c/

p

for every normalised trace ' on L1;1:

(b) If D�p 2 M1;1; then

Tr!.Wp.c/D�1/ D
Ch.c/

p

for every Dixmier trace on M1;1:
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Proof. Recall the algebra

B D ¹A 2 L.H/ W A W dom.D/ �! dom.D/; ın.A/ 2 L.H/ for all n � 0º:

It follows from Lemma 30 that Wp.a/jDjp�1 2 B and is, therefore, bounded.

Set V D jDj�p and ˛ D 1 C 1=p: It follows from Proposition 29 that

Tr.Wp.c/D�1e�.nV /�˛

/ D
Ch.c/

p
log.n/ C O.1/

as n ! 1: By the previous paragraph, we have

A D Wp.c/F jDjp�1 2 L.H/

and, by assumption, V 2 L1;1 (respectively, V 2 M1;1). �erefore, Proposi-

tion 6 is applicable and yields

'.Wp.c/D�1/ D
Ch.c/

p

for every normalised trace ' on L1;1 or

Tr!.Wp.c/D�1/ D
Ch.c/

p

for every Dixmier trace on M1;1; respectively.

Lemma 33. If .A; H; D/ is a QC 1 spectral triple, then so is .A; H; D0/; where

D0 D F.1 C D2/1=2:

Proof. Set D1 D D0 � D 2 L.H/: De�ne the operations

ı0 W a �! ŒjD0j; a�; ı1 W a �! ŒjD1j; a�:

Noting that jD0j D jDj C jD1j; we infer that

ı0 D ı C ı1:

Since the operations ı0 and ı1 commute, it follows that

ın
0 .a/ D

n
X

kD0

�
n

k

�

ın�k
1 .ık.a//:

Since ık.a/ is well de�ned and since ı1 W L.H/ ! L.H/ is a bounded mapping,

it follows that ın
0 .a/ is well de�ned. Similarly, ın

0 .@.a// is well de�ned. De�ne the

operations @0 W a ! ŒD0; a� and @1 W a ! ŒD1; a�: We have

ın
0 .@0.a// D ın

0 .@.a// C ın
0 .@1.a// D ın

0 .@.a// C @1.ın
0 .a//:

By De�nition 12, .A; H; D0/ is a QC 1 spectral triple.
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We are now ready to prove the main result of the paper. We present the detailed

argument for the �rst part of the theorem.

Case 1 . Suppose that .A; H; D/ is a QC 1 odd .p; 1/-summable spectral triple

and that p is even.

Let ' be a trace on L1;1: �e mapping de�ned on A
˝.pC1/ by

c 7�! '.�.c/.1 C D2/�p=2/

is the Hochschild coboundary (see Appendix A) of the multilinear mapping de-

�ned by

a0 ˝ � � � ˝ ap�1 7�!
1

2
'

� p�1
Y

kD0

ŒD; ak�.1 C D2/�p=2
�

:

Every Hochschild coboundary vanishes on every Hochschild cycle, so that

'.�.c/.1 C D2/�p=2/ D 0

for every Hochschild cycle c 2 A
˝.pC1/: �us, the left hand side of (8) vanishes.

For c0 D a0 ˝ � � � ˝ ap; with p even,

F

p
Y

kD0

ŒF; ak� D �

p
Y

kD0

ŒF; ak�F

and, therefore,

Ch.c0/ D Tr
�

F

p
Y

kD0

ŒF; ak�
�

D �Tr
� p

Y

kD0

ŒF; ak�F
�

D � Ch.c0/:

Hence, Ch.c0/ D 0 for all c0 2 A
˝.pC1/: �us, the right hand side of (8) vanishes.

Case 2. Suppose that .A; H; D/ is a QC 1 even .p; 1/-summable spectral triple

and that p is odd.

Let ' be a trace on L1;1: By De�nition 13, we have �ŒD; a� D �ŒD; a�� and

�a D a� for all a 2 A: Since p is odd, it follows that

�a0

p
Y

kD1

ŒD; ak�.1 C D2/�p=2 D a0�

p
Y

kD1

ŒD; ak�.1 C D2/�p=2

D �a0

p
Y

kD1

ŒD; ak��.1 C D2/�p=2

D �a0

p
Y

kD1

ŒD; ak�.1 C D2/�p=2�:
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Applying the trace '; we obtain

'
�

�a0

p
Y

kD1

ŒD; ak�.1 C D2/�p=2
�

D �'
�

�a0

p
Y

kD1

ŒD; ak�.1 C D2/�p=2
�

:

Hence, the left hand side of (8) vanishes. Repeating the argument in Step 1, we

infer that the right hand side of (8) vanishes as well.

Case 3. Suppose that p and the .p; 1/-summable spectral triple .A; H; D/ are

simultaneously odd (or even).

If D is invertible, then we infer from Proposition 18 and Lemma 32 that

'.�.c/jDj�p/ D p'.Wp.c/D�1/ D Ch.c/

and the assertion is proved. Suppose now that D is not invertible and consider the

invertible operator

D0 D F.1 C D2/1=2:

It follows from Lemma 33 that .A; H; D0/ is a spectral triple with D
�p
0 2 L1;1:

Clearly,

D1 WD D0 � D

D F..1 C jDj2/1=2 � jDj/

D F.jDj C .1 C jDj2/1=2/�1 2 Lp;1:

We claim that

a0

p
Y

kD1

ŒD; ak�jD0j�p � a0

p
Y

kD1

ŒD0; ak�jD0j�p 2 L1 (19)

for a0 ˝ � � � ˝ ap 2 A
˝.pC1/: To see the claim, let us write

p
Y

kD1

ŒD0; ak� D
X

A�¹1;2;:::;pº

p
Y

kD1

8

<

:

ŒD; ak� for k 2 A

ŒD1; ak� for k … A

�e summand corresponding to the case A D ¹1; 2; : : : ; pº coincides with

a0

Qp

kD1
ŒD; ak�jD0j�p, while all other summands belong to L1. Indeed, since

there exists k … A, it follows that the product contains the term ŒD1; ak� 2 Lp;1.

�us, such a summand belongs to Lp;1 � L1;1 � L1 (by equation (2)). Since the

assertion holds for the spectral triple .A; H; D0/; we infer that it also holds for the

spectral triple .A; H; D/:
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Case 4. If the spectral triple isM
.p/
1;1-summable, then the proof of �eorem 16 (b)

follows that of �eorem 16 (a) (see Cases 1, 2, 3 above) mutatis mutandi.

A. Computation of coboundaries

Computation 1. Let A � ¹1; : : : ; pº be such that m � 1; m 2 A: Let ' be a trace

on L1;1 (respectively, on M1;1). �e mapping on A
˝.pC1/ de�ned by

c 7�! '.WA.c/D�jAj/

is a Hochschild coboundary of the multilinear mapping

� W a0 ˝ � � � ˝ ap�1

7�!
.�1/m�1

2
'

�

�a0

m�2
Y

kD1

Œbk ; ak�ı2.am�1/

p�1
Y

kDm

ŒbkC1; ak�D�jAj
�

:

Proof. For brevity, we prove the assertion for p D 2 as the proof in the general

case is very similar. We have

.b�/.a0; a1; a2/ D �.a0a1; a2/ � �.a0; a1a2/ C �.a2a0; a1/

D �
1

2
'.�a0a1ı2.a2/jDj�2/

C
1

2
'.�a0ı2.a1a2/jDj�2/

�
1

2
'.�a2a0ı2.a1/jDj�2/:

Since � commutes with a2 and since ' is a trace, it follows that

'.�a2a0ı2.a1/jDj�2/ D '.�a0ı2.a1/jDj�2a2/

D '.�a0ı2.a1/a2jDj�2/ C '.�a0ı2.a1/ŒjDj�2; a2�/:

We have

ŒjDj�2; a2� D �jDj�1ı.a2/jDj�2 � jDj�2ı.a2/jDj�1 2 L1=3;1 � L1:
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�erefore,

'.�a2a0ı2.a1/jDj�2/ D '.�a0ı2.a1/a2jDj�2a2/:

Finally, we have

.b�/.a0; a1; a2/ D
1

2
'.�a0.ı2.a1a2/ � a1ı2.a2/ � ı2.a1/a2/jDj�2/

and since

ı2.a1a2/ � a1ı2.a2/ � ı2.a1/a2 D 2ı.a1/ı.a2/;

the assertion follows.

Computation 2. Let A1; A2 � ¹1; : : : ; pº be such that jA1j D jA2j and

A1�A2 D ¹m � 1; mº:

Let ' be a trace on L1;1 (respectively, on M1;1). �e mapping on A
˝.pC1/ de-

�ned by

c 7�! '.WA1
.c/D�jA1j/ C '.WA2

.c/D�jA2j/

is a Hochschild coboundary of the multilinear mapping

� W a0 ˝ � � � ˝ ap�1

7�! .�1/m�1'
�

�a0

m�2
Y

kD1

Œbk ; ak�ŒF; ı.am�1/�

p�1
Y

kDm

ŒbkC1; ak�D�jA1j
�

:

Proof. For brevity, we prove the assertion for p D 2 as the proof in the general

case is a slight extension of this argument. We have

.b�/.a0; a1; a2/ D �.a0a1; a2/ � �.a0; a1a2/ C �.a2a0; a1/

D �'.�a0a1ŒF; ı.a2/�jDj�1/

C '.�a0ŒF; ı.a1a2/�jDj�1/

� '.�a2a0ŒF; ı.a1/�jDj�1/:
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Since � commutes with a2 and since ' is a trace, it follows that

'.�a2a0ŒF; ı.a1/�jDj�1/ D '.�a0ŒF; ı.a1/�jDj�1a2/

D '.�a0ŒF; ı.a1/�a2jDj�1/

C '.�a0ŒF; ı.a1/�ŒjDj�1; a2�/:

We have

ŒjDj�1; a2� D �jDj�1ı.a2/jDj�1 2 L1=2;1 � L1:

�erefore,

'.�a2a0ŒF; ı.a1/�jDj�1/ D '.�a0ŒF; ı.a1/�a2jDj�1/:

Finally, we have

.b�/.a0; a1; a2/ D '.�a0.ŒF; ı.a1a2/� � a1ŒF; ı.a2/� � ŒF; ı.a1/�a2/jDj�1/:

Since

ŒF; ı.a1a2/� � a1ŒF; ı.a2/� � ŒF; ı.a1/�a2 D ŒF; a1�ı.a2/ C ı.a1/ŒF; a2�;

the assertion follows.
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