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Abstract. In this paper it is proved that the complete spectral data of selfadjoint Schrö-

dinger operators on unbounded domains can be described with an associated Dirichlet-to-

Neumann map. In particular, a characterization of the isolated and embedded eigenval-

ues, the corresponding eigenspaces, as well as the continuous and absolutely continuous

spectrum in terms of the limiting behavior of the Dirichlet-to-Neumann map is obtained.

Furthermore, a su�cient criterion for the absence of singular continuous spectrum is pro-
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1. Introduction

�e Titchmarsh–Weyl m-function associated with a Sturm–Liouville di�erential
expression plays a fundamental role in the direct and inverse spectral theory of
the corresponding ordinary di�erential operators. It was introduced by H. Weyl
in his famous work [54] and was further studied by E. C. Titchmarsh in [52], who
investigated the analytic nature of this function as well as its connection to the
spectrum. For a one-dimensional Schrödinger di�erential expression � d2

dx2 C q

on the half-line .0; 1/ with a bounded, real valued potential q the Titchmarsh–
Weyl m-function m.�/ may be de�ned as

m.�/f�.0/ D f 0
�.0/; � 2 C n R;

where f� is the unique solution (up to scalar multiples) in L2.0; 1/ of the equa-
tion �f 00 C qf D �f ; equivalently m.�/ combines two fundamental solutions to
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a solution in L2.0; 1/. �e prominent role of the function � 7! m.�/ in the direct
and inverse spectral theory of the associated selfadjoint operators is due to the cel-
ebrated fact that the complete spectral data is encoded and can be recovered from
the knowledge of m.�/; cf. [18, 52]. �erefore the Titchmarsh–Weyl m-function
became an indispensable tool in the spectral analysis of Sturm–Liouville di�er-
ential operators, as well as more general Hamiltonian and canonical systems; for
a small selection from the vast number of contributions see, e.g., [4, 6, 14, 19, 28,
32, 37, 38, 49] for direct spectral problems and [11, 12, 17, 29, 30, 31, 40, 43, 50]
for inverse problems.

�e aim of the present paper is to develop Titchmarsh–Weyl theory in the mul-
tidimensional setting for partial di�erential operators. Our focus is on selfadjoint
Schrödinger operators on unbounded domains. In our main results we prove that
the �-dependent Dirichlet-to-Neumann map M.�/ on the boundary of the domain,
as the natural multidimensional analog of the Titchmarsh–Weyl m-function, de-
termines the spectrum of the selfadjoint Schrödinger operator A D ��Cq with a
bounded, real valued potential q and a Dirichlet boundary condition uniquely.
We obtain an explicit characterization of the isolated and embedded eigenval-
ues, the corresponding eigenspaces, and the continuous and absolutely contin-
uous spectrum in terms of the limiting behavior of the Dirichlet-to-Neumann map
M.�/ when � approaches the real axis, and we provide a su�cient criterion for
the absence of singular continuous spectrum. For instance, we show that � is an
eigenvalue of A if and only if the strong limit s-lim�&0 �M.� C i�/ is non-trivial.
Our main results �eorem 3.2, 3.4 and 3.5 extend to other selfadjoint realizations
with Neumann and more general (nonlocal) Robin boundary conditions, and also
remain valid for second order, formally symmetric, uniformly elliptic di�erential
operators under appropriate assumptions on the coe�cients. In order to avoid
technical complications, in this paper we discuss only the case of an exterior do-
main with a C 2-boundary. �e results can be extended to Lipschitz domains and
to domains with non-compact boundaries; cf. Remark 3.7. We mention that for
bounded domains matters simplify essentially: In that case the spectrum of A is
purely discrete and it is known that the poles of the function M.�/ coincide with
the eigenvalues of A, see, e.g., [45] and [10].

In the recent past there has been a strong interest in combining and applying
modern techniques from operator theory to partial di�erential equations. In the
context of Titchmarsh–Weyl theory for elliptic di�erential equations we point out
the paper [3] by W. O. Amrein and D. B. Pearson, where a typical convergence
property for Titchmarsh–Weyl m-functions in the one-dimensional situation was
extended to a multidimensional setting. We also refer the reader to the classical
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works [34, 41, 53] and to the more recent contributions [2, 7, 8, 15, 16, 26, 27, 35,
36, 44, 46, 48] for other aspects of Titchmarsh–Weyl theory and spectral theory of
elliptic di�erential operators. However, to the best of our knowledge no attempts
were made so far to extend the well-known results on the characterization of the
spectrum of ordinary di�erential operators in terms of the Titchmarsh–Weyl m-
function to elliptic di�erential operators on unbounded domains. We �ll this gap
in the present paper and provide the natural multidimensional analogs. We also
mention that the results in this paper can be generalized and interpreted in the more
abstract context of boundary triples and their Weyl functions from extension and
spectral theory of symmetric and selfadjoint operators; cf. [7, 8, 13, 20, 21, 22].

2. Preliminaries

Let � be an open subset of Rn, n � 2, such that Rn n x� is bounded, nonempty, and
has a C 2-boundary @�; for more general settings see Remark 3.7. With H s.�/

and H s.@�/ we denote the Sobolev spaces of the order s > 0 on � and @�,
respectively. Moreover, for u 2 H 2.�/ we denote by uj@� 2 H 3=2.@�/ the trace
and by @�uj@� 2 H 1=2.@�/ the trace of the derivative with respect to the outer
unit normal.

Let q W � ! R be a bounded, measurable function. As usual, we de�ne
the Dirichlet operator A in L2.�/ corresponding to the Schrödinger di�erential
expression �� C q by

Au D ��u C qu; dom A D ¹u 2 H 2.�/ W uj@� D 0º: (2.1)

It is well known that A is a selfadjoint operator in L2.�/ and that the spectrum
�.A/ of A is bounded from below and accumulates to C1; cf. [24, 25, 41].

Let � belong to the resolvent set �.A/ of A and de�ne

N� D ¹u 2 H 2.�/ W � �u C qu D �uº: (2.2)

In order to de�ne the Dirichlet-to-Neumann map associated with the di�erential
expression �� C q recall that for each � 2 �.A/ and each g 2 H 3=2.@�/ the
boundary value problem

��u C qu D �u; uj@� D g; (2.3)

has a unique solution u� 2 H 2.�/; this follows essentially from the surjectivity
of the trace map H 2.�/ 3 u 7! uj@� 2 H 3=2.@�/. �us for � 2 �.A/ the Poisson
operator .�/ from L2.@�/ to L2.�/ given by

.�/g D u�; dom .�/ D H 3=2.@�/; (2.4)
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is well-de�ned, where u� is the unique solution of (2.3) in H 2.�/. We remark
that ran .�/ D N� holds.

De�nition 2.1. For � 2 �.A/ the Dirichlet-to-Neumann map M.�/ in L2.@�/ is
de�ned by

M.�/g D @�u�j@�; dom M.�/ D H 3=2.@�/; (2.5)

where u� is the unique solution of (2.3) in H 2.�/.

�e following proposition is crucial for the proofs of the main results in the
next section.

Proposition 2.2. �e linear space

span
[

�2CnR
N� (2.6)

is dense in L2.�/.

Proof. Let us denote by Qq the extension of the potential q to a real valued, bounded,
measurable function on R

n. �en

zAu D ��u C Qqu; dom zA D H 2.Rn/;

is a selfadjoint operator in L2.Rn/ which is semibounded from below by the essen-
tial in�mum of Qq. Without loss of generality we assume that the lower bound � of
zA is positive; this can always be achieved by adding a constant, thereby not chang-

ing the linear space in (2.6). Choose a function Qv 2 L2.Rn/ such that Qvj� D 0,
and de�ne

Qu�;Qv WD . zA � �/�1 Qv; � 2 C n R:

�en the restriction u�;Qv of Qu�;Qv to � satis�es u�;Qv 2 H 2.�/ and

��u�;Qv C qu�;Qv D �u�;Qv ;

thus u�;Qv 2 N� for all � 2 C n R.

Let u 2 L2.�/ be orthogonal to N� for all � 2 C n R and let Qu denote the
extension by zero of u to R

n. �en, in particular,

0 D .u; u N�;Qv/ D . Qu; . zA � N�/�1 Qv/L2.Rn/ D .. zA � �/�1 Qu; Qv/L2.Rn/
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for all � 2 C n R, where .�; �/ and .�; �/L2.Rn/ are the inner products in L2.�/ and
L2.Rn/, respectively. Since this identity holds for an arbitrary Qv 2 L2.Rn/ with
Qvj� D 0, it follows

. zA � �/�1 Qu D 0 on R
n n � (2.7)

for all � 2 C n R.
Following an idea of [5, Section 3] we consider the semigroup T .t/ D e�t zA1=2

,
t � 0, which is generated by the square root of the uniformly positive operator zA.
�en t 7! T .t/ Qu is twice di�erentiable and we have

d 2

dt2
T .t/ Qu D zAT .t/ Qu

for t > 0, which implies

�

�
@2

@t2
�

n
X

j D1

@2

@x2
j

C Qq.x/

�

T .t/ Qu.x/ D 0; x 2 R
n; t > 0; (2.8)

in the distributional sense. In particular, by elliptic regularity, .x; t / 7! T .t/ Qu.x/

belongs locally to H 2 on R
n � .0; 1/. Moreover, Stone’s formula for the spectral

measure E.�/ of zA and (2.7) yield that

E..a; b// Qu D lim
"&0

1

2�i

Z b

a

.. zA � .y C i"//�1 Qu � . zA � .y � i"//�1 Qu/dy

vanishes on R
n n � for all a < b such that a; b are no eigenvalues of zA. Conse-

quently we have

T .t/ Qu D

Z 1

�

e�t
p

�dE.�/ Qu D 0 on R
n n �

for each t > 0. �erefore the function .x; t / 7! T .t/ Qu.x/ vanishes on
R

n n�� .0; 1/. From this and (2.8) it follows by a unique continuation argument
that T .t/ Qu.x/ D 0 for all .x; t / 2 R

n � .0; 1/; see, e.g., [47, �eorem XIII.63].
�us T .t/ Qu vanishes identically on R

n for all t > 0 and, taking the limit t & 0,
we obtain Qu D 0. �is implies u D 0 and hence the linear space (2.6) is dense in
L2.�/.

Remark 2.3. �e proof of Proposition 2.2 shows that also span
S

�2D N� is dense
in L2.�/ with D D ¹x C iy W x 2 R; 0 < jyj < "º for an arbitrary " > 0. In fact,
with the help of the identity theorem for holomorphic functions it can be shown
that C n R in (2.6) can even be replaced by an arbitrary subset of �.A/ with an
accumulation point in �.A/.
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Remark 2.4. �e statement of Proposition 2.2 is equivalent to the fact that the
symmetric restriction

Su D ��u C qu; dom S D ¹u 2 dom A W @�uj@� D 0º;

of the Dirichlet operator in L2.�/ is simple or completely non-selfadjoint;
cf. [1, Chapter VII-81] and [39]. �e same property is known to hold for the mini-
mal operator realizations of certain ordinary di�erential expressions which are in
the limit point case at one endpoint, see [33].

3. Titchmarsh–Weyl theory for Schrödinger operators:

A characterization of the Dirichlet spectrum

In this section we show how the isolated and embedded eigenvalues as well as
the continuous spectrum of the Dirichlet operator A in (2.1) can be recovered
from the limiting behavior of the Dirichlet-to-Neumann map M.�/ in (2.5) when
� approaches the real axis. Moreover, we characterize the absolutely continuous
spectrum of A and prove a criterion for the absence of singular continuous spec-
trum.

As a preparation we recall some statements on the Poisson operator .�/

in (2.4), the Dirichlet-to-Neumann map M.�/, and their relation to the resolvent
of A. �eir proofs are similar to the proof of [10, Lemma 2.4] and will be omitted.
We also mention that in more abstract settings analog formulas are well known,
see [7, 21].

Lemma 3.1. Let �; � 2 �.A/, let .�/; .�/ be the Poisson operators in (2.4), and
let M.�/; M.�/ be the Dirichlet-to-Neumann maps in (2.5). �en the following
assertions hold.

(i) .�/ is a bounded, densely de�ned operator from L2.@�/ to L2.�/. Its ad-
joint

.�/� W L2.�/ �! L2.@�/

is given by

.�/�u D �@�..A � N�/�1u/j@�; u 2 L2.�/:

(ii) �e identity

.�/ D .I C .� � �/.A � �/�1/.�/

holds.
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(iii) �e relation

. N� � �/.�/�.�/g D M.�/g � M.�/�g; g 2 H 3=2.@�/;

holds and M. N�/ � M.�/�.

(iv) M.�/ is a densely de�ned, unbounded operator in L2.@�/ and satis�es

M.�/ D Re M.�/ � .�/�..� � Re �/ C .� � �/.� � N�/.A � �/�1/.�/I

(3.1)

in particular, the limit lim�&0 �M.� C i�/g exists in L2.@�/ for all � 2 R

and all g 2 H 3=2.@�/.

Observe that (3.1) also implies that the function M.�/ is strongly analytic on
�.A/. In the following we agree to say that the function M.�/ can be continued
analytically into � 2 R if and only if there exists an open neighborhood O of �

in C such that the L2.@�/-valued function M.�/g can be continued analytically
to O for all g 2 H 3=2.@�/. We say that M.�/ has a pole at � if and only if there
exists g 2 H 3=2.@�/ such that M.�/g has a pole at �. �e residue of M.�/ at � is
de�ned in the strong sense by

.Res� M/ g WD Res�.M.�/g/; g 2 H 3=2.@�/;

where Res�.M.�/g/ is the usual residue of the L2.@�/-valued function M.�/g

at �.
In the next theorem we denote by s-lim the strong limit of an operator-valued

function. Moreover, we denote by �p.A/ and �c.A/ the set of eigenvalues and
the continuous spectrum of A, respectively. �e following theorem is the multi-
dimensional analog of the main theorem in [18] and of [37, �eorem 2], where
several ODE situations were considered; see also [52]. �e proof of item (i) is
partly inspired by abstract considerations in [23]; the characterization of the iso-
lated and embedded eigenvalues in the items (ii) and (iii) uses methods from the
more abstract works [9, 42].

�eorem 3.2. Let A be the selfadjoint Dirichlet operator in (2.1) and let M.�/ be
the Dirichlet-to-Neumann map in (2.5). For � 2 R the following assertions hold.

(i) � 2 �.A/ if and only if M.�/ can be continued analytically into �.

(ii) � 2 �p.A/ if and only if s-lim�&0 �M.� C i�/ ¤ 0. If � is an eigenvalue
with �nite multiplicity then the mapping

� W ker.A � �/ �!
°

lim
�&0

�M.� C i�/g W g 2 H 3=2.@�/
±

;

u 7�! @�uj@�;
(3.2)
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is bijective; if � is an eigenvalue with in�nite multiplicity then the mapping

� W ker.A � �/ �! cl�
°

lim
�&0

�M.� C i�/g W g 2 H 3=2.@�/
±

;

u 7�! @�uj@�;
(3.3)

is bijective, where cl� denotes the closure in the linear space ran � , equipped
with the norm in L2.@�/.

(iii) � is an isolated eigenvalue of A if and only if � is a pole of M.�/. If � is an
eigenvalue with �nite multiplicity then the mapping

� W ker.A � �/ �! ran Res� M; u 7�! @�uj@�; (3.4)

is bijective; if � is an eigenvalue with in�nite multiplicity then the mapping

� W ker.A � �/ �! cl� .ran Res� M/; u 7�! @�uj@�; (3.5)

is bijective with cl� as in (ii).

(iv) � 2 �c.A/ if and only if s-lim�&0 �M.� C i�/ D 0 and M.�/ cannot be
continued analytically into �.

Proof. (i) It follows from Lemma 3.1 (iv) that M.�/g is analytic on �.A/ for each
g 2 H 3=2.@�/. In order to verify the other implication, note �rst that the identity

.�/�.A � z/�1.�/ D
M.z/

.z � �/. N� � z/
C

M. N�/

.z � N�/. N� � �/
�

M.�/

.z � �/. N� � �/
(3.6)

holds for �; �; z 2 �.A/ satisfying z ¤ �; z ¤ N�, and � ¤ N�. Indeed, Lemma 3.1 (ii)
together with the �rst statement in Lemma 3.1 (iii) implies

.�/�.A � z/�1.�/ D
1

z � �

�

M.z/ � M. N�/

N� � z
�

M.�/ � M. N�/

N� � �

�

;

and an easy computation yields (3.6). Let us assume that M.�/ can be continued
analytically to some � 2 R, that is, there exists an open neighborhood O of � such
that M.�/g can be continued analytically to O for each g 2 H 3=2.@�/. Choose
a; b … �p.A/ with � 2 .a; b/ and Œa; b� � O. �e spectral projection E..a; b// of
A corresponding to the interval .a; b/ is given by

E..a; b// D lim
ı&0

1

2�i

Z b

a

..A � .t C iı//�1 � .A � .t � iı//�1/dt; (3.7)



Titchmarsh–Weyl theory for Schrödinger operators 75

where the integral on the right-hand side converges in the strong sense. Let us �x
� 2 C n R. From (3.6) and (3.7) we obtain

.E..a; b//.�/g; .�/h/ D 0 (3.8)

for all g; h 2 H 3=2.@�/ and all � 2 C n R, � 6D N�, since .M.�/g; h/ admits an
analytic continuation into O for all g; h 2 H 3=2.@�/, where .�; �/ is used for both
the inner products in L2.�/ and L2.@�/. By Proposition 2.2 and Remark 2.3

span¹.�/h W � 2 C n R; � 6D N�; h 2 H 3=2.@�/º

is dense in L2.�/, thus (3.8) implies E..a; b//.�/g D 0 for all g 2 H 3=2.@�/.
Since � was chosen arbitrarily in C n R another application of Proposition 2.2
yields E..a; b// D 0. �is implies � 2 �.A/.

(ii) We prove that the mapping � in (3.3) is bijective for all � 2 R; from
this it follows immediately that � is an eigenvalue of A if and only if
s-lim�&0 �M.� C i�/ ¤ 0. Let us �x � 2 R. We prove �rst that the restriction �

of the trace of the normal derivative to ker.A � �/ is injective. Let u 2 ker.A � �/

with @�uj@� D 0. �en, denoting the extensions by zero of u and q to all of Rn by
Qu and Qq, respectively, we have Qu 2 H 2.Rn/ and

.�� C Qq � �/ Qu D 0:

By construction Qu vanishes on the open, nonempty set Rn n x�. Hence unique
continuation implies Qu D 0; cf. [47, �eorem XIII.63]. �us u D 0 and we have
proved the injectivity of � .

In order to prove the surjectivity of � note �rst that for each � 2 CnR and each
u 2 ker.A � �/ the identity

�u D @�uj@�

D @�..A � N�/�1.A � N�/u/j@�

D .� � N�/@�..A � N�/�1u/j@�

D . N� � �/.�/�u

holds by Lemma 3.1 (i), where .�/ is the Poisson operator in (2.4); hence,

ran � D ran ..�/� � ker.A � �//; � 2 C n R: (3.9)
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In order to prove that � in (3.3) is surjective, we set

F� WD
°

lim
�&0

�M.� C i�/g W g 2 H 3=2.@�/
±

and show that

F� � ran ..�/� � ker.A � �// � F�; � 2 C n R: (3.10)

Let us �x some � 2 CnR. If we denote by P� D E.¹�º/ the orthogonal projection
in L2.�/ onto ker.A � �/ then for � 2 C n R and g 2 H 3=2.@�/ we have

k.�.A � .� C i�//�1 � iP�/.�/gk2

D

Z

R

ˇ

ˇ

ˇ

ˇ

�

t � � � i�
� i1¹�º.t /

ˇ

ˇ

ˇ

ˇ

2

d.E.t/.�/g; .�/g/

and hence the dominated convergence theorem yields

lim
�&0

�.A � .� C i�//�1.�/g D iP�.�/g:

�e formula (3.6) and the continuity of .�/� imply

lim�&0 �M.� C i�/g

.� � �/. N� � �/
D lim

�&0
� .�/�.A � .� C i�//�1.�/g

D i.�/�P�.�/g

(3.11)

for all � ¤ N� and all g 2 H 3=2.@�/. �us

F� D ran
�

.�/� � span¹P�.�/g W � 2 C n R; � ¤ N�; g 2 H 3=2.@�/º
�

: (3.12)

It follows from Proposition 2.2 and Remark 2.3 that

span¹P�.�/g W � 2 C n R; � 6D N�; g 2 H 3=2.@�/º

is dense in ker.A � �/, and, hence, from (3.12) and the continuity of .�/� we
obtain (3.10). Furthermore, with (3.9) we have F� � ran � � F�. Since the clo-
sure cl� .F�/ of F� in the normed space ran � (equipped with the norm of L2.@�/)
coincides with the intersection of the closure F� (in L2.@�/) with ran � , that is,
cl� .F�/ D F� \ ran � , we conclude ran � D cl� .F�/. �erefore � is surjective and,
hence, bijective. Clearly, if dim ker.A � �/ is �nite then equality holds in (3.10),
which leads to the bijectivity of (3.2) and completes the proof of (ii).
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(iii) Let � be an isolated point of �.A/. �en there exists an open neighborhood
O of � such that z 7! .A�z/�1 is analytic on On¹�º. �us, by (i), M.�/ is analytic
on O n ¹�º in the strong sense. Moreover, � 2 �p.A/ and by (ii) there exists
g 2 H 3=2.@�/ such that

lim
�&0

i�M.� C i�/g ¤ 0:

Hence � is a pole of M.�/ and it follows from (3.1) and the corresponding property
of the resolvent of A that the order of the pole is one. �us the limit

lim
z!�

.z � �/M.z/g D Res� M.�/g

exists for all g 2 H 3=2.@�/ and coincides with lim�&0 i�M.� C i�/g. �ere-
fore (3.5) is a consequence of (3.3). Analogously, (3.4) follows from (3.2).
If, conversely, � is a pole of M.�/ then there exists an open neighborhood O of
� such that M.�/ is strongly analytic on O n ¹�º but not on O. Hence, (i) implies
� 2 �.A/ and O n ¹�º � �.A/; in particular, � is an eigenvalue of A.

(iv) Since �c.A/ D C n .�.A/ [ �p.A//, the statement of (iv) follows immedi-
ately from (i) and (ii).

�e next theorem shows how the absolutely continuous spectrum of the Dirich-
let operator A in (2.1) can be expressed in terms of the limits of the function M.�/

towards real points. �e result is well known in the one-dimensional setting for
Sturm–Liouville di�erential operators. In a more abstract framework of extension
theory of symmetric operators in Hilbert spaces and corresponding Weyl func-
tions a similar result was proved in [13]. We present a somewhat more direct proof
avoiding the integral representation of a Nevanlinna function. We will make use
of the following lemma, which can partly be found in, e.g., the monograph [51].
Here, if � is a �nite Borel measure on R, we denote the set of all growth points
of � by supp �, that is,

supp � D ¹x 2 R W �..x � "; x C "// > 0 for all " > 0º:

Moreover, for a Borel set � � R we de�ne the absolutely continuous closure (also
called essential closure) of � by

clac.�/ WD
®

x 2 R W j.x � "; x C "/ \ �j > 0 for all " > 0
¯

;

where j � j denotes the Lebesgue measure.
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Lemma 3.3. Let � be a �nite Borel measure on R and denote by F its Stieltjes
transform,

F.�/ D

Z

R

1

t � �
d�.t/; � 2 C n R:

�en the limit
Im F.x C i0/ D lim

y&0
Im F.x C iy/

exists and is �nite for Lebesgue almost all x 2 R. Let �ac and �s be the absolutely
continous and singular part, respectively, of � in the Lebesgue decomposition
� D �ac C �s, and decompose �s into the singular continuous part �sc and the
pure point part. �en the following assertions hold:

(i) supp �ac D clac.¹x 2 R W 0 < Im F.x C i0/ < C1º/;

(ii) the set

Msc D
°

x 2 R W Im F.x C i0/ D C1; lim
y&0

yF.x C iy/ D 0
±

is a support for �sc, that is,

�sc.R n Msc/ D 0:

Proof. �e assertion on the existence of the limit Im F.x C i0/ and item (i) can
be found in [51, Lemma 3.15 and �eorem 3.23]. In order to verify item (ii) let us
set

.D�/.x/ D lim
"&0

�..x � "; x C "//

2"

for all x 2 R such that the limit exists (�nite or in�nite). By [51, �eorem A.38]
the set ¹x 2 R W .D�/.x/ D C1º is a support for �s and .D�/.x/ D C1 implies
Im F.x C i0/ D C1, see [51, �eorem 3.23]. Consequently, also

¹x 2 R W Im F.x C i0/ D C1º

is a support for �s. Moreover, note that i�.¹xº/ D limy&0 yF.x C iy/ holds for
all x 2 R; indeed,

ˇ

ˇyF.x C iy/ � i�.¹xº/
ˇ

ˇ �

Z

R

ˇ

ˇ

ˇ

ˇ

y

t � .x C iy/
� i1¹xº.t /

ˇ

ˇ

ˇ

ˇ

d�.t/ ! 0; y & 0;

by the dominated convergence theorem. In particular, �.¹xº/ D 0 if and only if
limy&0 yF.x C iy/ D 0. �us the claim of item (ii) follows.
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Now the absolutely continuous spectrum of A can be characterized in the same
form as for ordinary di�erential operators.

�eorem 3.4. Let A be the selfadjoint Dirichlet operator in (2.1) and let M.�/ be
the Dirichlet-to-Neumann map in (2.5). �en the absolutely continuous spectrum
of A is given by

�ac.A/ D
[

g2H 3=2.@�/

clac.¹x 2 R W 0n < � Im.M.x C i0/g; g/ < C1º/: (3.13)

In particular, if a < b then .a; b/ \ �ac.A/ D ; if and only if for each
g 2 H 3=2.@�/ one has Im.M.x C i0/g; g/ D 0 for almost all x 2 .a; b/.

Proof. Let us set

D WD
®

.�/g W g 2 H 3=2.@�/; � 2 C n R
¯

D
[

�2CnR
N� ; (3.14)

where N� is de�ned in (2.2). By Proposition 2.2 spanD is dense in L2.�/. We
claim that the absolutely continuous spectrum of A is given by

�ac.A/ D
[

u2L2.�/

supp �u;ac D
[

.�/g2D
supp �.�/g;ac; (3.15)

where �u WD .E.�/u; u/ for u 2 L2.�/ and E.�/ is the spectral measure of A.
In fact, if Pac denotes the orthogonal projection onto the absolutely continuous
subspace of A then the absolutely continuous measures �u;ac are given by

�u;ac D .E.�/Pacu; Pacu/ D �Pacu:

�erefore, if x 62 �ac.A/ there exists " > 0 such that E..x � "; x C "//Pac D 0 and
hence �u;ac..x � "; x C "// D 0 for all u 2 L2.�/. �is shows .x � "; x C "/ \

supp �u;ac D ; for all u 2 L2.�/ and hence

x 62
[

u2L2.�/

supp �u;ac:

�is yields the inclusions
[

.�/g2D
supp �.�/g;ac �

[

u2L2.�/

supp �u;ac � �ac.A/:

Conversely, if x does not belong to the right hand side of (3.15) then there exists
" > 0 such that .x � "; x C "/ � R n supp �.�/g;ac for all .�/g 2 D. �us

kE..x � "; x C "//Pac.�/gk2 D �.�/g;ac..x � "; x C "// D 0
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for all .�/g 2 D. Since spanD is dense in L2.�/ by Proposition 2.2 it follows
that E..x � "; x C "//Pacu D 0 holds for all u 2 L2.�/, and hence x 62 �ac.A/.
We have veri�ed the identity (3.15).

With the help of the formula (3.1) we compute

Im.M.x C iy/g; g/

D �yk.�/gk2 � .jx � �j2 � y2/ Im..A � .x C iy//�1.�/g; .�/g/

� 2.x � Re �/y Re..A � .x C iy//�1.�/g; .�/g/;

(3.16)

for all x 2 R, y > 0, g 2 H 3=2.@�/ and � 2 C n R. Moreover,

y Re..A � .x C iy//�1.�/g; .�/g/ D

Z

R

y.t � x/

.t � x/2 C y2
d.E.t/.�/g; .�/g/

converges to zero as y & 0 by the dominated convergence theorem. �ere-
fore (3.16) implies

Im.M.x C i0/g; g/ D �jx � �j2 Im..A � .x C i0//�1.�/g; .�/g/; (3.17)

in particular,

¹x 2 R W 0 < � Im.M.x C i0/g; g/ < C1º

D ¹x 2 R W 0 < Im..A � .x C i0//�1.�/g; .�/g/ < C1º
(3.18)

holds for all g 2 H 3=2.@�/ and all � 2 C n R. Note that the Stieltjes transform of
the measure �.�/g D .E.�/.�/g; .�/g/ is given by

F.�/g .x C iy/ D

Z

R

1

t � .x C iy/
d.E.t/.�/g; .�/g/

D ..A � .x C iy//�1.�/g; .�/g/; x 2 R; y > 0:

(3.19)

Hence Lemma 3.3 (i) implies

supp �.�/g;ac D clac.¹x 2 R W 0 < Im F.�/g .x C i0/ < C1º/

D clac.¹x 2 R W 0 < Im..A � .x C i0//�1.�/g; .�/g/ < C1º/

and with the help of (3.18) we conclude

supp �.�/g;ac D clac.¹x 2 R W 0 < � Im.M.x C i0/g; g/ < C1º/:

Now the assertion (3.13) follows from (3.15).
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It remains to show that .a; b/\�ac.A/ D ; if and only if for each g 2 H 3=2.@�/

one has Im.M.x C i0/g; g/ D 0 for almost all x 2 .a; b/. For abbreviation set

Mac.g/ WD ¹x 2 R W 0 < � Im.M.x C i0/g; g/ < C1º; g 2 H 3=2.@�/:

If .a; b/ \ �ac.A/ D ; then ; D clac.Mac.g// \ .a; b/ by (3.13) for each
g 2 H 3=2.@�/. �erefore, for each g and each x 2 .a; b/ there exists " > 0

such that

j.x � "; x C "/ \ Mac.g/j D 0: (3.20)

It follows from (3.17) and Lemma 3.3 that Im.M.x C i0/g; g/ exists and is
�nite for Lebesgue almost all x 2 R and all g 2 H 3=2.@�/. Hence (3.20) im-
plies Im.M.x C i0/g; g/ D 0 for all g 2 H 3=2.@�/ and almost all x 2 .a; b/.
�e converse implication follows immediately from (3.13), since the absolutely
continuous closure of a set of Lebesgue measure zero is empty.

Next we formulate a su�cient criterion for the absence of singular continu-
ous spectrum within some interval in terms of the limiting behavior of the func-
tion M.�/. Again the one-dimensional counterpart for Sturm–Liouville operators
is well known; an abstract operator theoretic version is contained in [13].

�eorem 3.5. Let A be the selfadjoint Dirichlet operator in (2.1), let M.�/ be
the Dirichlet-to-Neumann map in (2.5), and let a < b. If for each g 2 H 3=2.@�/

there exist at most countably many x 2 .a; b/ such that

Im.M.x C iy/g; g/ �! �1 and y.M.x C iy/g; g/ �! 0 as y & 0

(3.21)

then .a; b/ \ �sc.A/ D ;.

Proof. As in the proof of �eorem 3.4 one veri�es the identity

�sc.A/ D
[

.�/g2D
supp �.�/g;sc (3.22)

with D de�ned in (3.14) and �.�/g D .E.�/.�/g; .�/g/. From (3.21) it follows
with the help of (3.11) and (3.17) that for each g 2 H 3=2.@�/ and each � 2 C nR

there exist at most countably many x 2 .a; b/ such that

Im..A � .x C iy//�1.�/g; .�/g/ �! C1 (3.23)
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and

y..A � .x C iy//�1.�/g; .�/g/ �! 0 (3.24)

as y & 0. By Lemma 3.3 (ii) and (3.19) the set of those x satisfying (3.23)

and (3.24) forms a support of �.�/g;sc. It follows that �.�/g;sc has a count-
able support in .a; b/ for each .�/g 2 D. Since the measures �.�/g;sc do not
have point masses, we have .a; b/ \ supp �.�/g;sc D ; for all .�/g 2 D and,
hence, (3.22) yields �sc.A/ \ .a; b/ D ;.

As a corollary of the theorems of this section we provide su�cient criteria for
the spectrum of the Dirichlet operator A to be purely absolutely continuous or
purely singularly continuous, respectively, in some interval.

Corollary 3.6. Let A be the selfadjoint Dirichlet operator in (2.1), let M.�/ be
the Dirichlet-to-Neumann map in (2.5), and let a < b. Moreover, for all x 2 .a; b/

let

s-lim
y&0

yM.x C iy/ D 0:

�en the following assertions hold:

(i) if for each g 2 H 3=2.@�/ there exist at most countably many x 2 .a; b/ such
that Im.M.x C i0/g; g/ D �1 then �.A/ \ .a; b/ D �ac.A/ \ .a; b/;

(ii) if for each g 2 H 3=2.@�/ one has Im.M.x C i0/g; g/ D 0 for almost all
x 2 .a; b/ then �.A/ \ .a; b/ D �sc.A/ \ .a; b/.

Remark 3.7. �e main results of the present paper, �eorem 3.2 as well as �e-
orem 3.4 and �eorem 3.5, remain true when the Dirichlet operator A is replaced
by the selfadjoint operator �� C q in L2.�/ subject to a Robin type boundary
condition

‚uj@� D @�uj@�;

where ‚ is a selfadjoint, bounded operator in L2.@�/, and M.�/ is replaced by
the corresponding Robin-to-Dirichlet map M‚.�/ D .‚ � M.�//�1. Moreover,
the results can be carried over to more general second order uniformly elliptic,
formally symmetric di�erential expressions of the form

L D �

n
X

j;kD1

@j ajk@k C

n
X

j D1

.aj @j � @j aj / C a
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under suitable smoothness and boundedness conditions on the coe�cients ajk,
aj , a, 1 � j; k � n, and to domains with less regular (e.g. Lipschitz) boundaries.
Finally we remark that unbounded domains with non-compact (su�ciently regu-
lar) boundaries can be treated in almost the same way.
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