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Hadamard type asymptotics
for eigenvalues of the Neumann problem
for elliptic operators
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Abstract. This paper considers how the eigenvalues of the Neumann problem for an elliptic
operator depend on the domain. The proximity of two domains is measured in terms of the
norm of the difference between the two resolvents corresponding to the reference domain
and the perturbed domain, and the size of eigenfunctions outside the intersection of the two
domains. This construction enables the possibility of comparing both nonsmooth domains
and domains with different topology. An abstract framework is presented, where the main
result is an asymptotic formula where the remainder is expressed in terms of the proximity
quantity described above when this is relatively small. As an application, we develop a
theory for the Laplacian in Lipschitz domains. In particular, if the domains are assumed to
be C !¢ regular, an asymptotic result for the eigenvalues is given together with estimates
for the remainder, and we also provide an example which demonstrates the sharpness of
our obtained result.
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1. Introduction

The aim of this article is to describe how the eigenvalues of the Neumann prob-
lem for an elliptic operator depend on the domain. A large quantity of studies
of the corresponding Dirichlet problem exists in the literature; see, for instance,
Grinfeld [5], Henrot [7], Kozlov [11, 14], Kozlov and Nazarov [12], and references
found therein. However, less has been written about the Neumann problem. In
this article, we present a framework for the Neumann problem similar to the one
developed for the Dirichlet problem in [11].

Investigations of how eigenvalues change when the domain is perturbed is a
classical problem. Rayleigh [17] studied eigenvalues and domain perturbation in
connection with acoustics as early as in the nineteenth century. In the early twenti-
eth century, Hadamard [6] studied perturbations of domains with smooth bound-
ary, where the perturbed domain Q, is represented by x, = ¢h(x’) where x’ €
00, X, is the signed distance to the boundary (x, < 0 for x € Q¢), & is a smooth
function, and ¢ is a small parameter. Hadamard considered the Dirichlet problem,
but a formula of Hadamard-type for the first nonzero eigenvalue of the Neumann-
Laplacian is given by

AQe) = A(Q0) + ¢ /8 (VI — A0S + 0fe)

where d S is the surface measure on 0€2¢ and ¢ is an eigenfunction corresponding
to A(£2o) such that |¢|;2(q,) = 1; compare with Grinfeld [5]. A study of asymp-
totics for singular perturbations can be found in, e.g., Mel’nyk and Nazarov [16],
Laurain et al. in [15], Kozlov and Nazarov [13], and references found therein. The
problem of domain dependence of eigenvalues is closely related to shape opti-
mization. We refer to Henrot [7], and Sokotowski and Zolésio [18], and references
found therein.

Suppose that €2 and €2, are domains in R”, n > 2. This article considers the
spectral problems

_Au:A(Ql)u in Q1,
(1.1
dyu =0 on 092
and
—Av = A(R2,2)v in Qo,
(22) 2 (12)
v =0 on 092,,

where 9, is the normal derivative with respect to the outwards normal and if the
boundary is nonsmooth, we consider the corresponding weak formulation of the
problem. Our results are, however, applicable to a wider class of partial differential
operators. In particular to uniformly elliptic operators of second order.
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We start the paper with an abstract setting of the problem in a Hilbert space H .
We assume that two subspaces H; and H are given together with positive definite
operators K; and K, acting in H; and H,, respectively. We assume that K is a
compact operator. We choose an eigenvalue A~! of K; and denote by X C H;
the linear combination of all eigenvectors corresponding to eigenvalues greater
than or equal to A~!. The proximity of the operators K; and K is measured by a
constant ¢ in the inequalities

lo — Sel* < elp|*> forevery p € X

and

(K2 — SKi{S*)wl|? < ¢|lw||®> forevery w € H,.

Here, S = S is the orthogonal projector from H into H, and S* is the adjoint
operator of S: H; — H,. Under these assumption we prove that the operator K,
has exactly the same number of eigenvalues in a neighborhood of A~!, indepen-
dent of ¢, as the multiplicity of the eigenvalue A~! of K. This is a consequence
of the continuous dependence of eigenvalues on the domain; see, e.g., Henrot [7].
Moreover, we present an asymptotic formula for these eigenvalues where the re-
mainder term is relatively small compared to the leading term. This asymptotic
result improves Theorem 1 in [14] in two ways. First, we consider H; and H, as
subspaces of a fixed Hilbert space and can compare operators acting there with
the help of orthogonal projectors, which simplifies the conditions of Theorem 1.
Secondly, and perhaps more importantly, the remainder term in our theorem is
“smaller” with respect to the leading term, which is not necessarily the case in
Theorem 1 from [14].

To characterize how close the two domains are, we will use the Hausdorff
distance between the sets 2; and €2,, i.e.,

d = max{sup inf |x —y|, sup inf |x — y|}. (1.3)
x€Q yer yEQHr x€N
We do not assume that one domain is a subdomain of the other. It should be noted
however, that the abstract result presented below permits a more general type of
proximity quantity for the two domains; see (2.3) and (2.4) in Section 2.

If Q; isa C1* domain with 0 < o < 1 and Q5 is a Lipschitz perturbation of £
in the sense that the perturbed domain €2, can be characterized by a function &
defined on the boundary €2, such that every point (x’, x,) € dQ2, is represented
by x, = h(x’), where (x’,0) € 92, and x, is the signed distance to d2; as
defined above. Moreover, the function /4 is assumed to be Lipschitz continuous
and satisfy [VA| < Cd®. Then we obtain the following result; see Corollary 6.17.
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Theorem 1.1. Suppose that Q; is a C'*-domain with 0 < a < 1 and Q- is as
described above, that the problem in (1.1) has a discrete spectrum, and that m is
fixed. Then there exists a constant dy > 0 such that if d < do, then

Ar(R2) = Am(Q1) = kg + 0(d' ™) (1.4)

for everyk = 1,2,..., Jm, where Jy, is the dimension of the eigenspace corre-
sponding to A, (21). Here k = Ky is an eigenvalue of the problem

(. Y) = /3 BT Ty = A @UEISE) forall € X, (19

where ¢ € X,,. Moreover, k1,ka, ..., k71, in (1.4) run through all eigenvalues
of (1.5) counting their multiplicities.

Observe that (1.5) can be phrased as a spectral problem on the Hilbert space X,
by using the Riesz representation theorem of the operator on the right-hand side.

In Section 6.7, we consider a specific example of a Lipschitz perturbation
of a cylinder in two dimensions. We prove that if n : R — R is a periodic non-
negative Lipschitz continuous function with period 1, and Q; C R? is defined
byO0 < x < Tand0 < y < R, where R and T are constants, and the subdo-
main Q, C Q2 isdefined by 0 < x < T and dn(x/8) < y < R for a small
parameter §, then

Ar(R22) — A (1) = ki + 0(8%) foreveryk =1,2,...,Jp, (1.6)

where J, is the dimension of the eigenspace corresponding to A,,(21).
Here, k = «y, is an eigenvalue of the problem

T
K(p, ¥) = 5710/0 (Vo(x,0) - VY (x,0) = Ap(21)e(x, 0)¥(x,0)) dx
1.7

T
+m / Vo(x,0)- Vir(x,0)dx
0

for all ¥ € X,,, where ¢ € X,,, and

1 1
no = / p(X)dX and gy = / VX, (X)) (X) dX.
0 0

The function V is the solution to —AV = 0for0 < X < 1and Y > n(X) with
the boundary condition 9, V(X, (X)) = 7/(X)(1 + (7 (X))®>)"Y2on Y = n(X)
and periodic boundary conditions on the remaining boundary. The constant 7, is
not zero if 7 is not identically constant. Observe that the first term in the right-
hand side of (1.7) coincides with the right-hand side of (1.5) up to order O(8?).
This proves that the condition o > 0 is sharp in Theorem 1.1.
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In Corollary 6.11, we obtain as a consequence of the methods developed that
eigenvalues satisfy the following estimate for (uniformly) Lipschitz perturbations.
There exists a constant C, independent of d, such that | A (22) — A, (21)] < Cd
forevery k = 1,2, ..., Jiu; see Corollary 6.11. This estimate can be compared to
results presented in, e.g., Burenkov and Davies [2] in the case when Q, C Q.

2. Abstract setting: perturbation of eigenvalues

The fact that zero is an eigenvalue for the problems in (1.1) and (1.2) is trivial, and to
avoid technicalities due to this, we will consider the operator 1 — A.
A number A is an eigenvalue of the operator 1 — A if and only if A — 1 is an
eigenvalue of —A. Let Ap (1) = A — 1,k = 1,2,.. ., be the eigenvalues of (1.1)
enumerated according to 0 < A; < A, < ---. We assume here that Q; is con-
nected. Similarly, we let Ax(2;) = p — 1 be the eigenvalues of (1.2). The sub-
set X of H; is the eigenspace corresponding to eigenvalue Ax(€2;), with the
dimension denoted by J; = dim(Xy). Observe that Xj is also the eigenspace for
the eigenvalue A of the to (1.1) corresponding problem for 1 — A.

We proceed by introducing an abstract setting for the problems in (1.1) and (1.2).
Suppose that H; and H, are infinite dimensional subspaces of a Hilbert space H .
Let the operators K;: H; — H; be positive definite and self-adjoint for j = 1, 2.
Furthermore, let K; be compact. We consider the spectral problems

Kip=1"'¢, ¢eH, 2.1

and

K>U =pu~ U, U e H,, (2.2)

and denote by )L,:l for k = 1,2,... the eigenvalues of K;. Let X; C H; be the
eigenspace corresponding to eigenvalue A,:l. Moreover, we denote the dimension
of Xy by Jx and define X,, = X;+ X2+ - X;, where m > 1 is any integer. In this
article we study eigenvalues of (2.2) located in a neighborhood of A,,, where m is
fixed.

In order to define the proximity of the operators K; and K5, which are de-
fined on different spaces, we introduce the orthogonal projectors S;: H — H;
and S»: H — H,. To simplify the notation, we also introduce the operator S
as the restriction of S, to H;. Thus S maps H; into H, and its adjoint opera-
tor S*: H, — H; is given by $* = §1.55.
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We introduce a quantity ¢ > 0 as a constant in the inequalities

(K2 — SK1S*)w]|]* < el|lw||*> forevery w € H, (2.3)

and

lp — Sol> < ellpl® forevery ¢ € Xpm. (2.4)

The parameter ¢ is the measure we use to describe the proximity of the spaces H;
and H, and the operators K; and K>. In the following analysis, an important role
is played by the operator

B: H 1 — H 2

defined as
B = K,S — SK;.

Remark 2.1. A common way to compare the proximity of domains in shape op-
timization is the parameter o in

(K282 — KiSHw||?> <o||w|* forevery w € H. (2.5)

Let us show that ¢ can be chosen as

e = amax{l, 4%1,2(}.

k=1

The fact that (2.3) holds can be verified directly. To verify that (2.4) holds, let ¢ €
Xm. Then ¢ = ZZLI Ccr @k, where ¢ € X} are orthonormal and ¢ are constants.
Thus,

m
lo = Sell <> lexAel I Kige — SK 1|
k=1

=< lex Ak (| K1ox — K2 Sa20k |l + [ K2S20x — K1k |l)

NE

x
Il
—_

m
<2023 e,
k=1

which implies that

m
lp = Sell? < 4o( 3 22) ol
k=1
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3. Main results

Let P,, be the orthogonal projection of H; onto SX,,. We now state results about
the stability of eigenvalues and eigenvectors depending on the parameter . The
first lemma is a consequence of the continuous dependence of eigenvalues on the
domain; see, for instance, Kato [9] (Sections IV.3 and V.3) or Henrot [7] and ref-
erences therein.

Lemma 3.1. There exists positive constants gy, ¢, and C, depending on the eigen-
values A1, . .., Am+1, such that, for ¢ < gy, the following assertions are valid:

(i) The operator K, has precisely Jp, eigenvalues in
(Ar;}l—l +ce'/?, )‘;11—1 —051/2)
and all of them are located in

(At —cel/? 001 + cel/?).

(i) If u="is an eigenvalue of (2.2) from the interval
(A;ll — cel/z, )&;11 + C81/2)
and U is a corresponding eigenfunction, then

|U - P,U| < Ce?||U.

We denote by u; ! for k = 1,2,..., J,, the eigenvalues of the spectral prob-
lem (2.2) located in the interval (A;! — ce/2, A1 4 c&!/2), where ¢ is the same
constant as in Lemma 3.1. The quantity p is defined by

p= sup  (Aml|K2Bo|? + edm|Bo|?). 3.1
0EXm, lloll=1

Theorem 3.2. The following asymptotic formula holds:
u,:l =1 o+ O+ |tkle) foreveryk =1,2,..., Jm, (3.2)
where T = 1y is an eigenvalue of the problem
©(Se, SY) = Am(Be, BY) + (B, SY) forally € Xy, (3.3)

where ¢ € X,,. Moreover, 11,12, ...,1y, in (3.2) run through all eigenvalues
of (3.3) counting their multiplicities.
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In applications, the term || K, B || is typically significantly smaller than max |z |;
see, e.g., Lemma 6.9. This implies that p is small compared to t; for every k.
Note also that the right-hand side of (3.3) can be expressed more compactly
as A, (Bo, KaSv).

The asymptotic formula in (3.2) has similarities to the one presented in
Kozlov [14]. The main difference is how the remainder term is constructed; in
Theorem 3.2, p is typically small compared to the main terms above. However,
the same is not necessarily true in [14].

4. Proof of Lemma 3.1

The following properties hold.
D (1 =9llgl*> = [Sel* < llg|* for every ¢ € Xin.

(II) There exists a positive constant C, depending on the operator norm of Kj,
such that
IBo|l < Ce'/?||g|| forall ¢ € Xp. (4.1)

) (Kow, w) < (K1S*w, S*w) + ¢/?||w|®> forall w € H,.

The inequality in (I) follows from

ISel” = llel* = llg — Sel* = (1 —)lle]*.
To prove (1), suppose that ¢ € X,,. Then
IBoll < 1BS™S¢ll + |1B(e — S*Se)||
= [I(K2 — SK15™)S¢| + [ISK1(p — S*So)||
<&'2|Sgll + Cllg — S*Sgl
< Ce'gl,

where we used (2.3), (2.4), and the fact that SS*S¢ = S¢. The property in (III)
follows from the fact that

(Krw, w) — (K1 8w, S*w) = (K2 — SK1S™)w, w)
< (K2 = SK1S™)w]||w]

/21,112
<&
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The arguments in Section 3.2, 3.3, and 3.4 of [11], are now valid with small mod-
ifications. Specifically, we substitute S for the operator S, in these sections, and
replace inequality (32) by (I). Furthermore, the proof of inequality (34) is anal-
ogous, inequality (36) is replaced by (II), and finally, inequality (39) is replaced
by (IIT). This completes the proof of Lemma 3.1.

5. Proof of Theorem 3.2

The proof of Theorem 3.2 mirrors that of the corresponding theorem in Kozlov [11].
Equation (5.2) below corresponds to (7) in [11], but in this case we have the explicit
solution given in (5.1). In Sections 5.1-5.3, we provide results similar to the ones
found in Section 4 of [11].

Let Q,, = I — P, where [ is the identity operator on H», and suppose hence-
forth that ¢ and ¥ belong to X,,. To simplify the notation, define

Y, = —AnBy forany ¢ € X,,. 5.1)
Then W, solves the equation
Wy, w) = (¢, w) — A, (Se, Kow) forevery w € Hs. (5.2)
To verify (5.1), suppose that w € H,. Then

(BQD’ w) = (KzSQD, w) - (SKIQD’ w)
= =2, (S¢. w) — Am(Se. Kaw))
= _)‘;zl (Wy, w).

5.1. Representation of (Q,, B¢, By). From (5.1) it follows that

(OmBg. BY) = 1,2 (Vy. Wy) — (P ¥y, Wy)).

Let {Tk},{’il be an ON-basis in SX,,. Then, for each k = 1,...,J,,, there
exists ¢x € X, such that Yi = S¢g. Thus,

Jm

(Pn%p, W) = > (W, Spi)(Sgr, V). (5.3)
k=1
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From (5.1) and (II), it is clear that

|(Wy, So)| = Aml(Bo. So)| < Aml|BolllISerll < Ce'/?|lg||
fork =1,..., J,,. Moreover, letting w = S¢y in (5.2) proves that

(o, Sor) = Am (Yo, K2Soi) + (Y, Yy, )
= Am(K2Wy, Spr) — Am(Vy, Bek).
from which it follows together with (I) that
|(Wo, Spi)| = Am ([ K2Wp IS @icll + [ Wo Il BexeII)
< C(IK2Bol + &2 Bo])

Analogously,

Wy, Sor) = Am(K2Wy, Sor) + (Wy, Yy, ),

and thus
[(Sgr, Wy)| < C(|K2BY || + &V/2| By ).

Now, the identity in (5.3), and the estimates in (5.5) and (5.6), imply that
[(Pm Wy, Wy)| = A7 [(PnBo. BY)| < C(p(p) + p(¥)),

where
p(@) = An(|K2Bo|*> + e Bol?), ¢ € Xm.

54

(5.5)

(5.6)

5.7

5.2. Estimate of (K2Q,, B¢, QmBV¥). Since P,, + Q,, = I, itis clear that

(KszB(P, QmBW) = (K2B(p7 QmBW) - (K2PmB§07 QmBl/’)
= (K2B(p7 QmBW) - (K2PmB§07 Bl/’)
+ (K2 P B, PpBY).

Now,
(K2Bg, OmBY)| < | K2Bo|||QmBY | < Ce'?|y || K2Bg.
Similarly,

|(K2PmBg. BY)| = |(PmBo, K2BY)| < Ce'/?|pl|l|| K2BY|.
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As in Section 5.1, let {Tk},{’i , be an ON-basis in SX,,. Then there exists eigen-
functions ¢ € X,, such that Y = S¢i forevery k = 1,..., Jy,,. Thus,

Jm

(K2PnBg, PuBY) =Y (PnBy, Sor)(K2S¢r, PnBY).  (5.8)
k=1

Using (5.1) and (5.5), it is clear that
((PnBe, Sei)| < [(Bg, Sgi)| < C(IIK2Bol| + £/ Bol).

Furthermore, (5.1) and (5.5), with ¢; in the place of ¢ and v replaced by ¢, proves

that
Im

> (KaSek. S@i)(PmBY. S)
=1

|(K2S @, PmBY)| =

Im
<CY [(PuBY, Sq1)
=1

< C(IK2BY | + &' 2| By|).
Thus,

(1K2Boll + &' 2IBel)(1K2BY | + 2 BY 1) < Clo(p) + p(¥)).

Finally, we obtain that
|(K20m By, OmBY)| < C(p(9) + p(¥)). (5.9)

5.3. Proof of Theorem 3.2. Analogously with the argument used in Kozlov [11],
it is possible to reduce the spectral problem (2.2) to a finite dimensional situation
using the projectors Py, and Q,,:

(L' = K2)(Se +w) =0, (5.10)

where ¢ € X, and w € Q,, H,. Indeed, proceeding accordingly with Section 4.1
in [11], we obtain that

(Se, SY) — (By, SY) — u(QmBe, BY) — (L(u)Byp, BYy) =0, (5.11)
where
L() = 1 OmK2Om(u™" = OmK20m) ™" Om

and
t=put =2k
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We assume that |Z| < ¢!/2. Moreover, the operator (u™' — QnK20p)7" is
bounded from Q,, H, into Q,, H;:

|1~ QmK20m) " wllgy, < Cllwllg, e, foreveryw € Hy.

Hence,
|((L(n)Bo, BY)| < C(K20mBY, QmBY).

It follows from the identity ©~! = A1 + 7 that

w(@QmBep, BY) = Am(Bo, BY) —ba(e, V),

where R
bale. ) = 5= QB BY) + (P B, BV
Then
b2, )| = ClRle + Clol9) + p(y). 5.12)

Putb(p. ¥) = (L(1)Be. BY) + ba(g. ¥). Then

where b(p, ) satisfies

|b(e, )| < Clp(p) + p(¥) + |Tle) (5.14)

according to (5.12) and (5.9).

Suppose that j = 1,..., J,,. Let U; € H» be an eigenfunction of K, corre-
sponding to the eigenvalue uj_l. Then there exists V; € X, satisfying P,U; =
SV;. By t; we denote an eigenvalue of (5.13) with eigenfunction ¢ = V;. Suppose
also that 7 is an eigenvalue of (3.3) and ®; € X,, a corresponding eigenfunction.
Analogously with Section 4.5 in Kozlov [11], we may assume that there exists a
constant ¢, > 0 such that

(SV}, $@)) > cu (5.15)

after possible rearrangement of the eigenfunctions ®; spanning X,,.
Choosing ¢ = ®; and ¥ = V; in equation (3.3), and ¢ = V; and ¢y = ®; in
equation (5.13), and then subtracting (3.3) from (5.13), we obtain that

(T — 1) SV;, S®j) = An((BV;, K28P;) — (B®;, K2SV))) + b(Vj, ¥)).
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The fact that K is self-adjoint, that ®; and V; belong to X,,, and the definition
of B, imply that

(BV;. K28®)) — (B®;, K28V;) = 1,1 ((S®;. K2SV)) — (SVj. K289)))
=0.

Hence,

(T —1)(SV;, §0;) = b(V}, ¥)),
from which it follows from (5.14) and (5.15) that

1T, — 7| < C(p(V)) + p(¥)) + [z)]e).

Taking the supremum over V; and ¥, in X, with ||V;| = ||¥;| = 1, we obtain
that

1T; —7;| < C(p + |zjle).

where
p= sup p(¢) = Am sup (|K2Bol|* + ¢l|Bo|?).
0EXm ©EXm
loli=1 loli=1

This also implies that
15 — 7l = Clp + Izjle),

6. Applications

In this section we consider the Neumann problem for the operator 1— A in different
domains. Let 2 and €2, be two domains in R” with nonempty intersection. We
put H = L*(R") and H; = L?(Q;) for j = 1,2. Functions in H; are extended
to R” by zero outside of €2;. Observe that we do not require that one subdomain €2
is a subset of the other. For f € L2(;), the weak solution to the Neumann
problem (1 — A)W; = f in Q; and 0, W; = 0 on 92 for j = 1,2 satisfies

/(w%w+wwwx=/jwm for every v € H'(Q;)). (6.1)
Q; Q;

It follows from (6.1) with v = W, and the Cauchy—Schwarz inequality that

IVWillL2@;) + IWillL2@,) = 11/ 2@))-
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We let K for j = 1,2 be defined on L?(£2;) as the solution operators correspond-
ing to the domains Q;, i.e., K; f = W;. Then K; maps L?(€;) into the Sobolev
space H'(Q;), and

IKjullzi@;) = Clull2@;)-

Moreover, (1 — A)Kju = u and 0, K;u = 0 on 92, in the weak sense. The oper-
ators K; are also self-adjoint and positive definite, and if Q2; are, e.g., Lipschitz,
also compact.

To characterize how close the two domains are, we will use the Hausdorff
distance d between the sets 2; and 2, given in (1.3).

6.1. Perturbations of Lipschitz- and C1*-domains. We now consider two
cases of regularity of the boundaries 92, namely C * and Lipschitz boundaries.
Let us first consider the Lipschitz case. Let ©2; be the reference domain which
will be fixed throughout. Then there exists a positive constant M such that the
boundary d€2; can be covered by a finite number of balls Bg, k = 1,2,..., N,
where there exists orthogonal coordinate systems in which

BrNQi =B N{y =" yn): yn> h,(cl)(y/)}
where the center of By is at the origin and h,(cl) are Lipschitz functions, i.e.,
6 =P = MIy =X,

such that h,(:)(O) = 0. We assume that 2, belongs to the class of domains
where 2, is close to €27 in the sense that €2, can be described by

BiNQ =B N{y=0"yn): yn> h,(f)(y/)},

where h,(cz) are also Lipschitz continuous with Lipschitz constant M. Clearly all
such domains belong to a ball D of sufficiently large radius depending only on M
and Bi, B,, ..., By. Note also that 7 N Q, is a Lipschitz domain of this type
and that we can use the same covering and Lipschitz constant.

Remark 6.1. Observe that d is comparable to

in the sense that there exists positive constants ¢; and ¢, depending only on M
and B,k =1,2,...,N,suchthat c1d <d < cd.
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The case of a C!** domain is defined in the same manner, with the additional
assumptions that h,(cl) are C 1"*-functions such that

AP ©0) = 3,0 =0, i=1,2,....n—1
Moreover, we suppose that
V() —hP)| < Ca®. 6.2)

Note that h,(f) are only assumed to be Lipschitz continuous and satisfy (6.2). It is
also worth noting that these domains constitute a subset of the class of Lipschitz
domains used in Section 6.2. Thus, results that hold for Lipschitz domains are
also valid for this class of domains.

6.2. Lipschitz domains. Solutions to elliptic partial differential equations in
Lipschitz domains often belong to Hardy-type spaces. Let 2 be a Lipschitz do-
main. The truncated cones I'(x") at x” € 92 are given by, e.g.,

I'(x") ={x € Q: |x — x| <2dist(x,0Q)}
and the non-tangential maximal function is defined on the boundary 92 by

Nu)(x') = ,_max Nsup{|u(x)|: x € T'(x") N By}.

3 Liyanny

The non-tangential convergence of u(x) to some number u(x’) is defined as

lim  u(x) =u(x), x €9Q,
T'(x")ax—>x/
provided that the limit exists. Thus only approaches inside the cone I'(x’) are
considered. Let n(x’) denote the normal vector at x’ and furthermore, if T is
any tangential vector of © at x’/, the tangential gradient V7u with respect to T is
defined as Vu - T'. We refer to Kenig [10] for further details. The next two lemmas
consists of known results which we prove for completeness sake.

Lemma 6.2. If g € L?(3R2), where Q C D is a Lipschitz domain, then there
exists a unique function u € H'(Q) such that (1 — A)u = 0in Q and d,u = g
on 02 in the sense that n - Vu — g nontangentially at almost every point on 012,
where n is the outwards normal. Moreover,

INW 200 + INVWL200) < Clglzog)-

where the constant C depends only on M and B1, B, ..., By and the tangential
gradient Vru exists in L?(0Q) in the sense of a weak limit in L? of mean value
integrals (Vru), (see Section 1.8 of Kenig [10]).
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Proof. The problem (1 — A)u = 0in Q and d,w = g on d<2 has a weak solu-
tion w € H'(Q) for every g € L?(3S2) such that

lull @) < CligllLzpe),

where C is independent of g and u. Let us extend u to a function # € H'(D)
with compact support such that |[#|g1py < Clullgi(q). Putu = uo + uy,

where Aug = i on D and ug = 0 on dD. Then ug € H*(D) and

luollg2(py < Cligllz20)-

We also obtain that Auy = 0in Q and d,u; = h with h = d,u — d,uy satisfy-
ing |2]22¢00) < Cllgllz2p0)-
Supposethat U = 1. Then AU = 0and U = 1 0n 42, and by Green’s formula,

/ (0yu — dyup)UdS = / (V(u —up) - VU + A(u —up)U)dx
Ely) Q
:/(u—ﬁ)dx = 0.
Q

The homogeneous Neumann problem Au; = 0 in Q with d,u; = & on dQ2 has a
unique solution u; € H' () such that

[N z200) + IN(VuD)llz2ee) < Cligliizpo): (6.3)

where N is the non-tangential maximal function; see Jerison and Kenig [8].
Now, (6.3) and the fact that u = u¢ + u; imply that

IN@IIL200) + IN(Vi)l200) = Cligl2pe)-

For the convergence of the tangential gradient, see Kenig [10]. O

Lemma 6.3. If f € L?(R2), where Q C D is a Lipschitz domain, then there exists
a unique functionu € HY(Q) such that (1 — A)u = f in Q, and d,u = 0 on IQ
in the nontangential sense. Moreover,

INW) I 200) + INVWll200) < Clf 2@ (6.4)

where the constant C depends only on M and By, B, ..., By.
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Proof. Extend f € L2(2) by zero to a function f € L2(D). Let v € H2(D) be
the solution to (1 — A)v = f and v = 0 on dD such that

lvlla2py < ClILf 2@)s (6.5)

and put u = v 4+ w. It follows that (1 — A)w = 0in Q and d,w = —a,v on 9.
Since Vv € H'(R") and (6.5) holds, the trace d,v € L?(9R2) satisfies

[0vvll20) < Clivllgiwey < CILf lL2®ny- (6.6)

Applying Lemma 6.2 with g = —d,,v, we obtain the unique w € H'() such
that (1 — A)w = 0, d,w = g, and

INW) 200 + IN(VW)200) < CIl f lL2(@)

where we used (6.6). Since ¥ = v + w, we have now proved the statements in the
lemma. O

Notice that Lemmas 6.2 and 6.3 imply that

IN(KjwlL2@0;) + INVKjW 26, = Clulize). =12 (6.7

6.3. Extension operators. It will be necessary for our purposes to extend func-
tions from either Lipschitz- or C !**-domains. The following result provides the
possibility to accomplish this.

Lemma 6.4. (i) Suppose that f € H'(3Q) and g € L?*(R), where Q is a
Lipschitz domain. Then there exists a function u € H'(Q°) such that u — f
and n - Vu — g nontangentially at almost every point on d$2, where n is the
outwards normal of 2, and there exists a constant C such that

IN@ | L200) + IN(V)ll200) < CULfm100) + 1181L2000))
where C depends on M and By, B,, ..., By.

(ii) Suppose that f € CV*(9Q) and g € CO*(9RQ), where Q is a C* domain.
Then there exists a function u € C1V%(Q°) such that u = f and d,u = g on 9,
and there exists a constant C such that

[ullcre@ey = CULf lerepa) + 18lcoepa))- (6.8)
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Proof. Let By be given as in Section 6.2. Choose ny € CX°(Bg),k =1,2,.... N,
such that n; + 7, + --- + ny = 1 in an open neighborhood containing 0€2.
For each k, define

Je=nf and gr =mnrg on B NI,

and let
fr =g =0 ondBnNQ°.

Let Dy be the bounded domain with boundary (02 N B) U (dB N Q2°). Then Dy is
a Lipschitz domain with connected boundary, f; € H'(dDy), and g € L?(dDy).
According to, e.g., Dahlberg et al. [3], there exists a solution u to A?u = 0in Dy
such that u — f; and n - Vu — g nontangentially at almost every point on 9Dy,
where —n is the outwards normal at 0D;. Moreover,

NI 20p,) + INVW 220D,y < CUfrllaropy) + 118kl 220p))
< CUlf Naroe) + 1gllL2p0)

(6.9)

where C is independent of u, f, and g, but depends on the Lipschitz constant
of Dy. Carrying out the same argument for all of the balls By in Section 6.2,
which is a finite number, we obtain u € H'(D), where D = Dy U D, U---U D,,.
We may extend u to all of Q¢ be letting u = 0 outside D and obtain u € H'(Q°)

which satisfies the statement in 6.4().
The proof of Lemma 6.4(ii) can be carried out analogously with the Lipschitz
case. However, the result is well known for C !**-domains and the proof is omitted.
O

We will commonly denote the extension for, e.g., a function u, obtained from
this Lemma by 1.

6.4. Determination of the quantity e. We now proceed by determining a quan-
tity e suitable for our purpose. Let us investigate the assertions in (2.3) and (2.4).
The assumption in (2.4) is in our case

/ lp|>dx < e|lp|? forevery ¢ € Xp,. (6.10)
Q1\822

There exists a constant C, depending on the domain €, and A, such that for every
weak solution to the elliptic problem (1 — A)g = A¢ in 21 with d,¢ = 0 on 024,

lellLe@) < CllellLzg,):;



Hadamard type asymptotics 117

see, e.g, Theorem 8.15 in Gilbarg and Trudinger [4]. This enables us to estimate
the left-hand side of (6.10) by

/ @ loI? dx < ll¢llf oo \20 @1 \ 2l =Cd o]}, (6.11)
1 2
where d is the Hausdorff distance between 2; and Q, and |Q2; \ Q5] is the

Lebesgue measure of 27 \ Q2,.
To prove the assertion in (2.3), we use the following lemmas.

Lemma 6.5. Suppose that v = K,S,w — S, K1 S1w, where w € L?(D). Then v
satisfies (1 — A)v = 0in Q; N Qs and v € HY(3(R1 N Q1)). Moreover, there
exists a positive constant C, depending only on M and By, B, ..., By, such that

() ifw € L?(R1 N Qy), then

||U||12L11(91092) < Cd |gllL2@, ne Wl L2, nes)

(i) ifw € L2(Q1 \ RQ), then

1171 @, nay = Cd'"? gl 2@, naay 10 2@, \20)-

(iii) andifw € L?(Q \ Q1), then
1171 @, nay = Cd'"? gl 2@, naay 10 2@\ a1)-
where w is extended by zero outside the respective domains, and
g=0,v ond(2; N N).

Proof. Since v € H'(21NQ,) satisfies (1—A)v = 0in Q; N, and d,,v belongs
to L2(3(Q N R3)), Lemma 6.2 implies that

INWIL20@,n0y)) T IN(VO 2002, 00y = Cllgllzo@ nayy)  (6-12)

and that v € H'(3(22; N ©3)). Moreover, Lemma 6.4(i) ensures the existence of
an extension ¥ € H'(R") such that

INOI L2, n0,)) T INVO 2000, n0,)) = ClgllLzo@ nayy)-  (6-13)
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Now,

/ (v + |Vv|?) dx
Q1NQy

= / vd,vdS
(21NR2>)

=/ UaszSzwdS—/ vavKlSlwdS

0R21N2> Q1N0Q2>

= —/ V0, K> S,w dS +/ 10, K1S1wdS,
A(Q2\21) (21\822)

where we used the fact that 0, K2 S,w = 0 on 92, and 9, K1 S1w = 0 on 9€2;.
Since (1 — A)K>S>w = Srw in Q5 \ €1, we obtain that

—/ 178VK2521U ds = / (55211) — 17K252w - Vv VKzszw) dx.
(Q2\21)

Q\2
(6.14)
If w € L?(Q2; N Q5), then S,w = 0 and the right-hand side of (6.14) is bounded
by

Cd | gllr2p@,na) W llL2@, ngs)- (6.15)

This follows from the Cauchy—Schwarz inequality, (6.13), and (6.7), since, e.g.,

/ |17K252w| dx,
22\ Q1
1/2 1/2
< (/ 72 a’x) (/ (K2Srw)? dx)
Q2\ Q1 22\ Q1

1/2 1/2
<Cd ( / N(©)? dx/) ( / N(K>S,w)? dx’) .
(21NR2>») (R21NR2>»)

If w € L?(R \ R2), then S,w = 0, and analogously with (6.15), the expression
in (6]4) is bounded by Cd ”g”LZ(a(leQZ)) ”w”Lz(Ql\QZ)' Ifwe Lz(Qz \ Ql),
then S>w = w. Since

/ 5wl dx < Cd? gl 2a@inaa 10 2@nan):
Q2\Q21

we obtain that (6]4) is bounded by Cd1/2 ”g”LZ(a(Q] N»)) ||u) ”LZ(QZ\QI)'
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Analogously, the expression

/ 00, K1 S1wdS =/ (WK1S1w+ V- VK1 S1w —0S1w) dx
a(21\Q22) Q1\Q2

is bounded by
Cd |gllz2 @@ neonlwliz@ ng,y  if w e L3(Q1 N Qy),
Cdlgl2o@, na) lwiliLzene)) ifwe L*(Q:\ 1),
Cd1/2||g||L2(a(Qsz))||w||L2(Ql\Qz) ifwe L*(Q1\ Q2),

respectively. U

Lemma 6.6. There exists a constant C > 0 such that

| Kow — SK1S*w|? < CdY? |w|> foreveryw € L?(Q,)  (6.16)
and
||Bgz)||2 <Cd ||<p||2 for every ¢ € X,. (6.17)

Proof. Putv = Kow — SK1S*w. We split the domain €2, in two disjoint subdo-
mains: Q1 N Q5 and Q5 \ Q. For the subdomain 2, \ €1, it is clear from (6.7)
that

2 2 2
vodx =/ (Kraw)*dx < Cd ||w]| . (6.18)
/92\91 2\ L2@2)
Lemma 6.5 now implies the inequality in (6.16) since

Igllz20,ne,) =< Cllwllz2q,)- (6.19)

To prove (6.17), observe first that (6.11) holds. Thus, by letting w = ¢, we can
apply Lemma 6.5 with v = By and obtain that

/ (Bo)? dx < Cd gl 2@ 19l 12@-
Q1N

Since also Bp = v on Q5 \ 21, inequalities (6.18) and (6.19) are applicable, which
concludes the proof of (6.17). O

Thus, by (6.16) and (6.11), it is clear that we can choose ¢ = Cd /2. Furthermore,
if Q, is a subdomain of €;, we obtain a bound depending on d instead of d'/2
for a general function w € L2(2,); this is a consequence of that fact that the
term [[w| 2@, \q,) Vanishes in Lemma 6.5 when 5, C ;.
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Remark 6.7. If Q, C 1, then

| Kow — SK1S*w|*> < Cd |[w||*> forevery w € L*(Q»). (6.20)

6.5. Main results for Lipschitz domains. We now derive an expression for the
right-hand side of (3.3) and prove that in comparison, the remainder is small.
We will then use Theorem 3.2 to obtain a result for eigenvalues of K, near A;ll.

Lemma 6.8. If w € L?(RQ), then

Am BoK,wdx = / (1 =An)Wo + VW - Vo) dx
Q> Q1\Q22 6.21)

- / (W = Kow)§ + VW - V@) dx,
Q2\82
where W € H'(R") is an extension of K3w € H'(Q»).

Proof. We proceed similarly with the proof of Lemma 6.6. Since (1 —A)Bg =0
in 27 N Q,, we obtain using Green’s formula that

/ BoK,wdx = / Bo(l — A)KZw dx
QN2> Q1NQ>
= / (K2wd, By — Bpd, K3w) dS
(Q1NQ>)
= / (K3wd, K2Sy — Bed, K3w) dS
021Ny
—/ K%w&vKlgo ds.
QNI
Furthermore, (1 — A)K,w = w in Q;, \ 2; and 9, K>S¢ = 0 on d2,. Thus,
/ K3wd,K2SpdS = —/ K2wd,K2S¢ dS
Q21N (R22\21)

= —/ (K3wK,S¢ + VK2w - VK,S¢) dx
Q2\82

—/ KoywK,;Sodx,
Q2\Q
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and analogously,

—/ Bgd,K3wdS = /
0R21N2> 0(222\Q21)

/ (EgoK%w +VBg- VK3w) dx
Q2\ Q)

—/ Ewsz dx,
Q\2

where Bu = K>Su — Sﬁl for u € L?(Q;) satisfies

Bpd, K2wdS

| Bu — Bul?, =/ Kol dx
L2(27) \Q

< Cd/ IN(Kqu)|? dx’
CI9A

by Lemma 6.4(i) and inequality (6.7),
Similar to the treatment of the previous boundary integrals, it follows from the
facts that (1 — A)K1¢ = ¢ in Q1 \ 2, and 9, K1¢ = 0 on 921, that
—/ K2wd, K o dS = / W, KipdS
QNI 0(22\21)

—/ (WKy19 + VW - VK10 — Wo) dx.
Q1\Q2

We have now proved that

/ BoK,wdx = / BoKrw dx+/ BoKywdx
Q> QN2 Q2\2

= A,;l/ (1 =An)We + VW - Vo) dx
1 2

(K3w — Koaw)$ + VK3w - V§) dx.

_ A;ll
Q\Q
This is the equality in (6.21). O
Lemma 6.9. There exists a constant C > 0 such that
(6.22)

I1K2Bol7aq,, < Cd*Pll0llaq,, forevery ¢ € Xo.
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Proof. Since K, B¢ is a solution to (1 — A)K,Bgp = By with 9,K,Bp = 0
on d$2,, we obtain that

(K2B9) + [VKaBoP)dx = [ BoKaBodx

Qs Q2

Let W be given as in Lemma 6.8 with w = B¢. Then

INW) L2000, + INVW) 1200, < ClBol2@,)

and Lemma 6.8 implies that
| BoKaBydx < Cd 1Bolz@y ol
2

Since [|B¢llz2(q,) < CdV?|¢llL2q,) according to Lemma 6.6, we obtain the
inequality in (6.22). O

We now have all the tools available to prove our main result for Lipschitz do-
mains, i.e., expressing the difference between eigenvalues 1! and p,,:l in known
terms.

Proposition 6.10. Suppose that 21 and Q2, are Lipschitz domains in the sense of
Section 6.1. Then

Ml—pit=u+0d??) fork=1,2,...,Jn. (6.23)

Here, T = 11 is an eigenvalue of

(. ¥) = A5 / (1 = Am)KaS@ + VK259 - V) dx
A (6.24)
;] / (1 = Am)(K2S@)F + VK2Sg - Vi) dx
Q2\Q1

forall y € Xy, where ¢ € Xy, Moreover, 11, 12, ..., T, in (6.23) run through
all eigenvalues of (6.24) counting their multiplicities.

Proof. We express K2Sy in terms of the operator B:
K2Sy = K2(BY + SK1y) = K2BY + BK 1y + SK7.

If ¢ € X,,,, then
K35y = KaBY + A, Ko Sy
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Put
W = KBy + A, ' Ko Sy

where m and m are the extensions of K, By and K, S, respectively,
given by Lemma 6.4(i). Then W € H'(R") and

INWIL200,) T INVW) 12000, < CUIBY l22(0,) + 1SY | 22(0,)) 6.25)
< Cl¥lL2,)-

Lemma 6.8 and (6.25) proves that
i [ Bekasydx= [ (1= anKaSTe + VEST - Vo) dx
Q23 Q1\Q2

- /Q (= A (oSN + VS Y - ) d

+O0(@)el2@) IV 2 @))-

(6.26)
Observe also that (6.26) implies that
|(Be, KaS¥)| < Cdllol2@pl¥iiL2@,)- (6.27)
Lemmas 6.6 and 6.9 imply that
p=Ay ”;lnll_il(llKzBsz)II2 +¢|Bg|?) = 0(d*?).
Thus, Theorem 3.2 proves that we obtain
wet = A =+ O + | ldV?) = o + 0(d ¥/?) (6.28)

since
(9. ¥) = w(Se. SY) + O(tk|d) = Am(Bg. K28¢) + 0(d?).  (6.29)
Now, equations (6.28), (6.29), and (6.26), imply (6.23). O

From (6.27) we obtain the following corollary.

Corollary 6.11. With the same assumptions as in Proposition 6.10, there exists a
constant C, independent of d, such that

A —pg'l < Cd

fork =1,2,..., Jnm.
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If Q, C Qy, the solution v, = By to (1 — A)v, = 0 and 9,v, = —1,,'ve
for ¢ € X, can be used to formulate the results above in terms of this solution.
This can be an advantage since in many cases these type of partial differential equa-
tions are well studied and explicit solutions or estimates for solutions are known.
Moreover, we also present an example in Section 6.7 based on this proposition,
proving that the condition o > 0 is sharp for our result in the C '"*-case.

Proposition 6.12. Suppose that Q21 and Q, are Lipschitz domains in the sense of
Section 6.1 and that Q2 C 1. Then

Ml—wl =+ 0Wd¥?) fork=1.2,..., Jn. (6.30)

Here, v = 1y is an eigenvalue of

(e, V) = /Q (Amvovy + vo¥) dx (6.31)

forall ¢ € Xy, where ¢ € X,,. Moreover, 11,12, ..., 1y, in (6.30) run through
all eigenvalues of (6.31) counting their multiplicities.

6.6. The case of a C1** domain. We now consider the case when Q; and Q,
are C 1% domains, where 0 < o < 1.

Lemma 6.13. If Q is a CY“*-domain, then for every u € L*®(R"), K;Siu
belongs to C1%(21).

Proof. 'This follows from the results in Section 9 of Agmon et al. [1]. O

Lemma 6.14. There exists a constant C > 0 such that

sup |0, K;Sjwx)| < Cllwll 2 nend® T =1.2, (6.32)
x’'€d(21NN27)

for every w € L2(21 N Q»).

Proof. Let nj be the outwards normal on dQ2; for j = 1,2. On the bound-
ary 021, 0, K1 S1w = 0, and on 025, 9, K> S,w = 0. We prove (6.32) for j = 2.
The proof when j = 1 is analogous. Thus,

8szSzw =ni- VKzSzw = (I’ll — I’lz) . VKzSzw +ny- VKzszw,
and since it is clear that n, - VK> S>w = 0 on 0925,

sup |8n1K252w| < cd” ||VK252U)||L2(92) =< Cd* ||U)||L2(legz).
(R21N2»)
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Here, we also used the fact that there exists a constant C, independent of K, S>w,
such that |VK2Sw||pe(@,) < C|KaS2w| g1(g,)- Moreover,

Iy —na| < [V —nP)| < Cd?,
so we obtain (6.32) for j = 2. O

We can use Lemma 6.14 to refine the estimates provided in Lemma 6.6.

Lemma 6.15. There exists a constant C > 0 such that
| Kow — SK1S*w|? < CdV?  |w|? foreveryw € L%(R22)  (6.33)

and
IBol> < Cd'*™ |lglI>  forevery ¢ € Xy (6.34)

Proof. Proceeding as in Lemma 6.6, we obtain the inequality in (6.33) and also
that

2 1+ 2
1BoI2 20, nay < C4 101220,
since (6.32) implies that

lgll2e,ne,) < CAd*llwlL2@,) (6.35)

where g is as in Lemma 6.5.

In Q, \ Q1, B = K>S¢. Thus, By is a solution to (1 — A)Bp = S =0
in Q5 \ ¢ suchthat 3, B¢ = 0on 02, N Q2§ and 9, By = 0,K>S¢ on 2§ NIQ.
Lemma 6.14 with w = S¢ now implies that

19w BollL2a0.\21)) < C4% llell2@))

and thus, Lemma 6.2 proves that

INBO)L2@\a,) T INVBO)IL20@\a0) < CA¥ llellL2@,)-
Hence,
(Bp)?dx < Cd'""¥|¢[72q - O
/92\91 L2(Q1)

Since a C!* domain can be considered a Lipschitz domain, we know that
the results from the previous section hold for ¢ = Cd'/2. However, in this case
we may choose ¢ = Cd**/2 if @ < 1/2. This is clear from Lemma 6.15 and
inequality (6.11). If « > 1/2, we may choose ¢ = Cd. Inequality (6.11) is the
reason for the restriction on «.

Similarly to the Lipschitz case, we shall employ Lemma 6.8 to obtain informa-
tion about the difference p; ' —A;,'. However, we wish to express the extension W
in more explicit terms that depend directly on the eigenfunction .
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Proposition 6.16. Suppose that Q1 is a C* domain and Q5 is a perturbation in
the sense of Section 6.1 which satisfies (6.2). Then

A=t =n+0d Y fork=1,2,..., Jn. (6.36)

Here, v = 1y is an eigenvalue of

(e, ¥) = k;f(/ (1 =Am)ey¥ + Vo - Vi) dx
21\&22 (6.37)

[ = apd V65 dx)
Q2\Q21

forall y € Xy, where ¢ € Xy, Moreover, 11, 12, ..., 1, in (6.36) run through
all eigenvalues of (6.37) counting their multiplicities.

Proof. We express K2S in terms of the operator B:
K28y = Ko(BY + SK1y) = KBy + BK Y + SKT.

If ¢ € X,,, then
K35y = KaBy + A, Ko Sy

Put
W = KBy + 1, K25V,

where m and m are the extensions of K, By and K, SV, respectively,
given by Lemma 6.4(i). Then W € H'(R") and

INW) 200, T INVW) 12000, < CUBY 12(25) + 1SY 22(025)) 6.38)
< Cl¥llr2@))-

Moreover, W = A2y + K>BYy + A tron Q\ Q5 and Q5 \ Q1, where r
is defined as follows. On 2 N Q,, we let r = By. Then we extend r to R”
such that r = K,S¢ — A1y in Q4 \ Qp and r = K>Sy — A1 in Q5 \ Qi
where the extensions K, S and 1} are given by Lemma 6.4(i) and Lemma 6.4(ii),
respectively. It is now possible to use the same argument employed in the proof
of Lemma 6.15 to obtain that

INM L2002, T IN(VO)L200,n02,.)) < CA4% 1V 2@,
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Now, this fact and the Cauchy—Schwarz inequality proves that
/ (Irgl +|Vr- Vg dx < Cd'™* |y | 2@l @))-
Q2\Q

Similarly, we can bound the corresponding integral over the domain € \ Q5.
Using (6.34), we can also refine the estimate given in (6.9):

IK2BY [72q,, < CA**H 2 Yl faq,) < CAT 1V} 2, (6:39)

Thus, we obtain from Lemma 6.8 and inequality (6.38) that

Am | BoKySydx = A2 (1 =Am)e¥ + Vo - Vi) dx
Q> Q1\Q2

a2 [ (= Ampi 4 VG dr (640
Qo\ 21
+ 0d"™ )l 2@ ¥ llL2@))-
Inequalities (6.39) and (6.34) imply that

n sup (IK2Bg|> + ¢ Bg|?) = O(d ®*+)/?) (6.41)

m
lell=1

p=A

and thus, Theorem 3.2 proves that
pet = A =1+ O(p + |tkle) = % + O(d ')
since we can choose
e=Cd*V? ifa<1)2

and
e=0Cd if e > 1/2,

and
(@, ¥) = w(Se. SY) + O(tk|d) = Am(Bg. K28¢) + 0(d?).  (6.42)
Now, equations (6.41), (6.42), and (6.40), imply (6.36). O

Suppose that it is possible to characterize the perturbed domain 2, by a func-
tion 4 defined on the boundary dQ2; such that (x’, x,) € 0%, is represented
by x, = h(x’), where (x’,0) € 027 and x, is the signed distance to the bound-
ary 021 (with x, < 0 when x € Q7). The function % is assumed to be Lipschitz
and satisfy |Vi| < Cd*. Thus, we obtain the following variation of Proposi-
tion 6.16.
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Corollary 6.17. Suppose that in addition to the assumptions of Proposition 6.16,
the domain Q2 can be characterized by the function h as above. Then

A=t = 1+ 0d) (6.43)

fork =1,2,..., . Here, T = 1 is an eigenvalue of

e V) = A /m h(x) (1= Am)@y + Vo - VY)dS(x)  forally € Xpm,

(6.44)
where ¢ € X,,. Moreover, t1,12,...,1y, in (6.43) run through all eigenvalues
of (6.44) counting their multiplicities.

Proof. We first prove that
1
Sup(x’,xv)eﬂl\ﬂz |§0(X’, x\)) - QD(X/, 0)| <Cd o ||¢||L2(Ql)’ (645)

Sup(x’,xv)eﬂl\ﬂz |Vg0(xl7 x\)) - V(p(x/’ 0))| < Cd* ||¢||L2(Ql)’

where the corresponding estimates hold for ¢ on Q, \ ;. Since ¢ € C1*(Qy),
it is clear that for x = (x’, x,,) € Q1 \ Qa,

o(x', xy) = o(x",0) + x,0,0(x",0) + O(d'1%),

where the remainder is bounded by Cd'** |l¢||;2(q,). This shows that the first
inequality in (6.45) is true. Similarly, the second inequality in (6.45) is also valid.
Thus,

/Q o, (900 =g OF + V9 () = Vol 00 dx = € 2o,
1 2

with the corresponding estimate for ¢ on 25\ 2. Hence, Proposition 6.16 implies
that A;,' — u; ! is given by

h(x")
A;f(/asz ngc/o (1= Am)p(x', 02 + [Vo(x', 0)2) dx, dS(x')
1 2

—h(x')
[ = e 02 + 1 0P dx, dS(x/))
21N> JO
+ 0@,

The desired conclusion follows from this statement. O
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6.7. Sharpness of the requirement ¢ > 0 in Theorem 1.1. We now employ
Proposition 6.12 to a specific Lipschitz perturbation of a two dimensional cylinder.
The aim here is also to show that Theorem 1.1 is sharp in the sense that @ > 0 is
necessary.

Suppose that n : R — R is a periodic nonnegative Lipschitz continuous func-
tion such that n(z + 1) = n(¢) for all # € R. Let the rectangle £, in R? be defined
byO0 < x < Tand0 < y < R, where R and T are constants, and the subdo-
main Q, C Q1 be defined by 0 < x < T and én(x/§) <y < R, where 6 = T/N
for some large integer N. We will consider boundary conditions periodic in x
with Neumann data given on the curves y = §n(x/8) and y = R.

Proposition 6.18. For the domains Q1 and Q, defined above,
A,;l - ,u,:l =1 + 0(82) fork =1,2,..., Jn. (6.46)

Here, v = 1y is an eigenvalue of

8 T
. ¥) = 2 00+ 1) /0 Vo(x.0) - Vi (x.0) dx

§(1 —Am)
A

fJor all v € X, where ¢ € X,,, and

T (6.47)
o /0 o (x, 0y (x. 0) dx

1 1
no = / N(X)dX and 71 = / VX, n(X)(X) dX.
0 0

The function V is the solution to —AxyV = 0 specified in (6.59) below and n,
is not zero if n is not identically constant. Moreover, 11, 12, ..., 1, in (6.46) run
through all eigenvalues of (6.47) counting their multiplicities.

To prove Proposition 6.18, we will use Proposition 6.12. To this end, we will
find the solution v to the problem

(1—A)v = 0in Qy, dyv =—A dpony, dv=00nygr, (6.48)
and v is periodic in the first argument with period 7', that is,
v(0,y) =v(T,y) and v, (0,y)=v,(T,y) forally € (0,R). (6.49)

By y, we denote the part of the boundary of 2, where y = é§n(x/§), and by yr
the part where y = R. Similarly, yy is the part of 2; where y = 0. The ansatz for
the asymptotic expansion of v has the following form:

v(x, y) = Swo(x,y) + 8Vo(X,Y:x) + 82Vi(X,Y:x) +---, (6.50)
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where wy, Vp, and V; are solutions to two model problems, and the remainder
consists of higher order terms. Since the construction of the asymptotic expansion
of the solution to problem (6.48) is quite standard, we confine ourselves to only
finding the leading terms of this expansion. We have also introduced the new
coordinates X = x/§ and Y = y/§. Substituting (6.50) into (6.48), we obtain

0= —6"AxyVo(X.Y:x)
—AxyVi(X,Y;x) —20x0xVo(X,Y;X)
+0((1 = Ay y)wo(x,y) + Vo(X.Y:x)
—2Vo(X.Y:x) —20x 0, V1(X,Y:x)) + O(8%)

(6.51)

with the boundary condition

Ve yo(x,y) =i - Vxy Vo(X, Y x)
+6n- (VxyVi(X,Y;x) + Vi ywo(x,y))  (6.52)
+ 8- (0, Vo(X,Y:x), 0) + 0(5%)

on yy, where
(n'(X), 1)

i) = &~
NV ST 52

(6.53)

is the outwards normal on y;,.

The function wy is the solution with periodic boundary conditions in the sense
of (6.49) to

1—Awo=0inQ; and d,wy = gy e L? y0) and d,we = 0 on g,
0

where the Neumann data g, will be specified below.
Let 2, be defined by 0 < X < 1and n(X) < Y. We denote by I', the

curve Y = n(X) for 0 < X < 1. The functions V;, j = 0, 1, will be solutions to
the following model problem for right-hand sides specified below:

—AxyW =FinQ, and 3,W =GonTl,, (6.54)
and W is periodic in X:

W(@O0,Y)=W(,Y) and Wy(0,Y)= Wi (1,Y) forall Y.
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The functions G € L?(T,)) and F satisfy
/~ FdXdYy +/ GdS =0 (6.55)
Q> ry

and
|F(X,Y)| < Ce for some b > 0.

The orthogonality condition above implies that this solution decays exponentially
as Y — oo
IW(X,Y)| < Ce™®Y for some a > 0. (6.56)

We now specify the boundary data for the model problems. Since ¢ satis-
fies ¢}, (xx,0) = 0 for all x, a Taylor expansion yields

9L (x,y) = ¢(x,0) + 0(y?) = ¢, (x,0) + O(8?)
if y = 8n(x/4). Similarly,
@, (x.y) = 8n(X)@),(x.0) + O(5?).
Thus,
N(X)gp(x.0) o n(X)ey,(x,0)

I VI WX))2 A1+ (7(X))2

+ 0%  (6.57)

Antovp(x,y) =

for (x,y) € yy.
We now consider the variables X, Y, and x as independent. Equations (6.51)
and (6.52) together with (6.57) imply that

—AxyVo=0inQ,
and , ,
' (X)gs (x,0)

T o

n-VyyVo =— (6.58)

It is clear that

/ ' (X)gi(x,0)
Ty Amy/1+ (0'(X))?
Thus equation (6.54) with F' = 0 and G equal to the right-hand side of (6.58) has

a solution V, decaying exponentially as ¥ — oo. The dependence on x can be
described as follows. Let V be the periodic (with respect to X') solution to (6.54)

with F = 0 and (x)
n
Y S N O 6.59
14+ (7(X))? on (6.59)

/ 1
dS(X) = M/O 7 (X)dX = 0.
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Then
Vo(X,Y;x) = =1, V(X,Y)gl(x,0)

and
I Vo(X,Y:x) = =1, V(X,Y)pl(x,0).

Similarly with above, equations (6.51), (6.52), and (6.57) also imply that
—Axy Vi =20x0, Vo(X,Y:x) ins (6.60)
and

n(X)gyy (x,0) — n'(X)9xVo(X. Y x)

Amy1+ ('(X))?

Put F equal to the right-hand side of (6.60) and G equal to the right-hand side
of (6.61). We require the orthogonality condition in (6.55), so

n- VXY V1 = on Fn. (6.61)

0=/~ ZaxaxVo(X,Y;x)dXdYJr/ G ds.
Qs Iy

Furthermore, since AV =0,

n'(X)

——dS
V1+@'(X))?

= /~ AV(X,Y)V(X,Y)dXdY
Q3

[ xV(X.Y)dXdY = / VX, 1(X))
Q> Ty

(6.62)
+/~ VV(X,Y)-VV(X,Y)dXdY
Q2

= /~ VV(X,Y)-VV(X,Y)dXdY.
Q3

Thus
0= /~ 20x0:Vo(X, Y x)dXdY + / GdS
2 r,
= 2, (Mm@, (x.0) — nogy, (x.0)) — wo, (x. 0),
where

1 1
no = / p(X)dX and gy = / V(X (X)) (X) dX.
0 0
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We note here that ; > 0 if V' is nonzero (due to (6.62)), or equivalently, if 7 is
not identically constant. For the validity of (6.55), it is sufficient that

woj, (x.0) = A, (M@ (x. 0) = nogy, (x. 0) (6.63)
and we have therefore obtained that the function gy, is given by the right-hand
side of (6.63) since 9, wy = —wo’y on the curve yj.

Now, from (6.31) it is clear that we wish to simplify the expression
/ (Amvovy + voV) dx.
Q

With the current notation, v, = v and vy is the corresponding solution to (6.48)
with ¢ instead of ¢. Hence,

AmVgvy dx = O(8?).
Q2
Thus, we consider

/vl//dx:5 woyr dx + § Vol//dx+52/ Vivdx + -
Q> Q>

Q> Q5

From (6.56) it follows that the integrals involving Vy and V; are of order O(82).
For the first term,

/ woxpdx:/ wotpdx—/ wo dx,
Q> Q1 Q1\22

where the second term is of order O(8). The first term can be expressed as

/ wmﬁdx=/ 3vaWdS—/ Vwg - Vi dx
Q 1ol Q

=/ 8vwowdS+/ woAV dx,
02

Q
where we used the fact that d,¢ = 0 on d$2;. Moreover, d,wy = 0 at yg. This
implies that

Am wo dx = dywo dS
Q)

Yn
T
= _)‘;11/ (Mm@ (x,0) = n1¢y, (x,0))dx
0
T
= 22 (0 + m) /0 o (x, O (x, 0) dx

T
+ A = Ao / (6.0 (x.0) dx.
0

1

where we used the fact that ¢y, + ¢}, = (1 — A)¢ and integration by parts.
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Thus, we have obtained an expression for the right-hand side of (6.31). More-

over, the representation of v in (6.50) implies that || K, Bg||?> = O(8?). This proves
that Proposition 6.18 holds.
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