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A note on the resonance counting function

for surfaces with cusps
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Abstract. We prove sharp upper bounds for the number of resonances in boxes of size 1

at high frequency for the Laplacian on �nite volume surfaces with hyperbolic cusps. As

a corollary, we obtain a Weyl asymptotic for the number of resonances in balls of size

T ! 1 with remainder O.T 3=2/.
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In this short note, we prove sharp bounds on resonance-counting functions for the

Laplacian on �nite volume surfaces with hyperbolic cusps. Let M be a complete

non-compact surface, equipped with a Riemannian metric g. We assume that

.M; g/ can be decomposed as the union of a compact manifold with boundary

and a �nite number � of hyperbolic cusps, each one being isometric to

.a; C1/y � S
1
� with metric

dy2 C d�2

y2

for some a > 0. �e spectral properties of the Laplacian � were �rst studied by

Selberg [9] and Lax-Phillips [5] in constant negative curvature, and by Colin-de-

Verdière [2], Müller [6], Parnovski [7] in the non-constant curvature setting.

On such surfaces, the resolvent R.s/ D .� � s.1 � s//�1 of the Laplacian

admits a meromorphic extension from ¹<s > 1=2º to C as an operator mapping

L2
comp to L2

loc and the natural discrete spectral set for � is the set of poles denoted

by

R � ¹s 2 C j <s � 1=2º [ .1=2; 1�:

�e poles are called resonances and are counted with multiplicity m.s/ (the multi-

plicity m.s/ is de�ned below and corresponds, for all but �nitely many resonances,
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to the rank of the residue of the resolvent at s). We shall recall in the next section

how the set of resonances is built. To study their distribution in the complex plane,

we de�ne two counting functions:

NR.T / WD
X

s2R;js�1=2j�T

m.s/; (1)

NR.T; ı/ WD
X

s2R;js�1=2�iT j�ıT

m.s/: (2)

�e �rst result on the resonance counting function was proved by Selberg [9,

p. 25] for the special case of hyperbolic surfaces with �nite volume: the following

Weyl type asymptotic expansion holds as T ! 1

NR.T / D Vol.M/

2�
T 2 � 2�

�
T log.T / C 2�.1 � log 2/

�
T C O

� T

log.T /

�

: (3)

In variable curvature, Müller gives a Weyl asymptotic [6, �eorem 1.3.a] of the

form

NR.T / D Vol.M/

2�
T 2 C o.T 2/;

and this was improved by Parnovski [7] who showed that for all � > 0

NR.T / D Vol.M/

2�
T 2 C O.T 3=2C�/: (4)

Parnovski’s proof relies on a Weyl type asymptotic expansion involving the scat-

tering phase S.T / (see next section for a precise de�nition):

2�Nd .T / C S.T / D Vol.M/

2
T 2 � 2�T ln T C O.T /; (5)

where � is the number of cusps, and Nd is the counting function for the L2 eigen-

values of � embedded in the continuous spectrum.

Using a Poisson formula proved by Müller [6] and estimate (5), we are able to

improve the results of Parnovski:

�eorem 1. For T > 1, and 0 � ı � 1=2, the following estimates hold

NR.T; ı/ D O.T 2ı C T /; (6)

NR.T / D Vol.M/

2�
T 2 C O.T 3=2/: (7)
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In the �rst estimate with ı D 1=T , the exponent in T is sharp in general, as

can be seen from Selberg’s result (3) and the additionnal estimate also from [9]

X

s2R;0�=s�T

<s � 1=2 D �

4�
T log

T

�
� 1

2�

��

2
C log jcj

�

T C O.log T /; (8)

where c is a constant depending on the surface, introduced by Selberg. Together

these formulae imply that as T ! 1

NR.T; 1=T / D vol.M/

2�
T C O

� T

log T

�

: (9)

In n-dimensional Euclidan scattering, upper bounds O.T n�1/ on the number

of resonances in boxes of �xed size at frequency T were obtained by Petkov and

Zworski [8] using the Breit–Wigner approximation and the scattering phase; our

scheme of proof is inspired from their approach. �eir result was extended to the

case of non-compact perturbations of the Laplacian by Bony [1]. In general, it is

expected that the number of resonances in such boxes is controlled by the (fractal)

dimension of the trapped set (see for example Zworski [11], Guillopé, Lin, and

Zworski [4], Sjöstrand and Zworski [10], and Datchev and Dyatlov [3]).
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signi�cantly the argument of proof. We also thank J.-F. Bony for sending us his

work, Colin Guillarmou and Nalini Anantharaman for their fruitful advice, and

the reviewer for the useful corrections.

1. Preliminaries

We start by recalling well-known facts on scattering theory on surfaces with cusps,

and we refer to the article of Müller [6] for details. Let .M; g/ be a complete

Riemannian surface that can be decomposed as follows:

M D M0 [ Z1 [ � � � [ Zk ;

where M0 is a compact surface with smooth boundary, and Zj are hyperbolic

cusps

Zj ' .aj ; C1/ � S
1; j D 1 : : : k;

with aj > 0 and the metric on Zj in coordinates .y; �/ 2 .aj ; C1/ � S1 is

ds2 D dy2 C d�2

y2
:

Notice that the surface has �nite volume when equipped with this metric.
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�e non-negative Laplacian � acting on C 1
0 .M/ functions has a unique self-

adjoint extension to L2.M/ and its spectrum consists of

(1) absolutely continuous spectrum

�ac D Œ1=4; C1/

with multiplicity � (the number of cusps);

(2) discrete spectrum

�d D ¹�0 D 0 < �1 � � � � � �i � : : : º;

possibly �nite, and which may contain embedded eigenvalues in the continu-

ous spectrum. To � 2 �d, we associate a family of orthogonal eigenfunctions

that generate its eigenspace .ui
�
/iD1:::d�

2 L2.M/ \ C 1.M/.

�e generalized eigenfunctions associated to the absolutely continuous spec-

trum are the Eisenstein functions, .Ej .x; s//iD1:::� . Each Ej is a meromorphic

family (in s) of smooth functions on M . Its poles are contained in the open half-

plane ¹<s < 1=2º or in .1=2; 1�. �e Eisenstein functions are characterized by

two properties:

(1) �Ej .:; s/ D s.1 � s/Ej .:; s/;

(2) in the cusp Zi , i D 1 : : : �, the zeroth Fourier coe�cient of Ej in the �

variable equals ıij ys
i C �ij .s/y1�s

i where yi denotes the y coordinate in the

cusp Zi and �ij .s/ is a meromorphic function of s.

We can collect the scattering coe�cients �ij in a meromorphic family of ma-

trices, �.s/ D .�ij /ij called scattering matrix. We denote its determinant by

'.s/ D det �.s/. �en the following identities hold

�.s/�.1 � s/ D Id, �.s/ D �.s/; �.s/� D �.s/:

�e line <s D 1=2 corresponds to the continuous spectrum. On that line, �.s/ is

unitary, '.s/ has modulus 1. We also de�ne the scattering phase

S.T / D �
Z T

0

'0

'

�1

2
C i t

�

dt: (10)

�e set of poles of ', � and .Ej /j D1:::� is the same, we call them them scatter-

ing poles and we shall denote ƒ this set. It is contained in ¹<s < 1=2º [ .1=2; 1�.

�e union of this set with the set of s 2 C such that s.1� s/ is an L2 eigenvalue, is

called the resonance set, and denoted R. Following [6, p. 287], the multiplicities

m.s/ are de�ned as follows:
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(1) if <s � 1=2, s ¤ 1=2, m.s/ is the dimension of kerL2.� � s.1 � s//;

(2) if <s < 1=2, m.s/ is the dimension of kerL2.� � s.1 � s// minus the order

of ' at s;

(3) m.1=2/ equals .Tr.�.1=2// C �/=2 plus twice the dimension of kerL2.� �
1=4/.

For convenience, we de�ne two counting functions for the discrete spectrum

and the poles of ':

Nd .T / WD
X

jsi �1=2j�T

m.si /; (11)

Nƒ.T / WD
X

s2ƒ;js�1=2j�T

m.s/; (12)

so that

NR.T / WD
X

s2R;js�1=2j�T

m.s/ D 2Nd .T / C Nƒ.T /:

2. Main observation

In this section, we obtain estimate for NR.T / in boxes at high frequency.

From the asymptotic expansion (5), we deduce that for 0 � ı � 1=2,

2�ŒNd .T C T ı/ � Nd .T � T ı/� C S.T C T ı/ � S.T � T ı/

D 2Vol.M/T 2ı � 4�T ı ln T C O.T /:
(13)

Next, we recall the Poisson formula for resonances proved by Müller [6, �. 3.32]

S
0.T / D log

1

q
C

X

�2ƒ

1 � 2<�

.<� � 1=2/2 C .=� � T /2
: (14)

where q is some positive constant (not necessarily < 1). Let C > 1, 0 < � < 1

and

�T;ı WD ¹s 2 CI js � 1=2 � iT j � T ı=C and 0 � 1=2 � <s � �T ıº:
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�en, for s 2 �T;ı ,
Z

ŒT �T ı;T CT ı�

1 � 2<s

.<s � 1=2/2 C .t � =s/2
dt D 2

h

arctan
t � =s

1=2 � <s

iT CT ı

T �T ı
:

�e addition formula for arctan, with x; y > 0 and xy > 1 is given by

arctan x C arctan y D � C arctan
x C y

1 � xy
:

�us
Z

ŒT �T ı;T CT ı�

1 � 2<s

.<s � 1=2/2 C .t � =s/2
dt

D 2� � 2 arctan
2T ı.1=2 � <s/

T 2ı2 � js � 1=2 � iT j2

� 2� � 2 arctan zC�;

where zC is set to be 2=.1 � 1=C 2/. For � small enough, this is bigger than, say, � .

Since all but a �nite number of terms in (14) are positive, we have

S.T C T ı/ � S.T � T ı/ � O.T ı/ C
X

�2ƒ\�T;ı

�:

Combining with (13), we deduce that

Nd .T C T ı/ � Nd .T � T ı/ C #ƒ \ �T;ı D O.T 2ı/ C O.T / C O.T ı/:

�is is the content of (6) in our main theorem.

3. Consequence

Now, we prove the second part of �eorem 1. We will follow the method of Müller

[6, p. 282], which is a global and quantitative version of the argument used in

the previous section. Integrating the Poisson formula over Œ�T; T �, we relate the

scattering phase asymptotics to the poles of �. Using the arctan addition formula,

we are left with the sum of Nƒ.T / and an expression with arctan’s (equation (4.9)

in [6]):

1

2�
S.T /

D 1

2
Nƒ.T / C 1

2�

X

�2ƒ;<�<1=2

arctan
h 1 � 2<�

j� � 1=2j2 T
�

1 � T 2

j� � 1=2j2
��1i

C O.T /:

(15)
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�e sum is then split between ¹1º the poles in ¹jT � j� � 1=2jj > T 1=2º,
and ¹2º, the others. Müller proved that the sum ¹1º is O.T 3=2/. �e sum ¹2º
can be bounded by

1

4
.Nƒ.T C

p
T / � Nƒ.T �

p
T //:

From [6, Corollary 3.29], we also recall that

X

�2ƒ;�¤1=2

m.�/
1 � 2<�

j� � 1=2j2 < 1:

Consider the set zƒ D ¹� 2 ƒI .2<� � 1/2 > =�; j�j > 1º. On zƒ, we have that

j� � 1=2j1=2 � 1 � 2<�, thus

X

�2 zƒ;�¤1=2

m.�/
1

j� � 1=2j3=2
< 1:

If Qn.T / is the counting function for zƒ, we deduce that

1
X

kD1

Qn.k/
h 1

k3=2
� 1

.k C 1/3=2

i

< 1:

Since Qn is non-decreasing, Qn.k/ D o.k3=2/. Now,

Nƒ.T �
p

T / � Nƒ.T C
p

T / � Qn.T / C NR.T;
p

T
�1

/ C NR.�T;
p

T
�1

/:

�is concludes the proof.

References

[1] J.-F. Bony, Résonances dans des domaines de taille h. Internat. Math. Res. No-

tices 2001 (2001), no. 16, 817–847. MR 1853138 Zbl 1034.35084

[2] Y. Colin de Verdière, Pseudo-laplaciens. II. Ann. Inst. Fourier (Grenoble) 33 (1983),

no. 2, 87–113. MR 0699488 Zbl 0496.58016

[3] K. Datchev and S. Dyatlov, Fractal Weyl laws for asymptotically hyperbolic mani-

folds. Geom. Funct. Anal. 23 (2013), no. 4, 1145–1206. MR 3077910 Zbl 1297.58006

[4] L. Guillopé, K. K. Lin, and M. Zworski, �e Selberg zeta function for convex

co-compact Schottky groups. Comm. Math. Phys. 245 (2004), no. 1, 149–176.

MR 2036371 Zbl 1075.11059

http://www.ams.org/mathscinet-getitem?mr=1853138
http://zbmath.org/?q=an:1034.35084
http://www.ams.org/mathscinet-getitem?mr=0699488
http://zbmath.org/?q=an:0496.58016
http://www.ams.org/mathscinet-getitem?mr=3077910
http://zbmath.org/?q=an:1297.58006
http://www.ams.org/mathscinet-getitem?mr=2036371
http://zbmath.org/?q=an:1075.11059


144 Y. Bonthonneau

[5] P. D. Lax and R. S. Phillips, Scattering theory for automorphic functions. An-

nals of Mathematics Studies, 87. Princeton University Press, Princeton, N.J., 1976.

MR 0562288 Zbl 0362.10022

[6] W. Müller, Spectral geometry and scattering theory for certain complete surfaces of

�nite volume. Invent. Math. 109 (1992), no. 2, 265–305. MR 1172692 Zbl 0772.58063

[7] L. B. Parnovski, Spectral asymptotics of Laplace operators on surfaces with cusps.

Math. Ann. 303 (1995), no. 2, 281–296. MR 1348800 Zbl 0849.35093

[8] V. Petkov and M. Zworski, Breit–Wigner approximation and the distribution of res-

onances. Comm. Math. Phys. 204 (1999), no. 2, 329–351. MR 1704278 Zbl 1704278

[9] A. Selberg, Collected papers. Vol. II. Chapter “Remarks on the distribution of poles

of Eisenstein series.” Springer, Berlin etc., 1989, 15–45. MR 1295844 Zbl 0729.11001

[10] J. Sjöstrand and M. Zworski, Fractal upper bounds on the density of semiclassical

resonances. Duke Math. J. 137 (2007), no. 3, 381–459. MR 2309150 Zbl 1201.35189

[11] M. Zworski, Dimension of the limit set and the density of resonances for convex co-

compact hyperbolic surfaces. Invent. Math. 136 (1999), no. 2, 353–409. MR 1688441

Zbl 1016.58014

Received July 7, 2014; revised July 14, 2014

Yannick Bonthonneau, CIRGET, Université du Québec à Montréal,

21 Avenue du Président Kennedy, Montréal, Québec, H2X 3Y7, Canada

e-mail: yannick.bonthonneau@gmail.com

http://www.ams.org/mathscinet-getitem?mr=0562288
http://zbmath.org/?q=an:0362.10022
http://www.ams.org/mathscinet-getitem?mr=1172692
http://zbmath.org/?q=an:0772.58063
http://www.ams.org/mathscinet-getitem?mr=1348800
http://zbmath.org/?q=an:0849.35093
http://www.ams.org/mathscinet-getitem?mr=1704278
http://zbmath.org/?q=an:1704278
http://www.ams.org/mathscinet-getitem?mr=1295844
http://zbmath.org/?q=an:0729.11001
http://www.ams.org/mathscinet-getitem?mr=2309150
http://zbmath.org/?q=an:1201.35189
http://www.ams.org/mathscinet-getitem?mr=1688441
http://zbmath.org/?q=an:1016.58014
mailto:yannick.bonthonneau@gmail.com

	Preliminaries
	Main observation
	Consequence
	References

