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of a bounded open set in Rn for the perturbed polyharmonic operator .��/m C q with

q 2 L
n

2m , n > 2m, determines the potential q in the set uniquely. In the course of the

proof, we construct a special Green function for the polyharmonic operator and establish
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special Green function are derived from Lp Carleman estimates with linear weights for the
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1. Introduction

Let � � Rn be a bounded open set with C 1 boundary, and let .��/m,

m D 1; 2; : : : ; be a polyharmonic operator. Let q 2 L
n

2m .�/ be a complex valued

potential. We shall assume throughout the paper that n > 2m.

Let 
 be the Dirichlet trace operator, given by


 W H m.�/ �!
m�1Y

j D0

H m�j �1=2.@�/; 
u D .uj@�; @�uj@�; : : : ; @m�1
� uj@�/;

which is bounded and surjective, see [8, �eorem 9.5, p. 226]. Here and in what

follows H s.�/ and H s.@�/, s 2 R, are the standard L2–based Sobolev spaces

in � and its boundary @�, respectively, and � is the exterior unit normal to the

boundary. We shall also set

H m
0 .�/ D ¹u 2 H m.�/ W 
u D 0º:

An application of the Sobolev embedding theorem shows that the operator of mul-

tiplication by q is continuous: H m
0 .�/ ! H �m.�/, and standard arguments, see

Appendix A, imply that the operator

.��/m C q W H m
0 .�/ �! H �m.�/ D .H m

0 .�//0 (1.1)

is Fredholm of index zero. Furthermore, the operator in (1.1) has a discrete spec-

trum.

We shall assume throughout the paper that

0 is not in the spectrum of the operator (1.1). (A)

It follows that for f D .f0; : : : ; fm�1/ 2
Qm�1

j D0 H m�j �1=2.@�/, the Dirichlet

problem, 8
<
:

..��/m C q/u D 0in �;


u D f on @�;
(1.2)

has a unique solution u 2 H m.�/. We introduce the Dirichlet–to–Neumann map

by

hƒqf; Nhi D
X

j˛jDm

mŠ

˛Š

Z

�

D˛uD˛vdx C
Z

�

uq Nvdx;

where h 2
Qm�1

j D0 H m�j �1=2.@�/, and v 2 H m.�/ is such that 
v D h.

It is shown in Appendix A that ƒq is well de�ned and

ƒq W
m�1Y

j D0

H m�j �1=2.@�/ �!
� m�1Y

j D0

H m�j �1=2.@�/
�0

D
m�1Y

j D0

H �mCj C1=2.@�/
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is a linear continuous map. Notice that when m D 1, we recover the standard

Dirichlet–to–Neumann map for the Schrödinger equation, given by

H 1=2.@�/ 3 f 7�! @�uj@� 2 H �1=2.@�/: (1.3)

�e inverse boundary value problem for the perturbed polyharmonic opera-

tor (1.1) is to determine a potential q in � from the knowledge of the Dirichlet–

to–Neumann map ƒq .

�is problem has been studied extensively in the case of the Schrödinger oper-

ator, i.e. when m D 1. It was shown in [26] that a potential q 2 L1.�/ is uniquely

determined in � from the knowledge of the Dirichlet–to–Neumann map (1.3) for

the Schrödinger equation. �e proof of this result in [26] is based on a construc-

tion of complex geometric optics solutions to the Schrödinger equation, with an

L2 control of the remainder. �e proof also goes through for some unbounded

potentials, e.g. q 2 Ln.�/. In [22] a global uniqueness result was established

for q 2 Ln=2.�/, following an earlier result of [2] for q 2 Ln=2C".�/, " > 0.

It turns out that L2 methods are no longer su�cient in the proofs in [2] and [22],

and it becomes essential to control the remainders of complex geometric op-

tics solutions in suitable Lp spaces. Inverse boundary value problems for the

Schrödinger equation on certain classes of manifolds were studied in [4] and [3],

in the case of L1 and Ln=2 potentials, respectively.

Turning our attention to the case of polyharmonic operators, let us remark that

the areas of physics and geometry where such operators occur, include the study

of the Kirchho� plate equation in the theory of elasticity, and the study of the

Paneitz–Branson operator in conformal geometry, see [7]. It was shown in [15]

that a potential q 2 L1.�/ can be uniquely recovered from the knowledge of

the Dirichlet–to–Neumann map ƒq for the perturbed biharmonic equation, i.e.

m D 2. In [14] an alternative approach to this problem was developed and the

uniqueness result was extended to q 2 Ln=2.�/, n > 4. �e proofs in [15] and [14]

rely upon L2 methods only. Inverse spectral problems for a potential perturba-

tion of the polyharmonic operator were studied in [20], and inverse boundary

value problems for a �rst order perturbation of the polyharmonic operator were

addressed in [18] and [19], again using L2 techniques.

�e purpose of this paper is to study the problem of recovering a potential

q 2 L
n

2m .�/, n > 2m, from the Dirichlet–to–Neuman map ƒq , associated to the

perturbed polyharmonic operator .��/m C q. �is can be viewed as an extension

of the study of [22] for the Schrödinger equation to the case of the polyharmonic

equation.
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�e assumption q 2 L
n

2m .�/, n > 2m, seems natural as it guarantees that the

strong unique continuation principle holds for the operator .��/m C q, see [16]

in the case m D 1, and [21] in the case m � 2. Furthermore, it is known that this

condition is optimal in the class of Lp potentials, see [16].

While the operator of multiplication by q 2 L1.�/ is continuous:

H m.�/ �! L2.�/;

taking q 2 L
n

2m .�/, we get a continuous operator:

H m.�/ �! L
2n

nC2m .�/:

Here L2.�/ � L
2n

nC2m .�/, and therefore, when constructing complex geometric

optics solutions for the perturbed polyharmonic operator, it becomes crucial to

control the remainders not only in L2.�/ but also in L
2n

n�2m .�/, which is the dual

space of L
2n

nC2m .�/.

�e following uniqueness result is the main result of this paper.

�eorem 1.1. Let q1; q2 2 L
n

2m .�/, n > 2m, and assume that (A) holds for

.��/m C qj , j D 1; 2. If ƒq1
D ƒq2

, then q1 D q2 in �.

In the case m D 1 this result is due to [22]. In the proof of �eorem 1.1 we

shall follow the method of [22], which we learned from the work [3].

�e crucial role in [22], following [26] and [5], is played by the fundamental

solution

g
.1/

�
D F

�1
� 1

p� .�/

�
2 S

0.Rn/:

of the conjugated Laplacian e�x��.��/ex�� D �� � 2� � r with � 2 Cn n ¹0º,
� � � D 0. Here p� .�/ D j�j2 � 2i� � � is the symbol of the operator, and F is the

Fourier transformation. �e argument of [22] consists of two main ingredients.

�e �rst one is the use of two fundamental estimates for the convolution operator

G
.1/

�
f D g

.1/

�
� f , in suitable weighted L2 and Lp spaces. Such estimates have

been established in [26] and [17], respectively, see also [2]. �e second ingredient

is an approximation of an Lp function by a sequence of L1 functions.

To follow the method of [22], a tempered fundamental solution of the conju-

gated polyharmonic operator e�x��.��/mex�� D .���2� �r/m with � 2 Cn n¹0º,
� �� D 0, with good mapping properties of the corresponding convolution operator

in appropriate weighted L2 and Lp spaces, should be available.
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A new di�culty in the construction of such a fundamental solution, compared

with the case of the Laplacian, arises since, while 1=p� .�/ 2 S0.Rn/ \ L1
loc.R

n/,

we have 1=.p�.�//m … L1
loc.R

n/ for m � 2, and therefore, it cannot be viewed as a

distribution directly. Here we �nd a way to regularize 1=.p�.�//m and obtain the

following result, where L2
� .Rn/, � 2 R, stands for the weighted L2 space with the

norm

kf kL2
�

D
� Z

Rn

.1 C jxj2/� jf .x/j2dx

�1=2

: (1.4)

�eorem 1.2. Let m D 1; 2; 3; : : : , and let � 2 Cn n ¹0º be such that � � � D 0.

�ere exists g
.m/

�
2 S0.Rn/ such that

.�� � 2� � r/mg
.m/

�
D ı;

and such that the operator

G
.m/

�
W S.Rn/ �! S

0.Rn/;

de�ned by

G
.m/

�
f D g

.m/

�
� f;

enjoys the following properties:

(i) for j�j � s0 > 0, the operator G
.m/

�
can be extended to a bounded operator

G
.m/

�
W L2

�C2m�1.Rn/ �! L2
� .Rn/; �m < � < 1 � m;

such that

kG
.m/

�
f kL2

�
� C

j�jm kf kL2
�C2m�1

; (1.5)

(i) G
.m/

�
extends to a bounded operator

G
.m/

�
W L

2n
nC2m .Rn/ �! L

2n
n�2m .Rn/

with the bound

kG
.m/

�
f k

L
2n

n�2m
� C kf k

L
2n

nC2m
; (1.6)

uniformly in �. When f 2 L
2n

nC2m .Rn/, the function w D G
.m/

�
f is the

unique L
2n

n�2m .Rn/-solution of the equation .�� � 2� � r/mw D f .

When m D 1, this result is known thanks to the works [26] , [17], and [2].
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A fundamental result of [10] and [23] establishes the existence of a tempered

fundamental solution for a general partial di�erential operator with constant co-

e�cients. As our applications require estimates for the corresponding convolu-

tion operators in (weighted) Lebesgue spaces, in the proof of �eorem 1.2 we

proceed much more concretely and construct the distribution g
.m/

�
essentially ex-

plicitly. In the case of the biharmonic operator, a tempered fundamental solu-

tion of .�� � 2� � r/2 is constructed and weighted L2 estimates are obtained in

[14]. Our construction is di�erent and works for a general polyharmonic operator.

We should also mention that in [15] a regular (non tempered) fundamental solu-

tion of .�� � 2� � r/2 is used, see [13, �eorem 10.2.1], and local L2 estimates are

obtained. It seems that local Lp estimates are not easily obtained for the corre-

sponding convolution operator, and therefore, this approach is not pursued in this

work.

An important ingredient in the proof of (1.5) is the weighted L2 estimate for

the operator G
.1/

�
, obtained in [26]. To prove the estimate (1.6) we use uniform

Lp Carleman estimates with linear weights for the polyharmonic operator. Since

we did not �nd any reference for such estimates, in Section 2 we follow [27] and

derive them as a consequence of the corresponding Lp Carleman estimates with

logarithmic weights for the polyharmonic operator, established in [16].

�e paper is organized as follows. In Section 2 we discuss Lp Carleman es-

timates with linear weights for the polyharmonic operator. Section 3 is devoted

to the construction of a tempered fundamental solution to the conjugated poly-

harmonic operator e�x��.��/mex�� and to the proof of �eorem 1.2. Section 4

contains the construction of complex geometric optics solutions to the perturbed

polyharmonic equation with a potential q 2 L
n

2m .�/. �e proof of �eorem 1.1 is

then concluded in Section 5. Appendix A is concerned with the wellposedness of

the Dirichlet problem for .��/m C q with q 2 L
n

2m .�/, and is included for the

completeness of the presentation.

2. Lp Carleman estimates with linear weights for polyharmonic operators

�e purpose of this section is to present Lp Carleman estimates with linear weights

for polyharmonic operators, which generalize the corresponding estimates of [17],

obtained for the Laplacian.

In the work [27] it is explained how to obtain the Lp Carleman estimates with

linear weights for the Laplacian of [17] from the Lp Carleman estimates with log-

arithmic weights, established in [16]. �e work [16] contains also Lp Carleman es-

timates with logarithmic weights for polyharmonic operators, and following [27],
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we shall derive Lp Carleman estimates with linear weights for polyharmonic op-

erators from these estimates.

Let us start by formulating the following result of [16].

�eorem 2.1 ([16]). Let m be an integer, 1 � m < n=2, and suppose that

p D 2n
nC2m

and q D 2n
n�2m

(i.e. 1
p

C 1
q

D 1 and 1
p

� 1
q

D 2m
n

). Let t > n
q

and ı D dist.t � n
q
;Z/ > 0. �en there exists a constant C D C.ı; n/, depending

only on ı and n, such that for every u 2 C 1
0 .Rn n ¹0º/,

kjxj�t ukLq.Rn/ � C kjxj�t .��/mukLp.Rn/: (2.1)

In the next result we establish the Lp Carleman estimates with linear weights

for the polyharmonic operator.

Proposition 2.2. Let m be an integer, 1 � m < n=2, and p D 2n
nC2m

and

q D 2n
n�2m

. �en

kek�xukLq.Rn/ � C kek�x.��/mukLp.Rn/ (2.2)

uniformly in k 2 Rn and u 2 C 1
0 .Rn/.

Proof. First notice that when k D 0, the inequality (2.2) follows from the Hardy–

Littlewood–Sobolev inequality, see [12, �eorem 4.5.3].

Let now k 2 Rn n ¹0º be �xed and let u 2 C 1
0 .Rn/. Consider the function

Qu.x/ D u.x C tk/. Since for t > 0 su�ciently large, Qu D 0 near zero, apply-

ing (2.1) to Qu, we get

kjxj�t QukLq.Rn/ � C kjxj�t .��/m QukLp.Rn/; (2.3)

for t > 0 su�ciently large such that ı D dist.t � n
q
;Z/ > 0. Making the change

of variables x C tk 7! x in (2.3) , we obtain that

kjx � tkj�tukLq.Rn/ � C kjx � tkj�t .��/mukLp.Rn/: (2.4)

Writing

jx � tkj D t jkj

s
1 � 2

x � k

t jkj2 C jxj2
t2jkj2 ;

we see that (2.4) is equivalent to





�
1 � 2

x � k

t jkj2 C jxj2
t2jkj2

��t=2

u





Lq.Rn/

� C




�
1 � 2

x � k

t jkj2 C jxj2
t2jkj2

��t=2

.��/mu





Lp.Rn/
:

(2.5)
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We have

�
1 � 2

x � k

t jkj2 C jxj2
t2jkj2

��t=2

D exp
�

� t

2
log

�
1 � 2

x � k

t jkj2 C jxj2
t2jkj2

��

D exp
�x � k

jkj2 C Ok;supp u

�1

t

��
�! e

x�k
jkj2 ;

uniformly on supp u, as t ! 1 away from the set Z C n
q
. Hence, passing to the

limit in (2.5), we get

ke
x�k
jkj2 ukLq.Rn/ � C ke

x�k
jkj2 .��/mukLp.Rn/; (2.6)

with the same constant as in (2.1). Replacing k 2 Rn n ¹0º in (2.6) by k=jkj2,

we recover (2.2). �e proof is complete.

3. A special Green function for the polyharmonic operator.

Proof of �eorem 1.2

Let � 2 Cn n ¹0º be such that � � � D 0, and let us consider the constant coe�cient

di�erential operator,

e�x��.��/mex�� D .�� � 2� � r/m: (3.1)

�e purpose of this section is to construct a suitable tempered fundamental solu-

tion of the operator (3.1), and to prove �eorem 1.2. To that end let us consider

the equation,

.�� � 2� � r/mw D ı in R
n; (3.2)

where w 2 S0.Rn/. Taking the Fourier transform in (3.2), we obtain that

.j�j2 � 2i� � �/mbw.�/ D 1:

Here and in what follows we use the normalization,

bf .�/ D F.f /.�/ D
Z

Rn

e�ix��f .x/dx; f 2 S.Rn/;

extended to the space S0.Rn/ in the usual way.
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�e condition � � � D 0 is equivalent to the fact that

Re � � Im � D 0; jRe �j D jIm �j: (3.3)

Using (3.3) together with the fact that the Laplacian commutes with rotations, we

may and shall assume, without loss of generality, that � in (3.2) has the form,

� D se1 � ise2; s D j�j=
p

2 > 0;

where e1 and e2 are the �rst two vectors in the standard orthonormal basis in Rn.

�e symbol of the operator .�� � 2� � r/m is equal to .p� .�//m, where

p� .�/ D j�j2 � 2i� � � D j� � se2j2 � s2 � 2is�1:

�e characteristic set of .�� � 2� � r/m is given by

†� D ¹� 2 R
n W p� .�/ D 0º D ¹� 2 R

n W �1 D 0; j� � se2j D sº: (3.4)

�us, †� is the codimension 2 sphere, which is obtained as the intersection of the

hyperplane �1 D 0 and the .n � 1/–dimensional sphere, centered at se2 and of

radius s.

In what follows, we shall use the standard notation a . b for a; b > 0, which

means that there exists a constant C > 0 independent of � such that a � Cb.

We shall also write a � b when a . b and b . a. When the constant C depends

on a large parameter M , we indicate this dependence by writing a �M b.

We shall need the following result concerning the behavior of p� .�/ in Rn,

established in [26], see also [9]. We shall present the proof since some of the

estimates in the proof will be used in what follows.

Lemma 3.1. For j�j � 4j�j, we have

jp� .�/j � j�j2: (3.5)

For j�j � M j�j with a �xed constant M ,

jp� .�/j �M sd.�; †� /; (3.6)

where d.�; †� / is the distance from � to †� .
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Proof. Assume �rst that j�j � 4j�j. �en (3.5) follows from the following esti-

mates,

jp�.�/j � j�j2 C 2j�jj�j � 3

2
j�j2;

and

jp� .�/j � j�j2 � 2j�jj�j � 1

2
j�j2:

To see (3.6), we �rst observe that for j�j � M j�j,

jp�.�/j � j j� � se2j2 � s2j C 2sj�1j �M s.jj� � se2j � sj C j�1j/: (3.7)

Let � 2 Rn. �en for any � 2 †� , we get

j� � �j � j�1j; j� � �j � j j� � se2j � j� � se2jj D jj� � se2j � sj; (3.8)

and therefore,

d.�; †� / � 1

2
.jj� � se2j � sj C j�1j/: (3.9)

On the other hand, we have

d.�; †� / � j�1j C inf
�0Wj�0�se2jDs

j� 0 � �0j D j�1j C j j� 0 � se2j � sj: (3.10)

Here we have used the fact that the distance from the point � 0 D .�2; : : : ; �n/ 2
Rn�1 to the sphere ¹�0 D .�2; : : : ; �n/ 2 Rn�1 W j�0 � se2j D sº is given by

j j� 0 � se2j � sj.
If j� 0 � se2j � s � 0, then

j j� 0 � se2j � sj D j� 0 � se2j � s � j� � se2j � s D jj� � se2j � sj:

If j� 0 � se2j � s < 0, then

j j� 0 � se2j � sj D s � j� 0 � se2j � j�1j C s � j� � se2j � j�1j C js � j� � se2j j:

�us,

d.�; †� / . jj� � se2j � sj C j�1j; (3.11)

uniformly in s > 0. Hence, using (3.7), (3.9) and (3.11), we obtain (3.6).

�e proof is complete.
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�e next result is well-known and is presented here for the convenience of the

reader.

Lemma 3.2. Let n � 3. �en for every � 2 Cn, � � � D 0, and j�j � 4, we have

1

p� .�/
2 L

q

loc
.Rn/;

if and only if 1 � q < 2, and for such q,

1

p� .�/
2 Lq.Rn/ C h�i�2L1.Rn/ � S

0.Rn/: (3.12)

Proof. �e complex vector � will be kept �xed in the proof. Let K � Rn be

a �xed compact set. �en by (3.6), for � 2 K, we have jp�.�/j � d.�; †� /.

Let q � 1 and let us write
Z

K

1

jp�.�/jq d� �
Z

¹�2KWd.�;†�/�1º

1

.d.�; †� //q
d�

C
Z

¹�2KWd.�;†�/�1º

1

.d.�; †� //q
d�;

where the last integral is �nite. Recalling from (3.10) that

d.�; †� / � j�1j C j j� 0 � se2j � sj;

and passing to the polar coordinates in � 0, centered at se2, i.e. � 0 D se2 C r� ,

r > 0, � 2 Sn�2, we get

Z

¹�2KWd.�;†�/�1º

1

d.�; †� /q
d� �

Z

Sn�2

Z sC1

s�1

Z

j�1j�1

rn�2

.j�1j C jr � sj/q
d�1drd�

�
Z sC1

s�1

Z

j�1j�1

1

.j�1j C jr � sj/q
d�1dr

D
Z

j�2j�1

Z

j�1j�1

1

.j�1j C j�2j/q
d�1d�2:

Here we have used the fact that s � 1 � r � s C 1 and s > 2 is �xed. �e latter

integral is �nite precisely when q < 2.

To check (3.12) it su�ces to consider the decomposition,

1

p� .�/
D �.�/

1

p�.�/
C .1 � �.�//

1

p�.�/
:

Here � 2 C 1
0 .Rn/ is such that � D 1 on ¹� W j�j < 4j�jº. �e proof is complete.
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In what follows we shall consider convolutions of tempered distributions and

Schwartz functions. Let us recall brie�y the standards facts about them, see [12].

Let u 2 S0.Rn/ and f 2 S.Rn/. �en the convolution u � f is de�ned by

.u � f /.x/ D uy.f .x � y//:

We have

u � f 2 S
0.Rn/ \ C 1.Rn/;

and

F.u � f / D bf bu 2 S
0.Rn/:

When m D 1, the distribution

g
.1/

�
.x/ D F

�1
� 1

p� .�/

�
2 S

0.Rn/

is a tempered fundamental solution of the operator ���2� �r. �is fundamental

solution was introduced in [5] and [26]. �e convolution operator

G
.1/

�
f WD g

.1/

�
� f W S.Rn/ �! S

0.Rn/

is continuous, and in [26], it was shown that for j�j � s0 > 0, we have

G
.1/

�
W L2

�C1.Rn/ �! L2
� .Rn/; �1 < � < 0;

with the bound

kG
.1/

�
f kL2

� .Rn/ � C

j�j kf kL2
�C1

.Rn/:

When m � 2, according to Lemma 3.2 we have 1
.p�.�//m … L1

loc.R
n/, and

therefore, it cannot be viewed as a distribution directly. Hence, we shall proceed to

regularize it. Following [26] let us introduce an open cover of Rn in the following

way. Here it will be convenient to denote by †.s/ the characteristic set †� , given

by (3.4). Let us set

V1.s/ D R
n n N s

2n
.†.s//:

where

Nr.†.s// D ¹� 2 R
n W d.�; †.s// � rº; r > 0:

To construct an open cover of the compact set N s
2n

.†.s//, we observe from (3.8)

that if � 2 N s
2n

.†.s// then j�1j � s
2n

and j� � se2j � s � s
2n

. �erefore, the length

of at least one component of � � se2 must be greater or equal to 1p
n
.s � s

2n
/ > s

2n
,

n � 2. �us, letting
8
<̂

:̂

V2.s/ D
°
� 2 R

n W j�2 � sj >
s

2n

±
\ Ns.†.s//0;

Vj .s/ D
°
� 2 R

n W j�j j >
s

2n

±
\ Ns.†.s//0; j D 3; : : : ; n;

(3.13)
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where Ns.†.s//0 is the interior of Ns.†.s//, we have

N s
2n

.†.s// �
n[

j D2

Vj .s/: (3.14)

It will be convenient to decompose the open sets Vj .s/ further,

V2;˙.s/ D ¹� 2 V2.s/ W ˙.�2 � s/ > 0º;
Vj;˙.s/ D ¹� 2 Vj .s/ W ˙�j > 0º; j D 3; : : : ; n:

(3.15)

We have the scaling relations,

8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:

†.s/ D s†.1/;

N s
2n

.†.s// D sN 1
2n

.†.1//;

V1.s/ D sV1.1/;

Vj;˙.s/ D sVj;˙.1/; j D 2; 3; : : : ; n:

(3.16)

�us, (3.14) is equivalent to

N 1
2n

.†.1// �
n[

j D2

.Vj;C.1/ [ Vj;�.1//: (3.17)

Let �j;˙.1/, j D 2; : : : ; n, be a partition of unity subordinate to the open cover

(3.17) of the compact set N 1
2n

.†.1//, i.e.

0 � �j;˙.1/ 2 C 1
0 .Vj;˙.1//;

and
nX

j D2

.�j;C.1/ C �j;�.1// D 1

near N 1
2n

.†.1//. We set

�1.1/ D 1 �
nX

j D2

.�j;C.1/ C �j;�.1// 2 C 1.Rn/

and we have

�1.1/ D 0

near N 1
2n

.†.1//.
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Setting

�1.s/.�/ D �1.1/.�=s/; �j;˙.s/.�/ D �j;˙.1/.�=s/; j D 2; : : : ; n; (3.18)

we see that �j;˙.s/, j D 2; : : : ; n, is a partition of unity subordinate to the open

cover
Sn

j D2.Vj;C.s/ [ Vj;�.s// of the compact set N s
2n

.†.s//, i.e.

0 � �j;˙.s/ 2 C 1
0 .Vj;˙.s//;

and
nX

j D2

.�j;C.s/ C �j;�.s// D 1

near N s
2n

.†.s//. Furthermore,

�1.s/ D 1 �
nX

j D2

.�j;C.s/ C �j;�.s// 2 C 1.Rn/

and

�1.s/ D 0

near N s
2n

.†.s//.

To solve the equation

.j�j2 � 2i� � �/mbw D 1 in R
n; (3.19)

we seek a tempered distribution bw of the form

bw D bw1 C
nX

j D2

.bwj;C C bwj;�/; (3.20)

where bw1 satis�es the equation

.j�j2 � 2i� � �/mbw1 D �1.s/ in R
n; (3.21)

and bwj;˙ solves the equation

.j�j2 � 2i� � �/mbwj;˙ D �j;˙.s/ in R
n; j D 2; : : : ; n: (3.22)

Since supp .�1.s// � Rn n N s
2n

.†.s//, we see that the function

bw1.�/ D �1.s/.�/

.p�.�//m
2 C 1.Rn/ \ S

0.Rn/ (3.23)

solves the equation (3.21).
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To solve the equation (3.22), we de�ne

ˆ.j;˙/.s/ W Vj;˙.s/ �! ˆ.j;˙/.s/.Vj;˙.s//; j D 2; : : : ; n;

by

8
ˆ̂̂
<̂
ˆ̂̂
:̂

�1 D ˆ
.j;˙/
1 .s/.�/ D �2�1;

�j D ˆ
.j;˙/
j .s/.�/ D �2

1 C .�2 � s/2 C �2
3 C � � � C �2

n � s2

s
;

�l D ˆ
.j;˙/

l
.s/.�/ D �l ; l ¤ 1; j:

(3.24)

�e Jacobian of this transformation is given by

ˇ̌
ˇdet

h@�

@�

iˇ̌
ˇ D

8
ˆ̂<
ˆ̂:

4j�2 � sj
s

; j D 2;

4j�j j
s

; j D 3; : : : ; n:

�us, for � 2 Vj;˙.s/, we have 2
n

< jdetŒ @�
@�

�j < 8 and hence, ˆ.j;˙/.s/ is a local

di�eomorphism. Furthermore, since

ˆ.j;˙/.s/ W Vj;˙.s/ �! ˆ.j;˙/.s/.Vj;˙.s//

is injective, we conclude that it is a global di�eomorphism.

We have also the scaling relation,

ˆ.j;˙/.s/.�/ D sˆ.j;˙/.1/.�=s/;

where the map

ˆ.j;˙/.1/ W Vj;˙.1/ �! ˆ.j;˙/.1/.Vj;˙.1//

is a smooth di�eomorphism between bounded open sets, which are independent

of s.

Now in the new coordinates we have

p�..ˆ.j;˙/.s//�1.�// D s.�j C i�1/;

and therefore, the equation (3.22) becomes

sm.�j C i�1/mbwj;˙..ˆ.j;˙/.s//�1.�// D �j;˙.s/..ˆ.j;˙/.s//�1.�// in R
n:

(3.25)

To proceed we shall need the following result.
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Lemma 3.3. Let m � 2, j D 2; : : : ; n, and let

E
.m;j /

�
D .�1/m�1

sm.m � 1/Š
@.m�1/

�j

� 1

�j C i�1

�
2 S

0.Rn/; (3.26)

where the derivatives are taken in the sense of distributions. �en

sm.�j C i�1/mE
.m;j /

�
D 1 in R

n: (3.27)

Proof. To �x the ideas let us take j D 2. Let ' 2 S.Rn/. We have

hsm.�2 C i�1/mE
.m;2/

�
; 'i

D 1

.m � 1/Š

Z

Rn

1

�2 C i�1

@.m�1/
�2

..�2 C i�1/m'.�//d�

D 1

.m � 1/Š
lim
"!0

Z

Rn�2

Z

R2nB".0/

1

�2 C i�1

@.m�1/
�2

..�2 C i�1/m'.�//d�1d�2d�00;

(3.28)

where

� D .�1; �2; �00/

and

B".0/ D ¹.�1; �2/ 2 R
2 W j�1j2 C j�2j2 � "2º:

Here and in what follows h�; �i denotes the distributional duality.

Integrating by parts and recalling that .�2 C i�1/m' 2 S.Rn/, we get

I" WD
Z

R2nB".0/

1

�2 C i�1

@.m�1/
�2

..�2 C i�1/m'.�//d�1d�2

D .�1/m�1

Z

R2nB".0/

@.m�1/
�2

� 1

�2 C i�1

�
.�2 C i�1/m'.�/d�1d�2

C
m�2X

kD0

.�1/m�2�k

Z

@B".0/

�2@.m�2�k/
�2

� 1

�2 C i�1

�
@.k/

�2
..�2 C i�1/m'.�//dS;

where dS is the Euclidean arc measure on @B".0/ and � D .�1; �2/ is the interior

unit normal to @B".0/.

Writing

�1 D " cos �; �2 D " sin � on @B".0/,

and using the facts that

@.l/
�2

� 1

�2 C i�1

�
D .�1/l lŠ

1

.�2 C i�1/lC1
(3.29)
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and

@.k/
�2

..�2 C i�1/m'.�// D O.j.�1; �2/jm�k/; k � m;

we see that ˇ̌
ˇ̌
Z

@B".0/

�2@.m�2�k/
�2

� 1

�2 C i�1

�
@.k/

�2
..�2 C i�1/m'.�//dS

ˇ̌
ˇ̌

�
Z 2�

0

O."2/d� �! 0;

as " ! 0. �erefore, also using (3.29), we obtain that

lim
"!0

I" D .m � 1/Š

Z

R2

'.�/d�1d�2:

�is together with (3.28) implies (3.27). �e proof is complete.

Lemma 3.3 implies that the distribution

�j;˙.s/..ˆ.j;˙/.s//�1.�//E
.m;j /

�
2 E

0.Rn/

is a solution of (3.25). �us,

bwj;˙.�/ D .ˆ.j;˙/.s//�..�j;˙.s/ ı .ˆ.j;˙/.s//�1/E
.m;j /

�
/ 2 E

0.Vj;˙.s// (3.30)

is a solution of (3.22). Here .ˆ.j;˙/.s//� is the pullback by the di�eomorphism

ˆ.j;˙/.s/, see [6].

Let

S
0.Rn/ 3 E

.m/

�
D bw

D �1.s/

.p� /m
C

nX

j D2

.ˆ.j;C/.s//�..�j;C.s/ ı .ˆ.j;C/.s//�1/E
.m;j /

�
/

C
nX

j D2

.ˆ.j;�/.s//�..�j;�.s/ ı .ˆ.j;�/.s//�1/E
.m;j /

�
/:

(3.31)

Summing up the discussion so far, we have the following result.

Proposition 3.4. �e distribution g
.m/

�
D F�1.E

.m/

�
/ is a tempered fundamental

solution of the operator .�� � 2� � r/m. �e convolution operator

G
.m/

�
f D g

.m/

�
� f (3.32)

is continuous S.Rn/ ! S0.Rn/, and w D G
.m/

�
f is a solution to the equation

.�� � 2� � r/mw D f in R
n:
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Our next goal is to extend the convolution operator G
.m/

�
to a bounded operator

between suitable weighed L2 spaces, introduced in (1.4), and to obtain estimates

for the corresponding operator norm. To that end, we shall prepare by proving

some auxiliary results.

Lemma 3.5. Let W1 and W2 be open subsets of Rn, let ˆ W W1 ! W2 be a C 1

di�eomorphism and let W 0
2 b W2 be open. �en for � 2 R, we have

kF�1.ˆ�u/kL2
� .Rn/ � C kF�1.u/kL2

� .Rn/; u 2 E
0.W 0

2/; F
�1.u/ 2 L2

� .Rn/:

(3.33)

Here the constant C depends only on � , k@˛ˆkL1.ˆ�1.W 0
2

//, k@˛ˆ�1kL1.W 0
2/

for j˛j � 1.

Proof. First notice that

kF�1.u/k2

L2
� .Rn/

D .2�/�n

Z

Rn

.1 C j�j2/� jF.u/.��/j2d� D .2�/�nkuk2
H � .Rn/:

�erefore, (3.33) is equivalent to the fact that

kˆ�ukH � .Rn/ � C kukH �.Rn/; u 2 E
0.W 0

2/ \ H � .Rn/;

which expresses the invariance of the Sobolev space H � .Rn/ under a smooth

di�eomorphism, see [11, �eorem 2.6.1]. �e proof is complete.

We shall have to apply Lemma 3.5 to the di�eomorphisms ˆ.j;˙/.s/,

j D 2; : : : ; n, introduced in (3.24), which depend on a large parameter s, and

to make sure that the constants in (3.33) are independent of s we require the fol-

lowing result.

Lemma 3.6. Let ˆ.j;˙/.s/, j D 2; : : : ; n, be the di�eomorphism, de�ned in (3.24).

�en for all s � s0 > 0, we have

k@˛ˆ.j;˙/.s/kL1.Vj;˙.s// � C˛;

k@˛.ˆ.j;˙/.s//�1kL1.ˆ.j;˙/.s/.Vj;˙.s/// � C˛; j˛j � 1;

uniformly in s.
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Proof. Recall that

Vj;˙.s/ D sVj;˙.1/; ˆ.j;˙/.s/.�/ D sˆ.j;˙/.1/.�=s/;

and therefore,

@˛
� .ˆ.j;˙/.s//.�/ D s1�j˛j@˛

� .ˆ.j;˙/.1//.�=s/: (3.34)

Now writing

� D ˆ.j;˙/.s/.�/ D sˆ.j;˙/.1/.�=s/;

we see that

.ˆ.j;˙/.s//�1.�/ D � D s.ˆ.j;˙/.1//�1.�=s/:

Hence,

@˛
�..ˆ.j;˙/.s//�1/.�/ D s1�j˛j@˛

�.ˆ.j;˙/.1//�1.�=s/: (3.35)

�e map

ˆ.j;˙/.1/ W Vj;˙.1/ �! ˆ.j;˙/.1/.Vj;˙.1//

is a smooth di�eomorphism between bounded open sets, which are independent

of s, and it can easily be seen to extend to a smooth di�eomorphism on a neigh-

borhood of Vj;˙.1/. �e claim of the Lemma then follows from (3.34) and (3.35).

�e proof is complete.

We shall need the following consequence of [26, Lemma 3.1].

Lemma 3.7. Let n � 3, x D .x1; x2; x00/ 2 Rn, and let

H.x1; x2/ D 1

jx2 C ix1j 2 L1
loc.R

2/ \ S
0.R2/:

�en for �1 < � < 0,

k.H.x1; x2/ ˝ ı.x00// � f kL2
�

� C kf kL2
�C1

; f 2 S.Rn/: (3.36)

Proof. Writing x0 D .x1; x2/, we have

.H ˝ ı.x00// � f D .H ˝ ı.x00//y.f .x � y// D
Z

R2

f .x0 � y0; x00/

jy2 C iy1j dy1dy2:

By inspection of the proof of [26, Lemma 3.1], we get

Z

R2

.1 C jx0j2/�

ˇ̌
ˇ̌
Z

R2

f .x0 � y0; x00/

jy2 C iy1j dy1dy2

ˇ̌
ˇ̌
2

dx1dx2

� C

Z

R2

.1 C jx0j2/�C1jf .x0; x00/j2dx1dx2;

for all x00 2 Rn�2.
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Using the fact that � < 0 and � C 1 > 0, we obtain that

Z

R2

.1 C jxj2/�

ˇ̌
ˇ̌
Z

R2

f .x0 � y0; x00/

jy2 C iy1j dy1dy2

ˇ̌
ˇ̌
2

dx1dx2

� C

Z

R2

.1 C jxj2/�C1jf .x0; x00/j2dx1dx2;

and hence, the estimate (3.36) follows by integration with respect to x00. �e proof

is complete.

Lemma 3.7 will be used in the proof of the following result which will be

needed later.

Lemma 3.8. Let n � 3, x D .x1; x2; x00/ 2 Rn, and m D 1; 2; : : : . �en for

�m < � < 1 � m, we have





� xm�1

2

x2 C ix1

˝ ı.x00/
�

� g





L2
�

� C kgkL2
�C2m�1

; g 2 S.Rn/: (3.37)

Proof. Writing x0 D .x1; x2/, we have

ˇ̌
ˇ
� xm�1

2

x2 C ix1

˝ ı.x00/
�

� g
ˇ̌
ˇ

�
Z

R2

jy2jm�1

jy2 C iy1j jg.x0 � y0; x00/jdy00

� C jx0jm�1

Z

R2

1

jy2 C iy1j jg.x0 � y0; x00/jdy00

C C

Z

R2

jx0 � y0jm�1

jy2 C iy1j jg.x0 � y0; x00/jdy00

� C.1 C jxj2/.m�1/=2
�� 1

jx2 C ix1j ˝ ı.x00/
�

� jgj

C
� 1

jx2 C ix1j ˝ ı.x00/
�

� .j � jm�1jgj/
�
:

�us,





� xm�1

2

x2 C ix1

˝ ı.x00/
�

� g





L2
�

� C




� 1

jx2 C ix1j ˝ ı.x00/
�

� jgj





L2
�Cm�1

C C




� 1

jx2 C ix1j ˝ ı.x00/
�

� .j � jm�1jgj/





L2
�Cm�1

:
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As �1 < � C m � 1 < 0, applying Lemma 3.7, we see that the expression above

does not exceed

C kgkL2
�Cm

C C kj � jm�1gkL2
�Cm

� C kgkL2
�C2m�1

;

which shows (3.37). �e proof is complete.

For future reference we shall also need the following result.

Lemma 3.9. We have

kf � 'kL2
�

� C'kf kL2
�
; f 2 L2

� .Rn/; ' 2 S.Rn/; (3.38)

where � > 0.

Proof. Using that

.1 C jxj2/�=2 � C..1 C jx � yj2/�=2 C .1 C jyj2/�=2/;

we have

kf � 'kL2
�

�
� Z � Z

.1 C jxj2/�=2j'.x � y/jjf .y/jdy

�2

dx

�1=2

� C.k.1 C j � j2/�=2j'j � jf jkL2 C kj'j � .1 C j � j2/�=2jf jkL2/

� C.k.1 C j � j2/�=2'kL1kf kL2 C k'kL1kf kL2
�
/ � C'kf kL2

�
;

where in the last line we have used Young’s inequality for convolutions. �e proof

is complete.

In our considerations we shall apply Lemma 3.9 to the function

' D F
�1.�j;˙.s//; j D 2; : : : ; n;

where �j;˙.s/ is de�ned by (3.18), and consequently depends on the large param-

eter s. In order to conclude that the constant in (3.38) is independent of s, we shall

prove the following result. Notice that here it is important that our partition of

unity is chosen so that it respects the scaling relations (3.16).
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Lemma 3.10. Let � > 0 and let �j;˙.s/ be de�ned by (3.18). �en the norms

kF�1.�j;˙.s//kL1.Rn/; k.1 C j � j2/�=2
F

�1.�j;˙.s//kL1.Rn/; j D 2; : : : ; n;

are O.1/, uniformly in s � s0 > 0.

Proof. By (3.18), we get

F
�1.�j;˙.s//.x/ D sn

F
�1.�j;˙.1//.sx/;

and therefore,

kF�1.�j;˙.s//kL1.Rn/ D kF�1.�j;˙.1//kL1.Rn/: (3.39)

For s � s0 > 0, as � > 0, we also have

k.1 C j � j2/�=2
F

�1.�j;˙.s//kL1.Rn/ �
Z

Rn

�
1 C jyj2

s2
0

��=2

jF�1.�j;˙.1//.y/jdy:

(3.40)

As F�1.�j;˙.1// 2 S.Rn/, the expressions in (3.39) and (3.40) are �nite.

�e proof is complete.

We are now ready to prove the following result.

Proposition 3.11. Let m D 1; 2; : : : , and �m < � < 1 � m. �en for

j�j � s0 > 0, the operator G
.m/

�
can be extended to a bounded operator

L2
�C2m�1.Rn/ �! L2

� .Rn/

such that

kG
.m/

�
f kL2

�
� C

j�jm kf kL2
�C2m�1

: (3.41)

Proof. It su�ces to prove (3.41) when f 2 S.Rn/. When doing so we shall make

use of the fact that

G
.m/

�
f D F

�1.E
.m/

�
/ � f;

where E
.m/

�
is given by (3.31).

First notice that

supp .�1.s// �
°
� 2 R

n W dist.�; †�/ >
s

2n

±
;

and therefore, an application of Lemma 3.1 shows that

jp� .�/j & s2; � 2 supp .�1.s//:
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By Parseval’s formula and using that � < 0 and � C 2m � 1 > 0, we have




F�1
� �1.s/

.p�.�//m

�
� f





L2

�

�



F�1

� �1.s/

.p�.�//m

�
� f





L2

D .2�/�n=2



 �1.s/

.p�.�//m
bf





L2

� C

j�j2m
kf kL2 � C

j�j2m
kf kL2

�C2m�1
:

(3.42)

Let now 1 < j � n, and assume to �x the ideas that j D 2, all other cases

being identical. Writing x D .x1; x2; x00/, by (3.26), we have

F
�1.E

.m;2/

�
/ D .�1/m�1

sm.m � 1/Š
F

�1
�
@.m�1/

�2

� 1

�2 C i�1

��

D im�1

sm.m � 1/Š
xm�1

2 F
�1

� 1

�2 C i�1

�

D imxm�1
2

2�sm.m � 1/Š.x2 C ix1/
˝ ı.x00/;

(3.43)

see [12, Exercise 7.1.40].

Using that

ˆ�.f u/ D .ˆ�f /.ˆ�u/; f 2 C 1.Rn/; u 2 D
0.Rn/;

see [12, p. 135], for s � s0 > 0, with the help of Lemma 3.5 combined with

Lemma 3.6, we get

kF�1..ˆ.2;˙/.s//�..�2;˙.s/ ı .ˆ.2;˙/.s//�1/E
.m;2/

�
// � f kL2

�

D kF�1..ˆ.2;˙/.s//�..bf �2;˙.s// ı .ˆ.2;˙/.s//�1E
.m;2/

�
//kL2

�

� C kF�1
�
.bf �2;˙.s// ı .ˆ.2;˙/.s//�1E

.m;2/

�

�
kL2

�

D C kF�1.E
.m;2/

�
/ � F

�1..bf �2;˙.s// ı .ˆ.2;˙/.s//�1/kL2
�

� C

sm





� xm�1

2

x2 C ix1

˝ ı.x00/
�

� F
�1..bf �2;˙.s// ı .ˆ.2;˙/.s//�1/





L2

�

:

(3.44)

In the last line we have used (3.43).
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An application of Lemma 3.8 shows that the last expression can be estimated

as follows,

� C

sm
kF�1..bf �2;˙.s// ı .ˆ.2;˙/.s//�1/kL2

�C2m�1

� C

sm
kF�1.bf �2;˙.s//kL2

�C2m�1

D C

sm
kf � F

�1.�2;˙.s//kL2
�C2m�1

� C

sm
kf kL2

�C2m�1
:

(3.45)

Here we have used Lemma 3.5, combined with Lemma 3.6, and Lemma 3.9, com-

bined with Lemma 3.10.

�e estimate (3.41) follows from (3.42), (3.44), and (3.45). �e proof is com-

plete.

We now proceed to discuss estimates for the convolution operator G
.m/

�
in suit-

able Lp spaces.

Proposition 3.12. Let � 2 Cn n ¹0º, � � � D 0. �en G
.m/

�
can be extended to a

bounded operator

L
2n

nC2m .Rn/ �! L
2n

n�2m .Rn/

such that

kG
.m/

�
f k

L
2n

n�2m
� C kf k

L
2n

nC2m
; f 2 L

2n
nC2m .Rn/; (3.46)

uniformly in �.

Proof. First as a consequence of (2.2), we have the following estimate

kuk
L

2n
n�2m

� C k.�� � 2� � r/muk
L

2n
nC2m

(3.47)

uniformly in � 2 Cn, � � � D 0, and u 2 S.Rn/.

Next we would like to substitute u D G
.m/

�
f , f 2 S.Rn/, in (3.47). How-

ever, the operator G
.m/

�
does not preserve the Schwartz space. To overcome this

di�culty, let us consider the space of S.Rn/, given by

X� D ¹f 2 S.Rn/ W bf 2 C 1
0 .Rn n †�/º:
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Let us show that

G
.m/

�
W X� �! X� : (3.48)

Indeed, let f 2 X� . Using (3.31), we get

2
G

.m/

�
f D

bf �1.s/

.p�/m
C

nX

j D2

.ˆ.j;C/.s//�..bf �j;C.s/ ı .ˆ.j;C/.s//�1/E
.m;j /

�
/

C
nX

j D2

.ˆ.j;�/.s//�..bf �j;�.s/ ı .ˆ.j;�/.s//�1/E
.m;j /

�
/:

Notice that bf �j;˙.s/ ı .ˆ.j;˙/.s//�1 2 C 1
0 .Rn n ¹�j D 0; �1 D 0º/. �erefore,

for ' 2 S.Rn/, we have

h.bf �j;˙.s/ ı .ˆ.j;˙/.s//�1/E
.m;j /

�
; 'i

D 1

sm.m � 1/Š

Z

Rn

1

�j C i�1

@.m�1/
�j

.bf �j;˙.s/ ı .ˆ.j;˙/.s//�1'/d�

D
Z

Rn

1

sm.�j C i�1/m
bf �j;˙.s/ ı .ˆ.j;˙/.s//�1'd�:

Hence,
2
G

.m/

�
f 2 C 1

0 .Rn n †�/;

which shows (3.48).

Substituting u D G
.m/

�
f , f 2 X� , into (3.47), and using that

.�� � 2� � r/mG
.m/

�
f D f; f 2 X� ;

we get

kG
.m/

�
f k

L
2n

n�2m
� C kf k

L
2n

nC2m
; f 2 X� ; (3.49)

where the constant C is independent of �. According to Lemma 3.13 below the

space X� is dense in L
2n

nC2m .Rn/, and hence the estimate (3.49) can be extended

to all f 2 L
2n

nC2m .Rn/. �is completes the proof.

Lemma 3.13. For every � 2 Cn n ¹0º such that � � � D 0, the space

X� D ¹f 2 S.Rn/ W bf 2 C 1
0 .Rn n †�/º;

where

†� D ¹� 2 R
n W p�.�/ D 0º;

is dense in Lp.Rn/, 1 < p < 1.
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Proof. Without loss of generality, we may assume that � D s.e1 � ie2/, and there-

fore,

†� D ¹� 2 R
n W �1 D 0; j� � se2j D sº:

Let g 2 Lq.Rn/, 1
p

C 1
q

D 1, be such that

hg; f i D 0 (3.50)

for all f 2 X� . According to the Hahn–Banach theorem, it su�ces to show that

g D 0. It follows from (3.50) that

hF�1g; bf i D 0;

where bf is an arbitrary function in C 1
0 .Rn n †�/. Hence,

supp .F�1g/ � †� :

As †� is a compact subset contained in the hyperplane ¹�1 D 0º, we have

F
�1g D

kX

j D0

uj ˝ @j ı.�1/; uj 2 E
0.Rn�1

� 0 /;

where k is the order of the distribution F�1g 2 E0.Rn/, see [12, Example 5.1.2,

p. 128]. �us,

g D
kX

j D0

buj ˝ .ix1/j ; buj 2 S
0 \ C 1.Rn�1

x0 /: (3.51)

Since g 2 Lq.Rn/, q < 1, by Fubini’s theorem we have x1 7! g.x1; x0/ in Lq.R/

for almost all x0. As q < 1, the latter is only possible if all buj in (3.51) vanish

identically. �e proof is complete.

Remark 3.14. It might be interesting to mention that there is another way to prove

the density of the space X� in Lp.Rn/ with 2n
nC2

� p < 1, which is based on

the fact that †� is a smooth manifold of codimension two, and the fact that if

g 2 Lq.Rn/ and supp bg is carried by a manifold of codimension two then g D 0

provided 1 � q � 2n
n�2

. �e latter fact is established in [1] by re�ning the proof of

[12, �eorem 7.1.27].

Let us �nally discuss the uniqueness statement in �eorem 1.2. To that end it

remains to show that the homogeneous equation

..��/m � 2� � r/mw D 0 (3.52)

has only a trivial solution in L
2n

n�2m .Rn/. Taking the Fourier transform in (3.52),

we see that supp .bw/ � †� � ¹� 2 Rn W �1 D 0º. As in the proof of Lemma 3.13,

we conclude that w D 0. �e proof of �eorem 1.2 is now complete.
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4. Construction of complex geometric optics solutions

Let q 2 L
n

2m .�/ and n > 2m. Viewing q as an element of .L
n

2m \ E0/.Rn/, with

supp q � x�, consider the equation,

..��/m C q/u D 0 in R
n: (4.1)

�e next result provides us with the existence of complex geometric optics

solutions to the equation (4.1).

Proposition 4.1. For each � 2 Cn such that � � � D 0 and j�j is su�ciently large,

there exists a solution of the equation (4.1) of the form

u D ex��.1 C r/; (4.2)

where the remainder r satis�es

krk
L

2n
n�2m .Rn/

D O.1/; j�j ! 1; (4.3)

and for any compact set K � Rn,

krkL2.K/ �! 0; j�j ! 1:

Proof. We follow the method of [22] and [3], where the existence of complex

geometric optics solutions for the Schrödinger operator �� C q with q 2 L
n
2 .�/

was established. Here the convolution operator G
.m/

�
introduced in (3.32) together

with the estimates (3.41) and (3.46) will play a crucial role.

Substituting (4.2) into (4.1), we get

..�� � 2� � r/m C q/r D �q in R
n: (4.4)

Let us write

q D d1d2; d1 D jqj1=2; d2 D q=jqj1=2:

We have d1; d2 2 L
n
m .Rn/ and kdj k

L
n
m .Rn/

D kqk1=2

L
n

2m .Rn/
, j D 1; 2.

We shall look for a solution of (4.4) in the form

r D G
.m/

�
d1v: (4.5)
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�us, we have to solve

.I C d2G
.m/

�
d1/v D �d2 2 .L

n
m \ E

0/.Rn/ � .L2 \ E
0/.Rn/; (4.6)

as 2m < n. To that end we shall invert the operator I C d2G
.m/

�
d1 on L2.Rn/.

Let us show that

kd2G
.m/

�
d1kL2.Rn/!L2.Rn/ �! 0; j�j ! 1: (4.7)

In doing so, we let, when � > 0,

dj;� .x/ D

8
<
:

dj .x/; jdj .x/j � �;

0; otherwise;
j D 1; 2:

�us, for each � , dj;� 2 L1.Rn/. Furthermore, dj;� .x/ ! dj .x/ almost every-

where as � ! 1. We also have jdj;� .x/j � jdj .x/j, and therefore, by dominated

convergence, we get kdj � dj;� k
L

n
m .Rn/

! 0 as � ! 1.

For f 2 L2.Rn/, we write

kd2G
.m/

�
d1f kL2.Rn/ � kd2;� G

.m/

�
d1;� f kL2.Rn/

C kd2;� G
.m/

�
.d1 � d1;� /f kL2.Rn/

C k.d2 � d2;� /G
.m/

�
d1f kL2.Rn/:

(4.8)

Let us now estimate each term in the right hand side of (4.8). By Hölder’s

inequality and (3.46), for each � > 0, we obtain that

kd2;� G
.m/

�
.d1 � d1;� /f kL2.Rn/ � kd2;� k

L
n
m .Rn/

kG
.m/

�
.d1 � d1;� /f k

L
2n

n�2m .Rn/

� C kd2;� k
L

n
m .Rn/

k.d1 � d1;� /f k
L

2n
nC2m .Rn/

� C kqk1=2

L
n

2m .Rn/
k.d1 � d1;� /k

L
n
m .Rn/

kf kL2.Rn/:

(4.9)

Similarly, for each � > 0, we have

k.d2 � d2;� /G
.m/

�
d1f kL2.Rn/ � C kd2 � d2;� k

L
n
m .Rn/

kqk1=2

L
n

2m .Rn/
kf kL2.Rn/:

(4.10)

Let " > 0. Since kdj �dj;�k
L

n
m .Rn/

! 0 as � ! 1, it follows from (4.9) and (4.10)

that there exists � large such that

kd2;� G
.m/

�
.d1�d1;� /kL2.Rn/!L2.Rn/Ck.d2�d2;� /G

.m/

�
d1kL2.Rn/!L2.Rn/ � 2"=3:

(4.11)
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Let us �x this � and obtain the estimate for the �rst term in the right hand side

of (4.8). Recall that supp dj;� � supp q WD L is compact. Letting �m < � < 1�m

and using (3.41), we get

kd2;� G
.m/

�
d1;� f kL2.Rn/ � CLkd2;� G

.m/

�
d1;�f kL2

� .Rn/

� CLkd2;� kL1.Rn/kG
.m/

�
d1;� f kL2

� .Rn/

� CL

j�jm kd2;� kL1.Rn/kd1;� f kL2
�C2m�1.Rn/

� CLkd2;� kL1.Rn/kd1;� kL1.Rn/

j�jm kf kL2.Rn/:

(4.12)

Now it follows from (4.8), (4.11) and (4.12) that

kd2G
.m/

�
d1kL2.Rn/!L2.Rn/ � ";

for j�j su�ciently large, which implies (4.7).

In particular, kd2G
.m/

�
d1kL2.Rn/!L2.Rn/ � 1=2 when j�j su�ciently large, and

therefore, (4.6) yields that

v D �.I C d2G
.m/

�
d1/�1d2

D �
1X

j D0

.�d2G
.m/

�
d1/j d2:

We have

kvkL2.Rn/ � 2kd2kL2.Rn/ � O.1/:

Using (3.46), from (4.5), we obtain that

krk
L

2n
n�2m .Rn/

� C kd1vk
L

2n
nC2m .Rn/

� C kd1k
L

n
m .Rn/

kvkL2.Rn/

� O.1/;

(4.13)

for j�j su�ciently large.
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Let K � Rn be a �xed compact set and let us write

krkL2.K/ � kG
.m/

�
d1;� vkL2.K/ C kG

.m/

�
.d1 � d1;� /vkL2.K/: (4.14)

Using the inclusion L
2n

n�2m .K/ � L2.K/, the estimate (3.46) and Hölder’s in-

equality, we get

kG
.m/

�
.d1 � d1;� /vkL2.K/ � CKkG

.m/

�
.d1 � d1;� /vk

L
2n

n�2m .K/

� CKkd1 � d1;� k
L

n
m .Rn/

kvkL2.Rn/

� CK;qkd1 � d1;� k
L

n
m .Rn/

:

Let " > 0. As kd1 � d1;� k
L

n
m .Rn/

! 0 as � ! 1, let us �x � > 0 so that

kG
.m/

�
.d1 � d1;� /vkL2.K/ � "=2: (4.15)

Now let �m < � < 1 � m. Using (3.41) and the fact that

supp d1 � supp q WD L

is compact, we obtain that

kG
.m/

�
d1;� vkL2.K/ � CKkG

.m/

�
d1;� vkL2

�.Rn/

� CK

j�jm kd1;� vkL2
�C2m�1

.Rn/

� CK;L

j�jm kd1;�kL1.Rn/kvkL2.Rn/

� CK;L;q

j�jm

� "

2
;

(4.16)

for j�j su�ciently large. It follows from (4.14), (4.15) and (4.16) that

krkL2.K/ ! 0; j�j ! 1:

�e proof is complete.



Inverse problems for polyharmonic operators 175

Remark 4.2. Let us mention that uj� 2 H m.�/ where u is the complex geometric

optics solution given in (4.2). Indeed, let z� � Rn be open bounded such that

� b z�. �en it follows from (4.3) that ujz� 2 L
2n

n�2m . z�/. By Hölder’s inequality,

we have

kquk
L

2n
nC2m . z�/

� kqk
L

n
2m . z�/

kuk
L

2n
n�2m . z�/

;

and therefore, .��/mu D �qu 2 L
2n

nC2m . z�/ � H �m. z�/ by the Sobolev embed-

ding, see [25, �eorem 0.3.7]. Hence, by elliptic regularity, u 2 H m
loc.

z�/, and

thus, u 2 H m.�/.

5. Proof of �eorem 1.1

An application of Lemma A.1 and the fact that ƒq1
D ƒq2

give us the following

integral identity, Z

�

.q2 � q1/u1u2dx D 0; (5.1)

for any solutions u1; u2 2 H m.�/ of the equations

..��/m C q1/u1 D 0 in �; (5.2)

and

..��/m C q2/u2 D 0 in �; (5.3)

respectively.

Given � 2 Rn, we set

�1 D s�1 C i
��

2
C r�2

�
;

�2 D �s�1 C i
��

2
� r�2

�
;

where �1; �2 2 Sn�1 satisfy

� � �1 D � � �2 D �1 � �2 D 0

and
j�j2
4

C r2 D s2:

�e vectors are chosen so that �j � �j D 0, j D 1; 2, and �1 C �2 D i�. We also

have j�j j D
p

2s, j D 1; 2.
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By Proposition 4.1, for s su�ciently large, there exist complex geometric optics

solutions,

u1 D ex��1.1 C r1/;

u2 D ex��2.1 C r2/;

to the equations (5.2) and (5.3), respectively, where the remainders rj satisfy

krj k
L

2n
n�2m .Rn/

D O.1/; s ! 1; (5.4)

and for any compact set K � Rn,

krj kL2.K/ �! 0; s ! 1: (5.5)

By Remark 4.2 we know that u1; u2 2 H m.�/. Substituting u1 and u2 into

the integral identity (5.1), we obtain that

Z

�

.q2 � q1/ei� �x.1 C r1 C r2 C r1r2/dx D 0: (5.6)

Let us show that

Z

�

.q2 � q1/ei� �x.r1 C r2 C r1r2/dx ! 0; s ! 1: (5.7)

To that end, we �x " > 0 and write q D q2 � q1. Let q] 2 L1.�/ be such that

kq � q]k
L

n
2m .�/

� ". By Hölder inequality, (5.4) and (5.5), we get

ˇ̌
ˇ̌
Z

�

qei� �x.r1 C r2 C r1r2/dx

ˇ̌
ˇ̌

� C�kq]kL1.�/.kr1kL2.�/ C kr2kL2.�/ C kr1kL2.�/kr2kL2.�//

C C�kq � q]k
L

n
2m .�/

.kr1k
L

2n
n�2m .�/

C kr2k
L

2n
n�2m .�/

C kr1k
L

2n
n�2m .�/

kr2k
L

2n
n�2m .�/

/

� O."/;

for s su�ciently large, which shows (5.7).

Taking the limit as s ! 1 in (5.6), we obtain that q1 D q2 in �. �e proof of

�eorem 1.1 is complete.



Inverse problems for polyharmonic operators 177

Appendix A.

Wellposedness of the Dirichlet problem for .��/m
C q

with potential q 2 L
n

2m

Let � � Rn be a bounded open set with C 1 boundary, and let q 2 L
n

2m .�/,

n > 2m.

We have the following chain of continuous inclusions, where the �rst and the

last ones follow from the Sobolev embedding theorem, see [25, �eorem 0.3.7],

H m.�/ ,�! L
2n

n�2m .�/ ,�! L2.�/ ,�! L
2n

nC2m .�/ ,�! H �m.�/:

For f D .f0; : : : ; fm�1/ 2
Qm�1

j D0 H m�j �1=2.@�/, consider the following

Dirichlet problem, 8
<
:

..��/m C q/u D 0 in �;


u D f on @�:
(A.1)

Here


 W H m.�/ �!
m�1Y

j D0

H m�j �1=2.@�/; 
u D .uj@�; @�uj@�; : : : ; @m�1
� uj@�/

is the Dirichlet trace of u 2 H m.�/ on the boundary of �, and � is the exterior

unit normal to the boundary.

�e purpose of this appendix is to use the standard variational arguments to

show the wellposedness of the problem (A.1). Consider �rst the inhomogeneous

problem, 8
<
:

..��/m C q/u D F in �;


u D 0 on @�;
(A.2)

with F 2 H �m.�/. Using the multinomial theorem, we write

.��/m D
X

j˛jDm

mŠ

˛Š
D2˛:

To de�ne a natural sesquilinear form a, associated to the problem (A.2), we let

u; v 2 C 1
0 .�/ and integrate by parts,

..��/m C q/u; v/L2.�/ D
X

j˛jDm

mŠ

˛Š

Z

�

D˛uD˛vdx C
Z

�

uq Nvdx WD a.u; v/:

Notice that this is not a unique form, associate with the problem (A.2).
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Using the Sobolev embedding H m.�/ � L
2n

n�2m .�/ and Hölder’s inequality,

we obtain that

ja.u; v/j �
X

j˛jDm

mŠ

˛Š
kD˛ukL2.�/kD˛vkL2.�/

C kqk
L

n
2m .�/

kuk
L

2n
n�2m .�/

kvk
L

2n
n�2m .�/

� C kukH m.�/kvkH m.�/:

(A.3)

Hence, the sesquilinear form a.u; v/ extends to a bounded form on H m
0 .�/.

Poincaré’s inequality implies that for jˇj < m, we have

kDˇ ukL2.�/ � C
X

j˛jDm

kD˛ukL2.�/; u 2 H m
0 .�/;

and therefore,

kuk2
H m.�/ � C

X

j˛jDm

kD˛uk2
L2.�/

; u 2 H m
0 .�/: (A.4)

Using (A.4), and writing q D q] C .q �q]/ with q] 2 L1.�/ and kq �q]k
L

n
2m .�/

small enough, we obtain that

Re a.u; u/ �
X

j˛jDm

mŠ

˛Š

Z

�

jD˛uj2dx �
Z

�

juj2jqjdx

� c
X

j˛jDm

kD˛uk2
L2.�/

� kq]kL1.�/kuk2
L2.�/

� kq � q]k
L

n
2m .�/

kuk2

L
2n

n�2m .�/

� .c=2/kuk2
H m.�/ � C0kuk2

L2.�/
; c > 0; u 2 H m

0 .�/:

�us, the form a.u; v/ is coercive on H m
0 .�/. As the inclusion map

H m
0 .�/ ,! L2.�/ is compact, the operator

.��/m C q W H m
0 .�/ �! H �m.�/ D .H m

0 .�//0 (A.5)

is Fredholm of index zero, see [24, �eorem 2.34].

Furthermore, since the operator .��/m C q C C0 W H m
0 .�/ ! H �m.�/ is

positive, by an application of the Lax–Milgram lemma we conclude that it has a

bounded inverse. As the embedding H m
0 .�/ ,! H �m.�/ is compact, the oper-

ator (A.5), viewed as an operator on the Hilbert space H �m.�/, has a discrete

spectrum.
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To study the well-posedness of (A.1), let us assume that

0 is not in the spectrum of the operator (A.5). (A)

Let w 2 H m.�/ be such that 
w D f , see [8, �eorem 9.5, p. 226] for the

existence of such w. �en u D v C w 2 H m.�/, where v 2 H m
0 .�/ is the unique

solution of the equation,

..��/m C q/v D �..��/m C q/w 2 H �m.�/;

solves the Dirichlet problem (A.1). Furthermore, the solution to the Dirichlet

problem (A.1) is unique.

Under the assumption (A), we de�ne the Dirichlet–to–Neumann map, asso-

ciated to (A.1), in the following way. Let f; h 2
Qm�1

j D0 H m�j �1=2.@�/, and

v 2 H m.�/ be such that 
v D h. �en we set

hƒqf; Nhi D a.u; v/ D
X

j˛jDm

mŠ

˛Š

Z

�

D˛uD˛vdx C
Z

�

uq Nvdx; (A.6)

where u 2 H m.�/ is the unique solution of the Dirichlet problem (A.1).

Let us now show that the de�nition (A.6) of ƒqf is independent of the choice

of an extension v of h. To that end let v1; v2 2 H m.�/ be such that


v1 D 
v2 D h:

�en we have to show that

X

j˛jDm

mŠ

˛Š

Z

�

D˛uD˛.v1 � v2/dx C
Z

�

uq.v1 � v2/dx D 0: (A.7)

For any w 2 C 1
0 .�/, as u 2 H m.�/, we have

0 D h..��/m C q/u; Nwi D
X

j˛jDm

mŠ

˛Š
.�1/m

Z

�

D˛uD˛ Nwdx C
Z

�

uq Nwdx:

As C 1
0 .�/ is dense in H m

0 .�/ and the form is continuous on H m
0 .�/, we get (A.7).

It follows from (A.3) that

jhƒqf; Nhij � C kukH m.�/kvkH m.�/

� C kf kQm�1
j D0 H m�j �1=2.@�/

khkQm�1
j D0 H m�j �1=2.@�/

;

where

khkQm�1
j D0 H m�j �1=2.@�/

D .kh0k2
H m�1=2.@�/

C � � � C khm�1k2
H 1=2.@�/

/1=2
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is the product norm on the space
Qm�1

j D0 H m�j �1=2.@�/. Here we have used the

fact that the extension operator
Qm�1

j D0 H m�j �1=2.@�/ 3 h 7! v 2 H m.�/ is

bounded, see [8, �eorem 9.5, p. 226]. Hence,

ƒqf 2
� m�1Y

j D0

H m�j �1=2.@�/
�0

D
m�1Y

j D0

H �mCj C1=2.@�/

is well de�ned, and the operator

ƒq W
m�1Y

j D0

H m�j �1=2.@�/ �!
m�1Y

j D0

H �mCj C1=2.@�/

is bounded.

�e following integral identity is used in the proof of �eorem 1.1.

Lemma A.1. Let q1; q2 2 L
n

2m .�/ and ƒq1
D ƒq2

. �en
Z

�

.q2 � q1/u1u2dx D 0; (A.8)

for any solutions u1; u2 2 H m.�/ of the equations ..��/m C q1/u1 D 0 in �,

..��/m C q2/u2 D 0 in �, respectively.

Proof. First as u2 2 H m.�/ satis�es the equation ..��/m C q2/u2 D 0, we have

0 D hu2; ..��/m C q2/'i D
X

j˛jDm

mŠ

˛Š
.�1/m

Z

�

D˛u2D˛'dx C
Z

�

u2q2'dx;

(A.9)

for any ' 2 C 1
0 .�/. By density and continuity, (A.9) remains valid for any

' 2 H m
0 .�/.

Let v2 2 H m.�/ be such that
8
<
:

..��/m C q2/v2 D 0 in �;


v2 D 
u1:

Substituting ' D u1 � v2 2 H m
0 .�/ into the identity (A.9), we get

X

j˛jDm

mŠ

˛Š

Z

�

D˛u2D˛.u1 � v2/dx C
Z

�

u2q2.u1 � v2/dx D 0: (A.10)

From the equality hƒq1
.
u1/; 
u2i D hƒq2

.
v2/; 
u2i we conclude that

X

j˛jDm

mŠ

˛Š

Z

�

D˛u2D˛.u1 � v2/dx C
Z

�

.u1q1 � v2q2/u2dx D 0: (A.11)

Subtracting (A.11) from (A.10), we obtain (A.8). �e proof is complete.
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