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Abstract. �e solution of an initial-boundary value problem for a linear evolution par-

tial di�erential equation posed on the half-line can be represented in terms of an integral in

the complex (spectral) plane. �is representation is obtained by the uni�ed transform intro-

duced by Fokas in the 90’s. On the other hand, it is known that many initial-boundary value

problems can be solved via a classical transform pair, constructed via the spectral analysis

of the associated spatial operator. For example, the Dirichlet problem for the heat equation

can be solved by applying the Fourier sine transform pair. However, for many other initial-

boundary value problems there is no suitable transform pair in the classical literature. Here

we pose and answer two related questions: given any well-posed initial-boundary value

problem, does there exist a (non-classical) transform pair suitable for solving that prob-

lem? If so, can this transform pair be constructed via the spectral analysis of a di�erential

operator? �e answer to both of these questions is positive and given in terms of augmented

eigenfunctions, a novel class of spectral functionals. �ese are eigenfunctions of a suitable

di�erential operator in a certain generalised sense, they provide an e�ective spectral rep-

resentation of the operator, and are associated with a transform pair suitable to solve the

given initial-boundary value problem.
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1. Introduction

In this paper we consider initial-boundary value problems (IBVP) for linear evolu-

tion constant-coe�cient partial di�erential equations (PDE). �e classical trans-

form pairs used to solve problems of this kind are based on the representation

of the given initial condition as an expansion in a complete system of (gener-

alised) eigenfunctions of an appropriate di�erential operator, namely the operator

associated with the spatial part of the IBVP. (We assume the usual Hilbert space

structure, inherited from L2, on the underlying function space.)

�is method relies crucially upon two properties, namely

(1) the completeness of the spectral system;

(2) the convergence of the expansion of the initial condition in the system.

It is not surprising that such approaches fail, even for simple high-order problems,

as soon as the di�erential operator is non-self-adjoint [14].

On the other hand, problems of this type can be solved using the uni�ed trans-

form method, introduced by Fokas in the late 90’s [5, 6, 10]. Indeed, a represen-

tation of the solution, assuming it exists and is unique, can be given by Fokas’

approach regardless of order or complexity of boundary conditions. Moreover,

the uni�ed method was used by the present authors to obtain well-posedness cri-

teria [13, 15].

In this paper we interpret the solution representation given by the uni�ed trans-

form method of Fokas in terms of integral transform pairs, and discuss the spectral

meaning of these transform pairs. Herein, we provide results for initial-boundary

value problems on a semi-in�nite domain and the associated di�erential opera-

tors. �is discussion complements the picture presented in [8], where problems

posed on a �nite spatial interval are studied. In [16], the results of the present work

are compared and contrasted with the �nite interval results.
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More speci�cally, we derive transform pairs for boundary value problems for

constant coe�cient PDEs in two independent variables, of the general form

@

@t
q.x; t /C a.�i/n

@n

@xn
q.x; t/ D 0; a 2 C; (1.1)

posed on the half line .0;1/. It is known [10] what boundary conditions must

be imposed to obtain a problem that admits a unique solution, and we consider

only such well-posed problems. Any initial-boundary value problem for (1.1) is

naturally associated to the study of a di�erential operator such as the operator S

de�ned below by (2.5), complemented with the appropriate boundary conditions.

�e spectral representation of this operator and its diagonalisation are described by

introducing a more general type of eigenfunctions, that we call augmented eigen-

functions, and that can be read o� the integral representation of the PDE problem.

In addition, the completeness of the eigenfunction family and the convergence of

the associated expansion can be obtained through the PDE results obtained using

the uni�ed transform method of Fokas.

�e main illustrative examples. �roughout the paper, we will use two exam-

ples to illustrate the main results. To wit, consider the following initial-boundary

value problems.

Problem. �e linearised Korteweg–de Vries (LKdV) equation

qt .x; t /C qxxx.x; t / D 0 .x; t/ 2 .0;1/ � .0; T /; (1.2a)

q.x; 0/ D f .x/ x 2 Œ0;1/; (1.2b)

q.0; t / D 0 t 2 Œ0; T �: (1.2c)

Problem. �e reverse-time linearised Korteweg–de Vries equation

qt .x; t /� qxxx.x; t / D 0 .x; t/ 2 .0;1/� .0; T /; (1.3a)

q.x; 0/ D f .x/ x 2 Œ0;1/; (1.3b)

q.0; t / D qx.0; t / D 0 t 2 Œ0; T �: (1.3c)

It is shown in [5, 10] that these problems are well-posed. �e solution of Prob-

lem 1 can be expressed in the form

q.x; t/ D
1

2�

Z

�1

ei�xCi�3t�1.�I f / d�C
1

2�

Z

�0

ei�xCi�3t Of .�/ d�; (1.4a)

where �1 is the oriented boundary of the domain ¹� 2 C
C W Re.�i�3/ < 0º

perturbed away from 0, as shown in Figure 1. Similarly, the solution of Problem 2
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can be expressed as

q.x; t/ D
1

2�

Z

�1

ei�xCi�3t�1.�I f / d�C
1

2�

Z

�2

ei�xCi�3t�2.�I f / d�

C
1

2�

Z

�0

ei�xCi�3t Of .�/ d�;

(1.4b)

where �1 and �2 are the connected components of the oriented boundary of the

domain ¹� 2 C
C W Re.�i�3/ < 0º, perturbed away from 0, as shown in Fig-

ure 1. In both problems, the contour �0 is R perturbed away from 0 along a small

semicircular arc in C
C. �e function Of denotes the Fourier transform of f .x/,

extended to a function on C
C, given by

Of .�/ D

Z

1

0

e�i�xf .x/ dx; � 2 C
C;

and the functions �j .�/, j D 1; 2, appearing in the solution representations are

de�ned as follows:

Problem 1: �1.�/ D �˛ Of .˛�/ � ˛2 Of .˛2�/; � 2 �1:

Problem 2: �1.�/ D Of .˛2�/; � 2 �1;

�2.�/ D Of .˛�/; � 2 �2:

where ˛ is a cube root of unity:

˛ D e2�i=3: (1.5)

In the sequel, we will consider the analytic extension of the functions �j to appro-

priate closed sectors, without further comment.

Γ0

Γ1

Problem 1

Γ0

Γ2 Γ1

Problem 2

Figure 1. Contours for the LKdV and reverse-time LKdV equations.
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Transform pair. It is well-known that the half-line homogeneous Dirichlet prob-

lem for the heat equation qt D qxx on .0;1/ may be solved by using the Fourier

sine transform pair. �e solution is

q.x; t/ D f Œe��2tF Œf �.�/�.x/;

where the direct and invese transforms are de�ned as follows:

f .x/ 7�! F Œf �.�/; F Œf �.�/ D
2

�

Z

1

0

sin.�x/f .x/ dx; � 2 Œ0;1/; (1.6)

F.�/ 7�! f ŒF �.x/; f ŒF �.x/ D

Z

1

0

sin.�x/F.�/ d�; x 2 Œ0;1/:

Similarly, the half-line homogeneous Neumann problem for the heat equation is

solved with the Fourier cosine transform pair. However, for higher order IBVP, the

standard sine, cosine and exponential Fourier transforms are inadequate. More-

over, classical separation of variables techniques often do not yield the requisite

transform pairs, in contrast with what one may expect based on the second order

examples. �is is due to the fact that the boundary conditions may be non-self-

adjoint, or non-separable [9].

It turns out that the uni�ed transform method of Fokas provides an algorithm

for constructing a transform pair tailored to a given initial-boundary value problem

even in such cases. For example, the integral representations (1.4) give rise to the

following transform pair, which is tailored for solving problems 1 and 2:

f .x/ 7�! F Œf �.�/; F Œf �.�/ D

Z

1

0

�j .x; �/f .x/ dx � 2 �j ; (1.7a)

F.�/ 7�! f ŒF �.x/; f ŒF �.x/ D

1 or 2
X

j D0

Z

�j

ei�xF.�/ d�; x 2 Œ0;1/; (1.7b)

where

�0.x; �/ D
1

2�
e�i�x; � 2 �0; (1.7c)

(for Problem 1) �1.x; �/ D
�1

2�
Œ˛e�i˛�x C ˛2e�i˛2�x�; � 2 �1; (1.7d)

(for Problem 2) �1.x; �/ D
1

2�
e�i˛2�x ; � 2 �1; (1.7e)

�2.x; �/ D
1

2�
e�i˛�x; � 2 �2; (1.7f)

with ˛ given by (1.5).
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�e validity of these transform pairs is established in Section 2. In Section 3

we prove that the solution of problems 1 and 2 is given by

q.x; t/ D f Œei�3tF Œf �.�/�.x/: (1.8)

�e transform pairs (1.7) are much less symmetric than the Fourier sine trans-

form pair (1.6). �is is not entirely surprising. One would expect the direct trans-

form to be related, in some way, to the spectral representation of the spatial di�er-

ential operator, while the inverse transform should be associated with the spectral

representation of the adjoint operator. As the underlying spatial di�erential oper-

ator is not self-adjoint, these representations will generally be di�erent. However

what is surprising is the fact, described in the sequel, that these transforms are not

constructed in the usual way in terms of some associated spectral objects, as the

expansions resulting from such a construction may fail to be convergent.

�e generalised spectral representation of Gelfand. To illustrate the need for

introducing a generalised notion of spectral representation we start with a clas-

sical example. Let SŒ0;1/ denote the Schwartz space of half-line restrictions of

rapidly-decaying functions. Suppose we seek eigenfunctions, in the usual sense,

of the spatial di�erential operator S associated with the Dirichlet problem for the

heat equation, given by

.Sf /.x/ D �f 00.x/; for all f 2 SŒ0;1/ such that f .0/ D 0: (1.9)

�us we seek a function f D f� such that �f 00

�
.x/ D �2f�.x/, � 2 R. �is

implies f�.x/ D Aei�x C Be�i�x and the boundary condition yields B D �A,

so that

f�.x/ D A0 sin.�x/:

But, for f 2 SŒ0;1/, we must haveA0 D 0 so there are no nonzero eigenfunctions

of S .

In [11, 12], Gel’fand and coauthors described the concept of eigenfunctionals or

generalised eigenfunctions. Namely, they sought functionals F Œ��.�/ 2 .SŒ0;1//0

such that for every � 2 R,

F ŒSf �.�/ D �2F Œf �.�/: (1.10)
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�e above relation holds provided

F Œf �.�/ D
2

�

Z

1

0

sin.�x/f .x/ dx: (1.11)

�e functionals F Œ��.�/ are the generalised eigenfunctions of the operator S de-

�ned by (1.9). Note that the generalised eigenfunction corresponding to a given

� 2 R is precisely the evaluation at � of the direct transform used to solve the cor-

responding IBVP; generalised eigenfunctions are therefore very natural spectral

objects.

�e primary achievement of [12, Chapter 1] is to elucidate how generalised

eigenfunctions are a relevant spectral object: they provide a spectral representation

of any self-adjoint linear operator, corresponding to a spectral parameter � 2 R

that can be interpreted as a continuous eigenvalue. Indeed, Gel’fand still uses the

term “eigenvalue” for the continuous spectral parameter and we will follow his

convention.

Note that Gel’fand’s formulation of generalised eigenfunctions requires self-

adjointness of the linear di�erential operator for completeness results. �is cer-

tainly holds for the Dirichlet heat operator but the non-self-adjoint boundary con-

ditions considered in problems 1 and 2 preclude an application of the spectral

theory presented in [12, Chapter 1].

Augmented eigenfunctions. In light of the discussion in the previous section, it

is natural to ask whether the transform pairs (1.7), which were derived through the

uni�ed transform method of Fokas to solve problems 1 and 2, have similar spectral

meanings to the sine transform. In what follows, we describe the abstract notion

of augmented eigenfunctions.

De�nition 1.1. Let I � R be open and let C be a topological vector space of

functions de�ned on the closure of I , with su�cient smoothness and decay con-

ditions.

Let ˆ � C and let L W ˆ ! C be a linear di�erential operator of order n.

Let � be an oriented contour in C and let

E D ¹EŒ��.�/ W � 2 �º

be a family of functionals EŒ��.�/ 2 C 0. Suppose there exist corresponding re-

mainder functionals RŒ��.�/ 2 C 0 such that

EŒL��.�/ D �nEŒ��.�/C RŒ��.�/; for all � 2 ˆ; for all � 2 �: (1.12)
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If
Z

�

ei�xRŒ��.�/ d� D 0; for all � 2 ˆ; x 2 I; (1.13)

then we sayE is a family of type I augmented eigenfunctions ofL up to integration

along �.

If
Z

�

ei�x

�n
RŒ��.�/ d� D 0; for all � 2 ˆ; x 2 I; (1.14)

then we say E is a family of type II augmented eigenfunctions of L up to integra-

tion along �.

Note that we cannot restrict the spectral parameter to real values, as the re-

sulting expansion may then fail to converge, as in the sine example above. In the

de�nition above the crucial spectral parameter takes the form �n. Hence in gen-

eral, even when �n 2 R, the usual spectral parameters given by the nth roots � are

complex, and the eigenfunctionals involve complex integration. �is mirrors the

situation with representing the solution of the initial-boundary value problem as

an integral along a complex contour, and is a manifestation of the lack of symme-

try in the operator.

Remark 1. �e remainder functional RŒ��.�/ appears also in the theory of pseu-

dospectra [4]. In that context, it is required that the norm of RŒ��.�/ be less than

some small value. Our de�nition serves a di�erent application, and rather than a

small norm, we require that the integral of exp.i�x/RŒ��.�/ along the contour �

vanishes.

It will be shown in section 4 that ¹F Œ��.�/ W � 2 �º is a family of type II aug-

mented eigenfunctions of the di�erential operator representing the spatial part

of Problem 1 or Problem 2, with eigenvalue �3. It will also be shown that

¹F Œ��.�/ W � 2 �1º is a family of type I augmented eigenfunctions of the spa-

tial di�erential operator in Problem 1; the corresponding functionals arising in

Problem 2, ¹F Œ��.�/ W � 2 �1 [ �2º, do not form a family of type I augmented

eigenfunctions.

Spectral representation of non-self-adjoint operators. �e de�nition of aug-

mented eigenfunctions, in contrast to the generalized eigenfunctions of Gel’fand

and Vilenkin [12, Section 1.4.5], allows the occurrence of remainder functionals.

However, the contribution of these remainder functionals is eliminated by mul-

tiplying by the Fourier kernel and integrating over �. Indeed, integrating equa-

tion (1.12) over� with respect to the Fourier kernel gives rise to a non-self-adjoint

analogue of the spectral representation of an operator.
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De�nition 1.2. We say that E D ¹EŒ��.�/ W � 2 �º is a complete family of func-

tionals EŒ��.�/ 2 C 0 if

� 2 ˆ and EŒ��.�/ D 0 for all � 2 � H) � D 0: (1.15)

We now de�ne a spectral representation of the non-self-adjoint di�erential op-

erators we study in this paper.

De�nition 1.3. Suppose that E D ¹EŒ��.�/ W � 2 �º is a system of type II aug-

mented eigenfunctions of L up to integration over �, and that

Z

�

ei�xEŒ��.�/ d� converges for all � 2 ˆ; x 2 I: (1.16)

Furthermore, assume that E is a complete system in the sense of de�nition 1.2.

�en we say that E provides a spectral representation of L in the sense that

Z

�

ei�x 1

�n
EŒL��.�/ d� D

Z

�

ei�xEŒ��.�/ d� for all � 2 ˆ; x 2 I: (1.17)

De�nition 1.4. Suppose that E.I/ D ¹EŒ��.�/ W � 2 �.I/º is a system of type I

augmented eigenfunctions of L up to integration over �.I/ and that

Z

�.I/

ei�xEŒL��.�/ d� converges for all � 2 ˆ; x 2 I: (1.18)

Suppose also that E.II/ D ¹EŒ��.�/ W � 2 �.II/º is a system of type II augmented

eigenfunctions of L up to integration over �.II/ and that

Z

�.II/

ei�xEŒ��.�/ d� converges for all � 2 ˆ; x 2 I: (1.19)

Furthermore, assume that E D E.I/ [ E.II/ is a complete system in the sense of

de�nition 1.2. �en we say that E provides a spectral representation of L in the

sense that
Z

�.I/

ei�xEŒL��.�/ d� D

Z

�.I/

�nei�xEŒ��.�/ d� for all � 2 ˆ; x 2 I;

(1.20a)
Z

�.II/

1

�n
ei�xEŒL��.�/ d� D

Z

�.II/

ei�xEŒ��.�/ d� for all � 2 ˆ; x 2 I:

(1.20b)
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Completeness is an essential component of any de�nition of a spectral rep-

resentation; see Gel’fand’s de�nition [12]. Indeed, otherwise, for some nonzero

� 2 ˆ, equation (1.17) is trivially 0 D 0. Crucially, it is possible to obtain the

requisite completeness and convergence results by studying the IBVP associated

with the operator.

Remark 2. Our de�nitions above are given for L a linear di�erential operator

equal to its principal part. Note however that the uni�ed transform method of

Fokas can be applied to problems where the associated spatial di�erential oper-

ator has an arbitrary polynomial [6], and even rational [3, 7], characteristic. It is

reasonable to expect that the de�nition of augmented eigenfunctions and the the-

ory presented in this paper could be extended at least to these cases, albeit with

signi�cant notational complication. In order to simplify the presentation, we avoid

these complications in the present work.

�e uni�ed transform method has not yet been implemented for partial dif-

ferential equations with variable coe�cients. To extend the results of this paper

to operators with variable coe�cients would require either such an extension of

the uni�ed transform method, or the development of a new approach to prove the

theorems presented below.

Results and organisation of paper. �e two problems above are each typical of

a class of IBVP. Indeed, for each well-posed half-line IBVP, we can always use the

uni�ed transform method of Fokas to construct a transform-inverse transform pair

tailored to the problem, where the forward transform can be viewed as a family

of type II augmented eigenfunctions. Moreover, these type II augmented eigen-

functions provide a spectral representation of the associated di�erential operator

in the sense of de�nition 1.3. �ese results are the contents of proposition 3.2 and

theorem 4.3.

If, as in Problem 1 but not Problem 2,

the contour
[

j >1

�j has no semi-in�nite component lying on R; (1.21)

then the family of functionals

°

F Œ��.�/ W � 2
[

j >1

�j

±

is a family of type I augmented eigenfunctions. �e class of problems for which

statement (1.21) holds is described in theorem 4.5; it is also shown that the aug-

mented eigenfunctions provide a spectral representation in the sense of de�ni-
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tion 1.4. Since ¹F Œ��.�/ W � 2 �0º is never a family of type I augmented eigenfunc-

tions, S cannot have a spectral representation provided solely by type I augmented

eigenfunctions.

In Section 2, we establish that the integral transforms (1.7) are indeed valid

transform-inverse transform pairs and then extend this result to the general case.

Namely, we de�ne a general nth order operator S , with arbitrary linear boundary

conditions. We also de�ne associated well-posed IBVP and the transform pairs

used to solve these IBVP. To complete Section 2, we prove that the general in-

tegral transforms also give valid transform-inverse transform pairs. In Section 3,

we show that the transform pair may be used to solve the IBVP, �rst for the ex-

ample problems 1 and 2, and then in general. Finally, in Section 4, we show that

the forward transforms may be viewed as augmented eigenfunctions of the op-

erator S and prove results on the spectral representation of S via its augmented

eigenfunctions.

2. Validity of transform pairs

In Section 2.1 we will show the validity of the transform pairs de�ned by equa-

tions (1.7). In Section 2.2 we derive an analogous transform pair for a general

IBVP. In Section 2.3, we establish the validity of the general transform pair.

�roughout this paper, we work in the space of half-line restrictions of smooth,

compactly supported functions,

C D C1

0 Œ0;1/ D ¹f jŒ0;1/ W f 2 C1

0 .R/º: (2.1)

�e uni�ed transform method has been shown to be valid on the Schwartz space

SŒ0;1/, and even on spaces with lower regularity [10]. In order to ensure the

usual Fourier transform is de�ned everywhere on �0, some additional decay be-

yond Schwartz is required (see equations (1.4) and Figure 1). We may recover the

usual space of validity of the uni�ed method by observing that C is dense when

considered as a subspace of SŒ0;1/. See also remark 3.

2.1. Linearized KdV

Proposition 2.1. Let F Œf �.�/ and f ŒF �.x/ be given by equations (1.7a)–(1.7d).

For all f 2 C such that f .0/ D 0 and for all x 2 .0;1/, we have

f ŒF Œf ��.x/ D f .x/: (2.2)
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Let F Œf �.�/ and f ŒF �.x/ be given by equations (1.7a)–(1.7c), (1.7e),

and (1.7f). For all f 2 C such that f .0/ D f 0.0/ D 0 and for all x 2 .0;1/,

f ŒF Œf ��.x/ D f .x/: (2.3)

Proof. �e de�nition of the transform pair (1.7a)–(1.7d) implies

f ŒF Œf ��.x/ D
1

2�

Z

�1

ei�x�1.�/ d�C
1

2�

Z

�0

ei�x Of .�/ d�; (2.4)

where � is given by equation (1.5) and the contours �1 and �0 are shown in Fig-

ure 1.

As � ! 1 from within the closed sector ¹� W �
3

6 arg.�/2�
3

º, the exponentials

e�i˛� and e�i˛2� are bounded. Integration by parts and the boundary condition

yields Of .˛�/, Of .˛2�/ D O.��2/ and these Fourier transforms are holomorphic

in the same sector. Hence, by Jordan’s lemma, the integral over �1 vanishes.

�e integrand ei�x Of .�/ is holomorphic hence admits a deformation of the contour

�0 onto R. �e validity of the usual Fourier transform on SŒ0;1/ completes the

proof.

�e proof for the transform pair (1.7a)–(1.7c), (1.7e) and (1.7f) is similar.

2.2. General case: de�nition of transform pair

Spatial di�erential operator. Let n > 2 andN 2 ¹n=2; .n�1/=2; .nC1/=2º be

integers. Let Bj W C ! C be the following linearly independent boundary forms

Bj� D

n�1
X

kD0

bj k�
.k/.0/; j 2 ¹1; 2; : : : ; N º;

with boundary coe�cients bj k 2 R. �e integer N is de�ned by equation (2.8).

Let

ˆ D ¹� 2 C W Bj� D 0 for all j 2 ¹1; 2; : : : ; N ºº

and let ¹B?
j W j 2 ¹1; 2; : : : ; n�N ºº be a set of adjoint boundary forms with adjoint

boundary coe�cients b?
j k

2 R. LetS W ˆ ! C be the di�erential operator de�ned

by

S�.x/ D .�i/n
dn�

dxn
.x/: (2.5)

�en S is formally self-adjoint but, in general, does not admit a self-adjoint

extension because, in general, ¹Bj º ¤ ¹B?
j º. Indeed, adopting the notation

Œ� �.x/ D .�i/n
n�1
X

j D0

.�1/j .�.n�1�j /.x/ 
.j /
.x//;
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of [2, Section 11.1] and integrating by parts, we �nd

..�i d= dx/n�;  / D �Œ� �.0/C .�; .�i d= dx/n /; for all �;  2 C: (2.6)

If � 2 ˆ, then  must satisfy the adjoint boundary conditions in order for

Œ� �.0/ D 0.

Initial-boundary value problem. Associated with S and the constant a 2 C,

we de�ne the following homogeneous initial-boundary value problem:

.@t C aS/q.x; t / D 0 for all .x; t / 2 .0;1/� .0; T /; (2.7a)

q.x; 0/ D f .x/ for all x 2 Œ0;1/; (2.7b)

q.�; t / 2 ˆ for all t 2 Œ0; T �; (2.7c)

where f 2 ˆ is arbitrary. Such a problem is ill-posed if (but not only if) the

exponential time dependence is unbounded for � 2 R, which poses restrictions on

a. Avoiding this cause of ill-posedness is equivalent [10] to requiring: if n is odd

then a D ˙i and if n is even then Re.a/ > 0.

For such a problem to be well-posed, it is necessary and su�cient [10] that

N D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

n=2 n even,

.nC 1/=2 n odd, a D i;

.n� 1/=2 n odd, a D �i:

(2.8)

Note that by well-posed, we mean that there exists a unique solution; we make no

claims regarding the continuous dependence of the solution on the data.

In the sequel, we develop a spectral theory of the di�erential operators associ-

ated with well-posed IBVP .S; a/ of the form (2.7).

Transform pair. Let ˛ D e2�i=n. We de�ne

Mk j .�/ D

n�1
X

rD0

.�i˛k�1�/rb?
j r : (2.9)

�en the .n � N/ � .n � N/ matrix M.�/ is an analogue of Birkho�’s adjoint

characteristic matrix [1] for the one-point di�erential operator S .

For example,

M.�/ D

�

1 �i�

1 �i˛�

�

; M.�/ D
�

1
�

;

in problems 1 and 2 respectively, the latter being a 1 � 1 matrix.
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De�nition 2.2. We de�ne

� the polynomial �.�/ as the determinant of M :

�.�/ D detM.�/I

� the .n�N � 1/� .n�N � 1/ matrix X l j as the submatrix ofM with .1; 1/

entry the .l C 1; j C 1/ entry of the .2.n �N// � .2.n�N// matrix

�

M M

M M

�

:

If N D n� 1, as is the case in Problem 2, we adopt the convention that X1 1

is a 0�0matrix with determinant 1. IfN D n�2, as is the case in Problem 1,

then we can simplify

detX l j .�/ D M3�l 3�j .�/:

We also choose a number R > 0 such that the open disc B.0; R/ contains all

zeros of �.

De�nition 2.3. �e transform pair is given by

f .x/ 7�! F Œf �.�/; F Œf �.�/ D Fk Œf �.�/; � 2 �k; k 2 ¹0; 1; : : : ; N º

(2.10a)

and

F.�/ 7�! f ŒF �.x/; f ŒF �.x/ D

Z

�

ei�xF.�/ d�; x 2 Œ0;1/; (2.10b)

where, for � 2 C such that �.�/ ¤ 0,

F0Œf �.�/ D
1

2�

Z

1

0

e�i�xf .x/ dx; (2.11a)

Fk Œf �.�/ D
1

2��.˛N C1�k�/

n�N
X

lD1

n�N
X

j D1

.�1/.n�N �1/.lCj / detX l j .˛N C1�k�/

M1 j .�/

Z

1

0

exp.�i˛N Cl�k�x/f .x/ dx;

(2.11b)
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for k 2 ¹1; 2; : : : ; N º and the contours are de�ned by

� D

N
[

kD0

�k ; (2.12a)

�0 D R perturbed along a semicircular contour of (2.12b)

radius ı above 0; with positive orientation,

ı > 0 arbitrarily small, (2.12c)

and

�k D the kth connected component of (2.12d)

@.¹� 2 C
C W Re.a�n/ < 0; j�j > Rº/;

counting anticlockwise from R
C; with negative orientation,

for k 2 ¹1; 2; : : : ; N º.

For Problem 1, �.˛�/ D �i�.˛2 � ˛/, and equation (2.11b) simpli�es

to the original de�nition of F1, equations (1.7a) and (1.7d). For Problem 2,

�.˛2�/ D �.˛�/ D 1 and equation (2.11b) immediately simpli�es to give the

expected de�nitions of F1 and F2.

Γ0

Γ2

Γ1

1

n
(π
2
− arg(a))

Figure 2. De�nition of the contour � .

�e contours�j for problems 1 and 2 are shown on Figure 1. Figure 2 shows the

position of the contours for the problem .S; e�i �
6 /, where n D 4 and the boundary

forms are

B1� D �000.0/C 3�00.0/; B2� D �0.0/ � 2�.0/: (2.13)

As the boundary conditions are of Robin type, the characteristic determinant �

has nonzero zeros. Indeed, �.�/ D 0 at the dots in Figure 2 (there is a double

zero at zero) but R D 4 is su�cient to ensure � ¤ 0 outside the disc B.0; R/.
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2.3. General case: validity of transform pair

Proposition 2.4. Let S be an operator corresponding to a well-posed initial-

boundary value problem and let .F Œ��; f Œ��/ be the transform pair given by def-

inition 2.3. �en for all f 2 ˆ and for all x 2 .0;1/,

f ŒF Œf ��.x/ D

N
X

kD0

Z

�k

ei�xFk Œf �.�/ d� D f .x/: (2.14)

�is is a direct generalisation of proposition 2.1; its proof follows that of the

earlier proposition with an equivalent application of Jordan’s lemma.

Proof. For k 2 ¹1; 2; : : : ; N º, we consider the integral

Z

�k

ei�xFk Œf �.�/ d�

D
1

2�

Z

�k

ei�x

n�N
X

lD1

Z

1

0

exp.�i˛N Cl�k�y/f .y/ dy

h

n�N
X

j D1

.�1/.n�N �1/.lCj / detX l j .˛N C1�k�/M1 j .�/

�.˛N C1�k�/

i

d�:

(2.15)

�e square bracket represents a meromorphic function, which is holomorphic and

bounded on �k and the region lying to the right of �k . �e inner integral is en-

tire and decaying like O.��1/ as � ! 1 along �k in either direction or from

within the sector to the right of �k . Hence, by Jordan’s lemma, integral (2.15)

evaluates to 0. Note: we are ‘closing’ the contour �k by moving it to the right;

see Figure 2.

�e integrand ei�xF0Œf �.�/ is holomorphic hence �0 may be deformed onto

R and, by the validity of the usual Fourier transform, the transform pair is valid:

f ŒF Œf ��.x/ D

N
X

kD0

Z

�k

ei�xFk Œf �.�/ d�

D

Z

R

ei�xF0Œf �.�/ d�

D f .x/:
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3. Fokas’ uni�ed transform method for IBVP

In Section 3.1 we prove equation (1.8) for the transform pairs (1.7). In Section 3.2,

we establish equivalent results for general well-posed initial-boundary value prob-

lems.

3.1. Linearized KdV

Proposition 3.1. �e solution of Problem 1 is given by equation (1.8), with

F Œf �.�/ and f ŒF �.x/ de�ned by equations (1.7a)–(1.7d).

�e solution of Problem 2 is given by equation (1.8), with F Œf �.�/ and

f ŒF �.x/ de�ned by equations (1.7a)–(1.7c), (1.7e) and (1.7f).

Proof. We present the proof for Problem 1. �e proof for Problem 2 is very similar.

Suppose q.x; t/, for which t 7! q.�; t / is a C1 map from Œ0; T � into C , is a

solution of the problem (1.3). Applying the forward transform to q yields

F Œq.�; t /�.�/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

Z

1

0

�1.x; �/q.x; t / dx if � 2 �1;

Z

1

0

�0.x; �/q.x; t / dx if � 2 �0;

where �1, �0 are given by equations (1.7d) and (1.7c). �e PDE and integration

by parts imply

d

dt
F Œq.�; t /�.�/D

Z

1

0

�k.x; �/qxxx.x; t / dx

D @2
xq.0; t /�

k.0; �/ � @xq.0; t /@x�
k.0; �/

C q.0; t /@xx�
k.0; �/C i�3F Œq.�; t /�.�/:

Rearranging, multiplying by e�i�3t , integrating over t and applying the initial

condition, we �nd

F Œq.�; t /�.�/ D ei�3tF Œf �.�/C ei�3t

2
X

j D0

.�1/j@2�j
x �k.0; �/Qj .0; �/;

where

Qj .x; �/ D

Z t

0

e�i�3s@j
xq.x; s/ ds:
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Evaluating @
j
x�

k.0; �/, we obtain

F Œq.�; t /�.�/D ei�3tF Œf �.�/C
ei�3t

2�
Œ �Q0.0; �/2�

2 CQ1.0; �/.˛ C ˛2/i�

CQ2.0; �/.˛ C ˛2/�;

for all � 2 �1 and

F Œq.�; t /�.�/ D ei�3tF Œf �.�/C
ei�3t

2�
Œ�Q0.0; �/�

2 CQ1.0; �/i�CQ2.0; �/�;

for all � 2 �0.

Hence, the validity of the transform pair, proposition 2.1, implies

q.x; t/ D

² Z

�1

C

Z

�0

³

ei�xCi�3tF Œf �.�/ d�

C
1

2�

Z

�1

ei�xCi�3t
�

�Q0.0; �/2�
2
�

d�

C
1

2�

Z

�0

ei�xCi�3t Œ�Q0.0; �/�
2� d�

C
�˛ � ˛2

2�

Z

�1

ei�xCi�3t ŒQ2.0; �/CQ1.0; �/i�� d�

C
1

2�

Z

�0

ei�xCi�3t ŒQ2.0; �/CQ1.0; �/i�� d�:

(3.1)

Integration by parts yields

Qj .x; �/ D O.��3/;

as � ! 1 within the sectors 0 6 arg� 6 �=3 and 2�=3 6 arg� 6 � . Further, the

integrands of the last two integrals of equation (3.1) are entire. Hence, by Jordan’s

lemma (used to ‘open’ the contour �1 to the left until it coincides with �0 but

with opposite orientation) and noting �˛ � ˛2 D 1, the last two integrals cancel.

�e boundary conditions imply

Q0.0; �/ D 0;

so the second and third lines of equation (3.1) vanishes. Hence

q.x; t/ D

² Z

�1

C

Z

�0

³

ei�xCi�3tF Œf �.�/ d�:
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�e above proof also demonstrates how the transform pair may be used to solve

a problem with inhomogeneous boundary conditions: consider the problem

qt .x; t /C qxxx.x; t / D 0 .x; t/ 2 .0;1/� .0; T /; (3.2a)

q.x; 0/ D �.x/ x 2 Œ0;1/; (3.2b)

q.0; t / D h.t/ t 2 Œ0; T �; (3.2c)

for some given Dirichlet boundary datum h 2 C1Œ0; T � compatible with f . �en

Q0.0; �/ is nonzero but is a known quantity, namely the t -transform of the bound-

ary datum. Substituting this value into equation (3.1) yields an explicit expression

for the solution.

3.2. General case

Proposition 3.2. �e solution of a well-posed initial-boundary value problem is

given by

q.x; t/ D f Œe�a�ntF Œf ��.x/; (3.3)

where .F Œ��; f Œ��/ is the transform pair of de�nition 2.3.

�e principal tool in the proof of proposition 3.2 is the following lemma.

Lemma 3.3. Let f 2 ˆ and S be the di�erential operator de�ned in equa-

tion (2.5). �en there exists a polynomial Pf of degree at most n� 1 such that, for

all k 2 ¹0; 1; : : : ; N º,

Fk ŒSf �.�/ D �nFk Œf �.�/C Pf .�/; (3.4)

with Pf independent of k.

If it held that Pf D 0 then this lemma would simply state that each Fk Œ��.�/

was a generalised eigenfunction of S and proposition 3.2 would follow by propo-

sition 2.4. Although lemma 3.3 is weaker than Pf D 0, the o.�n/ as � ! 1

bound on Pf is su�cient to give proposition 3.2. �at is, we will be able to show

that f Œe�a�ntPf �.x/ D 0.

Proof of Lemma 3.3. Let .f; g/ be the usual inner product
R

1

0 f .x/ Ng.x/ dx. For

any � 2 �, we can represent Fk Œ��.�/ as the inner product Fk Œf �.�/ D .f; �k
�
/, for
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the function �k
�
.x/, rational in � and smooth in x, de�ned by

�0
�
.x/ D

1

2�
e�i�x; (3.5a)

�k
�
.x/ D

1

2��.˛N C1�k�/

n�N
X

lD1

n�N
X

j D1

.�1/.n�N �1/.lCj / detX l j .˛N C1�k�/

M1 j .�/ exp.�i˛N Cl�k�x/;

(3.5b)

for k 2 ¹1; 2; : : : ; N º.

If � 2 �k , then �k
�

is a smooth and bounded function of x. Also, Sf 2 C and

˛.l�1/n D 1, so equation (2.6) yields

Fk ŒSf �.�/ D �nFk Œf �.�/� Œf �k
� �.0/:

If

B;B? W C �! C
n;

are the vector boundary forms

B D .B1; B2; : : : ; BN /; B? D .B?
1 ; B

?
2 ; : : : ; B

?
n�N /;

then there exist complimentary vector boundary forms Bc, B?
c such that

� Œf �k
� �.0/ D Bf � B?

c �
k
� C Bcf � B?�k

� ; (3.6)

where � is the usual sesquilinear dot product of vectors. �is follows by considering

the �nite-interval case [2, Chapter 11] and taking the limit

.length of interval/ ! 1;

and imposing compact support (rapid decay is su�cient). We consider the right

hand side of equation (3.6) as a function of �. As Bf D 0, this expression is

a linear combination of the functions B?
r �

k
�

of �, with coe�cients given by the

complementary boundary forms.

�e de�nitions of B?
r and �k

�
imply, for k > 1,

B?
r �

k
�

D
1

2��.˛N C1�k�/

n�N
X

lD1

n�N
X

j D1

.�1/.n�N �1/.lCj / detX l j .˛N C1�k�/

M1 j .�/B?
r .exp.�i˛N Cl�k� � //

D
1

2��.˛N C1�k�/

n�N
X

lD1

n�N
X

j D1

.�1/.n�N �1/.lCj / detX l j .˛N C1�k�/

M1 j .�/Ml r.˛
N C1�k�/:
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But

n�N
X

lD1

.�1/.n�N �1/.lCj / detX l j .˛N C1�k�/Ml r .˛
N C1�k�/ D �.˛N C1�k�/ıj r ;

so

B?
r �

k
�

D
1

2�
M1 r.�/:

By de�nition,

B?
r �

0
�

D
1

2�
M1 r.�/: (3.7)

Finally, by equations (2.9), M1 r is a polynomial of order at most n � 1.

Proof of Proposition 3.2. Let q be the solution of the initial-boundary value prob-

lem. �en, since q satis�es the partial di�erential equation (2.7a), for each

k 2 ¹0; 1; : : : ; N º,

d

dt
Fk Œq.�; t /�.�/D �aFk ŒS.q.�; t //�.�/D �a�nFk Œq.�; t /�.�/� aPq.�;t/.�/;

where, by lemma 3.3, Pq.�;t/ is a polynomial of degree at most n � 1 independent

of k. Hence
d

dt
.ea�ntFk Œq.�; t /�.�// D �aea�ntPq.�;t/.�/:

Integrating with respect to t and applying the initial condition (2.7b), we �nd

Fk Œq.�; t /�.�/ D e�a�ntFk Œf �.�/ � ae�a�nt

Z t

0

ea�nsPq.�;s/.�/ ds: (3.8)

�e validity of the transform pair, proposition 2.4, implies

q.x; t/ D

N
X

kD0

Z

�k

ei�x�a�ntFk Œf �.�/ d�

� a

N
X

kD0

Z

�k

ei�x�a�nt

�Z t

0

ea�nsPq.�;s/.�/ ds

�

d�:

(3.9)

If t D 0, the latter integrand is 0 and the result holds. Otherwise, the latter inte-

grand is entire and integration by parts yields

ei�x�a�nt

�Z t

0

ea�nsPq.�;s/.�/ ds

�

D O.��1/ as � ! 1
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within the closed sectors ¹� 2 C
C W Re.a�n/ > 0º. Hence, by Jordan’s lemma

applied to the set

C
C n

N
[

kD1

¹� lying to the left of �kº;

the latter integral of equation (3.9) vanishes.

Indeed, for each k 2 ¹1; 2; : : : ; N º, we use Jordan’s lemma to ‘open’ each

contour �k by rotating the semi-in�nite components about 0 until they coincide

with semi-in�nite components of �kC1, �k�1 or �0 with opposite orientation but

the same integrand. �us the contributions of the semi-in�nite components of �k

mutually annihilate and we are left with

Z



ei�x�a�nt

�Z t

0

ea�nsPq.�;s/.�/ ds

�

d�; (3.10)

where  is the contour

@Œ.D.0; R/ nD.0; ı//\ C
C�; (3.11)

with positive orientation. �e integrand is entire, so the integral vanishes.

4. Analysis of the transform pair

In this section we analyse the spectral properties of the transform pairs using the

notion of augmented eigenfunctions.

4.1. Linearized KdV. �e main results in this section are the following.

�eorem 4.1. �e transform pairs .F Œ��; f Œ��/ de�ned by equations (1.7a)–(1.7d)

and de�ned by equations (1.7a)–(1.7c), (1.7e) and (1.7f) provide spectral repre-

sentations of the spatial di�erential operators associated with Problems 1 and 2,

respectively, in the sense of de�nition 1.3.

�eorem 4.2. �e transform pair .F Œ��; f Œ��/ de�ned in (1.7a)–(1.7d) provides a

spectral representation of the spatial di�erential operator associated with Prob-

lem 1 in the sense of de�nition 1.4.
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Augmented Eigenfunctions. Let S1 and S2 be the di�erential operators repre-

senting the spatial parts of the IBVPs 1 and 2, respectively. Each operator is a

restriction of the same formal di�erential operator, .�i d= dx/3 to the domain of

initial data compatible with the boundary conditions of the problem:

D.S1/ D ¹f 2 C W f .0/ D 0º; (4.1)

D.S2/ D ¹f 2 C W f .0/ D f 0.0/ D 0º: (4.2)

Integration by parts yields

F1ŒS
1f �.�/ D �3F1Œf �.�/C

� i

2�
f 00.0/ �

�

2�
f 0.0/

�

; (4.3)

F0ŒS
1f �.�/ D �3F0Œf �.�/C

�

�
i

2�
f 00.0/C

�

2�
f 0.0/

�

: (4.4)

Similarly,

Fk ŒS
2f �.�/ D �3Fk Œf �C

� i

2�
f 00.0/

�

; k 2 ¹1; 2º; (4.5)

F0ŒS
2f �.�/ D �3F0Œf �C

�

�
i

2�
f 00.0/

�

: (4.6)

In each case, the remainder functional, which is enclosed in parentheses, is entire

in �.

�e ratios of the remainder functionals to the eigenvalue are rational functions

with no pole in the regions to the right of �k and decaying as � ! 1. Jordan’s

lemma applied in the sectors to the right of �k , k > 1 and in the upper half-plane

for �0 implies (1.14) hence ¹F� W � 2
S

k>0 �kº is a family of type II augmented

eigenfunctions of the corresponding S1 or S2.

Remark 3. Suppose that we wished to work in in SŒ0;1/ directly, instead of the

space of compactly-supported functions. �en, in order to establish the validity

(or even the de�nition) of the transform pair one must insist �0 \ C
C D ;. It is

now clear why we avoid this approach, and choose to deform �0 away from 0 and

into C
C, not C�. Indeed, otherwise, applying Jordan’s lemma to

Z

�0

ei�x 1

�3

� �i

2�
f 00.0/

�

d�;

we would pick up a contribution from the pole at zero, hence ¹F Œ��.�/ W � 2 �0º

would fail to be a family of type II augmented eigenfunctions.
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Spectral representation of S
2 - proof of �eorem 4.1. We have shown above

that ¹F Œ��.�/ W � 2
S

k>0 �kº is a family of type II augmented eigenfunctions of

S2 with eigenvalue �3. Moreover, by proposition 2.1,

Z

�0[�1[�2

ei�xF Œf �.�/ d�

converges to f . �is completes the proof of theorem 4.1 for Problem 2.

Spectral representation of S
1 - proof of �eorem 4.2. By the above argument,

it is clear that the transform pair .F Œ��; f Œ��/ de�ned by equations (1.7a)–(1.7d)

provides a spectral representation of S1 in the sense of de�nition 1.3, establishing

theorem 4.1 for Problem 1.

For x 2 .0;1/,

Z

�1

ei�x
� i

2�
f 00.0/ �

�

2�
f 0.0/

�

d�

D

Z

�1

ei�x=2
hei�x=2

2�
.if 00.0/ � �f 0.0//

i

d�;

the integrand is entire and the square bracket decays exponentially as � ! 1

from within the closed sector �
3

6 arg� 6
2�
3

. Hence, by Jordan’s lemma, the

integral converges to 0. We have shown that ¹F Œ��.�/ W � 2 �1º is a family of

type I augmented eigenfunctions of S1.

Note that this holds precisely because, as � ! 1 along any semi-in�nite com-

ponent of �1, Im.�/ ! C1. In particular, ¹F Œ��.�/ W � 2 �0º is not a family of

type I augmented eigenfunctions of S1. It is clear that ¹F Œ��.�/ W � 2 �0 [ �1º

is not a family of type I augmented eigenfunctions, so we cannot provide a spec-

tral representation of S1 using only type I augmented eigenfunctions. Similarly,

neither ¹F Œ��.�/ W � 2 �1º nor ¹F Œ��.�/ W � 2 �2º is a family of type I augmented

eigenfunctions of S2.

Convergence of
Z

�1

ei�xF ŒS1f �.�/ d�

for all f 2 C with f .0/ D 0 follows by the argument in the proof of proposi-

tion 2.1, except in this case S1f 2 C but not necessarily .S1f /.0/ D 0 so we can

only guarantee Of .˛�/, Of .˛2�/ D O.��1/.

�is completes the proof of theorem 4.2.
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4.2. General case. We will show that the transform pair .F Œ��; f Œ��/ represents

spectral decomposition by type II augmented eigenfunctions.

�eorem 4.3. Let S be the spatial di�erential operator associated with a well-

posed IBVP. �en the transform pair .F Œ��; f Œ��/ given by de�nition 2.3 provides a

spectral representation of S in the sense of de�nition 1.3.

Let .S; a/ be such that the associated initial-boundary value problem is well-

posed. �en there exists a complete system of augmented eigenfunctions associ-

ated with S . �e augmented eigenfunctions are all of type II. However, in certain

cases, some of the augmented eigenfunctions are also of type I.

Proposition 4.4. For each k 2 ¹0; 1; 2; : : : ; N º, we de�ne the system of functionals

Fk D ¹Fk Œ��.�/ W � 2 �kº: (4.7)

(i) For each k 2 ¹0; 1; 2; : : : ; N º, Fk is a family of type II augmented eigenfunc-

tions of S up to integration over �k , with eigenvalues �n.

(ii) If either n is odd and a D �i or n is even and Re.a/ > 0, then, for each

k 2 ¹1; 2; : : : ; N º, Fk is a family of type I augmented eigenfunctions of S up

to integration over �k , with eigenvalues �n.

(iii) If the initial-boundary value problem .S; a/ is well-posed, thenF D
SN

kD0 Fk

is a complete system.

Proof.

(i) For each k 2 ¹1; : : : ; N º, lemma 3.3 implies

Z

�k

ei�x��n.Fk ŒSf �.�/ � �nFk Œf �.�// d� D

Z

�k

ei�x��nPf .�/ d�; (4.8)

and the integrand is the product of ei�x with an entire function decaying as

� ! 1. Hence, by Jordan’s lemma applied on the region to the right of

�k, the integral of the remainder functionals vanishes for all x > 0. Equa-

tion (4.8) also holds for k D 0 and we can apply Jordan’s lemma on C
C.
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(ii) If .n; a/ obey the speci�ed conditions, then, for k 2 ¹1; 2; : : : ; N º, �k is

disjoint from R and Im.�/ ! C1 as � ! 1 along either semi-in�nite

component of �k . By lemma 3.3,
Z

�k

ei�x.FkŒSf �.�/ � �nFk Œf �.�// d� D

Z

�k

ei�x=2.ei�x=2Pf .�// d�;

and the integrand is the product of ei�x=2 with a function analytic on the

enclosed set and decaying as � ! 1. Hence, by Jordan’s lemma, the integral

of the remainder functionals vanishes for all x > 0.

(iii) Considering f 2 ˆ as the initial datum of the homogeneous initial-boundary

value problem and applying proposition 3.2, we evaluate the solution of prob-

lem (2.7) at t D 0,

f .x/ D q.x; 0/ D

N
X

kD0

Z

�k

ei�xFk Œf �.�/ d�:

�us if for all k 2 ¹0; 1; : : : ; N º and for all � 2 �k , Fk Œf �.�/ D 0, then

f D 0.

Proof of �eorem 4.3. Proposition 4.4 establishes completeness of the augmented

eigenfunctions and equation (1.17), under the assumption that the integrals con-

verge. �eorem 2.4 implies the required convergence.

�eorem 4.5. Let .S; a/ be a well-posed IBVP such that either n is odd and

a D �i or n is even and Re.a/ > 0. �en the transform pair .F Œ��; f Œ��/ given by

de�nition 2.3 provides a spectral representation of S in the sense of de�nition 1.4.

Proof. Proposition 4.4 establishes that
SN

kD1 Fk is a family of type I augmented

eigenfunctions up to integration over
SN

kD1 �k , that F0 is a family of type II aug-

mented eigenfunctions up to integration over �0 and that F is complete. It only

remains to establish convergence of
Z

�k

ei�xFk ŒSf �.�/ d�; (4.9)

for all x 2 .0;1/, all k 2 ¹1; 2; : : : ; N º and all f 2 ˆ. By lemma 3.3, the

integral (4.9) may be written
Z

�k

ei�x=2Œei�x=2.�nFk Œf �.�/C Pf .�//� d�;

where Fk Œf �.�/ is bounded and holomorphic on �k and the region lying to the

right of �k , and Pf is a polynomial. Hence, by Jordan’s lemma, this integral

converges to 0.
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Remark 4. As our choice of R in the de�nition of �k , for k 2 ¹1; 2; : : : ; N º,

may be arbitrarily large, the contours �k need not pass through any �nite region.

By considering the limit R ! 1, we claim that
SN

kD1 Fk can be seen to represent

spectral objects with eigenvalue at in�nity.

5. Conclusions

In this paper we have elucidated the spectral meaning of the integral representa-

tion for the solution of a well-posed half-line IBVP, given by the uni�ed trans-

form method of Fokas. We proved that this approach can be used to construct a

transform-inverse transform pair tailored to the problem, where the forward trans-

form can be viewed as a family of type II augmented eigenfunctions. Moreover,

these type II augmented eigenfunctions provide a spectral representation of the

associated di�erential operator in the sense of de�nition 1.3

�e de�nition of augmented eigenfunctions is a direct extension of the “gen-

eralised eigenfunctions” introduced by Gelfand, and has clear analogies with the

“pseudo eigenfunctions” as described e.g. in [4]. �e crucial di�erence is that the

augmented eigenfunctions are only de�ned modulo terms that are analytic in cer-

tain subdomains ofC, and the appropriate use of analyticity and Cauchy’s theorem

are crucial for our results.
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