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Abstract. Given a holomorphic iterated function scheme with a �nite symmetry group G,

we show that the associated dynamical zeta function factorizes into symmetry-reduced an-

alytic zeta functions that are parametrized by the unitary irreducible representations of G.

We show that this factorization implies a factorization of the Selberg zeta function on sym-

metric n-funneled surfaces and that the symmetry factorization simpli�es the numerical

calculations of the resonances by several orders of magnitude. As an application this al-

lows us to provide a detailed study of the spectral gap and we observe for the �rst time the

existence of a macroscopic spectral gap on Schottky surfaces.
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1. Introduction

Let X D �nH be a convex co-compact hyperbolic surface, with �X the positive

Laplacian on this surface. �e resolvent, written in the form

R.s/ D .�X � s.1 � s//�1; (1.1)

is analytic as an operator on L2.X/ for s 2 C with Re.s/ > 1. As an operator

on weighted function spaces it can be continued meromorphically to s 2 C with

poles of �nite rank [21]. �e poles of this meromorphic continuation are called the

resonances ofX and the multiplicity of a resonance is de�ned to be the rank of the

associated pole. �e set of all resonances onX , repeated according to multiplicity,

will be called Res.X/. �e resonance set is the spectral invariant of the surface X

which generalizes the discrete eigenvalue spectrum of the Laplacian on a compact

manifold.

Interest in the distribution of the resonances arises from di�erent areas of

research. First it is a natural mathematical question to understand the strength

of the relationship between the geometry of the surface X and the distribution

of resonances. Second, the distribution of resonances on in�nite volume hyper-

bolic surfaces has been found to have implications in arithmetics [7]. And third,

the Laplace operator on convex co-compact surfaces is an important model for

quantum-chaotic scattering, and the resonance distribution has been intensively

studied in theoretical [32, 20] and experimental [3, 29] physics during recent years.

With motivation coming from these di�erent directions, various results on the

distribution of resonances on convex co-compact surfaces have been obtained.

�ese include, for example, results on the asymptotic number of resonances in a

disk in the complex plane [13, 14, 5], results on upper and lower bounds of res-

onances in a strip near the critical line [36, 12, 28, 15, 23] and about asymptotic

spectral gaps [22, 16] in the limit of large Im.s/. Despite these big advances, there

are still many open conjectures on the distribution of the resonances, for example

the fractal Weyl upper bound is conjectured to be sharp [12] and the asymptotic

spectral gap is conjectured to be much bigger then what is actually known [17].

We refer to [24] for a more detailed overview on recent results and open questions.

In order to test these conjectures numerically, the �rst author recently presented

a detailed numerical study of the resonance structure on convex co-compact sur-

faces [6]. �ose calculations exploit the fact that the resonances appear as zeros

of the Selberg zeta function. �is zeta function is de�ned for Re.s/ > 1 by

ZX .s/ WD
Y


2PX

Y

k�0
.1 � e�.sCk/l.
//; (1.2)
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wherePX is the set of primitive closed geodesics onX (those geodesics that cannot

be obtained by a repetition of a shorter closed geodesic) and l.
/ denotes the

length. For convex co-compact surfaces the Selberg zeta function is known to

extend analytically to the complex plane [11] and the relation to the resonances of

�X is given by the following:

�eorem 1.1 ([27] Patterson-Perry 2001). For a convex co-compact surface
X D �nH the zero set of the zeta function ZX .s/ is the union of the resonances
Res.X/ and the negative integers s D �k, k 2 N0.

For an tractable numerical calculation of the Selberg zeta function, the cor-

respondence of the Selberg zeta function and the dynamical zeta function of an

iterated function scheme, the Bowen–Series map, has been used. �e problem of

analytic continuation can be circumvented by a trick which was introduced under

the name cycle expansion in physics [9] by Cvitanovic and Eckhardt and which

has later been rigorously applied to Selberg zeta functions by Jenkinson and Pol-

licott [18]. �ese techniques allow the calculation of several thousand resonances

on an ordinary personal computer and make it possible to study their distribu-

tion in the complex plane. By this approach, in [6] resonance distributions were

compared to the existent conjectures. �ose investigations also revealed the strik-

ing formation of resonance chains, which triggered further numerical [2, 35] and

mathematical [34] studies.

�e problem with the numerical techniques used so far is that, due to the expo-

nential growth of number of closed geodesics, the convergence of the algorithm

is restricted to rather narrow resonance strips near the critical line. Additionally,

only surfaces whose Schottky groups have two generators and for which the frac-

tal dimension of the limit set ı is rather small (0 � ı . 0:1) could be treated [6,

Section 4.1]. For a more thorough tests of the conjectures a larger ı-range would

be desirable. Furthermore, recent predictions that the resonance chains observed

for 3-funneled surface should be much less clear for 4-funneled surfaces [2] can

not be tested at all with the current techniques.

�ese shortcomings of the existent techniques motivated us to take advantage

of the symmetry of the convex co-compact surfaces and prove a symmetry factor-

ization for the dynamical zeta functions. Such factorizations have been calculated

in physics in the closely related setting of 3- and 4-disk systems by Cvitanovic and

Eckhardt [10]. �e aim of this article is to establish rigorous version of their results

and apply them to the calculation of resonances on convex co-compact surfaces.
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If a convex co-compact surface X D �nH has a �nite symmetry group G,

then the natural approach for a symmetry-reduced calculation of the resonances

would be to apply the symmetry reduction on the level of the Laplacian�X and to

study the meromorphic continuation of the symmetry-reduced resolvent. For the

numerical calculation of the resonances we need, however, the Patterson-Perry

correspondence (�eorem 1.1). �e proof of a factorization of the Selberg zeta

function thus would require to reprove this correspondence for the symmetry-

reduced resolvent, which seems rather technical. �erefore we have chosen to

prove the factorization on the level of the dynamical zeta functions of iterated

function schemes. �is approach has the advantage that the results apply not only

to Bowen–Series maps and convex co-compact surfaces but also extend imme-

diately to other cases where iterated function schemes appear, e.g., in the calcu-

lation of Hausdor� dimensions [18]. Additionally, one automatically obtains the

analyticity of the symmetry-reduced zeta functions for free. �e drawback of this

approach is, however, that the symmetry group of the commonly used Bowen–

Series maps might be smaller then the symmetry group of the associated surface.

�is problem can be circumvented for a large class of interesting surfaces as we

will show in Section 5.1.

�e article is organized as follows. In Section 2 we will �rst introduce the

holomorphic iterated function schemes (IFS), their transfer operators and the dy-

namical zeta functions. In Section 3 we will introduce the notion of a symmetry

group of a holomorphic IFS and derive a symmetry-reduced trace formula for the

transfer operator (Proposition 3.3). �is symmetry-reduced trace formula is then

used in Section 4 to prove, as a �rst main result, the factorization of the dynamical

zeta function (�eorem 4.6). �e rest of the section is devoted to a simpli�cation

of the symmetry-reduced zeta functions (�eorem 4.6 and Corollary 4.8) which

hold under the assumption that the symmetry group acts freely on the set of G-

closed words.

Section 5 is then devoted to the application of the results to the resonances on

convex co-compact surfaces. In Section 5.1 we �rst introduce a family of symmet-

ric n-funneled surfaces for which we construct iterated function schemes that in-

corporate the whole symmetry group of the surfaces. Using �eorem 4.1, this leads

to a factorization of the Selberg zeta function into analytic symmetry-reduced zeta

functions (see equation (5.9)). Finally, in Section 5.2, we perform the numerical

calculations using these new symmetry-reduced formulas. �e symmetry reduc-

tion is interesting for theoretical reasons as it allows to associate the calculated res-

onances to particular unitary irreducible representations of the symmetry group.

We also demonstrate the tremendous practical value of the symmetry reduction as
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a means of simplifying the numerical calculations: For a 3-funneled surface we

show that we can increase the width of the numerically accessible resonance strip

by a factor of three and at the same time reduce the number or required periodic

orbits from over 170 000 without symmetry reduction to only 41 with symmetry

reduction. We are con�dent that this gain of e�ciency will allow much more thor-

ough numerical investigations of the resonance structure on convex co-compact

surfaces. As �rst examples of this, we con�rm the prediction from [2] that the

resonance structure of symmetric 4-funneled surfaces show no clearly visible res-

onance chains. We also provide a detailed study of the spectral gap on Schottky

surface and observe for the �rst time the existence of a macroscopic spectral gap

on these surfaces.

Acknowledgments. Tobias Weich has been supported by the German Research

Foundation (DFG) via the grant DFG HI 412/12-1. �is work was initiated at

the conference on “Quantum chaos, resonances, and semiclassical measures”,

Rosco�, France, June 2013, sponsored by a grant from the ANR.

2. Holomorphic iterated function schemes and their transfer operators

De�nition 2.1. A holomorphic iterated function scheme (IFS) is de�ned on a

set of N open disks D1; : : : ; DN � C whose closures xDi are pairwise disjoint.

Associated to the IFS is a matrix A 2 ¹0; 1ºN�N called the adjacency matrix,

which de�nes a relation i  j if Ai;j D 1. It is assumed that for each pair

.i; j / 2 ¹1; : : : ; N º2 with i  j we have a biholomorphic map

�i;j W Di �! �i;j .Di / b Dj :

�e images are required to be pairwise disjoint in the sense that

�i;j .Di/ \ �k;l.Dk/ ¤ ; () .i; j / D .k; l/: (2.1)

For convenience we denote the union of all the disjoint disks by

D WD
[

i

Di

and the union of all their images by

�.D/ WD
[

i j

�i;j .Di/:
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From (2.1) it follows directly that for u 2 �.D/ there is exactly one pair i  j and

a unique u0 2 Di such that u D �i;j .u
0/. We have thus a well de�ned holomorphic

inverse function

��1 W �.D/ �! D:

Remark 2.2. Instead of disks Di one could have also taken simply connected

domains Ui � C. Using the Riemann mapping theorem such an IFS is biholo-

morphically conjugate to an IFS with disks, so one can always simplify such an

IFS to the above situation de�ned on disks.

Example 2.3. LetD1; : : : ; D2r be disjoint open disks in C with centers on the real

line and mutually disjoint closures. �en there exists for each pair Di ; DiCr an

element Si 2 PSL.2;R/ that maps via its Moebius transformation @Di to @DiCr
and that maps the interior ofDi to the exterior ofDiCr . �e Schottky group is then

the free subgroup � � PSL.2;R/, generated by S1; : : : ; Sr (for an illustration see

Figure 1). �e quotient �nH is a hyperbolic surface with Euler characteristic � D
1�r , and any convex co-compact hyperbolic surface admits such a representation

[8].

�e generators and disks in the construction of a Schottky group give also a

natural construction of a holomorphic IFS. For convenience we write

SiCr WD S�1
i for i D 1; : : : ; r

and use a cyclic notation of the indices:

SiC2r WD Si and DiC2r WD Di :

�en for all i D 1; : : : ; 2r the elementSi maps all disks exceptDi holomorphically

into the interior ofDiCr . �e adjacency matrix of this IFS is thus the 2r�2rmatrix

with Ai;j D 0 if ji � j j D r and Ai;j D 1 else. Furthermore for any i  j we

de�ne the maps for u 2 Di by

�i;j .u/ WD SjCru D S�1
j u 2 Dj ;

and from this de�nition it is clear that (2.1) is automatically ful�lled.

Note that the inverse map restricted to Dj \ �.D/ is exactly given by Sj .

�e IFS which we de�ned is consequently the inverse of the usual Bowen–Series
map for Schottky groups (see e.g. [4, Section 15.2]).
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Figure 1. Illustration of the construction of a Schottky group and the corresponding IFS.

�e blue disks show the four disks from which the generators of the Schottky group are

generated. For example the group element S1 maps @D1 to @D3 and the exterior ofD1 into

the interior of D3. �e red circles illustrate the images of the other three disks under the

Moebius transformationS1which coincide with the images of the disks under the associates

holomorphic IFS.

Returning to the general case with N disks, it will turn out to be useful for

the notation to introduce the following symbolic coding. �e symbols are given

by the integers 1; : : : ; N and the set of words of length n is given by the tuples of

symbols

Wn WD ¹.w0; : : : ; wn/ W wi  wiC1 for all i D 0; : : : ; n� 1º:

Note that our notation of word length does not refer to the number of symbols,

but to the number of transitions which they indicate. For w 2 Wn and 0 < k � n

we de�ne the truncated word by

w0;k WD .w0; : : : ; wk/ 2 Wk : (2.2)

Finally we de�ne the iteration of the maps �i;j along a word w 2 Wn as

�w WD �wn�1;wn ı � � � ı �w0;w1 W Dw0 7�! Dwn

and their images as

Dw WD �w.Dw0/:

Note that Dw b Dwn and that from the separation condition (2.1) one obtains

inductively for w;w0 2 Wn

Dw \Dw 0 ¤ ; () w D w0:
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De�nition 2.4. We call a holomorphic IFS eventually contracting if there is some

N 2 N and � < 1 such that for n � N

j�0
w.u/j � � for all w 2 Wn and u 2 Dw0 :

Remark 2.5. �e Bowen–Series IFS as introduced in Example 2.3 are known to

be eventually contracting (see e.g. [4, Proposition 15.4]).

We say a word w 2 Wn of length n is closed if w0 D wn and we denote the

set of all closed words of length n by W
cl
n .

Lemma 2.6. If a holomorphic IFS is eventually contracting, then for each w 2
W
cl
n there exists a unique �xed point �w.uw/ D uw .

Proof. If w 2 W
cl
n is closed, then �w.Dw0/ D Dw b Dw0 and we write

Kk WD .�w/
k.Dw0/:

�en KkC1 b Kk and if k0n � N then from the eventually contracting property

diam.Kk0m/ � �mdiam.Dw0/. �en K1; K2; : : : is a nested sequence of disks

whose diameter converges to zero, so there is a unique

uw WD
\

k>0

Kk

which must be a �xed point of �w .

Our next goal is to de�ne the transfer operators associated to the iterated func-

tion schemes.

De�nition 2.7 (transfer operator). Let

B.D/ WD ¹f W D ! C holomorphic, and f 2 L2.D/º

be the Bergman space on D, where

D WD
[

Di

for a holomorphic IFS. For

V W �.D/ �! C

a bounded holomorphic function, we de�ne the transfer operator

LV W B.D/ �! B.D/

associated to the IFS by

.LV f /.u/ WD
X

j W i j
V.�i;j .u//f .�i;j .u//; for u 2 Di : (2.3)
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Given such a potential V , a word w 2 Wn and a point u 2 Dw0 we can de�ne

the iterated product

Vw.u/ WD
n

Y

kD1
V.�w0;k.u//; (2.4)

where w0;k is the truncation .w0; : : : ; wk/ as de�ned in (2.2). A straight forward

calculation of powers of the transfer operator LV leads to

�

L
n
V f

�

.u/ D
X

w2WnW u2Dw0

Vw.u/f .�w.u//I

thus these iterated products naturally occur in powers of LV .

It is a well known fact that these transfer operators are trace class (see [30]

for the original proof in slightly di�erent function spaces or [4, Lemma 15.7] for

a proof in our setting) and that the trace can be expressed in terms of periodic

orbits. Accordingly one can de�ne the dynamical zeta function by the Fredholm

determinant

dV .z/ WD det.1 � zLV / (2.5)

which is an entire function on C. If furthermore the IFS is eventually contracting

the dynamical zeta function can be written for jzj su�ciently small as (see e.g. [4,

proof of �m. 15.8]):

dV .z/ D exp
�

�
X

n>0

zn

n

X

w2Wcl
n

Vw.uw/
1

1 � .�w/0.uw/
�

: (2.6)

Example 2.8. An important class of transfer operators arises from the IFS as-

sociated to Bowen–Series maps of Schottky surfaces (see Example 2.3). If we

choose the potential function Vs.u/ D Œ.��1/0.u/��s, which depends analytically

on s 2 C, then one obtains an analytic family of trace class operators Ls. �e

dynamical zeta function

d.s; z/ WD det.1� zLs/

is then analytic in .s; z/ 2 C
2. One has the important relation to the Selberg zeta

function ZX for the Schottky surface X ,

ZX .s/ D d.s; 1/;

where ZX .s/ was de�ned in (1.2) as a product over the primitive closed geodesics

(see e.g. [4, �m. 15.8] for a proof).



276 D. Borthwick and T. Weich

3. Trace formula for the symmetry-reduced transfer operator

De�nition 3.1. A symmetry group of a holomorphic IFS is a �nite groupG which

acts holomorphically on D and commutes with the IFS in the sense that for each

g 2 G, u 2 Di and i  j , there exists a pair k l such that g�i;j .u/ D �k;l .gu/.

As an immediate consequence of the de�nition we obtain that �.D/ � D is a

G-invariant subset. Furthermore, as the disks Di are disjoint and connected, we

have

g.Di / D Dj : (3.1)

�us we can reduce the G-action to the set of symbols ¹1; : : : ; N º by setting

gi WD j

for i; j such that (3.1) holds. With this notation the indices k; l in De�nition 3.1

are uniquely de�ned by k D gi and l D gj . Accordingly we conclude that i  j

implies gi  gj and consequently we can extend the G-action on the symbols

to an action on the words of length n by setting for w 2 Wn

gw WD .gw0; : : : ; gwn/ 2 Wn:

For the iterated maps �w , the commutation formula reads

g�w.u/ D �gw.gu/: (3.2)

For further use we can also introduce for g 2 G the set of g-closed words of

length n,

W
g
n WD ¹w 2 Wn; gwn D w0º: (3.3)

Example 3.2. We have seen in Example 2.3 that Schottky groups naturally give

rise to holomorphic IFS. We will now consider the special case of 3-funneled

surfaces. �ese surfaces are known to be uniquely parametrized by their Fenchel-

Nielsen coordinates l1; l2; l3 which determine the lengths of the three fundamental

geodesics 
1; 
2; 
3 (see Figure 2).

Given three lengths l1; l2; l3 we denote the associated Schottky surface by

Xl1;l2;l3 D �l1;l2;l3nH. �e two generators of the Schottky group can be writ-

ten in the form

S1 D
�

cosh.l1=2/ sinh.l1=2/

sinh.l1=2/ cosh.l1=2/

�

; S2 D
�

cosh.l2=2/ a sinh.l2=2/

a�1 sinh.l2=2/ cosh.l2=2/

�

;

where the parameter a > 0 is chosen such that Tr.S1S
�1
2 / D �2 cosh.l3=2/.
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Figure 2. Visualization of a Schottky surface with 3-funnels. �ese surfaces are uniquely

determined by the lengths l1; l2; l3 of the three fundamental geodesics 
1; 
2; 
3, that turn

around each funnel. �e surface can be obtained by gluing together the corresponding

fundamental domain of the Schottky group (see Figure 3) along the dashed red and dotted

blue lines.

Depending on the choice of l1; l2; l3 the associated Bowen–Series IFS have

di�erent symmetry groups. In any case the IFS has a Z2 symmetry generated by

the Moebius transformation of the matrix

�1 D
�

�1 0

0 1

�

:

�is transformation corresponds to a re�ection at the imaginary axis followed by

a complex conjugation1 and it is related to the fact that all 3-funneled Schottky

surfaces are symmetric with respect to re�ections on the plane spanned by the

three funnels.

�e action of �1 interchanges diskD1 with D3 andD2 whichD4, thus we get

the following action on the symbols

�1.1/ D 3; �1.2/ D 4; �1.3/ D 1; �1.4/ D 2:

In order to prove that �1 is indeed a symmetry of the Bowen–Series IFS in the

sense of De�nition 3.1 we have to verify

�1�1;1�1 D �3;3; �1�2;1�1 D �4;3; �1�4;1�1 D �2;3;

�1�1;2�1 D �3;4; �1�2;2�1 D �4;4; �1�3;2�1 D �1;4:

1 �is complex conjugation is necessary to make the symmetry holomorphic.
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�e �rst line follows from the fact that

�1S1�1 D
�

cosh.l1=2/ � sinh.l1=2/

� sinh.l1=2/ cosh.l1=2/

�

D S�1
1 D S3

and the second line analogously from �1S2�1 D S4.

Figure 3. Illustration of the Symmetry of the Bowen–Series IFS for a 3-funneled Schottky

surface with l1 D l2. Apart from the re�ection along the imaginary axis, the IFS is also

symmetric w.r.t. re�ections along the yellow circle of radius
p
a.

If the Fenchel-Nielsen coordinates satisfy l1 D l2 then both the Schottky sur-

face Xl1;l1;l3 and the Bowen–Series IFS admit an additional symmetry. On the

surface this symmetry would correspond to a rotation of 180ı around the third

funnel. For the IFS this symmetry is represented by a Moebius transformation of

the matrix

�2 D
�
0

p
a

1p
a

0

�

:

�is transformation represents a re�ection at the orange circle in Figure 3 followed

again by a complex conjugation to restore the holomorphicity. As this transfor-

mation interchanges D1 with D2 and D3 with D4 we obtain the action on the

symbols

�2.1/ D 2; �2.2/ D 1; �2.3/ D 4; �2.4/ D 3

and according to De�nition 3.1 we have to check

�2�1;1�2 D �2;2; �2�2;1�2 D �1;2; �2�4;1�2 D �3;2;

�2�2;3�2 D �1;4; �2�3;3�2 D �4;4; �2�4;3�2 D �3;4:
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�is is again veri�ed by a simple matrix calculation that shows that �2S1�2 D S2

and �2S3�2 D S4. Since �1 and �2 commute, we conclude that in the case l1 D l2

the surface the holomorphic IFS have the Klein four-group as symmetry group.

If all three fundamental lengths are equal to each other, l1 D l2 D l3 D l , then

the Schottky surface Xl;l;l has an even larger group as symmetry group which

can be written as D3 � Z2, with D3 being the symmetry group of the equilat-

eral triangle (see Section 5.1 for more details). �e Bowen–Series IFS however

does not exhibit these extra symmetries and still has only the Klein four-group as

symmetry group. �e reason for this discrepancy lies in the construction of the

Bowen–Series IFS. Morally, it corresponds to a Poincaré section which is de�ned

by the blue dotted and red dashed cut-lines in Figure 2. �is asymmetric choice

of a Poincaré section is the reason why the holomorphic IFS has a weaker sym-

metry then the whole surface. To obtain the full symmetry decomposition of the

zeta function we will have to construct a holomorphic IFS whose dynamical zeta

function corresponds also to the Selberg zeta function but which incorporates the

full symmetry group of the surface. �is will be done for symmetric n-funneled

surfaces in Section 5.1.

Given a symmetry group G of a holomorphic IFS we now want to de�ne the

symmetry decomposition of the function spaces B.D/. �e symmetry group G

acts from left on B.D/ by its left regular representation

.gf /.u/ D f .g�1u/:

Note that in general this action is not unitary if the scalar product in B.D/ is

taken with respect to the Lebesgue measure. However, by averaging the Lebesgue

measure � over G with the pushforward g�� one obtains a G-invariant measure

�G WD 1

jGj
X

g2G
g�� D 1

jGj
X

g2G
jg0.u/j�1�;

which just modi�es the Lebesgue measure by a positive, smooth density factor.

We denote the Bergman space with the scalar product de�ned by �G with BG.D/.

�is space is identical toB.D/ as a set, but equipped with a di�erent, topologically

equivalent scalar product.

On BG.D/ the left regular action ofG is unitary. We thus get a decomposition

BG.D/ D
M

�2 OG

B� (3.4)

where OG is the set of equivalence classes of unitary representations of G and

B� WD P�BG.D/
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with the orthogonal projection operator

P� WD d�

jGj
X

g2G
�.g/g:

Here � is the character of the irreducible representation of dimension d� and g the

operator de�ned by the left regular representation. Note that the de�nition of P�

does not involve the scalar product, thus the operators P� are equally projectors

on B.D/ and we also get the decomposition of B.D/ in closed linear subspaces

B.D/ D
M

�2 OG

B�: (3.5)

�e only di�erence to (3.4) is that this decomposition is in general not orthogonal

anymore.

If the potential V of the transfer operator is G-invariant, in the sense that

V.gu/ D V.u/; (3.6)

then LV commutes with the left regular representation on B.D/ and accordingly

also with the projectors P�. Consequently LV leaves the spaces B� invariant and

we de�ne the symmetry-reduced transfer operator to be

L
�
V WD LV

ˇ
ˇ
B�

W B� �! B�: (3.7)

For this symmetry-reduced operator we obtain the following formula for its trace:

Proposition 3.3. LetG be the symmetry group of a holomorphic, eventually con-
tracting IFS, with V W �.D/ ! C a holomorphic, bounded function which is sym-
metric with respect to the G-action and LV the associated transfer operator. �en
for all n 2 N, .L�V /

n is trace class and its trace is given by

TrB�
�

.L
�
V /
n
�

D d�

jGj
X

g2G
�.g/

X

w2Wg
n

Vw.guw;g/

1 � .�w ı g/0.uw;g/
; (3.8)

where uw;g is the unique �xed point satisfying

uw;g D �w.guw;g/; (3.9)

and Vw is the iterated product

Vw.u/ D
n

Y

kD1
V.�w0;k.u//:
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Proof. �is proposition is a direct consequence of [4, Lemma 15.7]. First, we note

that

TrB� Œ.L
�
V /
n� D TrB.D/ŒP�.LV /

n�:

Since�.g/ D �.g�1/, we can replace g by g�1 in the de�nition ofP� and calculate

that

.P�.LV /
nf /.u/ D d�

jGj
X

g2G
�.g/

X

w2WnW gu2Dw0

Vw.gu/f .�w.gu//:

�is implies that

TrB� Œ.L
�
V /
n� D d�

jGj
X

g2G
�.g/

X

w2WnW gu2Dw0

TrB.D/
�

TV;w;g
�

where TV;w;g is the following transfer operator

.TV;w;gf /.u/ WD

8

<

:

Vw.gu/f .�w ı g.u// if u 2 Dg�1w0;

0 else.

�e map �w ı g is a biholomorphic function

�w ı g W Dg�1w0
�! Dw b Dwn :

If wn ¤ g�1w0, or in other words, if w … W
g
n , then the operator has trace zero

as it is an isomorphism between two orthogonal subsets of B.D/. Otherwise the

eventually contracting property implies by the same arguments as in the proof of

Lemma 2.6 that the map �w ı g has a unique �xed point which we call uw;g .

�e operator TV;w;g then ful�lls all the conditions of [4, Lemma 15.7] and we

obtain

TrB.D/.TV;w;g/ D Vw.guw;g/

1� .�w ı g/0.uw;g/
:
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4. Factorization of the zeta function

Proposition 3.3 allows us to prove the following factorization of the dynamical

zeta function.

�eorem 4.1. Let G be the symmetry group of a holomorphic, eventually con-
tracting IFS, let V W �.D/ ! C be a holomorphic, boundedG-invariant potential
and dV .z/ the dynamical zeta function associated to the IFS and V . �en the
dynamical zeta function admits a factorization,

dV .z/ D
Y

�2 OG

d
�
V .z/;

where the reduced zeta functions d�V .z/ can be expressed for su�ciently small jzj
by

d
�
V .z/ D exp

�

�
X

n>0

zn

n

d�

jGj
X

g2G
�.g/

X

w2Wg
n

Vw.guw;g/
X

k�0
Œ.�w ı g/0.uw;g/�k

�

;

(4.1)

and they extend analytically to C.

Proof. As Proposition 3.3 assures that L
�
V is trace class, we can de�ne the sym-

metry-reduced zeta function

d
�
V .z/ WD detB�.1� zL

�
V / (4.2)

which is an analytic function on C. From the symmetry decomposition (3.5) of

B.D/ into invariant subspaces B� we furthermore directly obtain the following

factorization of the dynamical zeta function

dV .z/ D
Y

�2 OG

d
�
V .z/:

Using the formula for the Fredholm determinant and the symmetry-reduced trace

formula we obtain

d
�
V .z/ D exp

�

�
X

n>0

zn

n
TrB� Œ.L

�
V /
n�

�

D exp
�

�
X

n>0

zn

n

d�

jGj
X

g2G
�.g/

X

w2Wg
n

Vw.guw;g/

1 � .�w ı g/0.uw;g/
�

expanding the last fraction as a geometric series we obtain (4.1) which �nishes the

proof.
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From an abstract point of view this result is already completely satisfactory, as

we have obtained a factorization of the zeta function into reduced zeta functions

which themselves are again entire functions. �is result is also su�cient to deter-

mine which zeros of the dynamical zeta function are related to eigenfunctions of

LV with a certain symmetry behavior. From a practical, computational point of

view we will however see that (4.1) is not yet optimal. In fact, we will show that the

symmetry implies that many terms in the series appearing in (4.1) are equal and

can be grouped together, which speeds up practical computations considerably.

�us the rest of this section will be devoted to simplifying (4.1) and determining

e�cient formulas for d
�
V .z/.

For this purpose, we �rst have to study the symbolic dynamics more thoroughly

and introduce some useful notation. We �rst introduce the set of words with arbi-
trary length

W WD
1
[

nD1
Wn

and denote for w 2 W its word length by nw such that w 2 Wnw . Similarly,

we want to de�ne the set of all words closed under an arbitrary group element.

However, in (4.1) the words appear always together with the group element which

closes them. If one word admits several closing group elements, then the same

word will appear several times with all possible closing elements. It will therefore

turn out to be convenient to consider pairs of words and closing group elements

and we de�ne

W
G WD ¹.w; g/ 2 W �G W gwnw D w0º:

In order to shorten the notation we will denote these pairs of words and group

elements by a bold w. �e group element of the pair w will be written as gw and

the word by a standard w such that w D .w; gw/. �e word length of w will be

written as nw.

As shown in the proof of Proposition 3.3, for any w 2 W
G there exists a unique

point uw satisfying

�w.gwuw/ D uw;

and we will call these points relative �xed points in the sequel. �e G-action on

Wn can be extended to a G-action on W
G by taking the adjoint action on the

G-part of WG : for h 2 G,

hw WD .hw; hgwh
�1/: (4.3)
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In addition to the G-action on W
G we can also de�ne the shift actions,

�Rw WD ..gwwn�1; w0; : : : ; wn�1/; gw/; (4.4a)

�Lw WD ..w1; : : : ; wn; g
�1
w w1/; gw/: (4.4b)

Note that it would not be possible to de�ne this action on the g-closed words

directly, because the shift operation on the word depends explicitly on a choice

of the closing group element. �e importance of the shift action arises from the

fact that it is conjugated to the action of the IFS on the relative �xed points uw.

To be more precise, we have for every w 2 W
G that u�Lw D �g�1

w w0;1
.uw/, where

w0;1 denotes the truncated word .w0; w1/ as de�ned in (2.2). To see this, note that

g�Lw D gw and that .wn; g
�1
w w1/ D g�1

w w0;1, since gw is a closing element for w.

With these facts we simply calculate

�.w1;:::;wn;g�1
w w1/

.gw�g�1
w w0;1

.uw//

D �.w1;:::;wn;g�1
w w1/

�w0;1.gwuw/

D �wn;g�1
w w1

ı �wn�1;wn ı � � � ı �w1;w0.gwuw/

D �g�1
w w0;1

.�w.gwuw//

D �g�1
w w0;1

.uw/:

Finally, as �R D ��1
L , the shift action generates a Z-action on the set of words

W and the set of G-closed words WG . Observe that

�Lh�Rw D �Lh..gwwn�1; w0; : : : ; wn�1/; gw/

D �L..hgwwn�1; hw0; : : : ; hwn�1/; hgwh
�1/

D ..hw0; : : : ; hg
�1
w h�1hgwwn/; hgwh

�1/

D hw;

so the G-action and the Z-action commute and we can consider the group G � Z

acting on W
G . �us we can consider the space of G � Z-orbits .G � Z/nWG and

we will denote the orbit passing through w by

Œw� 2 ŒWG � WD .G � Z/nWG :

We next want to introduce the notion of composite and prime elements in W
G .

Given w 2 W
G we can de�ne its k-fold iteration by

wk WD ..gk�1
w w0; : : : ; g

k�1
w wn; g

k�2
w w1; : : : ; gww1; : : : ; gwwn; w1; : : : ; wn/; g

k
w/:

(4.5)
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By construction wk 2 W
G and nwk D knw. Furthermore we calculate

�wk .gwkuw/ D .�w ı � � � ı �gk�1
w w/.g

k
wuw/

D Œ.�w ı gw/ ı .�w ı gw/ ı � � � ı .�w ı gw/�.uw/

D uw;

(4.6)

where the second last equality has been obtained by iteratively using the commu-

tation rule (3.2). �is implies that uwk D uw.

De�nition 4.2. All elements in W
G that are obtained by an iteration of a shorter

word are called composite, all elements which can’t be written as an iteration of

shorter elements are called prime.

Lemma 4.3. If w 2 W
G is a composite, respectively prime element then all other

elements in the G � Z-orbit are equally composite, respectively prime.

Proof. As an element is either prime or composite, it su�ces to show the state-

ment for one case. �us assume that zw D wk for k � 2 is composite and consider

h.wk/ D ..hgk�1
w w0; : : : ; hg

k�1
w wn; : : : ; hw1; : : : ; hwn/; hg

k
wh

�1/

D ...hgwh
�1/k�1hw0; : : : ; .hgwh

�1/k�1hwn; : : : ; hw1; : : : ; hwn/;

.hgwh
�1/k/

D
.4.3/

..gk�1
hw hw0; : : : ; g

k�1
hw hwn; : : : ; hw1; : : : ; hwn/; g

k
hw/

D .hw/k:

Similarly one calculates �L=R.w
k/ D .�L=Rw/k .

�e preceding lemma allows us to de�ne the set of symmetry classes of G-
closed prime orbits as

ŒWG
prime� WD ¹Œw� 2 .G � Z/nWG ;w is prime º:

Having introduced all this notation we can go one step further towards the formulas

for the symmetry-reduced zeta functions by considering the terms Vw.gwuw/ and

.�w ı gw/
0.uw/ appearing in the symmetry-reduced trace formula.

Proposition 4.4. Let Œw� 2
�

W
G

�

be aG�Z-orbit. �en for all elements v 2 Œwk�
(the G � Z-orbit of wk), we obtain

Vv.gvuv/ D ŒVw.gwuw/�
k (4.7)

and
.�v ı gv/

0.uv/ D Œ.�w ı gw/
0.uw/�

k: (4.8)
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Proof. All calculations for this proof are basically straightforward, but for the

reader’s convenience we will include the details.

For this proposition we have to prove two things. First, that the two quantities

are independent of the choice of representative in the G � Z-orbit and second,

that a k-fold iteration amounts simply to the k-th power of the quantities. Let’s

start with the �rst point and take an arbitrary element w 2 W
G and h 2 G. �en,

starting from the de�nition (2.4),

Vhw.ghwuhw/ D
n

Y

kD1
V.�.hw/0;k.ghwuhw//

D
.4.3/

n
Y

kD1
V.�.hw/0;k..hgwh

�1/huw//

D
.3.2/

n
Y

kD1
V.h�w0;k.gwuw//

D
.3.6/

n
Y

kD1
V.�w0;k.gwuw//:

In order to see the invariance under �L we �rst recall that u�Lw D �g�1
w w0;1

.uw/.

Consequently

V�Lw.g�Lwu�Lw/ D
n

Y

kD1
V Œ�.�Lw/0;k.gw�g�1

w w0;1
.uw//�

D
n

Y

kD1
V Œ�.�Lw/0;k.�w0;1.gwuw//�

D
� n�1

Y

kD1
V Œ�w0;kC1

.gwuw/�
�

� V.�.w0;:::;wn;g�1
w w1/

.gwuw//

D
� n�1

Y

kD1
V Œ�w0;kC1

.gwuw/�
�

� V.�.wn;g�1
w w1/

.�w.gwuw//
„ ƒ‚ …

Duw

/

D
.3.6/

� n�1
Y

kD1
V Œ�w0;kC1

.gwuw/�
�

� V.gw�.wn;g�1
w w1/

.uw/

D
.3.2/

� n
Y

kD2
V Œ�w0;k.gwuw/�

�

� V.�.w0;w1/.gwuw/

D
n

Y

kD1
V Œ�w0;k.gwuw/�:

With an analogous calculation one obtains the invariance under �R.
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In order to see the invariance of .�w ı gw/
0.uw/, we �rst consider for arbitrary

u 2 Dg�1
w w0

the equation,

.�hw ı ghw/.hu/ D
.4.3/

�hw.hgwh
�1hu/

D
.3.2/

h�w.gwu/:

Di�erentiating both sides with respect to u yields

h0.u/ � .�hw ı ghw/
0.hu/ D h0.�w.gwu// � .�w ı gw/

0.u/;

and plugging in uw shows the invariance because�w.gwuw/ D uw. �e invariance

under the shift can be derived similarly by starting from the equation

.��Lw ı g�Lw/.�g�1
w w0;1

.u// D
.4.4/

�.w1;:::;wn;g�1
w w1/

.gw�g�1
w w0;1

.u//

D
.3.2/

�.w1;:::;wn;g�1
w w1/

ı �w0;w1.gwz/

D �g�1
w w0;1

..�w ı gw/.u//:

Again di�erentiating both sides and plugging in uw yields the desired result.

�e invariance under �R follows analogously.

Having proved the G � Z-invariance it �nally remains to show the behavior

under iterations. We calculate

Vwk .gwkuwk / D Vwk .g
k
wuw/

D
knwY

lD1
V Œ�.wk/0;l .g

k
wuw/�

D
nwY

lD1
V Œ�.gk�1

w w/0;l
.gkwuw/�

�
nwY

lD1
V Œ.�.gk�2

w w/0;l
ı �gk�1

w w/.g
k
wuw//� � : : :

�
nwY

lD1
V Œ�w0;l ı �gww ı : : : ı �gk�1

w w.g
k
wuw/�:

However each of these products becomes equal to Vw.gwuw/ after iteratively com-
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muting the G-action with the IFS by (3.2). For example, the second one becomes

nwY

lD1
V Œ.�.gk�2

w w/0;l
ı �gk�1

w w/.g
k
wuw//�

D
.3.2/

nwY

lD1
V Œ.�.gk�2

w w/0;l
ı gk�1

w ı �w/.gwuw//�

D
.3.2/

nwY

lD1
V Œ.gk�2

w �w0;l ı gw ı �w/.gwuw//�

D
nwY

lD1
V Œ�w0;l .gwuw/�:

For the iteration behavior of .�w ı gw/
0.uw/, we calculate as in (4.6),

.�wk ı gwk /.u/ D .�w ı gw/ ı � � � ı .�w ı gw/.u/:

Again, di�erentiation of both sides w.r.t. u and insertion of uwk D uw shows that

.�wk ı gwk /
0.uwk / D Œ.�w ı gw/.uwk /�

k ;

which �nishes the proof.

�e last result which we need for simplifying the symmetry-reduced zeta func-

tion is the following:

Lemma 4.5. For Œw� 2 ŒWG
prime� we denote by #Œw� the number of elements of the

G � Z-orbit in W
G . If G acts freely on W

G then

#Œw� D jGj � nw:

Proof. �e G-orbit Œw� can be written as the quotient Œw� D .G � Z/=.G � Z/w

where .G � Z/w is the stabilizer of the element w 2 W
G . So we can prove the

lemma by studying the stabilizer .G � Z/w. For any element w 2 W
G we have

that gw�
nw
L w D w, so the group generated by .gw; nw/ is a subset of the stabilizer

group, i.e.

h.gw; nw/i � .G � Z/w: (4.9)

Note that there are exactly jGj � nw orbits of the right group action of h.gw; nw/i
on G � Z, so if in (4.9) the equality holds, then #Œw� D jGj � nw. We have thus to

show that for a prime elment w, the stabilizer is no bigger than h.gw; nw/i. So we

�rst assume that there is h 2 G such that .h; nw/ 2 .G � Z/w, which means

h�
nw
L w D w D gw�

nw
L w:

From the assumption that G acts freely on W
G we then obtain h D gw .
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Next, suppose that there is a k … nwZ and h 2 G such that .h; k/ 2 .G � Z/w.

By adding or subtracting the elements .gw; nw/ we can assume, without loss of

generality, that 0 < k < nw. By basic number theoretic arguments there are

integers a; b 2 N such that ak D bnw C c where c is the greatest common divisor

of k and nw. �us we can write

ha�akL ..w0; : : : ; wnw/; gw/ D ..w0; : : : ; wnw/; gw/

() .hag�b
w .wc; : : : ; wnw�1; g

�1
w w0; : : : ; g

�1
w wc/; h

agwh
�a/

D ..w0; : : : ; wnw/; gw/

Comparing the closing words we obtain

hagw D gwh
a: (4.10)

Looking at the last c entries of the word, we conclude that

.wnw�c ; : : : ; wnw/ D hag�b�1
w .w0; : : : ; wc/: (4.11)

Inserting this back into the above equation, we iteratively conclude that

.wnw�rc; : : : ; wnw�.r�1/c/ D .hag�b
w /rg�1

w .w0; : : : ; wc/: (4.12)

Additionally from (4.11) we obtain hag�b
w g�1

w wc D wnw D g�1
w w0, so hag�b

w is a

closing group element of the word g�1
w .w0; : : : ; wc/ and we can consider the pair

zw WD .g�1
w .w0; : : : ; wc/; h

ag�b
w / 2 W

G :

We set

t WD nw=c 2 N

and calculate

.hag�b
w /t zw D ..hag�1

w /t .w0; : : : ; wc/; h
ag�b

w /

D
.4.12/

..w0; : : : ; wc/; h
ag�b

w /

D
.4.10/

gw zw:

So from the assumption thatG acts freely onG, we obtain .hag�b
w /t D gw. Putting

everything together yields

w D zwt ;

which is in contradiction to the assumption that w is prime.
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We can now come back to the formula for the symmetry-reduced zeta function,

and �rst consider the three sums

X

n>0

X

g2G

X

w2Wg
n

which can be replaced by a sum over WG . In the domain of absolute convergence

we have

d
�
V .z/ D exp

h

�
X

k�0

X

w2WG

znw

nw

d�

jGj�.gw/A.w; k/
i

;

where

A.w; k/ WD Vw.gwuw/Œ.�w ı gw/
0.uw/�

k:

Note that Vw.gwuw/ Œ.�w ı gw/
0.uw/�

k
is invariant under the G � Z-action by

Proposition 4.4. For all v 2 Œw� we have gv D hgwh
�1, so �.gw/ is also invariant

under this action. Furthermore, we know how Vw.gwuw/ Œ.�w ı gw/
0.uw/�

k
and

gw behave under iteration so we can reduce the sum over WG to ŒWG
prime� and its

iterates. We get

d
�
V .z/ D exp

h

�
X

k�0

X

Œw�2ŒWG
prime�

X

l>0

#Œwl �
znwl

nwl

d�

jGj�.g
l
w/A.w; k/

l
i

: (4.13)

�e character � belongs to an irreducible unitary representation �� on a �nite

dimensional vector space V�, and we can write �.g/ D TrV� Œ��.g/�. �us we

obtain

d
�
V .z/ D exp

h

� d�
X

k�0

X

Œw�2ŒWG
prime�

X

l>0

znwl

l
TrV� Œ��.gw/

l �A.w; k/l
i

D
Y

k�0

Y

Œw�2ŒWG
prime�

exp
h

� d�
X

l>0

TrV� Œ��.gw/
l �A.w; k/l

i

D
Y

k�0

Y

Œw�2ŒWG
prime�

.detV� Œ1 � .znwA.w; k//��.gw/�/
d� :

�ese calculations have thus proven the following:
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�eorem 4.6. LetG be the symmetry group of a holomorphic, eventually expand-
ing IFS that acts freely on W

G . Let V W �.D/ ! C be a holomorphic, bounded
function which is symmetric with respect to the G-action and LV be the transfer
operator associated to the holomorphic IFS and V . Let OG be the set of all unitary
irreducible representations of G and � W G ! C the character of an irreducible
representation �� W G ! GL.V�/ on the d�-dimensional vector space V�. �en
the dynamical zeta function

dV .z/ WD det.1 � zLV /

factorizes according to

dV .z/ D
Y

�2 OG

d
�
V .z/ (4.14)

and the symmetry-reduced zeta functions d�V .z/ are entire functions. If

L
�
V W B� �! B�

is the symmetry reduced transfer operator then they are de�ned by

d
�
V .z/ WD detB�.1� zL

�
V /

and for jzj su�ciently small they are given by

d
�
V .z/ D

Y

k�0

Y

Œw�2ŒWG
prime�

�

detV�
�

1� .znwVw.gwuw/Œ.�w ı gw/
0.uw/�

k/��.gw/
��d�

:

(4.15)

In (4.15) the action of the group elements on D � C still appear explicitly.

Using the following lemma this equation can, however, be reformulated such that

the precise form of the G-action onD does not show up anymore and the symme-

try reduction depends only on the G-action on the symbols.

Lemma 4.7. Let Œw� 2 ŒWG
prime� and let mw 2 N be such that gmw

w D Id and that

gk ¤ Id for all 0 < k < mw . �en wmw is a closed word. If we assume that
.�wmw /0.uwmw / and Vwmw .uwmw / are real positive numbers, then we have

.�w ı gw/
0.uw/ D Œ.�wmw /0.uwmw /�

1
mw (4.16)

and

Vw.gwuw/ D ŒVwmw .uwmw /�
1
mw : (4.17)
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Proof. �e property that wmw is a closed word directly follows from the de�ni-

tion (4.5) ofwk and the de�nition ofmw and (4.16) and (4.17) from (4.7) and (4.8).

By substituting (4.16) and (4.17) in (4.15), we derive the following:

Corollary 4.8. Under the same conditions and with the same notation as in
�eorem 4.6 and Lemma 4.7,

d
�
V .z/ D

Y

k�0

Y

Œw�2ŒWG
prime�

�

detV�
�

1�znw ŒVwmw .uw/..�wmw /0.uw//
k�

1
mw ��.gw/

��d�
:

(4.18)

5. Application to Selberg zeta functions

In this section the goal is to apply the results of Section 4 in order to obtain factor-

izations of the Selberg zeta functions associated to Schottky surfaces. Our main

interest is in the symmetric 3-funneled Schottky surfaces which were presented

in Example 3.2. However, as pointed out in that example, the symmetry group

of the standard Bowen–Series IFS is much smaller than the symmetry group of

the surface, thus if one wants to obtain a full factorization of the Selberg zeta

function one has to work with an alternative holomorphic IFS which incorpo-

rates the whole symmetry of the surface. Such an IFS has been introduced for

3-funneled surfaces in [34] under the name �ow-adapted IFS. �e idea behind

this �ow-adapted IFS, however, easily generalizes to certain n-funneled surfaces

of genus zero. In Section 5.1 we will �rst introduce the symmetric n-funneled

surfaces and the associated �ow-adapted IFS. �en we will use �eorem 4.6 in

order to obtain a factorization of the Selberg zeta function for these cases. In Sec-

tion 5.2 we will illustrate that this factorization yields an enormous speed-up in

the calculation of the resonances of the Laplacian. In particular we are able to

calculate for the �rst time the resonance structure on surfaces which were numeri-

cally not treatable previously, such as 4-funneled surfaces or weakly open surfaces

with “thick” trapped sets, i.e. surfaces where the fractal dimension of the limit set

ı > 0:5. In Section 5.3 we will use the advantages of the symmetry factorization

in order to present a detailed study of the spectral gap on Schottky surfaces.

5.1. Factorization of Selberg zeta functions for symmetric n-funneled Schot-

tky surfaces. As mentioned in Example 3.2, the 3-funneled Schottky surfaces of

genus zero are uniquely determined by the three funnel-widths l1; l2; l3, i.e. by the
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lengths of the three geodesics 
1; 
2; 
3 (see Figure 2). �e symmetric 3-funneled

surfaces are thus uniquely determined by a single parameter l1 D l2 D l3 D l . For

general n-funneled surfaces it is not true anymore that the surfaces are uniquely

de�ned by the n funnel-widths. Due to their nontrivial pants decomposition, addi-

tional lengths along which the pants are glued together as well as the twist angles

appear in their Fenchel-Nielsen coordinates. �ese have to be taken into account in

order to characterize them completely [4, Section 13.3]. �e symmetric n-funneled

surfaces which we will consider in this section can, however, be easily de�ned as

follows.

De�nition 5.1. Let nf � 3 and 0 <  < 2�=nf . �en on the Poincaré disk-

model D we can de�ne nf geodesics Qc1; : : : ; Qcnf by their start and end points (see

Figure 4)

Qaj D ei.�.2j�1/=nf ��� =2/ 2 @D
and

Qbj D ei.�.2j�1/=nf ��C =2/ 2 @D:

Each of these geodesics Qcj cuts D into two half spaces and we denote the inter-

section of all those j half spaces that contain 0 2 D by zS. �e surface Xnf ; is

then the hyperbolic surface obtained by gluing together two copies of zS along the

corresponding geodesic boundaries.

We will next explain how the surfaces Xnf ; can be understood as Schottky

surfaces in the sense of Example 2.3, and at the same time introduce the objects

which are needed to de�ne the �ow-adapted IFS. We therefore transform the cir-

cles Qci and the domain zS to the upper half plane H by the Cayley transform

C W C �! H;

u 7�! �i u � 1
uC 1

;

and we obtain (see Figure 5)

S WD C.zS/ � H; cj WD C. Qcj /

as well as

aj WD C. Qaj / D
sin

�

�.2j � 1/=nf � � �  =2
�

1C cos
�

�.2j � 1/=nf � � �  =2
� 2 @H

and

bj WD C. Qbj / D
sin

�

�.2j � 1/=nf � � C  =2
�

1C cos
�

�.2j � 1/=nf � � C  =2
� 2 @H:
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Figure 4. Sketch of the construction of a 4-funneled symmetric surface de�ned in De�ni-

tion 5.1. On the left side one can see the de�nition of the domain zS in the Poincaré disk

model. On the right side one can see a schematic sketch of the surface that consists of two

copies of zS glued together at the geodesic boundaries Qci .

Figure 5. Sketch of the construction of the Schottky group associated to a 4-funneled sym-

metric surface. �e fundamental domain is the union of S and the re�ection of this domain

along the circle c4. �e Schottky surface is then obtained by gluing together the circles ci
andR4ci (for i D 1; 2; 3) so �nally one obtains the same surface as de�ned in De�nition 5.1.
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We will henceforth denote the Euclidean disks that are bounded by the geodesics

cj by Dj , their centers by

mj WD .bj C aj /=2;

and their radii by

rj WD .bj � aj /=2:
We can then de�ne the matrices,

Rj WD 1

rj

�
mj r2j �m2j
1 �mj

�

:

�ese matrices have det.Rj / D �1, and the associated Möbius transformations,

Rju D
mjuC r2j �m2j

u �mj
D

r2j

u �mj
Cmj ;

are holomorphic transformations on the Riemann sphere xC that correspond to a

re�ection at the boundary circle of Dj followed by a complex conjugation.

With these matrices we can now express the Schottky group associated to the

surface Xnf ; .

Lemma 5.2. With the notation from above let nf > 3 and 0 <  < 2�=nf . �en
the �nitely generated group

�nf ; WD hRnf R1; : : : ; RnfRnf �1i

is a Schottky group and
Xnf ; D �nf ; nH:

Proof. First we note that that for j D 1; : : : ; nf � 1 we have Rnf Rj 2 SL.2;R/.

If we de�ne

DjCnf �1 WD Rnf .Dj /;

then the transformation Rnf Rj maps the boundary of Dj to the boundary of

DjCnf �1 and the interior ofDj to the exterior ofDjCnf �1. �is shows that �nf ; 

is a Schottky group in the sense of Example 2.3.

�e fact that Xnf ; is the associated Schottky surface can be seen as follows.

By de�nition of the disksDj the fundamental domain of the Schottky group�nf ; 

consists of two copies of the domain zS that are glued together along cn. �e

Schottky surface �nf ; nH is obtained by gluing together the fundamental domain

along the geodesic boundaries of the disks that are identi�ed by the generators of

the Schottky group, so the �nf ; nH consists of two copies of S that are glued

together the same way as de�ned in De�nition 5.1 (see Figure 5).
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We can now de�ne the �ow-adapted IFS and study its symmetry group. After

this we will show, that the dynamical zeta functions of these IFS coincides with

the Selberg zeta function.

De�nition 5.3. Let nf � 3 and 0 <  < 2�=nf . Letmi , ri andRi be constructed

as above. We de�ne the o�set variable

ıo�set WD bnf � a1 C 1:

�e �ow-adapted IFS is the holomorphic IFS with N D 2nf , where the disks Di

are the Euclidean disks in C with centersmi and radii ri for 1 � i � nf , and with

centers mi�nf C ıo�set and radii ri�nf for nf < i � 2nf . �e adjacency matrix A

is given by Ai;jCnf D AjCnf ;i D 1 for all 1 � i; j � nf with i ¤ j , andAi;j D 0

else. Finally for i  j the maps �i;j are given by

�i;j .u/ WD

8

<

:

Rj�nf .u/C ıo�set for i D 1; : : : ; nf ;

Rj .u � ıo�set/ for i D nf C 1; : : : ; 2nf :

We next want to compare the symmetry group of the IFS with the symmetry

group of the surface (for a sketch of the disk con�guration of a 4-funneled surface

see Figure 6).

Figure 6. Illustration of the disk con�guration of the �ow-adapted IFS as de�ned in De�-

nition 5.3 for a 4-funneled surface.

As the surface consists of two identical parts of zS � D, glued together, we

�rst note that the symmetry group of the domain zS is the dihedral groupDnf , the

symmetry group of an nf sided regular polygon, which is a group of order 2nf .

�is symmetry group is generated by a rotation of 2�=nf around 0 2 D,

Qg1.u/ D ei2�=nf u
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and by the re�ection along the real axis,

Qg2.u/ D Nu:

�e surface itself has one additional re�ection symmetry, along the plane in which

the two copies of zS are glued together. �is re�ection commutes with the action

of Dnf on the two copies of zS so the full symmetry group of Xnf ; is given by

Dnf �Z2. As the �ow-adapted IFS is directly constructed from the two copies of
zS this symmetry action can directly be transferred via the Cayley transform to the

IFS. In particular, the group action of the �rst generator is given by

g1.u/ WD C ı Qg1 ı C�1.u/; for u 2
nf[

jD1
Dj ;

and

g1.u/ WD ıo�set C C ı Qg1 ı C�1.u � ıo�set/; for u 2
2nf
[

jDnf C1
Dj :

For the de�nition of the second generator one has to pay a bit more attention,

because the re�ection along the real axis is an antiholomorphic isometry of D. So

is the transformation of this action to H, which is given by C ı g2 ı C�1.u/ D
� Nu. In order to make this action holomorphic, as required in De�nition 3.1, we

have to use the fact that the �ow-adapted IFS naturally commutes with complex

conjugation. We can thus de�ne

g2.u/ D C ı g2 ı C�1.u/ D �u; for u 2
nf
[

jD1
Dj ;

and

g2.u/ D ıo�set C C ı g2 ı C�1.u� ıo�set/ D 2ıo�set � u; for u 2
2nf
[

jDnf C1
Dj :

Finally, the third group generator transforms to

g3.u/ D

8

ˆ
ˆ̂
<

ˆ
ˆ̂
:

uC ıo�set for u 2
nfS

jD1
Dj ;

u � ıo�set for u 2
2nfS

jDnf C1
Dj :
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From the construction of the �ow-adapted IFS, it follows directly that the sym-

metry action commutes with the IFS and thatDnf �Z2 is really a symmetry group

in the sense of De�nition 3.1. �e action on the symbols can be represented as a

permutation group of the 2nf symbols. In standard cycle notation, the �rst and

third generators can be written as

g1 D .1; 2; : : : ; nf /.nf C 1; nf C 2; : : : ; 2nf /;

g3 D .1; nf C 1/.2; nf C 2/ : : : .nf ; 2nf /:

For the second element we have to distinguish between two cases depending on

the parity of nf : If nf is even we have

g2 D .1; nf /.2; nf � 1/ : : :
�nf

2
;
nf

2
C 1

�

.nf C 1; 2nf /.nf C 2; 2nf � 1/ : : :
�3nf

2
;
3nf

2
C 1

�

;

and for nf odd,

g2 D .1; nf /.2; nf � 1/ : : :
�nf � 1

2
;
nf C 3

2

�

.nf C 1; 2nf /.nf C 2; 2nf � 1/ : : :
�3nf � 1

2
;
3nf C 3

2

�

:

�ese arguments show that the �ow-adapted IFS incorporates the full symme-

try groupDnf �Z2 of the surface. In order to deduce a corresponding factorization

of the Selberg zeta function ZXnf ; associated to the surface, we have one more

fact to check. We must verify that the dynamical zeta function of the �ow-adapted

IFS indeed contains the Selberg zeta function of the surface.

Proposition 5.4. Let nf � 3 and 0 <  < 2�=nf , and let Ls be the Ruelle
transfer operator of the �ow-adapted IFS as de�ned in De�nition 5.3, with poten-
tial2 Vs.u/ D Œ.��1/0.u/��s. �en the dynamical zeta function coincides with the
Selberg zeta function of Xnf ; 

ZXnf ; .s/ D det.1� Ls/:

2 Note that for any u 2 R, .��1/0.u/ is real and positive so we can de�ne Œ.��1/0.u/��s

for any s 2 C. Because .��1/0.u/ ¤ 0, for any u 2 D, we can holomorphically extend

Œ.��1/0.u/��s in u from the real line to any connected component of �.D/.
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Proof. If we take the trivial group G D ¹Idº as a symmetry group, then as a

special case of �eorem 4.6 we obtain

det.1� Ls/ D
Y

Œw�2ŒW¹Idº
prime�

Y

k�0
.1 � �0

w.uw/
kCs/:

Note that this formula is not at all related to a symmetry decomposition but can

be obtained directly by a straight forward calculation (see e.g. [4, proof of �eo-

rem 15.8]). Proposition 5.4 then follows from the following Proposition 5.5 which

establishes a one-to-one correspondence between the set ŒW
¹Idº
prime� of prime words

of the �ow-adapted IFS and the set of primitive closed geodesics on Xnf ; .

Proposition 5.5. Let nf � 3 and 0 <  < 2�=nf and consider the corresponding
�ow-adapted IFS from De�nition 5.3. �en there exists a bijection between the
classes of prime words in ŒW¹Idº

prime� and the primitive closed geodesics on Xnf ; .
Additionally, the length of the geodesic associated to Œw� is given by

� log.�0
w.uw//: (5.1)

Proof. Let Rj with j D 1; : : : ; nf be as in De�nition 5.3, and �nf ; the Schottky

group from Lemma 5.2. It is known (see e.g. [4, Proposition 2.16]) that the set of

primitive closed geodesics on Xnf ; is in bijection to the set of primitive conju-

gacy classes ŒT � 2 �nf ; . (For a conjugacy class, primitive means that there is no

S 2 ŒT � such that S D Rk for some R 2 �nf ; and k > 1.) Consequently, our

aim is to construct a bijection

T W ŒW¹Idº
prime� �! ¹primitive conjugacy classes of �nf ; º:

In order to accomplish this, we note that from the form of the adjacency matrix

in De�nition 5.3 we have, for w 2 Wk , that wi � nf H) wiC1 > nf . �us, if w

is a closed word, k has to be even. We �rst de�ne the map,

T W ŒW¹Idº� �! ¹conjugacy classes of �nf ; º;

on the closed words. Later we will show that we can easily restrict it to the prime

words. For a closed word w D .w0; : : : ; w2r/, we de�ne the map T by

T .w/ WD

8

<

:

Rw2rRw2r�1�nf : : :Rw2Rw1�nf if w0 � nf ;

Rw2r�1
Rw2r�2�nf : : : Rw1Rw0�nf if w0 > nf :

(5.2)
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As closed words have to be of even length, T .w/ consists of a even number of re-

�ections and is thus a positive isometry. We �rst need to show that T is well

de�ned on ŒW¹Idº�, i.e. that it doesn’t depend on the choice of the representa-

tive of Œw�. So let v 2 Œw�. Without loss of generality we can assume that

w0 � nf and v0 � nf . Otherwise we could simply apply the right-shift �R to

obtain such an element in the same equivalence class, and that is mapped to the

identical element in �nf ; . Consequently, there exists an integer 0 � t � r such

that v D .w2t ; : : : ; w2r ; w1 : : : ; w2t / and we obtain

T .v/ D Rw2t : : : Rw1�nf Rw2r : : : Rw2tC2Rw2tC1�nf D S�1T .w/S;

for S D Rw2r : : : Rw2tC1�nf . �us T .v/ is in the same conjugacy class as T .w/.

In order to see the injectivity, we consider two words v and w that are mapped

to the same conjugacy class. We assume �rst that

T .v/ D RaRbT .w/RbRa:

From the form of the adjacency matrix, we see that it is not possible that an element

in the image of T begins and ends with the same generator. �us we have either

RbRa D Rw1�nf Rw2

or

RaRb D Rw2r�1�nf Rw2r :

In the �rst case we have v D �2Lw in the latter case v D �2Rw. By iterating

this argument for arbitrary conjugations of T .w/ and T .v/, we can deduce the

injectivity of the map T .

As for the surjectivity of T , we �rst note that for two arbitrary indices

1 � i; j � nf , the element RiRj can be written as .RnfRi /
�1Rnf Rj .

�is shows that �nf ; contains all elements that can be written as a composition

of an even number of elements Ri . Let S 2 �nf ; be such an arbitrary element,

in the form S D Rs2r : : :Rs1 with 1 � si � nf . Since two consecutive identical

re�ections cancel each other, we can assume that si ¤ siC1. Finally, if s1 D s2r

then we can conjugate S by Rs2Rs1 , which leads to an element composed from

2r � 2 re�ections. By iterative conjugation, we can thus reduce the element to
zS D RQs2Qr

: : : RQs1 with Qs1 ¤ Qs2Qr and we obtain

QS D T ..s2Qr ; s1 C nf ; s2; : : : ; s2Qr�1 C nf ; s2Qr//:

We have thus constructed a bijective map between the classes of closed words

and the conjugacy classes in �nf ; . We will now prove that this map can be
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restricted to a bijection between the classes of prime words and the primitive con-

jugacy classes. As T is bijective, it su�ces to show that T maps composite closed

words to composite conjugacy classes. �is is, however, straightforward from the

de�nition of T as obviously T .Œwk�/ D T .w/k.

We conclude that the restriction of T to the prime words de�nes a bijection be-

tween the classes of closed, prime words and primitive conjugacy classes. Using

the above mentioned result on the one-to-one correspondence between oriented

primitive geodesics and primitive conjugacy classes, this is equivalently a bijec-

tion to the set of primitive, oriented, closed geodesics.

It only remains to prove (5.1). For this, we �rst recall that the length of the prim-

itive geodesic associated to a conjugacy class of an hyperbolic element T 2 �nf ; 
is equal to the displacement length of T denoted by l.T / (see e.g. [4, Proposition

2.16]). It is also a well known fact that if uT 2 @H is the stable �xed point of T ,

then l.T / D � log..T /0.uT // (see e.g. [4, (15.2)]). Next we recall from the proof of

�eorem 4.4 that �0
w.uw/ is independent of the representative in Œw�. Assuming,

as above, that w0 � nf , we calculate that

uw D �w.uw/ D Rw2r : : : Rw1�nf uw:

Hence uw is the stable �xed point of the hyperbolic element T .w/, and for the dis-

placement length of T we obtain l.T .w// D � log..T .w//0.uw//. �is establishes

(5.1) and completes the proof of Proposition 5.5.

We have thus shown that the �ow-adapted IFS incorporates the full symmetry

group G D Dnf � Z2 of the surfaces Xnf ; and additionally leads to a transfer

operator whose dynamical zeta function incorporates the Selberg zeta function of

the surface. However, before we can apply �eorem 4.6 to obtain a factorization

of the Selberg zeta function we have to face one �nal problem. �e commutation

of the group action with the IFS does not imply that the potentials,

Vs.u/ D Œ.��1/0.u/��s;

that appear in the transfer operator Ls of Proposition 5.4, are G-invariant. In fact

these potentials are not invariant, as can be seen from the following calculations,

��1.gu/ D g.��1.u// H) .��1/0.gu/ D g0.��1.u//

g0.u/
.��1/0.u/: (5.3)

Consequently, the transfer operators Ls do not commute with the left regular

G-action and will in general not leave the symmetry-reduced function spaces B�

invariant. �is problem can however be �xed by an averaging trick for the po-

tential, i.e. by replacing the potential Vs by a family of G-invariant potentials V Gs
which leads to the same dynamical zeta functions.
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Lemma 5.6. �e family of potentials,

V Gs .u/ WD
Y

g2G
Vs.gu/

1=jGj D
Y

g2G
Œ.��1/0.gu/��s=jGj (5.4)

is G-invariant.
Furthermore, if LGs denotes the family of transfer operators associated to the

potentials V Gs , then L
G
s commutes with the left regular G-action on B.D/ and

det.1� zLGs / D det.1� zLs/ D d.s; z/: (5.5)

Proof. �e G-invariance V Gs is clear by the construction (5.4). It follows directly

that LGs commutes with the left regular representation of the G-action.

In order to prove (5.5), we can use the fact that in (2.6) the potential appears

only via the terms Vw.uw/. �us it su�ces to show that for all n 2 N and all

closed words w 2 Wcl
n we have

.V Gs /w.uw/ D .Vs/w .uw/: (5.6)

�us we calculate for u 2 D,

�

V Gs
�

w
.u/ D

nwY

kD1
V Gs .�w0;k.u//

D
nwY

kD1

Y

g2G

�

.��1/0.g�w0;k.u//
��s=jGj

D
.5.3/

� Y

g2G

nwY

kD1

g0.��1.�w0;k.u///

g0.�w0;k.u//
.��1/0.�w0;k.u//

��s=jGj

Since ��1.�w0;k.u// D �w0;k�1
.u/, the terms in subsequent factors of the product

over k cancel out, and one obtains

�

V Gs
�

w
.u/ D

� Y

g2G

g0.u/

g0.�w0;nw .u//

nwY

kD1
.��1/0.�w0;k.u//

��s=jGj
:

Plugging in uw and using �w0;nw .uw/ D uw , we �nally obtain

.V Gs /w.uw/ D
� Y

g2G

nwY

kD1
.��1/0.�w0;k.u//

��s=jGj
D

nwY

kD1
..��1/0.�w0;k.u///

�s:

�is proves (5.6) and �nishes the proof of Lemma 5.6.
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From Lemma 5.6 and Corollary 4.8 we conclude

det.1� zLs/ D
Y

�2 OG

d�.s; z/; (5.7)

where

d�.s; z/ D
Y

k�0

Y

Œw�2ŒWG
prime�

.detV� Œ1� znw Œ.�wmw /0.uw/�
sCk
mw ��.gw/�/

d�: (5.8)

Finally, this equation together with Proposition 5.4 yields a factorization of the

Selberg zeta function

ZXnf ; .s/ D
Y

�2 OG

Z
�
Xnf ; 

.s/; (5.9)

with

Z
�
Xnf ; 

.s/ D d�.s; 1/:

5.2. Numerical calculations of resonances on Xnf ; . We now turn to the issue

of numerical computation of the resonances on the surfaceXnf ; . �ese coincide,

according to the Patterson-Perry correspondence, with the zeros of the Selberg

zeta function ZXnf ; . And ZXnf ; factors by (5.9) into a product of the analytic

symmetry reduced zeta functions Z
�
Xnf ; 

. So instead of calculating the zeros of

ZXnf ; , it su�ces to calculate the zeros of Z
�
Xnf ; 

. �is will turn out to be much

easier because the computation of (5.8) requires many fewer �xed points than the

full zeta function.

A well known obstacle in the calculation of the zeros of dynamical zeta func-

tions is the fact that the standard product form (5.8) is only valid in the region

of absolute convergence. All resonances lie, however, outside the region of ab-

solute convergence, so (5.8) is of no direct use for the numerical calculations of

the zeros. �e established trick to circumvent this problem, which was �rst used

by Cvitanovic and Eckhardt in physics [9] and later by Jenkinson and Pollicott in

mathematics [18], is to exploit the analyticity of the dynamical zeta function in the

z-variable. After performing a Taylor expansion in z one obtains an expression

for the dynamical zeta function that is everywhere absolutely convergent. For the

symmetry-reduced zeta function, this is done in the following proposition which

we will state for an arbitrary holomorphic IFS.
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Proposition 5.7. Let d�V .s; z/ be the symmetry-reduced dynamical zeta function
from �eorem 4.6. �e following power series expansion is everywhere absolutely
convergent:

d
�
V .z/ D 1C

1
X

ND1
zN

N
X

rD1

.�1/r
rŠ

X

Œ.Œw1�;l1/;:::;.Œwr �;lr /�

l1nw1
C���ClrnwrDN

r
Y

kD1
T
�

Œwk�;lk
; (5.10)

where the third sum is over all r-tuples of pairs .Œw�; l/ 2 ŒWG
prime� � N>0 such

that l1nw1 C � � � C lrnwr D N and

T
�

Œw�;l
WD d�

l

�.glw/Vwmw .uw/
l=mw

1� �0
wmw .uw/l=mw

: (5.11)

Remark 5.8. For the special case of the �ow-adapted IFS of Xnf ; one simply

has to replace (5.11) by

T
�

Œw�;l
.s/ WD d�

l

�.glw/.�
0
wmw .uw//

sl=mw

1 � �0
wmw .uw/l=mw

: (5.12)

Proof. From (4.13) and Lemma 4.7 we obtain

d
�
V .z/ D exp

�

� d�
X

Œw�2ŒWG
prime�

X

l>0

znwl

l

TrV� Œ��.g
l
w/�.Vwmw .uw//

l=mw

1� .�0
wmw .uw//l=mw

�

:

Using the series expression of the exponential function and reordering the terms

with respect to powers of z leads to (5.10). As (4.13) is absolutely convergent in a

neighborhood of zero, and as d
�
V .z/ is an entire function of z, the uniform conver-

gence of its Taylor expansion (5.10) on any bounded set follows immediately.

Equation (5.10) can then be used for numerical calculations by truncating the

series. We will denote the truncated Selberg zeta function of the surfaces Xnf ; 

by

Z
.n/
Xnf ; 

.s/ D
Y

�2 OG

Z
�;.n/
Xnf ; 

.s/ (5.13)

where

Z
�;.n/
Xnf ; 

.s/ D 1C
n

X

ND1

N
X

rD1

.�1/r
rŠ

X

Œ.Œw1�;l1/;:::;.Œwr �;lr /�

l1nw1
C���ClrnwrDN

r
Y

kD1
T
�

Œwk�;lk
.s/: (5.14)
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�is truncated zeta function has been implemented using Sage [33], which allows

us to perform e�cient numerical calculations using numpy and scipy [19], and also

provides an interface to GAP [31], which allows an automated computation of the

characters which appear in (5.11). �e main problem of these Taylor expanded

zeta functions is that the number of �xed points uw required for the calculation

of Z
�;.n/
Xnf ; 

.s/ grows exponentially with n. In order to have a tractable numerical

problem it is crucial that the convergence of Z
�;.n/
Xnf ; 

.s/ in n be rather fast.

It has been observed that the convergence rate depends both on the parameters

of the Schottky surface and also on the complex parameter s [6, 18]. �e conver-

gence rate depends very strongly on Re.s/ and very weekly on Im.s/. As in [6],

we can use the relative error term,

Rn.s/ WD
jZ.n�1/
X .s/ � Z

.n/
X .s/j

Z
.n/
X .s/

;

to compare convergence rates. Figure 7 shows a comparison of relative error terms

for the surface X3;0:1723 which corresponds to a 3-funneled Schottky surface with

funnel-width ` D 12. We compare the error term obtained by the symmetry factor-

ized zeta function (5.13) of order 6 (blue crosses) with the non-reduced zeta func-

tion as used in [6, 18] of order 11 (red dots). Even though we use a much smaller

order for the approximation of the symmetry factorized zeta function, the relative

error term is signi�cantly smaller for most s values. Especially for Re.s/ < 0,

the advantage of the symmetry factorized zeta function becomes very dramatic.

If one requires a relative accuracy of 10�2 the non-reduced zeta function of or-

der 11 allows the calculation of the zeta function only up to Re.s/ � 0 while the

symmetry factorized zeta function of order 6 already allows a calculation up to

Re.s/ � �0:2. �e bene�t of the symmetry reduction becomes even clearer if

one considers how many periodic orbits uw have to be calculated in the two cases.

For the non-reduced zeta function of order 11 one needs more then 170000 periodic

orbits (cf. [6, Table 1]) the symmetry-reduced zeta function of order 6, however,

requires only the calculation of 41 periodic orbits.

�is gain of e�ciency can be used to calculate resonances in much larger

domains. For example, Figure 8 shows the resonance spectrum for the surface

X3;0:1723. Without symmetry reduction the numerical accessible resonance range

was restricted [6] to Re.s/ & 0. �e symmetry reduction allows us to calculate

the resonances easily up to Re.s/ D �0:3, increasing the width of the resonance

strip by a factor of 4.
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Figure 7. Relative error term. �e blue crosses represent R6.x C 1000i/, calculated

with the truncated symmetry factorized zeta function (5.13). �e red points represent

R11.xC1000i/ for the truncated zeta function without symmetry reduction, as used in [6].
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Figure 8. Resonance spectrum for the surface X3;0:1723. �e di�erent colors corre-

spond to the di�erent representations: I1(dark blue), I2(light blue), II1(red), II2(orange),

III1(dark green), and III2(light green). In the left plot the resonances are so dense that

they can not be distinguished but appear as continuous line. �e right plot shows a zoom

into the region of the �rst crossing of the chains. Here one can distinguish the individual

resonances and it becomes evident that within each chain the resonances come from an

alternating pair of representations.
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Another signi�cant bene�t of the symmetry factorization is that it provides ad-

ditional information on the resonance spectrum. �e factorization (5.9) allows us

to associate the zeros of the Selberg zeta function to speci�c unitary irreducible

representations of the symmetry group. As discussed above, the symmetry group

of the symmetric 3-funneled surface is given by D3 � Z2. Via its action on the

symbols, this group can be realized as a permutation group on 6 elements. One

then calculates that the group has 6 conjugacy classes and thus 6 irreducible rep-

resentations. �e character table is given in Table 1. As Figure 8 illustrates, the

resonance-chain structure corresponds with the symmetry reductions. However,

one chain does not correspond to one only representation, as we might have ex-

pected, but rather to a pair of representations. �e resonances on each chain alter-

nate between the two corresponding representations. Intuitively this alternating

behavior can be understood as follows: According to De�nition 5.1 all the sym-

metric n-funneled Schottky surfaces consist of two copies of zS � D that are glued

together along the geodesic boundary, so the surfaces are symmetric with respect

to the re�ections along the plane in which the two copies are glued together and

each resonant state is either symmetric or antisymmetric with respect to this re-

�ection. �ose states which are antisymmetric must vanish at the boundaries of
zS and can thus be considered as resonant states of the open hyperbolic billiard
zS with Dirichlet boundary conditions. �ose states that are symmetric can be

seen as resonant states of the hyperbolic billiard with Neumann boundary condi-

tions. Looking at the character table (Table 1), we see that the two representations

on each chain di�er exactly by their symmetry with respect to the re�ection on

the gluing plane which is represented by the permutation .1; 4/.2; 5/.3; 6/. Each

chain thus corresponds to one speci�c symmetry type of the hyperbolic billiard
zS and the alternating behavior comes from switching between Dirichlet and von-

Neumann boundary conditions. �e same phenomenon is observed in the case

of the symmetric 4-funneled surface (Figure 10) as well as for the non-symmetric

3-funneled surface (Figure 11). Note that this observation also �ts the �ndings in

[2, 34], where it has been shown that the chain structure is determined by the ratio

of the periodic orbit lengths. For the Schottky surfaces considered here this ratio

is already fully determined by the geometry of the hyperbolic billiards zS, so we

also expect the chain structure to be determined by one copy of zS. �e fact of

gluing two copies of zS together only doubles the length of all closed geodesics

and and thus doubles the number of resonances on the chains by allowing them to

alternate between symmetric and antisymmetric types.
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Table 1. Character table of the symmetry group D3 � Z2 of the symmetric 3-funneled

surfaces X3; . In the �rst line the representatives of the conjugacy classes are given in

cycle notation, whereD3�Z2 is realized as a permutation group on the symbols of the �ow-

adapted IFS. �e following six lines represent the characters of the six unitary irreducible

representations of this group.

() (2,3)(5,6) (1,2,3)(4,5,6) (1,4)(2,5)(3,6) (1,4)(2,6)(3,5) (1,5,3,4,2,6)

I1 1 1 1 1 1 1

I2 1 1 1 -1 -1 -1

II1 1 -1 1 1 -1 1

II2 1 -1 1 -1 1 -1

III1 2 0 -1 -2 0 1

III2 2 0 -1 2 0 -1

-0.3 -0.2 -0.1 0.1 0.2
Re(s)

200

400

600

800

Im(s)

0.07 0.08 0.09 0.1 0.11 0.12 0.13
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Figure 9. Resonance spectrum for the surface X3;0:5930 . �e color code is the same as

in Figure 8. �e right plot is a zoom into the region of the second crossing of all three

chain types. As the resonances on X3;0:5930 are less dense than on X3;0:1723, individual

resonances can be distinguished in some parts of the left plot.
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Table 2. Character table of the symmetry group D4 � Z2 of the symmetric 4-funneled

surfaces X4; . In the �rst line the representatives of the conjugacy classes are given in

cycle notation, whereD4�Z2 is realized as a permutation group on the symbols of the �ow-

adapted IFS. �e following six lines represent the characters of the ten unitary irreducible

representations of this group.

. / .2; 4/.6; 8/
.1; 2/.3; 4/
.5; 6/.7; 8/

.1; 2; 3; 4/

.5; 6; 7; 8/
.1; 3/.2; 4/
.5; 7/.6; 8/

I1 1 1 1 1 1

I2 1 1 1 1 1

II1 1 1 -1 -1 1

II2 1 1 -1 -1 1

III1 1 -1 -1 1 1

III2 1 -1 -1 1 1

IV1 1 -1 1 -1 1

IV2 1 -1 1 -1 1

V1 2 0 0 0 -2

V2 2 0 0 0 -2

.1; 5/.2; 6/

.3; 7/.4; 8/
.1; 5/.2; 8/
.3; 7/.4; 6/

.1; 6/.2; 5/

.3; 8/.4; 7/
.1; 6; 3; 8/
.2; 7; 4; 5/

.1; 7/.2; 8/

.3; 5/.4; 6/

I1 1 1 1 1 1

I2 -1 -1 -1 -1 -1

II1 1 1 -1 -1 1

II2 -1 -1 1 1 -1

III1 -1 1 1 -1 -1

III2 1 -1 -1 1 1

IV1 -1 1 -1 1 -1

IV2 1 -1 1 -1 1

V1 2 0 0 0 -2

V2 -2 0 0 0 2

Finally, the symmetry decomposition enables us to study the resonance struc-

ture of surfaces which were previously not treatable numerically. As an example,

we show the resonance structure of the 3-funneled surface X3;0:5930 (Figure 9)

which corresponds to a funnel-width of 7 and the 4-funneled surface X4;0:1010

(Figure 10) which corresponds to a funnel-width of 13. For the 3-funneled surface

one observes again resonance chains on a large Im.s/ range, where each chain is

composed of resonances belonging to two representations. As expected from the

observations in [2], these chains have a much stronger curvature in comparison

to the resonance chains for the surface X3;0:1723. For the 4-funneled surface there

are no resonance chains visible on a comparable scale to the 3-funneled surfaces.

Only if one zooms in strongly on the Im.s/-scale and colors the resonances ac-

cording to the di�erent representations can one see strongly curved chains that are

again each composed of contributions from two di�erent representations.
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Figure 10. Resonance spectrum for the surface X4;0:1010 . Resonances of di�erent uni-

tary irreducible representations (cf. Table 2) are plotted in di�erent colors: I1(dark blue),

I2(light blue), II1(red), II2(orange), V1(dark green) and V2(light green). �ere were no

resonances found in the plot regions from the representations III1; III2; IV1 and IV2.

�is di�erent behavior between symmetric 3- and 4-funneled surfaces has been

predicted in [2], because 4-funneled surface do not have naturally a strong clus-

tering behavior in their primitive length spectrum. A surprising feature, however,

is that there is one very stable resonance chain along the imaginary axis related to

the two 2-dimensional representations V1 and V2.

As we noted in Example 3.2, in the case Xl1;l1;l3 with l1 ¤ l3, the symmetry

group is Z2 � Z2, which has four one-dimensional irreducible representations,

with the character table shown in Table 3. Proposition 5.7 also applies in this

case, and the improvement in convergence properties for the reduced zeta function

is impressive, even with this much smaller symmetry group. �e error term with

n D 6 in this case is actually comparable to the corresponding error term for the
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full D3 � Z2 reduction shown in Figure 7. In the Z2 � Z2 case, to calculate the

symmetry-reduced zeta function up to n D 6 requires a calculation of 196 periodic

orbits, as opposed to 41 for the larger symmetry group. �e gain in e�ciency over

the unreduced case is still very signi�cant.

Table 3. Character table of the symmetry group Z2 � Z2 of the surface X7;7;7:01.

() (1,2)(3,4) (1,3)(2,4) (1,4)(2,3)

A 1 1 1 1

B 1 1 -1 -1

C 1 -1 1 1

D 1 -1 -1 1

Figure 11 shows a companion plot to Figure 9, where the symmetry is broken

by perturbing l3 from 7 to 7:01.
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Figure 11. Resonance spectrum for the surface X7;7;7:01 , which carries a Z2 � Z2 symme-

try group. �e di�erent colors correspond to the di�erent representations: A(dark blue),

B(light blue), C (red), D(orange) (cf. Table 3). Again the alternating representations di�er

in their symmetry w.r.t. re�ections along the plane spanned by the three funnels.
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5.3. Numerical investigations of the spectral gap. As illustrated in the previ-

ous subsection the symmetry factorization of the zeta function allows the numer-

ical calculation of the resonance structure on Schottky surfaces that were previ-

ously not accessible. In this subsection we will use these convergence improve-

ments in order to investigate the parametric dependence of the spectral gap nu-

merically.

Let us �rst recall the notion of a spectral gap: By the work of Patterson [25, 26],

it is known that the resonance with the largest real part is always located at the

critical exponent ı and that all other resonances s 2 Res.X/n¹ıº satisfy Re.s/ < ı.

By a spectral gap we denote a positive number " > 0 such that for

G0.X/ WD sup¹Re.s/; s 2 Res.X/ n ¹ıºº

one has G0.X/ < ı � ". From the positivity and self-adjointness of �X it follows

that all resonances with Re.s/ > 1=2 lie in the interval .1
2
; 1/. Consequently, if

ı > 1
2

the existence of such a gap is immediate. For ı � 1
2

the existence of such a

gap has been shown by Naud [22].

A related notion is the asymptotic spectral gap. If we introduce for K � 0,

GK.X/ WD sup¹Re.s/ W s 2 Res.X/ n ¹ıº and j Im.s/j � Kº;

then the asymptotic spectral gap can be de�ned by

G1.X/ WD lim
K!1

GK.X/:

While up to now there is not any explicit upper bound known (see [17] for a lower

bound), Jakobsen and Naud made the conjecture [17], that for convex co-compact

groups one has

G1.X/ D ı

2
:

In [6] the dependence of the asymptotic spectral gap on ı was examined. How-

ever, the numerically accessible resonance data could not support the above con-

jecture because of the limitation to small values of ı. Using the symmetry reduc-

tion we want to extend the Im.s/ range in which the resonances for a given surface

can be calculated as well as the range of critical exponents ı, i.e. the range of sur-

faces for which resonances can be calculated. �is will provide a more thorough

study of the spectral gap as well as the asymptotic spectral gap.

Let Xnf ; be a symmetric n-funneled surface. According to (5.9) the Sel-

berg zeta function factorizes into its symmetry reduced zeta functions Z
�
Xnf ; 

.s/.

Beyond the convergence improvement, this symmetry factorization also allows
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to study the question of spectral gap and asymptotic spectral gap for particular

irreducible representations �. We de�ne,

G
�
K.Xnf ; / WD sup¹Re.s/ W s 2 C n ¹ıº; Z�Xnf ; .s/ D 0; j Im.s/j > Kº

In Figure 12 we compare the dependence of the spectral gap for the di�erent rep-

resentations for the surface X3;0:3631 (which corresponds to a surface where the

shortest geodesics have lengths equal to 9). To be more precise, Figure 12 shows

the resonance envelope functions,

5000 10000 15000 20000 25000
t

0.02

0.04

0.06

0.08

0.1

0.12

0.14

h χ
500(t)

Figure 12. �e plot shows the symmetry reduced envelope function h�
500

.t/ for the surface

X3;0:3631 and di�erent representations. As for � D I1 and � D I2 there is no visible dif-

ference between these functions they are both represented by a simple blue line. Similarly

red corresponds to II1 and II2 and green to III1 and III2.

h�w.t / WD max¹Re.s/ W Z�Xnf ; .s/ D 0; j Im.s/ � t j � wº:

As expected from the observation of the resonance chain structures (see Figure 8

and 9) the envelope functions of the representations I1 and I2 are equal to such a

good approximation that no di�erence can be seen in the plot. �is also holds for

the pairs II1 and II2 as well as III1 and III2. Additionally one observes that,

while the envelope functions of the representations I and II locally di�er slightly
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from each other, the spectral gaps

G
�
K.Xnf ; / D sup

t>KCw
h�w.t /

of all the one-dimensional representations are equal to each other up to a very good

precision and additionally they are all equal to the spectral gap of the non-reduced

system. Only the two-dimensional representations seem to lead to di�erent spec-

tral gaps. �e same observation has been made for all other surfaces that we have

examined. We therefore conjecture, that for the determination of the asymptotic

spectral gap it is enough to study the asymptotic spectral gap of the trivial repre-

sentation.

Besides the numerical observations, this conjecture is supported by the fol-

lowing heuristic arguments. Morally, the symmetry reduced zeta function asso-

ciated to the trivial representation corresponds to the Selberg zeta function of a

hyperbolic billiard of the symmetry reduced fundamental domain with Neumann

boundary conditions. �e question of explicit bounds on the asymptotic spectral

gap on convex co-compact surfaces can also be interpreted in a more general con-

text of open quantum systems with a fractal trapped set as an improvement of the

known topological pressure bounds (cf. [24, Section 8.2]). If such a general im-

provement of these spectral gap bounds exists, then it should of course be also

visible for all symmetry reduced zeta functions that can be interpreted as hyper-

bolic billiards with certain boundary conditions. �us, in particular, it should hold

also for the symmetry reduction with respect to the trivial representation. For this

reason, we will from now on focus on the symmetry reduced spectral gap of the

trivial representation G
I1
K .Xnf ; / in more detail.

Both plots in Figure 13 show the envelope function of the surface X3;0:3631 for

the trivial representation but on di�erent scales. In the upper plot one sees, that

the envelope function h100.t / shows a beating structure. �e oscillations corre-

spond to those that have been observed in [6, Figure 22], however one observes

that there is a revival of the amplitudes at about t D 25000, where the envelope

function nearly reaches ı again. On the lower plot in Figure 13 we see the en-

velope function hw.t / but now for a di�erent window width w D 2500 and on

a t -range which is two orders of magnitude larger. �e envelope function again

oscillates and the amplitudes show again a nearly periodic modulation. However,

now one oscillation of the envelope function in the lower plot corresponds to the

modulation of the amplitudes in the upper plot. �e beating structure thus repeats

at di�erent scales. A convergence of the asymptotic spectral gap towards the con-

jecture of ı=2 can not be observed. However, the value of ı=2 seems to have an

importance as it is on both scales the turning point from where the amplitude
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oscillations start to grow again. Figure 14 shows that these oscillating envelope

functions are also not only an artifact of the 3-funneled Schottky surfaces, that

show a particular strong clustering in the length spectrum (cf. [34]), but that they

also occur for 4-funneled surfaces.

�ese oscillations of the envelope function make it di�cult to extract reliable

information on the asymptotic spectral gap from numerical data. Even if the en-

velope function has decreased to a certain value within the numerically accessible

range, one cannot rule out large-scale oscillations that would return it to higher

values.
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Figure 13. Envelope function h
I1
w .t/ for the surface X3;0:3631 on di�erent scales. In the

upper plot we have taken w D 100 in the lower plot w D 2500.
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Figure 14. Envelope function h
I1
30
.t/ for the 4-funneled surface X4;0:2311 . �e dashed line

represents the critical exponent ı.

We nevertheless want to examine the parametric dependence of the asymptotic

spectral gap numerically. In particular, we wish to examine the dependence of

GK.X/ on the critical exponent ı for 3- and 4-funneled surfaces. In order to avoid

e�ects that come from the �nite range of numerically accessible resonances we

make sure that K � maxIm, where maxIm is the maximum of imaginary parts

of the accessible resonances. Figure 15 shows G
I1
0 .X/ and G

I1
100.X/ for di�erent

3- and 4-funneled surfaces in dependence of the critical exponent ı. As expected

from the oscillation of the envelope function, the values of G
I1
0 .X/ and G

I1
100.X/

are very similar for all surfaces. We also checked, that this doesn’t change if one

goes to higher values of K provided that K � maxIm is ful�lled. For strongly

open surfaces with ı . 0:3 there is no visible macroscopic gap between the leading

resonance at ı and the bulk of the resonances. �is, however, changes as one goes

to more closed surfaces with ı � 0:5. Here one sees a clear gap, and there even

seems to be a universal behavior of this gap, as the values for the 3- and 4-funneled

surfaces lie on approximately the same line. Note that a very similar behavior of

the spectral gap has been observed in numerical and experimental data of quantum

resonances in n-disk systems [1].
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Figure 15. �e plot shows the values ofG
I1
0
.X/ (triangles) andG

I1
100

.X/ (stars) for di�erent

3-funneled (blue) and 4-funneled (red) surfaces, in dependence of the critical exponent ı of

the surface X . �e dashed line indicates the value of the leading resonance which is equal

to ı. �e dotted line indicates the known bounds on the asymptotic gap and the green solid

line shows the conjecture of ı=2.

�e examples which we have presented in this subsection demonstrate that

the symmetry reduction allows a much more detailed study of the spectral gaps.

�e e�ciency gain that results from restricting our attention to the trivial rep-

resentation allows us to study the behavior for the envelope function for higher

imaginary parts and additionally to study the spectral gap on weakly open sur-

faces with ı � 0:5. Concerning the higher imaginary parts, we could not observe

that this improves the spectral gap signi�cantly. We have rather observed that the

oscillating behavior of the envelope function repeats itself on di�erent scales. On

all surfaces which we could handle numerically the asymptotic spectral gap was

already determined quite well by the resonances with low imaginary parts. �e

study of the weakly open surfaces with ı � 0:5 showed however an interesting

macroscopic spectral gap which not only holds asymptotically but already from

the second resonance on. Especially the fact that the 3-funneled and 4-funneled

surfaces behave equally, and that a similar behavior has also been observed for

n-disk systems [1], suggests that there is a universal principle behind this behav-
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ior. To our knowledge there are neither any rigorous nor any heuristic formulas

known that describe these observations, and we consider the determination of such

formulas as an important task.

Appendices

A. Numerical implementation of symmetry-reduced zeta functions

for n-funneled Schottky surfaces

In this section we will discuss some practical aspects of the numerical implemen-

tation of the symmetry-reduced Selberg zeta functions for symmetric n-funneled

Schottky surfaces. For a given surface Xnf ; , a given character �, and a point

s 2 C, the task is to calculate the truncated Selberg zeta function (5.14) at a �nite

order n. �is task basically splits into two subtasks: First one has to calculate

T
�

Œw�;l
.s/ for every pair .Œw�; l/ 2 ŒWG � � N that appears in the sum. �en one

has to handle the combinatorial task of combining these T
�

Œw�;l
to the products and

sums according to (5.14).

By (5.12) the �rst task reduces, for a given .w; l/, to the calculation of

�0
wmw .uw/. By the proof of Proposition 5.5 this quantity is directly related to the

displacement length of the hyperbolic transformation T .wmw/, which was de�ned

for a closed word in (5.2). Using the formula,

cosh.l.T /=2/ D 1

2
jTr.T /j ;

relating the displacement length l.T / to the trace of the hyperbolic element

T 2 SL.2;R/, we obtain

�0
wmw .uw/ D exp.�2l.T .wmw/// D exp

�

� 2 cosh�1
� jTr.T .wmw//j

2

��

:

�e second task can be signi�cantly simpli�ed by using the recurrence relation

proposed in [12, Section 7]. We can write (5.14) in the form

Z
�;.n/
Xnf ; 

.s/ D 1C
n

X

ND1

N
X

rD1
B
�
N;r.s/

where

B
�
N;r.s/ WD 1

rŠ

X

t2P.N;r/

r
Y

kD1
a
�
tk
.s/:
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Here P.N; r/ is the set of all r-partitions of N , i.e. the set of all r-tuples

t D .t1; : : : ; tr/ 2 N
r
>0

such that

t1 C � � � C tr D N

and

a
�
tk
.s/ WD �

X

.Œw�;l/2ŒWG ��N>0

nw�lDtk

T
�

Œw�;l
.s/:

To implement this strategy it is su�cient to calculate a
�
t .s/ for all t D 1; : : : ; n.

�e coe�cients B
�
N;r .s/ can then be obtained by the recurrence relation,

B
�
N;r .s/ D 1

r

N�rC1
X

tD1
B
�
N�t;r�1.s/ � a�t .s/;

with the start value B
�
N;1.s/ D a

�
N .s/.

In order to calculate the coe�cients a
�
t .s/ one has to determine a representative

for each class Œw� 2
�

W
G

�

for 0 < nw � n. Note this task need only be performed

once for all surfaces Xnf ; with a �xed number of funnels nf , so e�ciency is

not of the utmost importance. (�e numerically most expensive task consists in

calculating the values of Z
�;.n/
Xnf

.s/ several million times in order to determine its

zeros at a good precision.) Nevertheless, we want to brie�y describe an elegant

and fast way to determine all such representatives.

We de�ne the symmetry-reduced symbolic dynamics for a nf -funneled surface

to be the complete symbolic dynamics with the symbols

°�nf � 1

2
; : : : ;�1; 1; : : : ; nf � 1

2

±

if nf uneven;

and

°�nf � 2
2

; : : : ;�1; 0; 1; : : : ; nf � 2
2

±

if nf even:

�e term “complete” means that all sequences of symbols are allowed, i.e. the

adjacency matrix has the value 1 in each entry. We denote the set of words of

the symmetry-reduced symbolic dynamics by Wsr . �e idea of this symmetry-

reduced coding has successfully been used in for 3- and 4-disk systems [10] as

well as for 5-disk systems [1].
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�e symmetry-reduced coding can be understood in the example of the

3-funneled surface as follows: A closed geodesic can be represented on two copies

of zS � D. Because the two copies are glued together along the circles ci , the ge-

odesic alternates between these two copies. If it hits one circle ci it leaves again

at the corresponding partner ciC3 or ci�3, respectively. Since there is no geodesic

in zS entering and leaving the same boundary circle ci , the geodesic has either to

leave the region zS by the next circle in clockwise direction or by the next circle

in counterclockwise direction. Given a word wsr 2 Wsr , which consists of a se-

quence of the symbols ¹1;�1º, we can construct the corresponding representative

in W
G as follows. Start at an arbitrary circle cstart, with an arbitrary orientation.

At each step we proceed to the next circle in the current orientation, but then we

either preserve or reverse the orientation for the next step, according to sign of the

current symbol. After passing through all symbols of the word wsr , one ends at a

circle cend with a �nal orientation. Now there is a unique symmetry of the surface

that maps cend to cstart and the �nal orientation to the initial orientation. We de�ne

g to be the associated group element in D3 � Z2. Furthermore, by collecting the

indices of the circles from which the geodesic entered the domain S, we get a word

w D .w0; w1; : : : ; wn/ 2 W. �e representative associated to wsr is then exactly

the pair w D .w; g/.

For an uneven number of funnels nf > 3, we must allow for the possibility

to leave zS through the next 2; 3; : : : ; .nf � 1/=2 circles in either the clockwise or

counterclockwise direction. �e symbols n D 1; : : : ; .nf � 1/=2 thus correspond

to “go n steps in the current orientation and keep the orientation”, and the symbols

�n D �1; : : : ;�.nf �1/=2 correspond to “go n steps in the current orientation and

switch the orientation for the next step”. In the even case, one has to include also

the possibility of stepping forward nf =2 circles. Here it makes no di�erence which

orientation is taken. �is possibility is encoded by the label 0 and the current

orientation for the further steps is not changed in this case.

Via this algorithm, one can identify words in the reduced symbolic dynamics

with elements w 2 W
G . Note that the idea of the reduced symbolic dynamic is not

to encode the absolute position of the closed geodesics, but rather to encode the

relative changes as one moves along the geodesic. �e reduced symbolic dynamic

is thus by construction compatible with the action of the symmetry group in the

following sense. If w and w0 are two elements in W
G obtained from the same

reduced word wsr using a di�erent starting circle or orientation, then they are in

the same G-orbit in W
G and vice versa. It is easy to check that the shift action on

Wsr corresponds to the shift action on W
G and similarly for the composition of

words. �us one has identi�ed the orbits of prime words under the shift action in
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W with the prime elements in ŒWG �, which provides an easy means to generate a

list of representatives of the elements in ŒWG
prime�.

Let us return to the 3-funneled surface for an illustrating example. �e al-

phabet consists of two symbols C1 and �1 and accordingly there are only the

two words .1/ and .�1/ of length one. Let us write ¹ci ;˙º for a visit of the cir-

cle ci with positive/negative orientation. Starting with c1 with positive orientation,

the word .1/ leads to the sequence ¹c1;Cº; ¹c5;Cº while the word .�1/ leads to

¹c1;Cº; ¹c5;�º. Now the symmetry group of the 3-funneled surface D3 � Z2,

represented as a permutation group of the six symbols, contains two elements that

map c5 to c1, namely .1; 6; 2; 4; 3; 5/ and .1; 5/.2; 4/.3; 6/. While the �rst one pre-

serves the orientation of the labels, the second one changes them (see Figure 16).

Figure 16. Illustration of the label permutation of the two group elements .1; 6; 2; 4; 3; 5/

and .1; 5/.2; 4/.3; 6/ on the two copies of zS . While the �rst one preserves the orientation

of the labels, the second group element inverts it.

�e symmetry reduced word .1/ thus corresponds to the pair

w.1/ D ..1; 5/; .1; 6; 2; 4; 3; 5// 2 W
G ;

while the symmetry reduced word .�1/ corresponds to

w.�1/ D ..1; 5/; .1; 5/.2; 4/.3; 6// 2 W
G :

While the multiplicity of the �rst word is mw.1/ D 6 for the second word we have

mw.�1/ D 2. �e closed word w
mw.�1/

.�1/ then corresponds to a geodesic that winds

one time around one of the funnels while the closed word w
mw.1/

.1/
weaves around

all three funnels (see Figure 17 for a sketch of the two geodesics).

�e symmetry-reduced words of length two are given by .1; 1/; .�1;�1/,
.1;�1/ and .�1; 1/. �e �rst two elements are not prime, and last two are re-

lated to each other by the shift action. At length two it thus su�ces to study the
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single symmetry reduced word .1;�1/. Applying the algorithm yields a sequence

.¹c1;Cº; ¹c5;Cº; ¹c3;�º/. �e corresponding closing group element is given by

.1; 3/.4; 6/ and the geodesic of the closed word w
mw.1;�1/

.1;�1/ winds in a �gure-eight

shape around two funnels (see Figure 17).

Figure 17. Sketch of three geodesics appearing in the construction via the symmetry reduced

symbolic dynamics. �e geodesic in the upper left �gure belongs to the symmetry reduced

word .1/, the upper right �gure to the word .�1/ and the lower �gure to .1;�1/. �e dashed

blue lines correspond to the cut lines along which the two copies zS are glued together.

B. Convergence rate estimates

For a general holomorphic IFS we have noted that the dynamical zeta function

dV .z/ is an entire function of z and therefore the corresponding power series

dV .z/ D 1C
1

X

nD1
dnz

n;

converges absolutely for all z. In the application to Selberg zeta functions, we

would like to understand the rate of convergence of this series when z D 1.



Symmetry reduction of holomorphic iterated function schemes 323

To estimate the coe�cients (following ideas from [18]), we �rst note that the

Fredholm de�nition of the determinant

dV .z/ WD det.1 � zLV /

allows us to write

dn D .�1/n Tr.^nLV /;
where ^nA denotes the n-th antisymmetric tensor power of the operator A.

We can bound the dn by the trace norm of ^nLV , which can be expressed in

terms of the singular values of LV . Using the Hadamard bound on n� nmatrices

with entries smaller than or equal to one, this yields the estimate,

jdnj � nn=2
X

i1<���<in
�i1.LV / : : : �in.LV /: (B.1)

To estimate the singular values of LV is relatively straightforward. Let us in-

troduce an explicit orthonormal basis ¹ nº for B.Dj /,

 n.z/ WD
s

nC 1

�r2j

�z �mj

rj

�n

;

where mj and rj denote the center and radius of Dj , respectively. According

to (2.3), for each i  j the transfer operator LV has a component

Li;j W B.Dj / �! B.Di/;

given by

Li;jf .u/ D V.�i;j .u//f .�i;j .u//;

for u 2 Di , f 2 B.Dj /. If �ij is de�ned by

�ij WD d.�i;j .Di/; @Dj / > 0;

then the action of the transfer operator on a basis element can be estimated explic-

itly by




Li;j n





B.Di /

�
p
nC 1

ri

rj

�

1 � �ij

rj

�n

sup
u2Di

ˇ
ˇV.�i;j .u//

ˇ
ˇ : (B.2)

Note that these bounds decay exponentially as a function of n, at a rate determined

only by �ij and rj .

By min-max, we can combine these basis element estimates into a singular

value estimate,

�k.Li;j / �
1

X

nDk




Li;j .s/ n





B.Di /

: (B.3)
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�ese component estimates can then be combined into an estimate of the singular

values of the full transfer operator. �e result is an estimate

�k.LV / � CMV e
�cn;

where c > 0 and C depend only on the geometric structure of the IFS, and

MV WD sup
i j

sup
u2Di

ˇ
ˇV.�i;j .u//

ˇ
ˇ :

Using this estimate in (B.1) then gives

jdnj � C nM n
V n

n=2e�cn2 :

Note that although the decay of the coe�cients is always super-exponential, the

convergence rate could still be extremely poor for small n if V is large.

For the symmetry-reduced transfer operator

L
�
V WD LVP�;

the same estimate applies, because

�k.L
�
V / � kP�k�k.LV /:

(On B.D/ the P� are not orthogonal projections, but of course they are still

bounded operators.) In cases where the disks are of roughly equal sizes we’d

expect



P�




 � 1, so this estimate does not explain the observation in Section 5.2

that convergence rates seem to be much higher in the symmetry-reduced case.

We can interpret this improved convergence as a result of dramatically reduc-

ing the size of the Hilbert spaces on which the transfer operator acts. Let us sup-

pose, for example, that the singular value bounds for each component of the trans-

fer operator given in (B.2) and (B.3) give uniform bounds

�k.Li;j / � CMV e
�˛n: (B.4)

For a Schottky group with 2 generators, we need to combine singular estimates

for 12 components Li;j to estimate the singular values of LV itself. �e additive

Fan inequality (see e.g. [4, �eorem A.18]) allows us to combine these estimates

for the 12 components into the estimate

�k.LV / � 12CMV e
�˛n=12:

In other words, whatever decay rate we achieved for components in (B.4) might

be considerably degraded for the full transfer operator.
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On the other hand, for L
�
V we obtain a basis for all of B� by applying P � to

the basis  n for a single disk. If we assume that the disks are of roughly equal

radii, so that P � is close to orthogonal, then we can replace the estimates (B.2)

with an estimate that applies to a full basis ¹ nº for B�, by taking the maximum

over i; j . �en instead of the component-wise estimate (B.4), we would have an

estimate for the singular values of the full transfer operator,

�k.L
�
V / � CMV e

�˛n;

with no loss of decay rate in the exponent ˛. Of course, this argument involves

upper bounds which are not necessarily e�ective in either case. But it perhaps

suggests a plausible mechanism for the dramatically improved decay rates in the

symmetry-reduced numerical calculations.

Another heuristic justi�cation for the good convergence of the symmetry-re-

duced zeta function is the “shadowing orbits” argument made by Cvitanovic and

Eckhardt [9, 10] in the setting of 3-disk systems. �ey propose that in the

Taylor coe�cients dn with n � 2, the contributions of long closed geodesics are

largely canceled by the combination of shorter geodesics. Translated to the three-

funneled surface and the case of the trivial representation � D I1, these arguments

can be illustrated at the following example: According to Appendix A the pairs

w.1/ D ..1; 5/; .1; 6; 2; 4; 3; 5//

and

w.�1/ D ..1; 5/; .1; 5/.2; 4/.3; 6//

are the representatives of the only classes of primitive G-closed words of length

1 and

w.1;�1/ D ..1; 5; 3/; .1; 3/.4; 6//

is a representative of the only class of length 2. Using (5.14) we can write

d
I1
1 D �.T I1

Œw.1/�;1
C T

I1
Œw.�1/�;1

/ (B.5)

and

d
I1
2 D 1

2Š
.T

I1
Œw.1/�;1

C T
I1
Œw.�1/�;1

/2 � .T I1
Œw.1;�1/�;1

C T
I1
Œw.1/�;2

C T
I1
Œw.�1/�;2

/: (B.6)

From the de�nition (5.12) of T
I1
Œw.1/�;1

and the identi�cation of closed words and

closed geodesics in Proposition 5.5 we have

T
I1
w.1/;k

D 1

k

exp.�skl.1/=mw.1//

1� exp.�kl.1/=mw.1//
;
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where l.1/ is the length of the closed geodesic corresponding to the symmetry

reduced word .1/ (see upper left part of Figure 17). Analogous expressions can be

obtained also for the other terms. �e crucial observation is that, for three funneled

Schottky surfaces with su�ciently large funnel widths, there exists a base length

` with

l.1/=mw.1/ � l.�1/=mw.�1/ � `

and

l.1;�1/=mw.1;�1/ � 2`

Indeed this approximation is well satis�ed for the surfaces which we consider.

For example for the surface X3;0:5930 the base length is given by ` D 3:5 and we

have

l.1/=mw.1/ D 3:530;

l.�1/=mw.�1/ D 3:5;

l.1;�1/=mw.1;�1/ D 7:032:

Using the approximation of the lengths as well as the approximation

1� exp.�k`/ � 1

we observe that the terms in (B.6) cancel each other. More precisely, one observes

that the di�erent combinations ofG-closed words of length 1 cancel with those of

length 2. �is approximate canceling can also be observed for the higher Taylor

coe�cients, leading to very quick convergence.

Note that for the dynamical zeta function obtained by the standard Bowen–

Series maps such a cancellation can not be observed due to the asymmetric treat-

ment of the geodesics (cf. discussion in Example 3.2). Even when the dynam-

ical zeta function is analytic in z and the Taylor coe�cients thus decay super-

exponentially, the convergence is much slower in this case due to the non-optimal

ordering of the geodesics. For non-reduced �ow-adapted IFS and three funneled

Schottky surfaces, [34, Lemma 5.6.] implies that such a cancellation occurs for

the coe�cients of order strictly larger than 6. Without symmetry reduction the

lower coe�cients do however not cancel completely as the symbolic dynamic is

not complete and the remaining terms have been identi�ed to be responsible for

the structure of the resonance chains.
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