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Approximate zero modes for the Pauli operator on a region

Daniel M. Elton

Abstract. Let P ;4 denoted the Pauli operator on a bounded open region 2 C R? with
Dirichlet boundary conditions and magnetic potential A scaled by some ¢ > 0. Assume
that the corresponding magnetic field B = curl 4 satisfies B € Llog L(2) N C¥(Ro)
where o > 0 and Qo is an open subset of Q of full measure (note that, the Orlicz space
Llog L(£2) contains L?(2) for any p > 1). Let Ng ; 4(A) denote the corresponding eigen-
value counting function. We establish the strong field asymptotic formula

Newca () = o [ 1B@Idx +0()

as t — +oo, whenever A() = Ce !’ for some o € (0,1) and ¢,C > 0. The cor-
responding eigenfunctions can be viewed as a localised version of the Aharonov—Casher
zero modes for the Pauli operator on R?.
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1. Introduction

Let @ C R? be a bounded open region and
A= (A1, A2) € L2 (2, R?)
a magnetic potential. The corresponding magnetic momentum operator is then
Py =—-iV—A4,

where V = (V1, V,) denotes the gradient operator on R?. We wish to consider
the Pauli operator Pg_ 4 on 2 with magnetic potential A. For Dirichlet boundary
conditions this can be defined as the non-negative operator Pg_4 associated to the
closure of the form

u
Po.A() = | Pastir|I* + | Pa-u-|, u=(u+)ecs’°(sz,@2), (1

where
Pot+ =Py E£iPyp.

Set
B =curld = V1A2 — V2A1,

the magnetic field associated with the potential A (initially defined as a distribu-
tion). A straightforward formal calculation leads to the Lichnerowicz formula

Hoa O B 0
= ’ — 2
Pa.4 ( 0 HQ,A) (0 —B)’ @

Hq 4 = Pi,l + Pj,z

where

is the magnetic Schrodinger operator. If we assume that B belongs to the Orlicz
space L log L(£2) then (2) can be rigorously justified and used to help show that
Pq.4 has a compact resolvent and hence discrete spectrum (see Proposition 2.4).
Enumerate the eigenvalues of Pg_4 (including multiplicities) as

0<A21(Pa,4) < A2(Poa) <---.
and introduce the corresponding counting function

No.a(A) = #{n € N: 1,(Pa.4) <A}, AeR.
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We are interested in the behaviour of Ng_4 in the strong field regime. Fixing A
we consider Ng ;4(A(¢)) for the scaled potential 14 and A(z) < O(¢) in the limit
t — +o00. A simple rescaling shows that this is equivalent to the semi-classical
regime.

When A(f) = O(¢) the quantity Ng ;4 (A(?)) obeys a natural Weyl type asymp-
totics. To state this precisely introduce auxiliary functions v~ and v* which are,
respectively, the maximal lower and minimal upper semi-continuous extensions
of

1]

2

v(b,A) = #meZ:2lmb| <A}, A beR,b#0,A¢2bNy. (3)
Theorem 1.1. Suppose B € Llog L(2) N C () where Qo C Q is open and
Q\ Qg has zero (Lebesgue) measure. If A(t) = At 4+ o(t) for some A € R then

1
liminf = Ng_, 4 (A()) > / v (B(x), A) dx
t—>oo f Q

and .
limsup — Ng 4(A(?)) < / vY(B(x),A)dx.
t—oo [ Q

Numerous results similar or related to Theorem 1.1 have been obtained. Some of
the earliest work ([3], [27]) looked at spectral asymptotics for magnetic (Schrodin-
ger) bottles. While these works focused on a different class of operators the ideas
of [3] in particular form the basis of our approach to Theorem 1.1 (see also [28]).
For magnetic Schrodinger operators on a region various two term spectral asymp-
totic questions have been considered in both the Dirichlet and Neumann cases (see
[14], [11], [4], [12] and references therein); whilst giving more precise details, these
results also require greater regularity (and other conditions) on 2 and B.

In another direction, various authors have considered bound states of the Pauli
operator with an additional electric potential. The presence of the latter distin-
guishes the strong field and semi-classical regimes, leading to multi-parameter
problems. The semi-classical behaviour of sums of negative eigenvalues of the
form ), |A,|”, y > 0 was considered in [20], [8], [25] and [9] for example. These
works all rely on a priori bounds on the eigenvalue sums which have the correct
order in the parameters; typically Lieb-Thirring type inequalities have been de-
veloped for this purpose. However eigenvalue counting corresponds to the case
y = 0 (also known as the CLR inequality) and is always excluded in dimension 2.

The asymptotic bounds in Theorem 1.1 remain finite provided B € L!(Q).
We use the slightly stronger condition B € L log L(£2) to obtain a priori bounds
on Ng ;4(A(t)) (covering the lack of a suitable Lieb-Thirring/CLR inequality);
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in turn these bounds are derived from estimates in [26] which don’t extend to
cover the L! case. The continuity condition B € C () relates to our method for
approximating B locally by a constant field. While it is likely that at least the latter
condition can be relaxed the optimal regularity condition for B remains unclear.

The asymptotic lower and upper bounds given by Theorem 1.1 differ if the set
{x € Q:2m|B(x)| = A for some m € Ny} @)

has non-zero measure. When A # 0 this is a non-generic situation for variable
fields. On the other hand, when A(¢) = o(¢) (4) is the whole of 2 for any B; the
lower bound in Theorem 1.1 then reduces to 0 while the upper bound becomes

limsup - No,4(1(1)) < @a(|B)), 5)

t—>00

where |
P () = —/ b(x) dx
21 Q

is the flux of a magnetic field b on Q (see the end of Section 2 for some further
details). It transpires that the upper bound gives the correct asymptotics for even
sub-exponentially decaying A(¢). Our main result is the following (in which C*
is used to denote the space of Holder continuous functions).

Theorem 1.2. Suppose B € Llog L(2) N C*(R2p) where o > 0, Qo C Q is open
and Q \ Qo has zero (Lebesgue) measure. If A(t) = Ce™*" for some constants
0 €(0,1)and c,C > 0 then

1
litrginf;NQ,tA()t(f)) > @q(|B)).

For strong fields this result guarantees the existence of approximately ®q (|z B|)
sub-exponentially small eigenvalues of the Pauli operator. The corresponding
eigenfunctions, which we informally term approximate zero modes, can be viewed
as a local version of the Aharonov—Casher zero modes. The latter are a dimension
L|®R2(¢B)|] set of spin-definite zero energy bound states of the Pauli operator on
R?; the spin is aligned with the dominate sign of B (see [2] and [10]). In the strong
field limit strong localisation should confine such states to regions where B has
its dominate sign; indeed such localisation of the Aharonov—Casher construction
lies at the heart of our argument (see below and Section 4 for further details).
A different manifestation of this localisation, relating to the ground state density
of the Pauli operator on R?, was obtained in [7].
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Remark 1.1. The magnetic potential A (and hence the Pauli operator Pg _4) is not
uniquely defined by B. If @ is simply connected different choices of A lead to
unitarily equivalent Pauli operators (see Proposition 2.7) so the counting function
Ng,4 will not depend on the particular choice of A. For more general regions this
is no longer true; in this case our results hold independently of the choice of A.

Remark 1.2. It is possible to consider operators corresponding to non-Dirichlet
boundary conditions. While there is a natural choice for a Neumann version of the
magnetic Schrodinger operator (which has received particular attention in con-
nection with the Ginzburg-Landau theory of superconductivity), it is less clear
how one should define a Neumann version of the Pauli operator. One possibility
would be to use the maximal closed extensions of P4 + in (1); however such an
operator does not have a compact resolvent (even when A = 0), leading to a very
different class of spectral problems. Alternatively one could use (2) to define a
“Neumann” Pauli operator in terms of the Neumann magnetic Schrédinger oper-
ator. With some additional restrictions on the regularity of 2 (such as having a
Lipschitzian boundary) Theorems 1.1 and 1.2 can be extended to cover such oper-
ators (see Remark 2.6 for some further details). However the operator defined in
this manner is not always non-negative (so cannot be the square of a Dirac oper-
ator). Only relatively crude estimates for the asymptotics of the size and number
of negative eigenvalues follow from the immediate extensions to our results; in
particular, for any ¢ > 0 the number of eigenvalues below —¢t is o(¢) ast — +oo.
Further work would be needed to determine whether (the majority of) those eigen-
values guaranteed by Theorem 1.2 have small absolute value (so can be regarded
as belonging to approximate zero modes).

Remark 1.3. When B is constant the spectra of the Pauli and magnetic Schro-
dinger operators on R? reduces to a set Landau levels. For non-constant fields
this level structure is destroyed, with the typical exception of the zero energy level
of the Pauli operator (the Aharonov—Casher zero modes). On the other hand the
lower and upper bounds given by Theorem 1.1 will differ for any A corresponding
to a Landau level generated by a value at which B is locally constant on some
region (these are precisely the A for which the set in (4) has non-zero measure).
It is likely that a version of Theorem 1.2 could be extended to such cases. A related
problem of eigenvalue accumulation near Landau levels after perturbation by a
decaying electric potential has been considered; see [6] and references therein.
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Precise definitions and various preliminary results are collected in Section 2;
in particular, the Lichnerowicz formula (2) is justified (Proposition 2.4), a priori
bounds on Ng, 4(4) are obtained (Proposition 2.5) and gauge transformations are
discussed (Proposition 2.7).

The proof of Theorem 1.1 is given in Section 3. This follows a standard lo-
calisation type argument (c.f., [3], [25]) using a sequence of piecewise constant
approximations to B based on increasingly fine tilings of ¢ by squares (Sec-
tion 3.2). The corresponding approximation results for quadratic forms are ob-
tained in Section 3.3 while the necessary eigenvalue counting function results for
constant fields on a square are given in Section 3.1 (these are taken almost directly
from [3]). The bounds in Theorem 1.1 are finally pieced together in Section 3.4.

Theorem 1.2 is justified in Section 4 by initially reducing the problem to the
case of fields of constant sign on a disc (Section 4.1). Suitable test functions on
the disc can be constructed from holomorphic functions with the help of the “real
gauge” transformation introduced in [2]; these functions need to be cut-off at the
boundary, a process which ultimately leads to a spectral problem on the circle
(Section 4.2, with further technical details in Sections 4.3 and 4.4).

Notation. For a bounded open region Q C R? we use C (), C¥*(R2) and O(RQ)
to denote the space of continuous, Holder continuous and holomorphic functions
on €2, without restriction on behaviour near the boundary; we replace Q2 with Q
to indicate uniform versions of the same spaces. For k € INy we use C5%(Q) and
W¥*2(Q) to denote the Holder-Zygmund and Sobolev space consisting of func-
tions with k derivatives in C*(2) and L?(S2) respectively. The completion of
Cs°(R2) in Wk2(Q) is denoted by Wok’z(Q), while Cé‘ (2) denotes the space of k-
times continuously differentiable functions with compact support contained in 2.
Unless otherwise indicated norms and inner-products are defined in the relevant
L? sense.

The open disc with radius R > 0 and centre a € R? is denoted Dg(a). When
a = 0 or R = 1 these values are omitted; in particular, D is the open unit disc.
We also set (x)+ = max{x, 0}, the positive part of x € R.

General positive constants are denoted by C, with numerical subscripts used
to keep track of particular constants in subsequent discussions.
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2. Preliminaries

LetAe L?

loc

(2, R?). Consider the Dirac operator, initially defined by

0 Py Uy
'D = 0. = ’
AU = 0.Pqu (PA,+ 0 ) (u_) (6)

for u € C°(2, C?). The operator D 4 is densely defined and symmetric, hence
closable; by a slight abuse of notation we will also denote the closure by D 4.

Remark 2.1. Alternatively we can proceed by considering the operators P4, +
separately. Initially densely defined on Cy°(£2) these operators satisfy

Pasr CPix

and are hence closable. Using the same notation for the closures (6) then holds
for all u € Dom(D4) = Dom(P4,+) x Dom(P4,-).

Define a quadratic form by
Pe.A() = [Daul® = | Payus|® + [ Pa—u-|*. u € Dom(Dy).

Since D 4 is a closed operator pg 4 is a closed non-negative quadratic form. The
Pauli operator on Q with magnetic potential A and Dirichlet boundary conditions
is defined to be the corresponding self-adjoint operator given by the representation
theorem; we’ll use the notation Pgq 4.

Remark 2.2 (case A = 0). Since Q is bounded (|| Viu||? + || Vou||?)'/? gives an
equivalent norm on the Sobolev space WOI’Z(Q) (see [1]). Also, for u € C§°(£2),

| Po,cul® = [|[Viu|* + | Vau|* Fi /Q(vla Vau — Vait Viu)
= I Vaul® + || Vaul>.
Completion then gives
Dom(Dy) = W, (2, C?)

with

- 2
P2.0() = ul12q oo
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Remark 2.3. Since P4 +u = —P_4 vu when u € C§°(2) we get

Pe.4(Ju) = pe,—a(u), u € Dom(pg,4) = Dom(pg,—4),

where J is the anti-linear isometric involution on L?($2, C?) defined by

Ju = (E) u= (”+) e L2(Q,?).
U4 u_

It follows that JPq 4J = Pq,—4, and so Pq_4 and Pq 4 have the same spectrum.

In order to make use of results for Schrodinger operators we will need a rigor-
ous form of the Lichnerowicz formula (2). We begin by introducing the magnetic
Schrodinger operator in a way that parallels our introduction of the Pauli operator.

For [ = 1, 2 we initially define the operator

Py =—iV; — A

on C§°(2). This operator is densely defined and symmetric, hence closable; by a
slight abuse of notation we will also denote the closure by P4 ;. Setting

Ha(2) = Dom(Py4,1) N Dom(Py,>),
the quadratic form defined by
ho a(u) = | Pajull® + | Paull®,  u € Ha()

is closed and non-negative. The magnetic Schrodinger operator on Q2 with mag-
netic potential A and Dirichlet boundary conditions is defined to be the corre-
sponding self-adjoint operator given by the representation theorem; we’ll use the
notation Hq 4.

Remark 2.4 (case A = 0). It is straightforward to see that
Ho(Q) = Wy ()
with

2

ha.00) < [l 1,

(c.f., Remark 2.2). Furthermore
Hg o = —Ag,

the laplacian on Q2 with Dirichlet boundary conditions.
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We need to add a scalar potential to the operator Hg 4. Since Hgq 4 is a
semi-bounded self-adjoint operator this can be done conveniently via the standard
KLMN construction if the scalar potential is relatively form bounded with respect
to Hg, 4 with relative bound less than 1 (see [22], for example). If V' € LIIOC(Q) is
a real-valued function then the form given by

v(u) = (u, Vu) )

is certainly defined for u € C§°(2). To extend v to Ho(R2) = WOI’Z(Q) we
need to restrict V' to the Orlicz space L log L(€2). More precisely, introduce the
N -function

Al) =@+ Dlog(t +1)—t, t=>0;

we then define L log L(2) to be the Orlicz space L 4(<2) (see [1]). It is straight-
forward to check that

LP(Q) C L4(Q) Cc LY(Q)

for any p > 1. Now suppose V € L4(2). By [26, Lemma 2.1] (see also Re-
mark 2.5 below) v given by (7) then defines a bounded form on Wol’2 (R2), while the
corresponding operator Ty is compact. Viewing Ty as multiplication by V' acting
as a mapping WOI’Z(Q) — (Wol’z(Q))*, it follows that V is relatively form com-
pact and hence infinitesimally form bounded with respect to Hg ¢. The KLMN
construction can then be used to define Hg o — V. Since the Dirichlet laplacian
—Aq = Hg o has a compact resolvent (see [23], for example) the infinitesimal
form boundedness of V implies Hg o — V also has a compact resolvent (see [17]).

Remark 2.5. The results we need from [26] are mostly stated from the case of
Neumann boundary conditions under the assumption that © has a Lipschitzian
boundary. However it is easy to see that they also hold in the Dirichlet case for
arbitrary bounded 2.

The results of the above discussion can be generalised to include a magnetic
potential A with the help of the diamagnetic inequality; a convenient form of the
latter can be found in [15].

Proposition 2.1. Ler A € leoc (RQ) and V € L4(R2). Then (multiplication by) V
is an infinitesimally form bounded perturbation of Hg 4. Furthermore the semi-
bounded self-adjoint operator Hg 4 —V (resulting from the KLMN construction)

has a compact resolvent.
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Proof. The discussion proceeding the result covers the case A = 0. Using [15,
Theorem 3.3; see also Remark 3.4(i)] it follows that V' is infinitesimally form
bounded with respect to Hg 4, while, for ¢ > 0,

e~ tHa. a=V) < e~ tHa.0-V) ®)

(where S < T means that S is dominated by 7). However if S < T and T is
compact then S must also be compact (see [5] and [21]), while for a semi-bounded
self-adjoint operator Q, e~€ is compact if and only if Q has a compact resolvent.
It follows that Hq 4 — V' has a compact resolvent. O

Our a priori bounds for the counting function of the Pauli operator can be
obtained from suitable bounds on the number of negative eigenvalues of Hg 4—V'.
The latter will be obtained through a two step process; results from [26] allow us to
estimate the counting function for Hg o — V under the condition that V' € L 4(2),
while the techniques of [24] allow us to use the diamagnetic inequality (see (8))
to generaliseto Hg 4 — V.

Proposition 2.2. Let A € L2 _(Q) and V € L 4(Q). Then

loc

#HAn(Ho,a = V) =0} = iV L 40

Proof. Since the positive and negative parts of any V' € L 4(€2) also belong to
L 4(2), while the addition of a positive scalar potential can only raise eigenvalues,
it suffices to prove the result assuming V > 0.
Now
(Hg.0)'?: Ho(Q) — L*(Q)

is an isomorphism (this is equivalent to the fact that

1,2 X
hao () < ulf12,  0n Fo(R) = Wy (Q);

see Remark 2.4). Thus the expression
Sy = ((Ha,0)™"/*)" Ty (Hg,0) ™'/

defines a non-negative self-adjoint operator on L?(2). By [26, Corollary 2.3],
Ty and hence Sy belong to the weak first Schatten class with

[SvIiLw < CoallVIL e
for some constant Cj ;; in other words

0=<An(Sv) = CrLillVllLpon ' neN.
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A standard Birman-Schwinger type argument then gives
#{An(Hao—yV) <0} < CiivlViL, . v =0.

Denote the right hand side as p(y) and let i be the Laplace transform of p; in

particular y ' (y~1) = u(y). Now (8) (with V = 0) gives e "H2.4 < ¢7H20,
Using [24, Theorem 3] we then obtain

#HAn(Hoa —yV) =0} <ey Ay = CiylViL @, 720,
where C; = eCy ;. |

We can now compare the Pauli operator with the magnetic Schrodinger oper-
ator. We begin by looking at the corresponding forms. For any 4 € L2 () and
u € Cg°(S2) we can define b(u) to be the distribution B = V; 4, — V,4; acting
on the test function |u|* € C°(Q). If B € L] () then

b(u) =/ Blu)? = (u, Bu);
Q

that is, b is just the form associated with the operator of multiplication by B.

Lemma 2.3. Let A € L2

loc

pPe,a(u) =hg 4(uy) —b(uy) +hg a(u-) +b(u-). )

Proof. If v € C§°(2) then

(Q). If u € C°(Q, C?) then

[Paav)® = |Paiv|® + | Pa2v]|* F 2Im(Pa,1v, Pav)
while

2Im<PA,1v,PA,2U) :/[—l V15V2U—V15A2v+A15V2U—iA1A2|U|2
Q
i Vot Viv — A0 Vv + Vab Ao + iA2 A1 |v|?]

= /Q[—Az Vilv|* + 41 Va|v|?].

The final expression is just the distribution V{4, — V,4; = B acting on |v]?.
The result now follows from the definitions of pg_ 4, hg 4 and b. O

If B € L4(S2) the operators Ho 4 F B can be defined as discussed above.
The corresponding forms hg_4 F b have core C{°(2), while C{°(2, C?) is a core
for pa.4. The previous result then gives Dom(pg 4) = Ha(Q,C?), with (9)
extending to all u € H 4(S2, C?). The operator identity (2) now follows, allowing
Proposition 2.1 to be applied to Pq 4; we summarise what we need as follows.
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Proposition 2.4. Suppose A € leoc(Q) with B € L 4(2). Then the Lichnerowicz
Jormula (2) holds as an operator identity for the Pauli and magnetic Schrodinger
operators with Dirichlet boundary conditions. Furthermore Pq 4 has a compact

resolvent and hence discrete spectrum.

Proposition 2.2 can now be used to obtain a priori bounds on Ng_4(A). How-
ever we will need uniform versions of these bounds for sub-regions of €.
If Q" € Q is open we can restrict A to Q" and consider the Pauli operator Pg/ 4
with corresponding counting function Ng’ 4(1). Using yq to denote the char-
acteristic function for Q’ Proposition 2.4 and a simple variational argument then
give

No/a(d) = #H{An(Ho 4 — (A + B)xa) < 0} + #H{An(Ho 4 — (A — B)xa) < 0},
for any A € R. However

A+ B)xarllL @ < 1Bl @) + 1AL @)

so Proposition 2.2 now completes the following.

Proposition 2.5. Suppose A € L?_(Q2) with B € L 4(R2). Then

loc
Nar,a(A) < 2C1 (| BllL @) + ML @)

for any open Q' C Q; the constant C, may depend on Q2 but not on Q.

The magnetic potentials A, A’ € L2 (Q) are gauge equivalentif A’ = A+ Vy
for some ¢ € Wkl)f(Q). It follows that curl A’ = curl A (as distributions), so
A" and A generate the same magnetic field. The converse is not generally true; a
topological condition on €2 is also required. The following is a particular case of

[19, Lemma 1.1].

Lemma 2.6. Suppose Q is simply connected. If A, A’ € leoc(Q) satisfy the con-
dition curl A’ = curl A (as distributions) then there exists ¥ € W1’2(§2) with

loc

A=A+ Vy.
Now suppose A, A’ € leoc(Q) are gauge equivalent and V' € L 4(€2) (so that
the operators Hg 4 — V and Hg 4 — V correspond to the closures of the semi-
bounded forms hg 4 — v and hg 4 — v on Cy°(€2)). Choosing ¥ € Wlé’cz(Q)

with A’ = A + Vv, the argument given for the proof of [19, Theorem 1.2]
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then shows the unitary operator Uy, of multiplication by e'¥ gives a unitary equiv-
alence Ho 4 —V = Uy (Hg, 4 — V)U; (note that [19, Theorem 1.2] is stated for
Q = R? and only assumes curl A = curl A’; however the former is only used
to guarantee the existence of v, after which the proof easily adapts to cover arbi-
trary 2). Coupled with Proposition 2.4 and Lemma 2.6 we arrive at the following.
Proposition 2.7. Suppose A, A’ € L2 (Q) satisfy A" = A + Vy for some
v € W2(Q) (which follows from the condition curl A’ = curl A when S is simply

loc
connected). Also suppose B € L 4(2). Then Uy, gives the unitary equivalence

Pa.ar = UyPo aUy;
in particular, Pq 4 and Pq 4 have the same spectrum.

Remark 2.6 (maximal operators). For / = 1,2 the operator P4 ; is the min-
imal closed extension of the magnetic momentum operator initially defined on
C;°(€2). The corresponding maximal closed extension thus satisfies P* = P f;.
The closed non-negative quadratic form

2 2
@A) = [I1PLTull” + | L5l

can be used to define the magnetic Schrodinger operator on 2 with magnetic po-
tential A and Neumann boundary conditions (see [15] for further discussion of this
operator).

Neumann versions of Propositions 2.1 and 2.2 are possible if we assume 2 has
some additional regularity. In all cases it is sufficient to assume the existence of a
linear extension operator which is continuous as a map

wk2(Q) — WE2(R?), k=01

(such operators exist if 2 has a Lipschitzian boundary). Assuming €2 satisfies
such a condition and B € L 4(2) we can use (2) to define a “Neumann” Pauli
operator from the Neumann magnetic Schrodinger operator; denote this operator
by ‘.P/Q’ 4» With corresponding form p/Q’ 4- Itis then possible to extend Theorems
1.1 and 1.2 to cover fP/Q, 4» for the most part simply by using a combination of
variational arguments (note that p/Q’ 4 is an extension of pg_ 4) and straightforward
modifications to the given proofs; the most notable exception is Proposition 2.5
and its application where, to retain uniformity in ', one is forced to consider
operators with mixed boundary conditions (Neumann on 92" N dQ2 and Dirichlet
on 4"\ 0L2).
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We complete this section by considering some basic properties of the auxiliary
functions v*. If b # 0 then (3) gives v(b, A) = 0 when A < 0, while

bl 1
v(b.2) = @m+ 1)~ < =+ |b)

when 2m|b| < A < 2(m + 1)|b| for some m € INy. It follows that v is locally
bounded, so v* are well defined locally bounded functions on R?. Furthermore

1
0<vi®b,A) < E(|b| +|A])., b AeR. (10)

In particular (10) ensures the integrals appearing in Theorem 1.1 are finite when-
ever B € L'(Q). We further note that v* are homogeneous of degree 1 while, for
any b, A € R, we have vE(h, 1) = 0if A < 0,vE(0,1) = 1/(27) if A > 0 (v* are
actually continuous at 5 = 0), v=(b,0) = 0 and v*(b,0) = |b|/(27). The final
identity reduces the upper bound in Theorem 1.1 to (5) when A = 0.

3. General asymptotics

3.1. Constant field on a square. For R > 0 and b € R let Pg; denote a
Pauli operator on the square (0, R)? with Dirichlet boundary conditions and cor-
responding to a constant magnetic field . One choice for the magnetic potential is
A(x) = b(—x3, x1)/2, while (0, R)? is simply connected so Proposition 2.7 shows
that any other choice leads to a unitarily equivalent operator. Thus the eigenvalue
counting function

NRb(A) = #An(Prp) < A}

(counting with multiplicity) depends only on R, b and A. We can estimate Ng 5 (4)
using the auxiliary function introduced in (3).

Proposition 3.1. Forany A,b € R and p € (0, 1) we have
R*(1—p)2vT(b,A—CaR™2p7 %) < Ngs(d) < RZvT (b, 1),
where C, can be chosen as an absolute constant.

Proof. Let Hg p denote a Dirichlet magnetic Schrodinger operator on (0, R)?
corresponding to the constant field |b|, and let ng |5|(A) = #{A,(HR ) < A} de-
note the associated eigenvalue counting function (including multiplicity). Using
Remark 2.3 and Proposition 2.4 we then get

Ng»(A) = Ng,jp|(A) = ng,jp|(A + |b]) 4+ ng ;5| (A — |b]).
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On the other hand, [3, Theorem 3.1] gives an absolute constant C, such that
R*(1—p)*> u(Ib]. A — C2R™?p2) < ngp(A) < R* u(|b]. 1),
where 1(|b|,A) =0for A <0, u(0,A) = A/(4x) for A > 0, and

b
p(bl.2) = T tm € No: @ + DIb] = 1)
when b # 0. Since u(|b|, A + |b|) + w(|b], A — |b]) = vt (b, L) the result follows.

O

3.2. Localisation. We want to approximate the field B € L4(2) N C () by

a sequence of fields which take constant values on squares within 2. This ap-

proximation can only be made sufficiently good where B is continuous (continu-

ity is used when making the corresponding approximation to the potential; see

Lemma 3.3). In turn this necessitates a degree of delicacy in the choice of the

squares and the rate at which they approach the boundary of Q¢ (see Lemma 3.2).
For each § > 0 set

Qs = {x € Qo: Ds(x) C Qo).

Clearly Q5 is open, Q5 CC Qs whenever 0 < § < § (recall that Qg is bounded)
and

2= 2. (1

§>0
Since B € C () it follows that B € C (Qs) for any § > 0.
Lemma 3.2. We can find a strictly increasing sequence (kj)iew, in IN and, for

each k > ko, a finite indexing set Ji and collection of disjoint open squares S*7,
j € Jy, of side length 27 with the following properties: setting

Qk = int | ] sk (12)
J€Jk
then, for eachl € No and k; <k < kj4q,
(i) Q1 CQFccQ,.

(ii) Forany x,y € Q¥ with |x — y| < 27%71/2 we have |B(x) — B(y)| < 2.
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Each of the squares S/ will be a translate of (0, 27%)2. We will use Sk.J and
S*:J to denote the corresponding translates of [0,27%)2 and [0, 27%]?; thus §%-/
is just the closure of S¥/ while S¥-/ c §kJ c §%J . The set QF is essentially
the union of the squares S%/, j € Ji, together with any edges lying between two
squares. More precisely

QF = int U Sk = int U Sk,

JjeJk JjeJk

in particular, each x € Q* belongs to Sk-J for a unique j € Jg.

Proof of Lemma 3.2. For each k € INg and § > 0 set
di(8) = sup{| B(x) = B(y)|: x.y € Q. |x — y| < 274712},

Since B € C (Q25) we have dj (§) — 0 as k — oo (for fixed §). Hence we can find
a strictly increasing sequence (k;)jen, in IN with di, (27) < 27" and k; > [ for
each / € INy.

Let k > ko and choose I € Ny so that k; < k < k;4;. Consider the tiling
of R? by copies of the square [0,27%)2 which have been translated so that the
corners lie on points of the lattice (27%Z)2. Let Sk:J for j € Ji denote the
collection of squares from this tiling whose closure lies entirely within €,-;.
Set S5/ = int(§%/) for j € Ji and define QF by (12). Clearly Q% cc Q,-.
Now suppose x € 2,-1+1, 80 Dy—s41(x) C Q0. Let S be the closure of any square
from the tiling with x € S and let y € S. Then |x — y| < 27%*1/2 < 27/ (since
k >k; >1)so Dy (y) C Dyit1(x) C Qo and hence y € Q,—. Thus S C Q,—
and so S € {SX7: j e Ji}. It follows that x € QK. Finally, if x,y € QF with
|x —y] <27% 12 then x, y € Q,—; with [x — y| < 27%~1/2 (since k > k;), so

|B(x) — B(y)| < dj, @7") <27
(recall the defining properties of k;). O
By Lemma 3.2(i) and (11) we get

) @\ QF) =@\ 2) =2\ Q.

k>ko §>0

Since || < oo and |2 \ ¢| = 0 it follows that

IQ\ QK| — 0 ask — oo. (13)
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For k > ko set B = 27! where I € Ny is maximal such that k; < k.
Lemma 3.2 implies (Bx)x>k, is a non-increasing positive sequence with gz — 0
as k — oo while, for each k > ky,

|B(x) — B(y)| < Brx whenever x, y € QF with [x — y| <27%712. (14)

For k > ko and j € J set b/ = B(x) where x is the centre of the square
Sk,

Lemma 3.3. Foranyk > koand j € Jy we can find a potential A%J e L120C(Sk’j)
with

curl A%/ = pksJ

and

1A = A% || oo (sksy < o

where ay = 27%73/2p, .
In particular, the potential AX>/ generates the constant field b¥>/ on S/

Proof. Letk > ko and j € Ji. For convenience centre S*/ at the origin and set

~%.J 1
Al J(X) = —E
0

~ . ~k. i ~k. i . : . . .
Then A%/, V, A7 and V; A, are all continuous on S*/ (since B is continuous)
while

X2 X1

iy 1
B(x1,t)dt and A’;’f(x)=§/ B(t, x») dt.
0

curl A¥/ = B = curl A.

By Lemma 2.6 we can then find %/ e W, >(S%/) with A — A%/ = VykJ
on S%J/ . Now set

: Ry : co L
AV () = Vi — S0, and - A5 () = Vgt 4 SbE .
Then A%/ € L2 (S¥7) with curl A%/ = pk-J = B(0). For x € S¥/ (14) leads to
. 1 X2
Ar(x) — A% ()] = | = (B(x1,1) — B(0))dt| <27%28,
1 B o

(note that |x,| < 27%=1). Clearly a similar estimate holds for A, — A];’j . O
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Also let y; denote the characteristic function of the set S/ N Q¥, restricted
to Q. Define a piecewise constant field

B¥. Q —R
by
BF =3 " bRy, (15)
J€Jk

The approximation B converges to B pointwise on Q¢ as k — oo; it will be
helpful to combine this convergence with the Fatou-Lebesgue theorem as follows.

Lemma 3.4. Suppose k(t) € N and T'(t) € R for eacht > 0 with k(t) — oo and
I't) > Tast — oco. Then

liminf/ v (B T @) 3/ v (B,T)
Q Q

t—>00
and

lim sup v+(Bk(’),F(z))§/ vH(B.T).
Q

t—oo JQ
Proof. Letk > ko.If x € Qk then x € S/ for some j € Ji and so
B*(x) = b*7 = B(xo).
where x( denotes the centre of S¥»/. However |x — xo| < 27%71/2 50
| B (x) = B(x)| = |B(x0) — B(x)| < Br (16)

by (14). Since Bi < 1 it follows that | B*(x)| < |B(x)| + 1. This estimate is also
valid when x ¢ Q¥ since B¥(x) = 0 in this case. For any A € R (10) now gives

1
0<vF(B¥ 1) < 7 (1Bl + 14 AD.
JT

If x € Qo then (11) and Lemma 3.2(i) imply x € QF for all sufficiently large k,
so B¥(x) — B(x) as k — oo by (16). Since |Q \ Qo| = 0 it follows that B
converges to B pointwise almost everywhere on Q2 as k — oo. The result now
follows from the Fatou-Lebesgue theorem (recall that v~ < v while v~ and v
are lower and upper semi-continuous respectively). O
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3.3. Quadratic form estimates. Recall the notation introduced in Lemma 3.2.
For each k > kg and § > 0O set

Ri=() U Dyssx) and R5=R{NQ.

J€Jk xeR2\Sk./

Thus R§ is an open subset of Q which contains all of Q \ Q*, together with a
27k §-neighbourhood of the boundary of each square S k., j e Ji. In particular,
any point of R§ N QF must lie in S¥+/ for some j € J, at a distance of less than
27%§ from the boundary (of S%+/). Since S*/ has side length 27* it follows that
|RE N QK| < |Jx[272%%25. However |Ji| < 2%K|Q| (since the disjoint squares
Sk j e Ji are all contained in Q) so

IRK| < |2\ QK| + |RF N QK| < |2\ QF| + 4]Q]5. (17)

We will need a partition of unity which is subordinate to the cover of R?
given by R§ and SkJ for j € Ji. Using a standard construction we can find
¢ € C®(R?) and y; € C°(Sk) for j € Ji so that

¢+ Y yr=1 and |Vo[>+ Y |Vy;|> < C32%572, (18)
J€Jk JjeJk

where the constant C3 can be chosen independently of k& and § (note that, Vi, is
non-zero only in a 27*§-neighbourhood of the boundary of S¥/). Also recall the
approximating magnetic potential A%/ introduced in Lemma 3.3.

Proposition 3.5. Lett > 0 and ¢ € (0, 1). Then

Po.a) < (1—8)" > Py san () + & 207 u? (19)
Jje€Jk

whenever u = uj withu; € C(‘,X’(Sk’j, C?), j € Ji. On the other hand,

JjE€Jk
Po.a(u) = Pre , 4(Pu)

+ (487 ) Py pars (Yju) (20)

JeJk

— (720} + 322872 ||u?

for any u € H,4(2, C?).
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Proof. Firstly let j € J; and suppose w € CS°(S*/, C?). Then
Psc.iaW) = [Deaw|® = || D g w — t0.(A — A yw]|.

Now |0.(4 — A%/ ) &| = |A — A%J | |€| for any & € C?, so Lemma 3.3 gives
lo.(4— A% )w|? < (|4 - Ak,j”ioo(sk.j)”w”2 < aoffw]?.

Basic norm estimates then lead to

(14 &) 'pgrs qci (w) — e ' Pag|w]?

2

< Psii aW) < (1= &) 'pgics yaxs (W) + ' o |wll.
Taking completions extends this estimate to any w € I, 4x.; (%7, C?).

Ifu=Y,., u withu; € C§°(S%7,C?), j € Jy, then

> = D llujl”> and pora@) = Y Py )

JE€Jk JE€Jk

since the S%+/°s are disjoint; (19) now follows from the second estimate in (21).

Now suppose v € C§°(2). Enlarge Ji to J/ to include an index for ¢ and let
J € J;. Since P g(Y;v) = ¥ Prav — i (Vj)v the first part of (18) gives

D IPas W) = [Peagvl + Y (Viy)? o]

JeJ}, JeJ},
for I = 1, 2. Integration over 2 and the second part of (18) then lead to

hoa(v) = Y hga(y;v) — C322672 v 1%
JeJ},
An easy calculation also gives b(v) = ) jel; b(y;v). Hence

pPo.ra(u) > png,,A(¢u) + Z Psk.i sa(Yju) — C322%§72||u? (22)
JjeJk

forany u € C$°(S2, C?). For suchu (20) now follows from the first estimate in (21)
and the factthat )~ ;. [lyull> = [lul|>=|l¢ul|* < [lu]|*>. Taking completions then
gives (20) for all u € H,4(Q, C?). O
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Standard variational arguments allow us to use the quadratic form estimates of
Proposition 3.5 to obtain corresponding bounds on eigenvalue counting functions.

Corollary 3.6. Lett > 0 and ¢ € (0, 1). For any A we have

Na,ra(A) > Z Ngk.j rar.i (1 —&)(A — e~ '1%a}))

J€Jk

and
Ne,ra(R) < Ngk 4 (A + e} + C32%572)

+ ) Nk ars (L + &) (A + &7 112} + C3224672)).
JjeJk

3.4. Proof of Theorem 1.1. Write A(#) = (A + y(¢))t with A € Rand y(t) — 0
ast — +oo. Fort > 0,k > kg and ¢, 8, p € (0, 1) we can combine Corollary 3.6,
Proposition 3.1, the homogeneity of v and (15) to get

Noa() = 30 272K (1= v R (1~ T ()

JE€Ji
— (1-p)? / v (BF. (1 - 9T (1) 23)
Q
with
O =A+y@t)—e ta} — Ca(l —e) 17 12%p72,

Similarly

1 1

;NQ,,A(A(t)) < ;NRSk,,A(tF,j(t)) + /Q vEBE 1+ 9TF @) (29
with

TF(t) = A+ y(t) + e tag + Cst 71220572,

Next recall that (B )k>k, is a non-increasing positive sequence with gy — 0
as k — oo. Thus (2% ﬂ;l)kzko is an unbounded increasing sequence; it follows
that we can define an unbounded non-decreasing function by setting

k(t) = min{k > ko : 2%*B' > 1}
for any ¢ > 0. Note that, if > 22"1,3,:11 thent € (22"(’)_2,8,:&)_1, 22"(’),3;(10] SO

Z(X]%(t) = 1‘2_2k(t)_3,3]%(t) < 2_3ﬂk(,) and 122 < 4,Bk(t)—1~
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Hence
t(x,%(t), 7122k 0 ast — oo.

It follows that, for fixed ¢, § and p,
T (), r,j(,)(z) — A ast — oo. (25)

Now put k = k(¢) in (23). Lemma 3.4 and (25) then give
1
litminf ?NQ,,A()L(t)) >(1-— ,0)2/ vV (B, (1 —¢)A)
—>00 Q

foranye, p € (0,1). Taking ¢, p — 07 (together with the Fatou-Lebesgue theorem
and lower semi-continuity of v™) now leads to the lower bound in Theorem 1.1.

To obtain the upper bound firstly apply Proposition 2.5 to get the bound

1
Nggo 4 (T (1) < 200l ko, + T O ko) (26)
Now B, 1 € L 4(£2) while (17) and (13) give
IRF®| < 19\ QKO | + 4|Q|5 — 4]Q|8 ast — oco.

Thus the right hand side of (26) must decay to O if we take t — oo and then
8 — 0T. On the other hand Lemma 3.4 and (25) give

limsup/ v+(Bk(’),(1+s)I']j'(t)(t))§/ vF(B, (1 +¢)A)
t—>00 Q Q

for any ¢ € (0, 1). The upper bound in Theorem 1.1 now follows it we put k = k(¢)
in (24), take t — oo and then take §,& — 0.

4. Approximate zero modes

4.1. Reduction to the disc. Most of the work in establishing Theorem 1.2 lies in
establishing a version of this result for single signed fields on D, the (open) unit
disc in R?. We firstly quote this as a separate result and then show how the more
general result follows.

Theorem 4.1. Suppose B € C%(D) for some o € (0,1) and B is single signed
onD. If A(t) = Ce™*’ for some constants o € (0,1) and ¢, C > 0 then

1
liminf ~Np,a(A()) = Pp(|B]). 27
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Remark 4.1 (general discs). Let R > 0 and suppose B € C%(Dg) is single signed
and generated by the potential A € L2 _(Dg). Setting

loc

A'(x) = RA(Rx)

defines a potential A’ € leoc (D) with associated field given by B’(x) = R?B(Rx);
in particular B’ € C%(D) is single signed and

Pp(|B']) = Ppg(|B)).
On the other hand, the expression
Uru(x) = Ru(Rx)

defines a unitary map

Ug: L*>(Dg) — L?*(D)
with

URPD gra Uk = R2Pp ar.

Thus

Npg.t4(A) = Np 4/ (R*A)

for any A. It follows that Theorem 4.1 generalises to cover any disc in R? (transla-
tion is clearly not an issue).

Proof of Theorem 1.2. Set
Qi ={x€Qy: + B(x)>0}.

Then Q4 UQ_ is open (as B is continuous on £2¢), so the Vitali covering theorem
(see [16], for example) allows us to find a countable sequence of mutually disjoint
open discs

D!, D2%,-..CcQLUQ_
with
(24 U Q) \ Qp| =0,

where

Qp = U]Dk.

kelN
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Since B is continuous and non-zero on Q4 U Q_ it must be single signed on
each D¥. A straightforward variational argument also shows

Na,ra(A) > Z Npk 4(A)
kelN

for any A. If (1) = Ce™*° we can then apply Theorem 4.1 (see also Remark 4.1)
and the superadditivity of liminf to get

1
liminf —No  4(A()) = 3 @pe (1B]) = Pay (| B).
keN
However ®q, (|B]) = Pq(|B]) since |2\ Qo] = [(Q4+ UQ_) \ Qp| = 0 while
B=Oon§20\(Q+UQ_). O

4.2. Reduction to the circle. From Remark 2.3 it suffices to prove Theorem 4.1
in the case that B is non-negative. Clearly we can also impose the flux normali-
sation condition

1
Sp(|B]) = ®p(B) = E/]DB —1 (28)

(note that, Theorem 4.1 holds trivially when B = 0). We will henceforth assume
B € C%(D) is non-negative on D and satisfies (28). Let

B = lIBllLocw)- (29)

Since D is simply connected Proposition 2.7 gives us the freedom to choose
any magnetic potential 4 € L (D) whose associated field is B. A convenient
choice can be made via the “scalar potential.” Firstly let

¢:D—R
be the solution of
A¢p =B onD,

with
$=0 ondD=S

such a solution exists, is unique, and satisfies
¢ € C>*(D)
(see [13]). If we set

A= (—V29,Vi¢) € C"*(D,R?)
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then A is a magnetic potential with associated field
curl A = Vig + Vip = B.

Furthermore
FiVip = Vap FiVip = —(A41 £ ido),

SO
— i eTOVL (e ) = —iVL FitVigp = Pig+. (30)

For u € C¢(D, C?) it follows that

Po,ca() = le™? Vo (uie'®)|? + ||e'? V_(u_e™?)|.

Setting
vy = upeto,
we have u € CZ(D, C?) if and only if v € CZ(D, C?), while
full? = [ fosPe 0+ [ o-pere G31)
D D

and

Pocali) = [ [VowsPe 2 4 [ V0o, (32)

D D

It is straightforward to check that CZ(D, C?) is a core for the form pp ;4.

Using a variational argument we can establish Theorem 4.1 by constructing
sufficiently large spaces of test functions X; C CZ(D, C?) for which

pPo.sa(u) < A@) ul®>. ueX,.

By the strong maximum principle (see [13], for example) ¢ is strictly negative
on D. As A(¢) < 1 the exponential weights in (31) and (32) then encourage us to
seek test functions with v_ = 0 and Vv = 0, at least away from the boundary
dD = S'. Identifying R? with C in the standard way we have V, = 23, so
Viv4 = 0if and only if vy is in O(D) the set of holomorphic functions on D.
To get an element of CZ(D) we multiply by a cut-off function y € C{°(D) (which
should be R-valued and differ from 1 only near S1). If we take v, € O(D) and set

_ (xvye ' 2 2
u_( . )ecO(JD,C), (33)

then
Vi(xvy) =v4 Vix and  [Viy]? =|VyP%
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so (31) and (32) become
] = /D 22 [y P20 (34)

and

Po.rA() = /}D V22 o 2™, (35)

The remainder of our analysis will be focused near the boundary of D (on a
neighbourhood of where V y # 0). The information we need about B is captured
by the boundary behaviour of ¢. Let 4 denote the outward normal derivative of
¢ on 0D = S'. Using polar coordinates (r, §) on D we have h() = V,¢(1,6),
while n € CY*(S!) since ¢ € C>%(D). As a consequence of the maximum
principle 4 is strictly positive (see [13, Lemma 3.4]); the quantity

i = max{ |2 sty 11/ Al Loo(styy (36)

is thus finite and positive. The divergence theorem and condition (28) also give

/Sllz:/a]DVrgb:/]DdiVng:/]DB:Zn. (37)

Let H2(S') denote the Hardy space on S!. Each f € H?(S!) is the boundary
trace of a unique function Ef € O(D) (E is just the usual identification of H2(S!)
with the Hardy space on D). Now let f € H?(S!) and set

vy = Ef.
Using polar coordinates on D define a function

wy: [0, 1] — [0, 00)

2w
wy(r) = /0 g (r, 0)> 72900 g, (38)

When f # 0 we can then set

_ Vrwr (1)

wr =V, log(rwf(r))|r:1 = W + 1.
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To create a test function we still need to fix the cut-off function y. We want this
to be radial (for convenience) and decaying in a layer of width § > O near the
boundary of D. Choose a smooth non-decreasing function

p:R—->R
with
p=0 on(—o0,0],
p=1 onl[l,o0),
and

|Vp| < 1/7/2.
For § € (0,1) and r € [0, 1] set
ps(r) = p(8~ (1 —r)). (39)

Proposition 4.2. Suppose 0 # f € H?*(S') satisfies oy < —6Bt8 witht > 0 and
8 € (0,1/3]. Let u be given by (33) where vy = Ef and y(r,0) = ps(r). Then

1
Pp.a(u) = =5 exployd + 6B16%]([ul?.

To use this estimate we need further information on the behaviour of wy.
A summary of the necessary information is contained in the next result.

Proposition 4.3. Suppose v; > 0 for t > 1. Then there exist constants Cq,1, C42
and spaces X; C H*(S1) for t > 1 such that oy < —v, forall 0 # f € X, and

dimX; >t — C4,1Vt — C4,2[(1_2a)+.

Propositions 4.2 and 4.3 are proved at the end of Sections 4.3 and 4.4 respec-
tively.

Remark 4.2. The test functions given by (33) are purely spin-up (only the com-
ponent u 4 is non-zero). To deal with the case B < 0 directly by an argument
similar to that above we would need to consider purely spin-down test functions

of the form .
= (Xv_e’¢)’

where v_ € O(DD) (the set of anti-holomorphic functions on D). Clearly the anti-
linear isometry J from Remark 2.3 sends test functions of one type to the other.
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Proof of Theorem 4.1. Choose Cs,; and Cs , so that

t179¢7¢1" <4CC2, and Cs,;(Csz —6BCs;1) = 2¢ (40)
for all + > 0. Set

8 = Cs,1@ /2
and

vy = Cst@+D/2,

Suppose ¢ > to, where ty = max{l, (3Cs,1)*/1=®}; thus ¢ > 1 and §; € (0,1/3].
Let X, C H?(S!) be as given by Proposition 4.3 and set

X, = {(p“’f (Eﬁ)e_w): fe X,} C C2(D, C?).

Since Ef = 0if and only if f = 0 we get
dimX; = dim X, > 1 — Cy,1Cs 2t ©FV/2 _ Cy 5117200+ (41)

so liminf; et 1 dimX, = 1.
Let0 # f € X; and set

"y = (,05, (Ef)e_'¢) €,

0
Now
V8 — 6B187 = Cs,1Cs17 —6BC3 117 = 2¢1°
and .
—0
%e—cto — ! 5 e—cto <C
457 4C2,

by (40), so Proposition 4.3 leads to
wr < —v; < —6p15;.
Proposition 4.2 then gives

1 oo
Pp,ra(u) < 152 exp[—v:8; + 68187][|ul> < Ce™"" [|u|>. (42)
t

The result now follows from a variational argument. O
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Remark 4.3. A more precise version of (the error term in) (27) can be obtained
from (41); setting
Cs3 = max{l1,3Cs,1,C4,1C52}

we get
Np,a(A(2)) > t — Cs53t@TV/2 _ ¢y 5117200+

for all # > 0 (note that, the right hand side is negative when ¢t < ty).

Remark 4.4. With some modifications to the proof we can extend Theorem 4.1 to
obtain lower bounds for Np ; 4(¢) for fixed ¢ > 0. With

Ceq =24/& and Cep = 68Cs ],

set

8 = Cgit™'?
and

_ 1/2
vy = (C6,1 IOgl + C6,2)[
for ¢t > 0. Suppose ¢ > ty, where t, = max{l, 9ng12}; thus¢ > 1 and §; € (0, 1/3].
Let X; and X; be as above. Now
V8, — 6B187 = Co,1C4 1 logt + Ce2Cq | —68C4 7 = logt

and

1 Ce .1t

462 4

=e&t,

so the middle estimate in (42) gives ppa(u) < e|u|? for any u € X,. On the
other hand

dim X, = dim X; > 1 — C4,1(Ce,1 logt + Cg)t"/? = C4p11720+
for any ¢ > t. Setting
Cs,3 = max{l,Cy4,1(Cs,1 + Cs2).3/Cs,1}
we then obtain
Np,a(e) > 1 — Ce.31 /2 log(t +2) — Cy o1 1720+

for all # > 0 (note that, the right hand side is negative when ¢t < ty).
It is possible that the log is an artefact of our method and the second term in
the asymptotics of Np ;4 (¢) should be O(r 1/2) "at least for sufficiently regular B.
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4.3. Quadratic form estimates. The aim of this section is to prove Proposi-
tion 4.2. The presentation is simplified if we switch to polar coordinates; the mag-
netic momentum operators are then

t
P, =—iV, —tA, = —iV, + = Vy¢
r
and

Py = —l—Vg—tAg =L Vo —tV,¢.
r r

For functions u, v defined on D we will use (u,v)g1 and |[ul|g: to indicate the
L?-inner product and norm in the S! variable only; that is,

2w
(u,v) 51 =/0 u(r,0)v(r,0)do

and
2w
s = [ o) as,
0
which depend on r € [0, 1].
Firstly we take a more detailed look at the function wy defined in (38).
Lemma4.4. Let f € H>(S') and setu = (Ef) e7'%. Then
Vews = 2(u, Pou) s

and
Vi (rVewy) = 4r || Poullg, — 217 (u, Bu)gi.

Proof. Firstly observe that for any functions v, w on D we have

Vi(v,w)gr = (iPrv,w)g1 + (v, iPrw)gi

= (Pov, w)s1 + (v, Ppw)s1 —i(Qv, w)g1 +i{v, Qw)s1, )
where
Q=P +iPg=e9Py .
The second expression for Q and (30) lead to
Qu = —ie e (Vi (Ef) =0 (44)

(recall that Ef € O(D)). Now wy = ||u||§1 so (43) and (44) give

Viws = (Pou,u)g1 + (u, Pou)g1 = 2(u, Pou)g: 45)
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as Py is symmetric with respect to (-, -) g1. Using (43) and (44) again then gives
V. (rVewyr) = 2(Pou, rPou) g1 + 2(u, Po(rPou)) g1
—2i(Qu,rPou) g1 + 2i(u, Q(rPou))g
= 4r||Poul%, + 2i (u.[Q. rPglu)g:.
However
[Q,rPg] = [Pr,rPg]l = —iV,(—rtAg) +iVg(—tA,;) = itrB. O

The formulae for the derivatives of wy given by Lemma 4.4 lead to the follow-
ing.

Lemma 4.5. Let0 < rog < land f € H*(SY). If0 < b < —(wy + 2Bt(1 — ry))
then eb’rwf (r) is decreasing for r € [ro, 1].

Proof. For any b € R set

Ly(r) = log(eb’rwf(r)) = log(wys(r)) + logr + br.

Then
V,.(rV,w V,wy)?
V,(rV,lp) = r(rVrwy) L ’zf) +b
wr wy
r (u, Bu) g1
= — [4l| Pou % lul%i — 4(u, Pou)2 ] —2tr——"5- + b
Wy ||“||Sl

using Lemma 4.4 and the factthatwy = [[u||3,. Now [] > 0, (u, Bu)s1 < Bllu3,
(recall (29)) and r < 1. Hence V,(rV,{p) > =28t + b. Integrating from r to 1
and using the fact that V£, (1) = wr + b we get

1
rVily(r) < Vidp(1) —i—/ (2Bt —=b)dr = wy +2Bt(1 —r) + br.

Ifro <r<1land0 < b < —(wy + 2Bt(1 — rp)) it follows that the right hand
side is non-positive, and hence V, €, (r) < 0. Thus exp({y(r)) = eb’rwf(r) is
decreasing for r € [rg, 1]. O

Proof of Proposition 4.2. Set
rs=1-68 and b= —(wy+ 6B18) >0,

SO
ps(r)y=1 forr <rg,
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while eb’rwf (r) is decreasing for r € [1 — 3§, 1] by Lemma 4.5. Using (34)
and (38) we then get

1
nw2=[;mvfmwvnn

rs
2/ rwr(r)ydr
1

—38

rs
> rgwf(rg) eb(r(g—r) dr
1-35

= ryus(r3) 3 @~ 1)
> rswyr(rs) 28,
To estimate pp 4 (#) note that
Vx> = Vps|* < 1/(26%)

and
supp(Vps) € [rs. 1],

while rwy (r) is decreasing for r € [rs, 1] C [1 — 38, 1] by Lemma 4.5. Thus (35)
and (38) lead to

! 1! 1
Ppa(u) = / Vs (r)]? rwy(r)dr < —2/ rwe(r)dr < —rswr(rs).
; 252 J,. 25

Combined with the previous estimate we then get
Pp.a () < (28) 27 u?, O
4.4. Analysis on the circle. Let f € H?(S!) and set
u=(Ef)e .

Then u(1,0) = f(0) so wr(l) = || f|*>. Also Ag(1,0) = V,¢(1,0) = h(6).
Introducing the operator
T =—iV—th

on S!, Lemma 4.4 now gives

Vowr(l) = 2(£.Tf).
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If f +# 0 it follows that
(£.Tf)
(vals

To construct the space X, in Proposition 4.3 we need to find f € H?(S?!)
for which wy is negative. In view of (46) this leads us to consider the spectral
properties of the operator T on H?(S!). We begin by considering T as an operator
on L2(S') where a more explicit description is possible. Set

wr =2 + 1. (46)

0
7;(9)=/0 h(w) dw

so n(0) = 0, n(2w) = 2x (recall (37)) and Vi = h. Since h and 1/ h are both
continuous and bounded away from 0 it follows that 7 is a C !-diffeomorphism of
S1. Thus

Uf = fon

defines a unitary map U from L2(S!) with its usual inner-product to L2(S') with
weighted inner-product (-, -);, given by

(f. & = (S hg) = (hf.8g).

Using ||-||, to denote the corresponding norm, we have

kK NAIP<ILIE <l fI? (47)

for any f € L?(S") (recall (36)). The image of the standard Fourier basis under
Wis {&,: n € Z} where &, = ¢!""//27 for n € Z. In particular, any f € L*(S')
canbe written as f = ), ., yx&, for some constants y, (given by y, = (&4, f)n).
whereupon || f |2 = Y, cz|vn|*. Since —iVE, = nh&, we get

T& = (n—1) héy (48)
and thus
(£Tf) = (n=0Dlyal*. (49)
nez

For M > 0 let Qs denote the (-, -),-orthogonal projection onto Sp{&,: n > M}.
Lemma 4.6. Let f € L2(S') and M > 0. Then

(LT <M =D\ fl; +(Omf . TOmf).
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Proof. Write f = )", ., ya&, for some y,. Then

n>M
SO
(LTf) = (Om f. TOMf) =D (n—1)lyal®
n<M
<M =0 lyl> =M =0IfI;
nez
with the help of (49). O

We shall now move our attention to consider 7 acting on H2(S!). Let ITT
denote the orthogonal projection of L2(S!) onto H?(S') and T~ its complement;
that is .

ntf=——> fk)e*® and M~ =71-1",
21 Ig)
where f (k) denotes the kth Fourier coefficient of f. A key idea in our argument
is the fact that, for large n, &, and h§, “almost” lie in the space H?(S') in the sense
that T17§, and I1™ A&, become small. This is made more precise via the quantities

an = Y &[> and B = D |ITT A&,

n>m n>m

Proposition 4.7. There exists a constant C; such that
m, Bm < C7(m + 1)—20:’ m > 0.

We shall consider families of diffeomorphisms of S! which are related to 7.
Firstly note that a positively oriented homeomorphism of S! can be viewed as a
continuous strictly increasing map

v:R— R

which satisfies
Y0+ 27) = y(6) + 2.

If ¢ is differentiable then Vi : R — R is 2w-periodic and hence can be viewed as
amap on S, It is straightforward to check that v is a (positively oriented) C2*-
diffeomorphism of S! if Vi € C1*(S') and V is strictly positive; in this case
Vi and Vi~ are both uniformly bounded away from 0, while Vyy~! € C1#(S1).
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Proof of Proposition 4.7. For each t € [0, 1] set
ne(0) = tn(8) + (1 —1)0.
Then

n:(0) =0,
n:(2n) = 27,

and

Ve =th+(1-r1).
Thus Vn, € C1¥(S1) with Vg, > w1 + (1 —1) > k™1, so V1, is bounded away
from O uniformly in 7. It follows that 7, is a C2%-diffeomorphism of S!. Setting

1 1 1

=Vl =
E T am (Vo

we get y; € C1¥(S1), while ||yl c1.a(s1) can be bounded uniformly for = € [0, 1].

Using standard estimates for the Fourier coefficients of functions in C1#(S!)
(see [18], for example) we can then find C7,; so that

Ve (m)] < Coaln|7' 7%, T €[0,1],n#0. (50)

Now suppose n > 0 and k > 0. Set

n
(k +n)

e [0, 1].
Then
- L (27 @) +ike
(k)= —— [ @Ko g
G-b=o [ e

1 [ 1

- — piktmnO) vy, (9) 46
2y Vne®) ¢ 7<)

yr(a)) ei(k-i-n)a) dw

1 2r
-7,
= yr(=(k+n)).

For any m > 0 we can now combine this with (50) to get

2
=Y D Ne(—R)P < C2 3 D (k)2 < %(m 4 1)2e

n>m k>0 n>mk>0
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We can estimate §,, using a similar argument. In particular, we need to con-
sider the C?*-diffeomorphisms of S given by

L@ = ' O)+ (1 -0, Telol]
Then
b
V2r

is uniformly bounded in C 1*%(S1), while for any n > 0 and k > 0 it can be shown
that the (—k)th Fourier coefficient of A&, is just Z;(—(k +n)). The remainder of
the argument to estimate §,, proceeds exactly as for oy,. U

ve!

Zr =

Proposition 4.7 establishes that « is finite; it follows that «,, is non-increasing
with limy;,— o0 &, = 0. A similar comment applies to 8,,. Also recall that Q,,
denotes the (-, -),-orthogonal projection onto Sp{&,: n > m}.

Lemma 4.8. Suppose Q,, f = f for some f € L*(S') and m > 0. If we have
om < 1/(2«?) then

/17 < 23T £
Proof. Write f =, _, vn, for some y,. Then

I £ < D lyal? DI & = amll £ 17

n>m n>m

Since f = II" f + I1™ f is an orthogonal decomposition (47) now gives
1A < <2117 = AT £ + (1T £11%) < 2T ) + %Ilflli-
The result follows. O
Lemma 4.9. Suppose M > 0and f € Sp{&, : 0 <n < M}. Then
(Qu T f,TOMTI* f) < Mlaoens BoBu]"?| £ 7.
Proof. Write f =3 ,_, < Ynkn for some yy,. Then

oMUY f = > (6. T flnbwr = Y D valbw &N Ew. (51

n’>M n’'>M 0<n<M
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Noting that (&,/, I &,), = — (€, [T7&,), when n # n’, (49) and (51) now give

2
(OuITY . TOMTIT f) < > (' =) | D" yulbw, T Eal
n’>M o<n<M
=Y [ X P Y e mTEME] 62
n’'>M O<n<M O<n<M

(R D DRI A

0<n<M n'>M

However, for any n, n’ we have

(En/y H_§n>h = (H_hén/y H_En)

while

n' (€, &) = (1 &y, n'hw)
= (1" &y. —i Vén)
= (I (=i V)én. ')
= n(I1"hé,. T Ew).

(note that, I1~ is an (-, -)-orthogonal projection). Hence

Z Z n/|(gn”n_§n>h|2

O<n<M n'>M

= Y Y a(l hEy TT7&) (17 hE, T &)

0<n<M n’'>M

<MY T & | 1T A D T & || T by |
n>0 n’'>M

< M{ooBoar B]'?.

The result now follows from (52). O

Proposition 4.10. Suppose 0 <m < M <t. Let X = Sp{&, :m <n < M} and
XT=1"X c H>(SY). If oy < 1/(2c?) then dim X+ = M — m and

(/. Tf) <=t — M —2M [ooane BoBu] DI 17, f e X+,
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Proof. Let f € X andset f* = TITf € X*. If fT = 0then f = 0 by
Lemma 4.8; thus dim X ™ = dim X = M —m. On the other hand, combining (47)
with Lemmas 4.6, 4.8 and 4.9 gives
(ST <M =OIf g +{Qm [T TOum f )
< (M =Dl f 17 + Mlaoas BoBu] 21 /11
< 1*(M — 1t + 2M oo BoBu]/ ) £ I,
as required. O

Proof of Proposition 4.3. Choose m > 0 so that ,, < 1/(2«k?) (which is possible

by Proposition 4.7). Also let
1

Vi =g+ 1)+ 207 117200+

and

M, =min{n e No:n >t —v;; —1};
in particular,

My >t—vi,— 1
Set
X; =" Sp{&,:m <n < M,y C H*(SY).

Proposition 4.10 gives

dmX;, > M, —m>t— (v +m+1)

(note that, X; = {0} when M; < m). The required estimate for dim X; now follows
if we take

Cs1=1/(2*) and Cyp=Cyy +2C7+m+1

(note that, 10720+ > 1 forr > 1).
Now let0 # f € X;. Then1 < M, <t — v, <t (otherwise X; = {0}),
leading to
Mt(Mt + 1)—2(1 < Mt1—2a < t(1—2a)+‘

Propositions 4.10 and 4.7 then give
(£ Tf) <> (M; —t + 2M,[ecoons, BoBar, 1) 117
<K*(M;—1t + 2C72 M (M, + 1)7**)| f]?
< k% (=vi, +2C7 1072904 £

1
= _E(V’H) 17112,
so wr < —v; by (46). O
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