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Spectral asymptotics for waveguides
with perturbed periodic twisting

Georgi Raikov

Abstract. We consider the twisted waveguide Qg, i.e. the domain obtained by the rotation
of the bounded cross section @ C R? of the straight tube  := w x R at angle § which de-
pends on the variable along the axis of 2. We study the spectral properties of the Dirichlet
Laplacian in Q¢, unitarily equivalent under the diffeomorphism Q¢ — € to the operator
Hgy., self-adjoint in L?(2). We assume that ” = 8 — e where f is a 27-periodic function,
and e decays at infinity. Then in the spectrum o (Hg) of the unperturbed operator Hg there
is a semi-bounded gap (—oo, 88L ), and, possibly, a number of bounded gaps (7, E;.").
Since € decays at infinity, the essential spectra of Hg and Hg_, coincide. We investigate
the asymptotic behaviour of the discrete spectrum of Hg_. near an arbitrary fixed spectral
edge Ej.:. We establish necessary and quite close sufficient conditions which guarantee

the finiteness of ogisc(Hpg—¢) in a neighbourhood of 8;.—L. In the case where the necessary
conditions are violated, we obtain the main asymptotic term of the corresponding eigen-
value counting function. The effective Hamiltonian which governs the the asymptotics of
0disc(Hg—e) near EJﬂF could be represented as a finite orthogonal sum of operators of the
form
d2
Ko e

self-adjoint in L?(R); here, . > 0 is a constant related to the so-called effective mass, while
n is 2w-periodic function depending on 8 and w.
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1. Introduction

Since the seminal work [11], there has been an unfading interest towards the spec-
tral properties of quantum waveguides, with an accent on the problem of existence
of discrete eigenvalues. During the last decade the 3D twisted waveguides were
investigated by numerous authors. Recently, a special attention has been allocated
to the cases where the global twisting does not vanish, but has a non trivial as-
ymptotic behaviour at infinity (see e.g. [12, 10, 6, 8, 7] and the references cited
there).

In the present article we investigate the asymptotic behaviour of the discrete
spectrum near the edges of the essential one for the Dirichlet Laplacian in a twisted
waveguide with perturbed periodic twisting.

First, we describe the waveguides which we will deal with. Let € R? be a
bounded domain. Introduce the straight tube

Q:=wxRcR.
For x = (x1, x2, x3) € , we write
X = (x7,x3) with x; = (x1,x2) € w, and x3 € R.
Assume that 8 € C1(R;R), 8’ € L®(R). Define the twisted tube
Qo = {re(x3)xe R |x e Q)
where
cosf(x3) sinf(x3) O

ro(x3) = | —sinf(x3) cosf(x3z) O
0 0 1
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Then the Dirichlet Laplacian —Age is the self-adjoint operator generated in
L2(S2g) by the closed quadratic form

Sol/1= | IVf@Pdx, f D)) = Hy@).
6
Define the unitary operator
U: L2(Q9) — L2(Q)

by
US)X) = fro(x3)x), X €Q, f €L*(Qy).

Set
Vt = (81, az)T, At = a% + 82, a(p = X182 _-x2811

and denote by Hy, the self-adjoint operator generated in L?(2) by the closed qua-
dratic form

Q[ f]:= Qp[U /] Z/Q(Ith|2+ 10"(x3)3pf + 33 f1P)dx.  f € Hy(9).
1.1

Then we have
Hy = U(—Ag,)U ™"

Note that Hg > A1 where A1 > 0 is the lowest eigenvalue of the cross-section
Dirichlet Laplacian —A;, self-adjoint in L?(w); hence, Hy is boundedly
invertible in L2(2). In [7, Proposition 2.1], it was shown that if dw € C2, and
6 € C%2(R) with ', 0” € L*°(R), then the domain D(Hg/) of Hgs coincides with
H2(2) N HY(£2), and

Hy = —A; — (9/8¢ + 83)2.

In [8] we considered the spectral properties of Hy, under the hypotheses 8’ = —e¢
where § > 0 is a constant, and € > 0 is a function which decays at infinity. Then,
Hyg is unitarily equivalent under the partial Fourier transform with respect to x3,
to an analytically fibered operator, the spectrum o (Hg) of Hyg is purely absolutely
continuous, and coincides with [E, c0) (see [12] or [8, Subsection 2.2]). Since €
decays at infinity, the essential spectra oess(Hpg) and oess(Hg—e) coincide. In [8]
we established necessary and sufficient conditions on € and the geometry of
which guarantee the finiteness of the discrete spectrum of Hg_, below €. In the
case where the necessary conditions are violated, we obtained the main asymptotic
term of the infinite eigenvalue sequence which accumulates at € from below.
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In the present article we undertake a related program in the case where
0’ = B — e but now B is a general 2 -periodic function while € decays at infinity
as before. In this case the unperturbed operator Hg is again unitarily equivalent
under an appropriate Floquet—-Bloch mapping to an analytically fibered operator
(see below (2.1)) but there are several substantial differences with respect to the
case of constant 8. First, apart from the unbounded gap (—oo, inf o(Hpg)) in the
spectrum of Hg, there could also exist bounded gaps. Thus, there could be sev-
eral sequences of discrete eigenvalues of Hg_, which may accumulate from above
(resp., from below) to a lower (resp., to an upper) edge of a gap in o (Hg). More-
over, the bounded gaps in o(Hpg) are surrounded from both sides by regions of
the essential spectrum which makes the investigation of the discrete spectrum of
Hg_. more difficult in comparison with the one lying below inf o (Hg), taking
into account in particular, that the perturbation Hg_. — Hp is a second-order dif-
ferential operator. Further, in [8] it was found that the effective Hamiltonian which
models the asymptotic behaviour of the discrete spectrum of Hg_. near the edges
of the essential one, has the form

d2

—uﬁ—ne(x), x eR, (1.2)
where . > 0 is a constant related to the so-called effective mass while n > 0 is
another constant which depends explicitly on 8 and the geometry of w. If € decays
regularly enough at infinity, the asymptotic behaviour of the discrete spectrum of
the operator (1.2) is well known, and generically is of semiclassical nature (see
e.g. [20, Theorem XIII.82] for the generic case, and [16] for the corrections to the
semiclassical behaviour in the border-line case). In the present paper we find that
the effective Hamiltonian which governs the asymptotics of the discrete spectrum
of Hg_, near a given edge of a gap in 0 (Hpg), can be written as a finite orthogonal
sum of operators of the form

d?
- MW — Nper(¥)e(x), x €R, (1.3)

where © > 0 again is a constant related to the effective mass at the edge, but
Nper is a periodic, generically non constant function which depends on 8 and w.
Note that even if € decays regularly at infinity, the product npe € has an irregular
decay due to the oscillations of nper. Thus, the eigenvalue asymptotics for oper-
ators like (1.3) could be of independent interest. Multidimensional Schrodinger
operators of this type have been considered in a different context in [18, 21].

The article is organized as follows. In the next section we describe the spectral
properties of the unperturbed operator Hg, necessary for the statement and the
understanding of our main results, formulate these results, and briefly comment
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on them. Their proofs can be found in Section 3. Finally, in Appendix A we
prove an auxiliary proposition concerning the spectral properties of an effective
Hamiltonian of the form (1.3).

2. Main results

2.1. Spectral properties of the unperturbed operator Hg. Assume that
B € C(T;R) where T := R/2nZ. Set T* := (— 3. 3]. Define the unitary
Floquet-Bloch operator

®: L2(Q) — L*(w x T x T*)
by

(Pu)(xs, x3, k) := Ze_ik(x3+2”£)u(xt,X3 +2nl), x; €w,x3€T keT*
LeZ

for, say, u € C(®;8(R)), where $(R) denotes the Schwartz class on R. Similar
Floquet-Bloch operators have been used by numerous authors (see e.g. [23, 2, 13,
5, 6]) within the context of the spectral analysis of periodic quantum waveguides.
We have

53]
Hy d* :/ hp(k)dk 2.1)
’]I‘*

where hg(k), k € T*, is the self-adjoint operator generated in L?(w x T) by the
closed quadratic form

q[u;k]://(|V,u|2+|(,88¢+83+ik)u|2)dX3dx,, u € Hy(w x T).
wJT

Note that
qlu; k] < / / (|V,u|2 + (03 + ik)u|2) dxzdx,
wJT

uniformly with respect to k € T*; here and in the sequel the notation A < B
means that there exist constants 0 < ¢y < ¢, < oo independent of A and B, such
that c;A < B < ¢ A. Evidently, the operator /g (k), k € T*, is elliptic; since w is
bounded, we find that the spectrum of 4 (k) is discrete. Denote by { E¢(k)} <y the
non-decreasing sequence of the eigenvalues of g (k), k € T*. Itis easy to see that
the band functions Ey can be extended to R as continuous 1-periodic functions.
Moreover, by the Kato perturbation theory [14], these extensions are piece-wise
real analytic. We have
o(Hp) = | ) Ee(T").

LeN
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Let
&F :=info(Hg) = min E;(k);
keT*

evidently, € > 0. Then in o(Hp) there always exists a semi-bounded gap!
(—o0, 83’ ). In contrast to the case of constant 8, in o (Hg) with periodic non con-
stant B there could also be bounded gaps (see e.g. [10, Subsection 3.4],
[6, Subsection 4.4]). Let (¢}, &; ), j =1,...,J < oo, be the disjoint bounded
gaps in o (Hp); if there are no bounded gaps in o(Hﬂ), we set J = 0. Then we
have

J
R\o(Hp) = [ J&.&hH (22)
j=0
with € := —oc. Note that the value &7, j > 1, (resp., 8;’, Jj = 0) coincides with

the maximal (resp., minimal) value of some band function Ej.

Definition 2.1. We will say that the boundary point SJ“.—L of o (Hp) is regular if:
(i) there exists a unique band function E+ 0 in the sequence {E;}sew Which
attains the value EﬂF,
(ii) the function Ej;) attains the value &F at finitely many points k3, € R/Z,
m=1,..., M*
(iii) we have

2

1d Ez()
M]j-fm:_:lzz - (k; E) >0, m=1,... M- (2.3)

Note that if conditions (i) and (ii) in Definition 2.1 hold true, then the function

EF i(;) 1s analytic in a vicinity of each point k, wm=1....M ]-“—L. More precisely,
there exists a § > 0 such that the intervals
+ _ + _ +
Jm_(kj, =8,k +8), m=1,... . M~, (2.4)

are disjoint, and the function £ ﬁ )18 real-analytic on their closures. Diminishing
8 > 0 and performing if necessary a shift with respect to k, we may assume
without loss of generality that J3, C (=1/2,1/2),m = 1,..., M;*. Set

U [ (2.5)

' We call a gap in 0 (H g) any open non-empty interval I C R\o (Hpg) suchthat 07 C o (Hp).
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and introduce the eigenfunctions
yEXK), x=(x;x3) €wx T keIf,
such that
hwwﬂw=ﬁwﬂw,AAMWMMMMM=Lke$

(2.6)
and the mappings

IF 5k > Y (:k) € D(Hp)

are analytic.

The following proposition shows that the set of regular edges of o (Hg) is not
empty.

Proposition 2.2. Assume that dw € C* and B € C*°(T). Then
E1(0) = &f = min E;(k),
1(0) 0 1?61%1“13" 1(k)
and we have

Ei(k) > E1(0), keT* k #0,
as well as
Ej(0)> E;(0) =2
Moreover,
E{(0) > 0.
Proof. 'The operator
hp(0) = —A; — (Bdy + 03)°

is a strongly elliptic operator on w x T with smooth real coefficients. Hence, its
first eigenvalue is simple, i.e.

E;(0) > E(0), j = 2.
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Moreover, we could choose the normalized first eigenfunction v € C*®(® x T)
of 14(0) to be positive on @ x T. The mini-max principle yields

/ /(|V,u|2 + [(B0y + 03 + ik)u*)dxsdx;
wJT

inf
0#£ueC o (T;C5° () //|u|2dx3dxt
wJT

Ei(k) =

with k € T*. Changing the functional variable ¥ = Y v, and integrating by parts,
we obtain

Ey(k) — E1(0)

/ / V2Vl + (B3, + 95 + ik)v]?)dxadx,
w JT

= inf - )
0#£vEC o (T:C§° (@) / / V2o Rdxsdx,
wJT
(2.7)
with k € T*. Further, for any ¢ € (0, 1) we have
[ [ 02090 + 180, + 3 + ity Prdnadn
@ JT (2.8)

2//wz((l—(s_l—1)c)|V,v|2+(1—8)|33v—I—ikv|2)dX3dx,,
wJT

where
¢ := max B(x3)? sup |x,|%.
x3€T Xt Ew

Now, (2.7) and (2.8) yield

//w2|83v+ikv|2dX3dx,
wJT

inf '
0F#veC > (T;C5° (@) / / V2 |vPdxsdx,
T
@ (2.9)

Ei(k)—E1(0) > (1+¢)!

with k € T*. Let
W(x,) := dist(x;, dw), x; € w.

Then there exist constants 0 < ¢; < ¢» < oo such that

caV(xy) S Y (xe,x3) S c2W(xs), x; €w,x3eT. (2.10)
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The lower bound in (2.10) can be obtained arguing as in the proof of [9, Theo-
rem 7.1]. The upper bound follows from the facts that y € C*°(oxT), ¥puxT = 0,
and in a vicinity of dw there exist smooth coordinates in @ such that the variable
normal to dw is proportional to W(x;). Expanding w € C°°(T) in a Fourier series,
we easily find that

/|w'+ikw|2dx
inf L =k2, keT*
0#£weC oo (T) /|w|2dx
T

Therefore,

/|83v(x,,x3)+ikv(x,,x3)|2dx3sz/|v(x,,x3)|2dx3 (2.11)
T T

for any x; € w and v € C®(T; C§°(w)). Multiplying (2.11) by W(x,)? and inte-
grating with respect to x; € w, bearing in mind (2.10), we obtain the estimate

//w2|83v+ikv|2dX3dx, 5

inf  Jodl >3k, keTr. (212

0£veC ™ (T;CE° (@) //1//2|v|2d)c3dx, 3
o JT

Now (2.9) and (2.12) yield

2
c

Ei(k)— E1(0) > —L—k? keT* 2.13

1(k) 1()_(1+C)C% (2.13)

In particular we have, E1(k) > E;(0) for 0 # k € T*. Since E; is ana-

lytic in a neighbourhood of k = 0, we find that (2.13) also implies E(0) = 0,

E{(0) > 0. 0

Remark. The assumptions dw € C* and € C*°(T) of Proposition 2.2 are too
restrictive; we impose them for the sake of simplicity of the proof.

Let us now comment on the validity in general of conditions (i)—(iii) in Def-
inition 2.1. It is well known that in the case of 1D Schrodinger operators with
2n-periodic potentials (Hill operators), the analogue of condition (i) is always ful-
filled (see e.g. [20, Theorem XIII.89]). The results of [17] imply that generically
this is also the case for multidimensional Schrodinger operators with periodic po-
tentials. It is quite likely that the methods of [17] could be successfully applied in
order to show that condition (i) in Definition 2.1 is generically valid.
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Further, condition (ii) would immediately follow from condition (i) if we know
that the band function E E'E  is not constant on any interval of positive length.
On the other hand, the non constancy of Ef ) would follow from the absolute
continuity of o (Hpg), which however has not been proven yet in maximal gener-
ality. Probably, the most general results concerning the absolute continuity of the
spectrum for periodic quantum waveguides, are contained in [13]; reduced to the
special case of Hg, these results imply that o (Hp) is purely absolutely continu-
ous under the (technical) assumption that j is an odd sufficiently regular periodic
function of x3. Essentially less general result could be found in [2] where it is
shown that for each E > 0 there exists ¢ > 0 such that 0 € w and diamw < ¢
imply that o (Hg) on (—o0, E) is purely absolutely continuous.

Let us comment briefly on the possible number of points M; *+ at which the
band function E;f i(j) attains its extremal value Ei Since the ﬁber operator hg (k)
is anti-unitarily equivalent to /g (—k) under complex conjugation, in principle, the
band functions E; could attain their minimal and maximal values at several points
of R/Z (see [5] for an example concerning a particular 2D periodic waveguide, as
well as [6, Example 4.4] concerning a 3D waveguide with weak periodic twisting),
which is reflected in condition (ii) of Definition 2.1.

Finally, the analogue of condition (iii) in Definition 2.1 for Hill operators is
always fulfilled (see e.g. the proof of [20, Theorem XIII.89 (e)]). In the case
of multidimensional Schrédinger operators with periodic electric potentials, the
analogue of this condition is known to hold true at the infimum of the spectrum
(see [15]) but, as far as the author is informed, there is no general proof that it
holds at the edges of eventual bounded gaps in the spectrum. Note that in our
case conditions (i) and (ii) imply that for each kfm there exists ¢ € IN such that
the derivatives of E;f o At k]im of order 1,...,2¢g — 1, vanish, but the derivative
of order 2¢ does not. The proofs of our main results could be easily extended to
the case of degenerate extrema, i.e. the case ¢ > 1; we do not include these quite
straightforward but tedious extensions just because we do not dispose of examples
that such degenerate extrema could in fact occur.

2.2. Statement of main results. Let 7 be a self-adjoint operator in a Hilbert
space, and J C R be an interval. Set

Ny(T) :=rank 14(T) (2.14)

where 14(T) is the spectral projection of T corresponding to J. Thus, if we have
INoess(T) = @, then Ng(T) is just the number of the (discrete) eigenvalues of T,
lying on the interval J, and counted with their multiplicities.
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Assume that B € C(T;R), ¢ € C(R;R) N L*(R), limx»ae(x) = 0.
Then the resolvent difference Hﬁ_1 — Hﬂ__le is a compact operator, and hence
Ocss(Hp) = 0ess(Hg—c). Therefore, (2.2) implies

J
R\ oess(Hp—e) = | J (€5, €)).
Jj=0

Put

NF() = Ni_oo,et—y(Hp=e). A >0.
Fix € € (¢}, 8;'), j =1, and set
N; (V) = Negz1ae)(Hp—e), A €(0,€—Ej),
Nf() = N(S’Sj_k)(Hﬂ_e), Le(0,&f-¢).

Assume that the edge point EIjF is regular (see Definition 2.1). For x3 € T and

m=1,....M ji, introduce the functions

n‘;l,:m(x?))
:= 2Re / 0o (xr. x3: k) (B(x3)0y + 3 + i35, Wi (X1, X33 k35 )t
w
(2.15)

and their mean values
() = == [ nEa)d
Mml == o Tnj’m xX)ax.
Forn € Z4 and @ > 0 set

Sna(R):={u e C"R:R) | uP )| <ce(1+|x)* xeR, £=0,....n).

(2.16)
Denote by S,J[, «(R) the class of functions u € 8, (R) for which there exist con-
stants C > 0 and R > 0 such that u(x) > C|x|™* for |x| > R. Now we are in
position to formulate our main result.
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Theorem 2.3. Let B € C*(T), and (8]_ 8;’) J =0, beagapino(Hg). Assume
that the edge point Ef is regular.

(i) Leta € (0,2), € € Sj{’a (R). Assume that there exists at least one integer

m=1..., Mji’ such that i(’l]ﬂ-fm) > 0. Then we have
N ()
Mji
= %mi:l {(x.k) € T*R | uF,k? F 21 (0, )e(x) < =AH(1 +o(1))
1 Mji
= ;n;(ﬂfm)_l/z /R(ﬁﬂ(nfm)e(x) —)M2dx (1 +0(1)) =< 227«

2.17)

with A | 0, where | - | denotes the Lebesgue measure. In particular, the fact
that Nji (L) grows unboundedly as A | 0 implies that there exists a sequence
of discrete eigenvalues of the operator Hg_. which accumulates at SJT—L.

If, on the contrary, we have :I:(nji’m) <Oforallm=1,..., MJ.“—L, then
+01y —
N;F(A)=0(1), Al0, (2.18)

i.e. the discrete spectrum of Hg_. does not accumulate at SJ“.—L.

(ii)) Let @« € (0,2), € € 844(R). Assume that :I:(r]]j.fm) < 0 for all m,
and (r]]ﬂfm) = 0 for somem =1,..., MJ?—L. Then for each k > 0 we have

NF() = O(A273 ), 10, (2.19)
if o € (0, 1], while (2.18) holds true if « € (1,2).

(iii) Let o =2, € € 842(R). Suppose moreover that there exists a finite limit

L:= lim x%e(x).
|x|—>00

Then we have

ME
1 20 VL 1\ 1/2
lim|In A" NFQ) = = Y (# - —) .
40 = Kim 4/ +
If, moreover, :|:87r(nji’m)L < u]ﬂ-fm forallm=1,..., Mji, then (2.18) holds

true.
(iv) Leta > 2, € € 84,4(R). Then (2.18) holds true again.
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Remark. As mentioned in the Introduction, the case of a constant 8 was consid-
ered in [8]; in this case our Theorem 2.3 reduces, after minor modifications of the
assumptions, to [8, Theorem 4.4]. Note that if 8 is constant, then (—oo, 83’ ) is
the only gap in o(Hp), the value £ is attained only by the band function E; at
the unique point k{{ , = 0, and E7(0) > 0 (see [8, Theorem 3.1]). Moreover, the
eigenfunction ¥ (+; 0) is real valued and independent of x3, so that we have

T = (g,) =28 / B (re: 0))%dxs.

It could be shown that the analogue of Theorem 2.3 (ii) could be then strength-
ened, namely ng', 1 = 0 implies that the spectrum of Hg_, is purely essential for
any reasonable decaying e, so that Ni () = 0 for any A > 0.

2.3. Comments on the main results. Introduce the operator

ME 2
56 = ) (~ iy F 2l ).

m=1

+
self-adjoint in L2(R; cM; ). Proposition 2.4 below shows that J{ji could be con-
sidered as the effective Hamiltonian which governs the asymptotic behaviour of
the discrete spectrum of Hg_ near the regular spectral edge Ef. More precisely,

NFA) ~ Noo—n)(FHF), A L0 (2.20)

Asymptotic relation (2.20) means that:

e we have
NE(L)
A0 N(—oo,—2)(H57)
if N—o00,—2) (ﬂ-(;c) grows unboundedly as A | 0 (except, possibly, for the case

where (2.19) holds true; then N3 (4) and N(_oo, ) (H") admit upper bounds
of the same order);

e the function N;E (A) remains bounded as A | O if the same is true for
N—oo,-2) (%j.i) (again except, possibly, for the case where (2.19) holds true).
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Let us now formulate Proposition 2.4. Let n € C(T; R). Set

1 21 0 1 2
F—R— x)e "dx, LeZ, = —/ x)dx.
ne= o= [ e =5 [ e

Let u > 0, € € L*°(R; R). Introduce the operator

d2
het := —pu—— —n(x)e(x), x €R,

dx?
self-adjoint in L2 (R).

Proposition 2.4. Let n € C(T; R). Assume that {1} ey € L1(Z).

(i) Leta € (0,2), ¢ € SLX (R). Assume that (n) > 0. Then we have

N(—o0,~1) (freft) = %I{(x,k) € T*R | uk? — (n)e(x) < =A}(1 +o(1))

Q=

= % [ e =22 1+ o1 = a2,

with A | 0.

If, on the contrary, (n) < 0, then

N—oo,~1)(het) = O(1), A | 0. (2.21)

(ii)) Let o € (0,2), € € 84,4(R). Assume that (n) = 0 Then for each k > 0 we
have

1 1
Noo,—1y(hef) = O(A272¢7%), 4 | 0,
if o € (0, 1], while (2.21) holds true if « € (1,2).

(iii) Let o =2, € € 84 2(R). Suppose moreover that there exists L € R such that
limyy|— 00 x?€(x) = L. Then we have

. - L /(mL 1\1/2
lim [In A7 N —a) (heff) = —(—— — =) .
tim 10 417" Necow, (o) = — (5= = 7).,

If, moreover, 4(n)L < u, then (2.21) holds true.
(iv) Leta > 2, € € 80 o(R). Then (2.21) holds true again.
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Possibly, Proposition 2.4 is known to the experts. However, we could not find
it in the literature and that is why we include its proof in the Appendix. The propo-
sition could be of independent interest due, in particular, to the non semiclassical
nature of some of its results. Proposition 2.4 admits far going extensions to mul-
tidimensional Schrodinger operators; hopefully, we will consider them in a future
work.

3. Proof of the main result

3.1. Auxiliary results. This subsection contains auxiliary results needed for the
proof of Theorem 2.3.

Let X;, j = 1,2, be two separable Hilbert spaces. We denote by Soo (X1, X2)
the class of linear compact operators 7: X; — X5. If X1 = X, = X, we write
Soo(X) instead of Soo (X, X). Let T = T* € Soo(X). For s > 0 set

n+(s;T) := Ns,00)(ET)
(see (2.14)); thus, ny (s; T) (resp., n—(s; T')) is just the number of the eigenvalues
of T larger than s (resp., smaller than —s), and counted with the multiplicities.
Ift7; = TJ* € Swo(X), j = 1,2, then the Weyl inequalities

ny(s1+s2:T1 +12) <ni(si;Th) +ni(s2; 1) 3.1

hold for s; > 0, j = 1,2, (see e.g. [4, Theorem 9, Section 2, Chapter 9]).
For T € S (X1, X3) and s > 0 put

nk(s:T) :=ny(s%T*T). (3.2)

Thus, n4(s; T') is the number of the singular values of T larger than s, and counted
with the multiplicities. If 7; € Soo(X1, X2), ands; > 0, j = 1,2, then the Ky Fan
inequalities

na(s1 4 52:T1 + T2) < nu(s1: T1) + nu(s2: T2) (3.3)

hold true (see e.g. [4, eq. (17), Section 1, Chapter 11)]). The following lemma
contains spectral estimates for finite-rank and bounded perturbations.
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Lemma 3.1. Let—oco<a<b<oo, T =T

(1) [4, Theorem 3, Section 3, Chapter 9]. Let S = S* be bounded and suppose
rank S < oo. Then we have

N@ap)(T) —r1ank S < N p)(T + S) < N@gp)(T) + rank S.

(i) [4, Lemma 3, Section 4, Chapter 9]. Let S = S* be bounded and suppose
o(S) C [ay, b1]. Then we have
N(a,b) (T) < N(a+a1,b+b1)(T +5).

Further, we recall an abstract version of the Birman-Schwinger principle, suit-
able for our purposes.

Lemma 3.2 ([3, Lemma 1.1]). Let T = T* > 0, and let S = S* be relatively
compact in the sense of the quadratic forms with respect to T. Then we have

Nooy(T =18) = n (r (T + 1)7V28(T + 1)7V?)
foranyr >0and A > 0.

Our next lemma contains well known results on the asymptotic behaviour of
the discrete spectrum for 1D Schrodinger operators.

Lemma 3.3. Assume that > 0.
(i) LetV € Sta (R) with o € (0, 2). Then we have
d2 1 1/2 1_1
N(—OO,—/X)(_/’LW — V) = m /]R(V(X) —A)_‘_ dx (1 + 0(1)) = A27@ ’
for A | 0.
(ii) Assume that V € 8¢2(R) and there exists a finite limit

L:= lim x*V(x).

|x|—>o00

Then
iy 10 Ve~ =) = 7 (5= 9))

If, moreover, 4L < yu, then

d2
N(_oo,_,x)( —pos - V) —0(l), A0 (3.4)

(iii) Suppose V € 8¢ 4(R) with o € (2, 00). Then (3.4) holds true again.
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The first part of the lemma is a special case of [20, Theorem XII1.82], the proof
of the second part is contained in [16], while the third part follows from the result
of [20, Problem 22, Chapter XIII].

The last lemma in this subsection concerns the Fourier transform of a function
u € 8,.4(R). For u € 8(R), introduce its Fourier transform

(Fu)(k) = a(k) := 2n)"/? / e *ku(x)dx, keR. (3.5)
R

Whenever necessary, the Fourier transform is extended by duality to the dual
Schwartz class 8'(R). We will use the same notations for the partial Fourier trans-
form with respect to x3 € R in the case u = u(x;, x3), (x;, x3) € Q.

Lemma 3.4. Assume thatu € 8, 4(R), n € N, @ > 0. Then i € C" (R \ {0}),
and there exists a constant C such that

sup [a" D (k)| < Cx—2mH! (3.6)

|k|=x

for each k € (0,1].

Proof. We have

n—1 i dn—l—s
20D () = Z(” s 1) e Lk, keR\(0). G

dkn 1—s dks
5s=0
Moreover,
e (k” k)) = W/ e xSy (x)dx, k eR. (3.8)
Therefore, by (2.16),
sup dks(k” (k))‘ on )1/2/ IXI*(1 + [x)7*"dx <00,  (3.9)
€

fors =0,....,n—1and o > 0. Now (3.7)—(3.9) yield i € C* (R \ {0}) and
estimate (3.6). O
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3.2. Projection to the spectral edge of Hg. In this section we fix the gap
(&5, S;L) in 0(Hp), choose the edge ;" or 8;’ which is supposed to be regular,
and restrict the analysis to the spectral subspace of the unperturbed operator Hpg
which corresponds to a small vicinity of this edge. Set

mE k) = [YECGRONYECK)

(see (2.6) for the definition of wji), and

+
, keij,

®
+._ + +._ prpt +._ +
i .—/jinj (kydk, P7 =P ®, Q7 :=1-P;".
J

Thus, PjlL and Qf are orthogonal projections in L2(£2). Since they commute with
Hﬂ_l, they leave invariant D(Hg) = D(Hp_.) = H?(Q) N H} (). Let us recall
now that

Hp_c = Hp + 2B€d; + 2€0,03 — €20, + €'d,. (3.10)

In particular, the perturbation Hg_. — Hpg is a second-order differential operator.
The spectral properties for second-order localized perturbations of second-order
elliptic operators were considered in [1] in a different context. Further, (3.10)
implies
Hp_ = PFHp_ P;*
u 3.11)
+ QFHp_QF + > (PFfiLiQf + OF fiLi P}F).
i=1
where
fl = 2/361 f2 = 2e, f3 = —62, f4 = 6/,
Li=L3= 33, Ly = 0,03, Ls4=0,.
Letus now write / = Hj H?, then commute f; with appropriate powers of Hy!.
Taking into account that

[ﬁ’Hﬂ—l] — Hﬂ_l(f;'// + 2Jpl/D)Hﬂ—l
where
D = 188([7 + 83,
we find that

n; r,,,,-

PEALIQF =Y Y PEH}gia Hy P Kin, QF. i=1.....4. (312

n=0r=1
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where g; , » are the multipliers by decaying functions of x3, and K , , are bounded
operators in L2(2). Let us define explicitly the functions g; , » and the operators
Kiny Fixi =1,2,3. Thenn; =2, rp,; = 2, and

gion = 1. Kion=Hg"?(Hg' —4DH;'DH")L;,
giv2=f . Kioa=2H/>(DH;'+ H;'D —4DHg'DH;'D)Hy' L,
ri,; = 2,and
gita=f . Kiia=-2H;">(1 —2DHZ'D)Hg"L;,
gii2=/f, Kiip= —217‘;/2(DH£;_1 + Hﬂ_lD)Hﬂ_lL,-,
while r, ; = 1, and
gip1 = fi. Kiza= H3_3/2Li-
Finally, if i = 4, thenngy = 1, ro.4 = 2, and
84,01 = f4wa K401 = 2Hﬂ_1/2DHﬂ_1L4,
84,02 = f4”, K402 = —(Hﬁ_l/2 - 4H;/2DHﬂ_1DHﬁ_1)L4,
while r; 4 = 2, and
ga11 = f1, Kaig= —2Hﬂ_1/2DHﬂ_1L4,
8412 = fa. Kyi12= Hﬂ_l/2L4.

Hence, (3.12) implies that for any v € (0, 1) we have

4
D (PFfiliQF + OF fiLi P}F)
=1 (3.13)

ni Tn.i

4
14+v
=2Re) Y Y PEHRIGiasl 2 Sinr(0)O}

i=1n=0r=1

where

. 1—v
Si,n,r(V) = Slgngi,n,r|gi,n,r| 2 H,B 1/21<i,n,r-
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Lemma 3.5. Let 0w € C?, B € C*(T; R), € € 844(R), @ > 0. Then the operators
Sinr(v) withv € (0, 1) are compact in L2(Q).

Proof. Since the operators K ,, , are bounded, and sup, ¢ |gi n,-|(1+]x])* < o0,
it suffices to show that the operator (1 + |x3|)_"Hﬁ_1/2 withk = a(1 —v)/2>0

is compact in L?(Q). Evidently, the operator HO1 2y ﬂ_ 1/2 is bounded in L2(RQ),

so that it suffices to prove that the operator (14 |x3|)™ H, 1/2 i compactin L2(2).

Expanding the function u € L2(2) with respect to the eigenfunctions of the
Dirichlet Laplacian —A,, self-adjoint in L?(w), we find that (1 + |x3]) ™ H, 1/2 i
unitarily equivalent to the orthogonal sum
d? —1/2
P+ 1™ (-5 +4) (3.14)

dx?
LeN

self-adjoint in £2(IN; L2(R)); here, {A¢},cp is the non decreasing sequence of the
eigenvalue of the Dirichlet Laplacian —A,. Since x > 0, the operator

2

A+ (— )

with ¢ € N fixed, is compact in L?(R) by [4, Theorem 13, Section 8, Chapter 11].
On the other hand,

_ d? —1/2 _
H(l +1x)) K(— — + ) H <2 ten,
and
lim A,"/* = 0.
{—00
Therefore, the orthogonal sum in (3.14) is compact. O

Lemma 3.6. Let w, B, and € satisfy the hypotheses of Lemma 3.5. Assume that
Ej_, j =1 (resp., 8;.“, Jj > 0)is a lower (resp., upper) regular edge point of a gap
in 0 (Hpg). Then the operators |g; n.r| =N Hg PjjE are compact in L2(Q).

Proof. Since

14v L
|gi,n,r| 2 H’ngi = |gi,n,r| 2 H,qu*?;tq)’

it suffices to prove the compactness of

14v n
|gimrl 2 GF(EF)": L2(0F) — LX(Q), (3.15)
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where
+. 720+ 2
Gj :L (ij)—>L ()

is the operator with integral kernel
1/rf(x,,X3;k)eix3k, (x;,x3) € Q,k € Jf.

Let us first prove that Gji is bounded. To this end we will prove the boundedness
of

(GH*: LX(Q) — L*(JF);

the argument is similar to the proof of [19, Lemma 3.1]. We have
(GH*u)(k) = / e Ky E (xy, xak)u(xy x3)dx,dxs, k€7
Q :
Write wji (x¢, x3; k) as a Fourier series with respect to x3, i.e.

U Cxaik) = Q0723w (ke

LEZ

with

Z/ Wi (i k)Pdx, = 1. k €T7.

ez’
Then

(GH)*u) (k) = Z/ (xe, k + O, (x)dxy,
Lez.v

and, hence,

[RCGERICRE

S/i(Z/ |ﬁ()€t,k+£)|2dxt)(2/ sz(xz;kﬂzdx,)dk

jj LeZ @ {7, [

=3[ [tack+ opavak = [ [ lac.oPdsak
leZ ™ Jo RJo

:/ lu(x)|>dx
Q

which implies [ (GF)*|| = |G| < 1.



352 G. Raikov

Now fix N € N and denote by yn the characteristic function of the interval
[N, wN]. Write

I+v I+
\8imrl 2 GF(EF)" = yn(x3)|gimr(x3)| 2 GF(EF)"

L (3.16)
+ (1= yn (x3))|gimr(x3)] 2 GE(EF)".

We have
1t
lxw1ginrl = G (EF) s
=< CIZN/ / / W3 (xp, x3: k) [P dkdxsdx,
o JT J;-t
< C{N,
where || - |gs denotes the Hilbert—Schmidt norm, and

14v
Cr := sup |ginr (X)| 2 sup Ej (k)"
x€R

kejji
Moreover,
v 4 tn
(1= xN)Igimrl = GE(ES)"|
o (l14v)
<C(l+7N)" 2 ||GF||
< (1 + 7Ny~
where

Ca := sup [(1 + [x)* gin,r ()| T2 sup EF (k)"
xX€R

+
kejj

14 . . .
Thus, the operator |g; » - | e Ji (E ]-i)” in (3.15) can be approximated in norm by
compact operators, and hence it is compact itself. O

Forv € (—1,1) set
py(x3) i= (14 x2)7@UH/2 0 i e R, (3.17)

As usual, we will denote by the same symbol the multiplier by p,, acting in L?(2)
or in L2(R). Now we are in position to prove the main result of this subsection.
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Proposition 3.7. Under the hypotheses of Lemma 3.6, there exists a co > 0 inde-
pendent of A such that for any v € (0, 1) we have

2
Ncoo iy (P (&5 = Hpe+ 0y ngng)P;) +0(1)

n=0

< N7 (%) (3.18)

2
< Neoory (P (€ = Hp—c = co Y HjpuHP) P ) + O(1),

n=0

or, respectively,

2
N(_Oo,_;t)(PjJr(Hﬂ_e EENES ngng)P;f) + o)

n=0
<N (L) (3.19)

2
< N(_oo’_,l)(PjJr(Hﬂ_e —er ey ngng)Pf) +0(1),

n=0

as A | 0.

Proof. Introduce the operators

Ap = Ay L2(Q) — L2(Q;CY)

and
By = By.;: L2(Q) — L2(Q:CY)
by
v on ot
Axu ={|ginrl 2 H,B Pj Upi=1,.., 4;n=0,..n;;r=1,...1 ;>
and

Biu = {Si,n,rQ]:'tu}i=1 ..... 4;n=0,..n;;r=1,....7p ;>

for u € L2(2). By Lemmas 3.5 and 3.6, the operators A+ and B are compact.
Let us now prove (3.18). Taking into account (3.11) and (3.13), we easily find
that

Hpg =P (Hp_c+ A*A_)P7 + Q; (Hg_c + B*B_)Q; —CZ

(3.20)
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where

C> = (A* — B*)(A_ — B_)

>

and
CZ = (A* + B*)(A- + B-).

Evidently, the operators C_ and C_ are compact and non-negative. Applying
Lemma 3.1, we get

N(EJ-_+A,€—S)(P,'_(Hﬂ—e - AiA—)Pj_)
+ Nees+2,e-9)(Qj (Hp—e = BZB)Q}) —n4(s:C2)
=N; () (3.21)
< Ner+a,e+5) (P (Hp—e + AZA)P))
+ Neer+a,e+(Q; (Hp—e + BZB)Q7) + ny(s: C2),

where s € (0, min{E;' —&,.&€=¢&PandA € (0,€ - &; — ), while the operators
P (Hp— £ ALA_)P; (resp., Q; (Hp—e &= BZB_) Q) are considered as opera-
tors with domain P;” D(Hp) (resp., Q; D(Hp)), self-adjoint in the Hilbert space
P7L2(Q) (resp., Q7 L*(R2)). Further, by construction,

[€.€1) N o(Q7 HgQy) = 0.
Due to the compactness of the operators Hg_ — Hg £ B* B_, we have
[€7.€) Noess(QF (Hp—e + BXB-)Q}) = 0,

and, hence,

Nier4n.e4(Qf (Hp—c + B*BL)Q7) = O(). A L0. (3.22)
Next, oess (&5 — Hp—e F A* A_) C [0, 00). Therefore,

Ne7+a.exs) (P (Hp—e £ AZA)P))
= Ner—eFs,—0) (P (€] — Hp_e F AZA)Pj7)
= N(oo,-1) (P (5 — Hp—e T AZA)P}") (3.23)
— Noo,e7—eFs)(Pj (€] — Hp_e F AZA)P))

= N(_oo,_g)(Pj_((c,j_ —Hg_F AiA_)Pj_) +0(), Arlo.
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It is easy to check that there exists a constant ¢y > 0 such that
2
PyA*A_P] <coy Py Hjp,Hj P} .
n=0
Therefore,

Nicoo—) (P} (] = Hp—c = AZA) P}

2 (3.24)
< Necoon) (P76 = Hp—c —co Y Hypy HE)P) ).
n=0
and
N(—oo,—k)(Pj_(gj_ —Hg_+ AiA—)Pj_)
2 (3.25)
> Neoo,n) (P7(67 = Hp—c + o0 Y HipuHJ)P).
n=0
Finally, due to the compactness of the operators CZ and CZ, we have
ny(s;C2) <oo, ny(s;Cr)<oo, s>0. (3.26)

Putting together (3.21)—(3.26), we obtain (3.18). The proof of (3.19) is quite sim-
ilar, so that we omit the details, and just point out that the analogue of (3.20) is

Hp-e = Pj (Hpg-e — AL AL)P] + O (Hp—e + B1B4) Q5 + CF
= P (Hp_c + AL A{)P; + Qj (Hpg_c + B1By)Q; —CZ,
where
CH = (AL + BY)(Ay + By).
CI = (4% = BY)(A+ + By),
while the analogue of (3.21) is
N(S-}—s,&j‘—x)(Pj-}_(Hﬂ—e + A1A+)Pj+)
+ N(a+s,aj—x)(Q;r(Hﬂ—e + BXB-)Q) —ni(s; CT)
<Nf@)
= N(e—s,aj—x)(
+ Niegs,et—)(QF (Hpe = BZB)QF) +n(s:C). m

P} (Hp_e — AL A4)P)
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3.3. Reduction to a Schriodinger-type operator. Introduce the unitary opera-
tors

+. 7121t +y2
U L2(0F) — PFLA(Q)

which acton f* € L?(J7) as follows
U ). x3) = (% f5) (e x3), (xe.x3) € Q,

w]i(x,,xyk)f(x) if(x;, x3) € w x T, k € IF,

f;-i(x,,X3;k) = .
if(x;,x3) €ewx T,k e T* \JJ-JF.

Further, define
[ L2(0F) — L2(Q). (=0,....4,
as the operators with integral kernels

’x3ky]ie(x,,X3;k), (xt,x3) €Q, ke iji,

where
yi (v xak) = 9,0 (xp, x31k),
Vi (x,x33k) 1= (B + 05 + i)Y (e, x331K),
Ve Coro k) = V2 Cr vt VB (), 1= 0,1,2.
Set

TH(c) == £EF F £F F2Re(TF) el + (D) *e? T — ¢ Z( N

with ¢ € R.

Remark. If
¢p:R—C

is in a suitable class, then the operator

(T oI, LA (TF) — L*(T7)
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admits interpretation as a pseudodifferential operator (YDO) with amplitude
Ak, ks x) = 2n¢(—x)/ y].iz(xt, —x;k)yjim(x,, —x:k")dx;,,
e ,

k. k' e Jf, x € R(seee.g.[22, eq. (23.8), Chapter IV]), i.e. as an integral operator
with kernel

1 I
—/ Ak, k'; x)e' K=K g
2w R

note that here k plays the role of the “coordinate variable” while x plays the role
of the “momentum variable.” Even though we are in the simple situation where
the underlying domain J]jF is just a finite union of bounded intervals, some of the
following arguments will be inspired by the general theory of WDOs.

It is straightforward to check that

2
PE(* Hp e FEF —c Y HppoHY ) PE = UF T () (U, ceR.

n=0

Therefore,

2
Nicoo,-( P (EHp—c F €5 — ¢ 3 HEpu HY) P = Neoo, - (T (€)),

n=0
(3.27)
with A > 0, ¢ € R. Further, introduce the multipliers
af(\) = (XEj,, FE + 172 1>, (3.28)

as well as the operators
Ti5(0)
= aF (1) 2Re(Tf)" el F (T "€ Ty + ¢ i(rﬁ)*pvrﬁ)af(x),
= (3.29)

compact and self-adjoint in L2 (JJ-JF). Applying the Birman—Schwinger principle
(see Lemma 3.2), we get

Ncoor—2) (T (c)) = n1(1: Ti5(As¢)), A >0,c €R. (3.30)
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Our next goal is to show that if we replace on the intervals J; ,, m = 1,..., M ji,
the functions y;;(x;, x3, k) by their values at k = kfm, as well as the functions

Ej(;y(k) F & (see (3.28)) by their main asymptotic terms 5, (k — k3,)* as

k — kji,m, we will make a negligible error in the asymptotic analysis of N;E (A) as

A | 0. To this end, we define fjﬂfz : L2(JJ“.—L) — L2(Q),£=0,...,4, as the integral
operators with integral kernels ei"3k)7].ie(xt, x3: k), (x¢,x3) € 2,k € Jf, where

MF
ffﬁ()ct,xyk) = Z ij,Eﬁ(xt’xﬁkfm)Xfm(k)’

m=1
and in,m is the characteristic function of the interval
I, = (ki — 8.k, + 6).
,...:t . .
Denote by a;"(4), A > 0, the multiplier by
MFE

J
S Wk = kE)? + M)V, (), k€T,

m=1

the quantities ,uj.fm being introduced in (2.3). Define the operators
~ ~ ~ 4 ~ ~
TEMe) = a;—L(A)( +2Re(T%) el + ¢ Z(rﬁ)*pvrﬁ)af A),
i=0

A > 0, ¢ € R, compact and self-adjoint in L2(in).

Proposition 3.8. Under the hypotheses of Lemma 3.6, for any co € R there exists
a constant ¢1 > 0 independent of A such that for any v € (0, 1), and s € (0, 1), we
have

ne(1+5: Ti5 (s —e1)) + Os(1) < (1 Tj5 (A co)), (3.31)

(1 T5(¢0) < na (1= s: Tj5(Asen) + Os(1), (3.32)

as A | 0.
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Proof. For definiteness, let us prove (3.32). It is easy to see that for any given
¢o € R there exist constants ¢1, ¢, > 0 such that

4
+ 2Re(I) "el'f5y F () "I +co ) () ool
=2
4
< £2Re(T) el + 1 Y (TH) o5 (3.33)
i=0

4
T Z(Fj%i - I‘ﬁ)*p_,,(Ffi - I‘jﬂ,ci)'
i=0

j:l:

For a given r € (0, 1), pick a § > 0, the semi-length of the intervals > SO small

that for each A > 0, on JJﬂF
ai (M) = (1—r)a;(L). (3.34)

Estimates (3.33)—(3.34), the mini-max principle, the Weyl inequalities (3.1), iden-
tity (3.2), and the Ky Fan inequalities (3.3) now imply

ny(1: Tj5(A: co))

<ni (1= TER ) (3.35)

4
+ 3 na((1 = 1)(r/en)V?5: pH2(EE — Ti)at (L)),
i=0
Define
6% L2(0F) — L2(Q). i =0.....4,

as the operator with kernel

M*
, I oyEXk)—yEX kT
oix3k Z y],z( ]z Z]il( J,m) ij,:m(k), k € j]j-E,x = (x7,x3) € Q.
m=1 —Nim

Since

|k — kfm|(//“/j'fm(k - k]:',tm)z + )72 < (M]j-fm)_l/z, kedt 1>0,

J,m>

we have

na(r: pUA(TE = TE)aE ) < nu(r(u,) % pM255), r>0,1>0. (3.36)

-V
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Let us prove that the operators
plrSH L2 (0F) — LX(Q)
are compact, arguing as in the proof of Lemma 3.6. By analogy with (3.16), write
PUZGT: = an Pl S5 + (1= xw)pli g5

It is easy to check that

Lo M2GE B < 2N sup / / 01y (x. k)P,
keJ

lanp 252 < (1 4+ 2N)™=0) sup / / 01y 5 (x. ) Pdx,
kejj.t o JT

which implies the compactness of the operators p_, G, ; in particular, we have

i
nw(s; p2GF) <00, 5> 0. (3.37)
Combining (3.35)—(3.37), we get (3.32). The proof of (3.31) is analogous. O
Next, define the unitary operator
W: L*(JF) — L?((=4.96): M7

by
W) (k) == ulk + k35,), ke(=8.8).m=1,....M*,

J
for u € L?(J¥). Set

T (43) 1= / Y E e X0t Ky (o, i ki
w

= / Wi (xr. X33 k35, (B(x3) 0y + 03 + ikj5) V3" (x3, x4 k35, )dx

and

SANED —Z/y],(xt,xs,k Y (s e K )dxy,

withx3e T, mn=1,...,. M J?—L; thus 2Re nj;m,m (x3) coincides with the function
N5, defined in (2.15).
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Let
+ +
TH (. ¢): L2((=8.8): €M) — L*((=8.8): C™7)
be the operators with matrix-valued integral kernels

+
M;
mun=1’

TE(k k' AL c) i={T5,, (k. k' X )} k. k' € (=6.95), (3.38)

with
Tk k' A )

=V 27T&j,m (k, A)(EF(:I:G(n;t,m,n + n]:'t;n’m)
+ o8k =K+ k5 = ki) (K2 1),

where, as indicated in (3.5), ?(ie(nﬁm’n + njc;n,m) + cpy¢E ) is the Fourier

Jim.n
transform of the function :I:e(nj-c.m at r]]jfn m) T ol J#Fm >

and
ajmkid) = (k2 + VY2 m=1,....mF . ke (=5.9).

Then we have
THi0) = WTH A oW;

in particular,
ni(s:T5M0) =ni(s:T5(Ase)). A>0,c €R. (3.39)

Our next goal is to show that if we omit the off-diagonal part of (3.38), and replace
in its diagonal part the functions

— + +
n]’m = 2R€7]],m,m and ;]’m = é‘],m,m

by their mean values, we will make a negligible error in the asymptotic analysis
of N;E (A)asA | 0. Let

tE, (A 0): L2(=8,8) — L*(=8.8), m=1,..., M7,

be the operators with integral kernels

Tk k' A €) i= 27 m (ke M (E(0750)€ + ¢{85)B0) (k — K)ajm (ks 1),
(3.40)
for k, k' € (=4,9).
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Proposition 3.9. Under the hypotheses of Lemma 3.6, for each s > 0, r € (0, 1),
and ¢ € R, we have

mME

Y s+ 1) 175 1 (A, 0)) + Os,r (1)

m=1

<ny(s: T 0)) (3.41)

mME
<Y (1 =r)itf, (A 0) + O, (1), A 0.
m=1

Proof. Set
MjjE
THEM. )= P i, (Ao
m=1
Then,
MjjE
ny(s:TH(A ) =Y ni(sith, (A.0). s>0A1>0ceR. (342
m=1

On the other hand, the Weyl inequalities imply that for s > 0 and r € (0, 1) we
have

i (s(L+ )i TR 0)) = n-(s7: T3 0) = Tig(A. 0)
<ni(s: T ) (3.43)
<y (s(1 =i TRAL ) + na (57 T3 ) = Tig(4,0)).

Bearing in mind (3.42)—(3.43), we find that in order to prove (3.41), it suffices to
show that for each s > 0 we have

ni(s: T30, ¢) = TR, 0)) = Os(1). (3.44)

n-(s: T3 (. ) = Tia (A, 0)) = Os(1), (3.45)

as A | 0. Note that

TS0 ) — T 0): L2((=8.8): €M) — L2((5.8):C™))
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can be written as an operator with matrix-valued integral kernel
V21 m(k; A) (8m,n (F(EeMTm — M) + oo (G — (G (K — k)
+ (1= 8mn) (F (€M in + M)

+ o =K+ Koy =) )i K ),
(3.46)

with k, k" € (=8,8) and m,n = 1,. ..,Mji. Pick

x < %kzi?mf# [0+ ki, — kil € (0,1/2),
and 6 € (0,x). Let ® € Cg°(R) be an even real-valued function such that
supp® C [—2x,2x], ©(k) = 1 for every k € [-24,25] and O(k) € [0, 1] for
every k € R. Then we can multiply by ©(k — k’) the entries of the integral kernel
of the operator Tj“,—;()&, c) — Tji()t, ¢), defined in (3.46), leaving them invariant.
Therefore, the quadratic form of the operator T]jE3 (A, c)— T]ﬁ (A, ¢) can be consid-

+
ered as the restriction on L?((—$§, §); cM; ) of the quadratic form of the operator
?(DZ + A)_I/ZV(DZ + A)_I/Z?*,

.. . 2 M:t
compact and self-adjoint in L*(R; C™/ ). Here
d2
2 _p2 . +
D -_ D],ﬂ: . _M] dxz ’

+
M;

ma—=1> V is a matrix-valued poten-

M5 is the constant diagonal matrix {4¢, 8, n}
tial with entries

Vi (X)
— 2 / 5 (b Y (T pge + G o)) (6 = 0
R (€7, 140
+ (1 - Sm,n) Z(?(i(nfm’n,e + n]:{:n,m;—e)é
LeZ

el Pk — L+ s, — kiE) O () dk,

xeR,n,m= 1,...,Mji, and n¥ * * * are the Fourier co-

j.mil >j,miL’ nj:,m,n;ﬁ’ j.m,n;t’
efficients with respect of the system (27)~1/2¢¢*, x € T, { € Z, respectively of
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the functions 17, ¢, 07, ,» and {7, . Bearing in mind the unitarity of ¥, and

applying the mini-max principle, and the Birman—Schwinger principle, we get
(51 T34, 0) = T3 (2.0)) < Nicoo-y(D? =57'V), 5>0. (347

Since the series of the Fourier coefficients of the functions n]m ¢E
and g‘

9 77 b
j.m? ljn.m
are absolutely convergent, while Lemma 3.4 implies that the functions

L kh, —kE). PC—lHkE —kf), CeZom#n,

and é(-— 1), py(-—¥2), L € Z, £ # 0, together with their derivatives of order up to
three, are uniformly bounded on supp ®, we have

V)| = 01+ 1x)73), x eR.

Now Lemma 3.3 (iii) easily implies that

Ncooay(D* —s7'V) = 0(1), A1} 0,s>0. (3.48)

Putting together (3.47) and (3.48), we obtain (3.44). The proof of (3.45) is analo-
gous, and reduces to the replacement of V by —V. U
Further, the quadratic forms of the operators 7%, | (A,c) m = 1,..., M/, can

be considered as restrictions on L?(—8§, §) of the quadratlc forms of 1 o, 2()L cCm),
where the operators

+
tj,m,z()tv C)

d2 —-1/2 d 12 *
i ) i st

are compact and self-adjoint in L?(RR). Applying the mini-max principle, we get

(5351 (A, €)) < (55175, , (4, 1)) (3.49)

with
1 =27 |{CE)-

Let us establish the corresponding lower bound. Define

1, 3(h0): L*(R) — LA(R)
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as the operator with integral kernel
t(k, k" A, ) p-s.5() x5k, kK €R,

see (3.40). Evidently, the non-zero eigenvalues of the operators tjim 1(A,¢) and
tjim ;(A, ¢) coincide, and we have

N (83 (A, 0)) = np(s: 1, 5(4,¢)). A >0, ceR. (3.50)

On the other hand, it is easy to see that for each ¢ € R there exist constants
¢1, ¢ > 0 such that

+ + § L (+E +
tj,m,3(k’ C) Z [j,m,z(k, _(,1) - ('2([j,m,4)*[j,m,4’

(3.51)
where tjﬂfm, . : L*(R) — L*(R) is an operator with integral kernel
(1 4 x2)~ @A/ 4pikx y o\ (s (0K 7Y%, x eR, keR.

Estimate (3.51), the mini-max principle and the Weyl inequalities imply

n+(S; tj:f:m,?a(k’ C)) Z I’l+(s(1 + r)’ Z‘j:,tyn,z(z” —Cl)) - n*( \% Sr/c2§ tj:f:m’4)‘ (352)
By [4, Theorem 13, Section 8, Chapter 11], the operator tjjfm’ 4 is compact. Hence,
(th4) <00, 5>0. (3.53)
Now, the combination of (3.50), (3.52), and (3.53) imply

Ny (5315 (A 0) = ni(s(1+1)i 15, 5(A, —c1)) + Og (1), A1 0. (3.54)

Finally, the Birman-Schwinger principle implies

nx(s

d? _
(8515, ,(,0)) = N(—oo,—A)<— //“]:'l,:mﬁ — s N (27 (0, )e + C,Ov))- (3.55)

Putting together (3.18), (3.19), (3.27), (3.30), (3.31), (3.32), (3.39), (3.41), (3.49),
(3.54), and (3.55), we find that under the hypotheses of Theorem 2.3, there exists
a constant ¢ > 0 such that for each s € (0, 1) and v € (0, 1), we have

M p
> Neoon (= mfwg = 1 +97 E2r(f,)e = o)) + 0s(1)
m=1

<NF(A)

M=

J d2 B

< Y Voo (= wfmmms = (1= 97 (&2 (e + con)) + Os(1).
m=1

(3.56)
as A | 0.
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Now the results of Theorem 2.3 follow from (3.56) and Lemma 3.3. For the
convenience of the reader, we add just a few hints concerning the details.

e First of all, note that since v > 0 we have p, (x) = o(e(x)) as |x| — oo.

o If :I:(nji,m) > 0 for some m = 1,...,M/.i, then (2.17) follows from

Lemma 3.3 (i). Here, we should also take into account the limiting relation

(£(1+ s)_127r(nji’m)e(x) - A);lﬂdx
ling)lxi?(} R = 1.
| Ean e — 07 s

o If +(n7,) < Oforallm = 1,...,M*, and € € 8] ,(R), then the positive
part of the function +2x (r]jfm)e + ¢py in (3.56) has a compact support since
v > 0. Therefore, in this case (2.18) follows from Lemma 3.3 (iii).

o If (nji,m) = 0forsomem = 1,..., M ji, then the only non-zero term of
the potential in (3.56) is proportional to p,. If « > 1 then we can pick
v € (0,1) so that (1 + v) > 2, and in this case (2.18) follows again
from Lemma 3.3 (iii). If @ € (0, 1], then (2.19) follows from Lemma 3.3 (i)
and the fact that (1 + v)a could be chosen arbitrarily close, but yet smaller
than 2«.

e If « = 2, Theorem 2.3 (iii) follows from Lemma 3.3 (ii).

e Finally, if « > 2 (and, hence, o (1 + v) > 2), then Theorem 2.3 (iv) follows
immediately from Lemma 3.3 (iii).

Appendix A. Proof of Proposition 2.4

Assume the hypotheses of Proposition 2.4 (i)—(iii). By the Birman—Schwinger
principle

Ncooy (her) = n(La()FneF*a(h)). A >0, (A1)
where

alk: 1) := (uk>+20)7Y%, keR,A>0.

Denote by y; the characteristic function of the interval (-4, §) with § € (0, 1/2).
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Set
x2:=1—x
and write

a(A)TFneF*a(d)

= MaWTFeTa@) + Y aQ)x T — eT* rad) (a2

j=1.2
+ 2Re a(A) 11F(n — (n)eT™* x2a(R).

Further, for any u € L2(R),
(QRea(M) 1 F(n — (M)eF* x2a()u. u) 2wy = 2Re (£ Q2w
where (-, -);2(g) is the scalar product in L2(R), and
f= 02T na@u, g = pl2mn— (n)epy T r2a(u. v € (0.1,
the multiplier p,, v € (—1, 1), being defined in (3.17). Evidently, since

ov(x) < p_p(x), xeR,ve(0,1),

we have
— llpd2F*a(yul|® — (1 + 2C2)|| pM2F* y2a(Au?
1 2 2

< —= -2

< =51 /17 - 2lgl

< 2Re(f, &2(r)

1

< SIF17 + 2081?

< |pL2F*a(Myu|? + (1 +2C?)||pY2F* y2a(Myull?,
with

C := sup [n(x) — (n)]po(x) " e(x)].
xeR

Therefore,

—aM)FpyF*ad) — (1 +2C*)a(d) 250 F* x2a(X)
<2Rea(d)x1F(n — (n)eF* xaa(d) (A.3)
<a(M)Fp,F ad) + (1 +2C*a() 2Fp—F* y2a(d), v € (0.1).
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Similarly,

— Ca(A) x2Fp—vTF" x2a(d)
< —Ca(A) 2T poT™* x2a(2)
< a(Q) 23— (n)eF* y2a(d) (A.4)
< Ca(A) 125 poT™ x2a ()
< Ca(A)f2Fp—,F* y2a(X), v e (0,1).

Now it follows from (A.2)—(A.4) that

a(M)F((n)e — py)Fa(l)
+a@) 13— n)eF* y1a(d)
— (1 +C +2C?)a) 2T p-vT* y2a(A)
<a(A)FneF*a(}) (A.5)
< a()F((ne + py)Fra(d)
+a)F( — (n)eF" y1a(d)
+ (14 C +2CHaN) 2T p—vF* x2a(R).
Applying the mini-max principle and the Weyl inequalities, we find that (A.5)
implies
ny(1+s:a(V)F((n)e — pv)Fra(l))
—n—(s/2:a(V) ;15 — (n)eF” x1a(R))
—n.(v/s/2(1 + C + 2C2)); pY2F* y,a(0))
< n4(l;a(M)FneF a(d)) (A.0)
=ni(1=s:a()F((n)e + py)Fa(d))
+n4(s/2:a() 115 — (n)eF™ x1a(1))
+ 14 (vs/2(1 + C +2C2)); pM2F* y2a(0)), s € (0, 1),

bearing in mind that a(k; 1) < a(k;0) for k € supp y2 and A > 0.
The operator a(A) y1F(n — (n))eF* y1a(A) admits the integral kernel

@nal: k) Y nétk -k =0 (K)ak’s2). kK €R. (A7)
LeZ\{0}
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Letx € (8,1/2), and let ©® € C5°(R) with
supp® = [—2x,2x%] and supp(l —®) C R\ (-26,26),

be the real even function used in the proof of Proposition 3.9. We can multiply
the integral kernel in (A.7) by ®(k — k') without modifying it. Hence, by the
mini-max principle and the Birman—Schwinger principle, we have

nx(s;a(M) 1 F (0 — (n)eF* y1a(d))

< na(s; 2n) " 2a()F (0 — (n)e) * ©)F*a(n))
d? A
= Neoot) (=17 F57' @0 2= D)+ ©)). s> 0.4 > 0.
(A.8)

Arguing as in the proof of Proposition 3.9, we find with the help of Lemma 3.4
that

(1= ()e) * O) ()| = O((1 +|x)7?), x€R. (A.9)
Estimates (A.8)—(A.9) combined with Lemma 3.3 (iii), imply
ne(siaA) 1T — (n)eF* y1a(d)) = O5(1), A 0,5>0. (A.10)

Finally, the operator ,oi/vzir"* x2a(0) with v < 1 is compact by [4, Theorem 13,
Section 8, Chapter 11]. Therefore,

n*(s;,oi/vz?*)(za(O)) <oo, s§5>0. (A.11)

Putting together (A.6), (A.10), and (A.11), and applying the Birman-Schwinger
principle, we obtain

d2
Ncoo -1 (=== = (L4 9)7 (e = pu)) + O5(1)
<ni(l;a(A)FneFra(r)) (A.12)

d> »
< Newomis (= 1y = =97 (e + o)) + 01, 20,

for any s € (0,1) and v € (0,1). Now parts (i)—(iii) of Proposition 2.4 follow
from estimates (A.1) and (A.12), and Lemma 3.3. Part (iv) of this proposition is
implied directly by Lemma 3.3 (iii).
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