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Spectral asymptotics for waveguides

with perturbed periodic twisting

Georgi Raikov

Abstract. We consider the twisted waveguide�� , i.e. the domain obtained by the rotation

of the bounded cross section ! � R
2 of the straight tube� WD ! �R at angle � which de-

pends on the variable along the axis of�. We study the spectral properties of the Dirichlet

Laplacian in �� , unitarily equivalent under the di�eomorphism �� ! � to the operator

H� 0 , self-adjoint in L2.�/. We assume that � 0 D ˇ � � where ˇ is a 2�-periodic function,

and � decays at in�nity. �en in the spectrum �.Hˇ/ of the unperturbed operatorHˇ there

is a semi-bounded gap .�1;EC
0
/, and, possibly, a number of bounded gaps .E�

j
;EC

j
/.

Since � decays at in�nity, the essential spectra of Hˇ and Hˇ�� coincide. We investigate

the asymptotic behaviour of the discrete spectrum ofHˇ�� near an arbitrary �xed spectral

edge E˙
j

. We establish necessary and quite close su�cient conditions which guarantee

the �niteness of �disc.Hˇ��/ in a neighbourhood of E˙
j

. In the case where the necessary

conditions are violated, we obtain the main asymptotic term of the corresponding eigen-

value counting function. �e e�ective Hamiltonian which governs the the asymptotics of

�disc.Hˇ��/ near E˙
j

could be represented as a �nite orthogonal sum of operators of the

form

�� d2

dx2
� ��;

self-adjoint in L2.R/; here, � > 0 is a constant related to the so-called e�ective mass, while

� is 2�-periodic function depending on ˇ and !.
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1. Introduction

Since the seminal work [11], there has been an unfading interest towards the spec-

tral properties of quantum waveguides, with an accent on the problem of existence

of discrete eigenvalues. During the last decade the 3D twisted waveguides were

investigated by numerous authors. Recently, a special attention has been allocated

to the cases where the global twisting does not vanish, but has a non trivial as-

ymptotic behaviour at in�nity (see e.g. [12, 10, 6, 8, 7] and the references cited

there).

In the present article we investigate the asymptotic behaviour of the discrete

spectrum near the edges of the essential one for the Dirichlet Laplacian in a twisted

waveguide with perturbed periodic twisting.

First, we describe the waveguides which we will deal with. Let ! 2 R
2 be a

bounded domain. Introduce the straight tube

� WD ! � R � R
3:

For x D .x1; x2; x3/ 2 �, we write

x D .xt ; x3/ with xt D .x1; x2/ 2 !, and x3 2 R.

Assume that � 2 C 1.RIR/, � 0 2 L1.R/. De�ne the twisted tube

�� D ¹r� .x3/ x 2 R
3 j x 2 �º

where

r� .x3/ D

0

@

cos �.x3/ sin �.x3/ 0

� sin �.x3/ cos �.x3/ 0

0 0 1

1

A :
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�en the Dirichlet Laplacian ��D
��

is the self-adjoint operator generated in

L2.�� / by the closed quadratic form

zQ� Œf � D
Z

��

jrf .x/j2dx; f 2 D.zQ� / D H1
0.�� /:

De�ne the unitary operator

U W L2.�� / �! L2.�/

by

.Uf /.x/ D f .r� .x3/ x/; x 2 �; f 2 L2.�� /:

Set

rt WD .@1; @2/
T ; �t WD @2

1 C @2
2; @' WD x1@2 � x2@1;

and denote byH� 0 the self-adjoint operator generated in L2.�/ by the closed qua-

dratic form

Q� 0 Œf � WD zQ� ŒU
�1f � D

Z

�

.jrtf j2 C j� 0.x3/@'f C @3f j2/ dx; f 2 H1
0.�/:

(1.1)

�en we have

H� 0 D U.����
/U�1:

Note that H� 0 � �1I where �1 > 0 is the lowest eigenvalue of the cross-section

Dirichlet Laplacian ��t , self-adjoint in L2.!); hence, H� 0 is boundedly

invertible in L2.�/. In [7, Proposition 2.1], it was shown that if @! 2 C 2, and

� 2 C 2.R/ with � 0; � 00 2 L1.R/, then the domain D.H� 0/ of H� 0 coincides with

H2.�/ \ H1
0.�/, and

H� 0 D ��t � .� 0@' C @3/
2:

In [8] we considered the spectral properties ofH� 0 under the hypotheses � 0 D ˇ��
where ˇ > 0 is a constant, and � � 0 is a function which decays at in�nity. �en,

Hˇ is unitarily equivalent under the partial Fourier transform with respect to x3,

to an analytically �bered operator, the spectrum �.Hˇ / ofHˇ is purely absolutely

continuous, and coincides with ŒE;1/ (see [12] or [8, Subsection 2.2]). Since �

decays at in�nity, the essential spectra �ess.Hˇ / and �ess.Hˇ��/ coincide. In [8]

we established necessary and su�cient conditions on � and the geometry of !

which guarantee the �niteness of the discrete spectrum of Hˇ�� below E. In the

case where the necessary conditions are violated, we obtained the main asymptotic

term of the in�nite eigenvalue sequence which accumulates at E from below.
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In the present article we undertake a related program in the case where

� 0 D ˇ � � but now ˇ is a general 2�-periodic function while � decays at in�nity

as before. In this case the unperturbed operator Hˇ is again unitarily equivalent

under an appropriate Floquet–Bloch mapping to an analytically �bered operator

(see below (2.1)) but there are several substantial di�erences with respect to the

case of constant ˇ. First, apart from the unbounded gap .�1; inf �.Hˇ // in the

spectrum of Hˇ , there could also exist bounded gaps. �us, there could be sev-

eral sequences of discrete eigenvalues ofHˇ�� which may accumulate from above

(resp., from below) to a lower (resp., to an upper) edge of a gap in �.Hˇ /. More-

over, the bounded gaps in �.Hˇ / are surrounded from both sides by regions of

the essential spectrum which makes the investigation of the discrete spectrum of

Hˇ�� more di�cult in comparison with the one lying below inf �.Hˇ /, taking

into account in particular, that the perturbation Hˇ�� �Hˇ is a second-order dif-

ferential operator. Further, in [8] it was found that the e�ective Hamiltonian which

models the asymptotic behaviour of the discrete spectrum ofHˇ�� near the edges

of the essential one, has the form

� � d2

dx2
� ��.x/; x 2 R; (1.2)

where � > 0 is a constant related to the so-called e�ective mass while � � 0 is

another constant which depends explicitly on ˇ and the geometry of !. If � decays

regularly enough at in�nity, the asymptotic behaviour of the discrete spectrum of

the operator (1.2) is well known, and generically is of semiclassical nature (see

e.g. [20, �eorem XIII.82] for the generic case, and [16] for the corrections to the

semiclassical behaviour in the border-line case). In the present paper we �nd that

the e�ective Hamiltonian which governs the asymptotics of the discrete spectrum

ofHˇ�� near a given edge of a gap in �.Hˇ /, can be written as a �nite orthogonal

sum of operators of the form

� � d2

dx2
� �per.x/�.x/; x 2 R; (1.3)

where � > 0 again is a constant related to the e�ective mass at the edge, but

�per is a periodic, generically non constant function which depends on ˇ and !.

Note that even if � decays regularly at in�nity, the product �per � has an irregular

decay due to the oscillations of �per. �us, the eigenvalue asymptotics for oper-

ators like (1.3) could be of independent interest. Multidimensional Schrödinger

operators of this type have been considered in a di�erent context in [18, 21].

�e article is organized as follows. In the next section we describe the spectral

properties of the unperturbed operator Hˇ , necessary for the statement and the

understanding of our main results, formulate these results, and brie�y comment
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on them. �eir proofs can be found in Section 3. Finally, in Appendix A we

prove an auxiliary proposition concerning the spectral properties of an e�ective

Hamiltonian of the form (1.3).

2. Main results

2.1. Spectral properties of the unperturbed operator Hˇ . Assume that

ˇ 2 C.TIR/ where T WD R=2�Z. Set T� WD
�

� 1
2
; 1

2

�

. De�ne the unitary

Floquet–Bloch operator

ˆ W L2.�/ �! L2.! � T � T
�/

by

.ˆu/.xt ; x3; k/ WD
X

`2Z

e�ik.x3C2�`/u.xt ; x3 C 2�`/; xt 2 !; x3 2 T; k 2 T
�;

for, say, u 2 C. N!I S.R//, where S.R/ denotes the Schwartz class on R. Similar

Floquet–Bloch operators have been used by numerous authors (see e.g. [23, 2, 13,

5, 6]) within the context of the spectral analysis of periodic quantum waveguides.

We have

ˆHˇˆ
� D

Z ˚

T�

hˇ .k/dk (2.1)

where hˇ .k/, k 2 T�, is the self-adjoint operator generated in L2.! � T/ by the

closed quadratic form

qŒuI k� D
Z

!

Z

T

�

jrtuj2 C j.ˇ@' C @3 C ik/uj2
�

dx3dxt ; u 2 H1
0.! � T/:

Note that

qŒuI k� �
Z

!

Z

T

�

jrtuj2 C j.@3 C ik/uj2
�

dx3dxt

uniformly with respect to k 2 T
�; here and in the sequel the notation A � B

means that there exist constants 0 < c1 � c2 < 1 independent of A and B , such

that c1A � B � c2A. Evidently, the operator hˇ .k/, k 2 T
�, is elliptic; since ! is

bounded, we �nd that the spectrum of hˇ .k/ is discrete. Denote by ¹E`.k/º`2N the

non-decreasing sequence of the eigenvalues of hˇ .k/, k 2 T
�. It is easy to see that

the band functions E` can be extended to R as continuous 1-periodic functions.

Moreover, by the Kato perturbation theory [14], these extensions are piece-wise

real analytic. We have

�.Hˇ / D
[

`2N

E`.T
�/:
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Let

EC
0 WD inf �.Hˇ / D min

k2T�
E1.k/I

evidently, EC
0 > 0. �en in �.Hˇ / there always exists a semi-bounded gap1

.�1;EC
0 /. In contrast to the case of constant ˇ, in �.Hˇ / with periodic non con-

stant ˇ there could also be bounded gaps (see e.g. [10, Subsection 3.4],

[6, Subsection 4.4]). Let .E�
j ;E

C
j /, j D 1; : : : ; J � 1, be the disjoint bounded

gaps in �.Hˇ /; if there are no bounded gaps in �.Hˇ /, we set J D 0. �en we

have

R n �.Hˇ / D
J

[

j D0

.E�
j ;E

C
j / (2.2)

with E�
0 WD �1. Note that the value E�

j , j � 1, (resp., EC
j , j � 0) coincides with

the maximal (resp., minimal) value of some band function E`.

De�nition 2.1. We will say that the boundary point E˙
j of �.Hˇ / is regular if:

(i) there exists a unique band function E˙
`.j /

in the sequence ¹E`º`2N which

attains the value E˙
j ;

(ii) the function E˙
`.j /

attains the value E˙
j at �nitely many points k˙

j;m 2 R=Z,

m D 1; : : : ;M˙
j ;

(iii) we have

�˙
j;m WD ˙1

2

d2E˙
`.j /

dk2
.k˙

j;m/ > 0; m D 1; : : : ;M˙
j : (2.3)

Note that if conditions (i) and (ii) in De�nition 2.1 hold true, then the function

E˙
`.j /

is analytic in a vicinity of each point k˙
j;m, m D 1; : : : ;M˙

j . More precisely,

there exists a ı > 0 such that the intervals

I˙
j;m D .k˙

j;m � ı; k˙
j;m C ı/; m D 1; : : : ;M˙

j ; (2.4)

are disjoint, and the function E˙
`.j /

is real-analytic on their closures. Diminishing

ı > 0 and performing if necessary a shift with respect to k, we may assume

without loss of generality that I˙
j;m � .�1=2; 1=2/,m D 1; : : : ;M˙

j . Set

I˙
j D

M ˙
j

[

mD1

I˙
j;m; (2.5)

1 We call a gap in �.Hˇ/ any open non-empty interval I � Rn�.Hˇ/ such that @I � �.Hˇ/.
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and introduce the eigenfunctions

 ˙
j .xI k/; x D .xt ; x3/ 2 ! � T; k 2 I˙

j ;

such that

hˇ .k/ 
˙
j .�I k/ D E˙

`.j / 
˙
j .�I k/;

Z

!

Z

T

j ˙
j .xt ; x3I k/j2dx3dxt D 1; k 2 I˙

j ;

(2.6)

and the mappings

I˙
j 3 k 7�!  ˙

j .�I k/ 2 D.Hˇ /

are analytic.

�e following proposition shows that the set of regular edges of �.Hˇ / is not

empty.

Proposition 2.2. Assume that @! 2 C1 and ˇ 2 C1.T/. �en

E1.0/ D EC
0 D min

k2T�
E1.k/;

and we have

E1.k/ > E1.0/; k 2 T
�, k ¤ 0,

as well as

Ej .0/ > E1.0/ j � 2.

Moreover,

E 00
1 .0/ > 0:

Proof. �e operator

hˇ .0/ D ��t � .ˇ@' C @3/
2

is a strongly elliptic operator on ! � T with smooth real coe�cients. Hence, its

�rst eigenvalue is simple, i.e.

Ej .0/ > E1.0/; j � 2:
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Moreover, we could choose the normalized �rst eigenfunction  2 C1. N! � T/

of hˇ .0/ to be positive on ! � T. �e mini-max principle yields

E1.k/ D inf
0¤u2C 1.TIC 1

0
.!//

Z

!

Z

T

.jrtuj2 C j.ˇ@' C @3 C ik/uj2/dx3dxt

Z

!

Z

T

juj2dx3dxt

:

with k 2 T
�. Changing the functional variable u D  v, and integrating by parts,

we obtain

E1.k/ �E1.0/

D inf
0¤v2C 1.TIC 1

0
.!//

Z

!

Z

T

 2.jrtvj2 C j.ˇ@' C @3 C ik/vj2/dx3dxt

Z

!

Z

T

 2jvj2dx3dxt

;

(2.7)

with k 2 T
�. Further, for any " 2 .0; 1/ we have

Z

!

Z

T

 2.jrtvj2 C j.ˇ@' C @3 C ik/vj2/dx3dxt

�
Z

!

Z

T

 2..1� ."�1 � 1/c/jrtvj2 C .1� "/j@3v C ikvj2/dx3dxt ;

(2.8)

where

c WD max
x32T

ˇ.x3/
2 sup

xt 2!
jxt j2:

Now, (2.7) and (2.8) yield

E1.k/ �E1.0/ � .1C c/�1 inf
0¤v2C 1.TIC 1

0
.!//

Z

!

Z

T

 2j@3v C ikvj2dx3dxt

Z

!

Z

T

 2jvj2dx3dxt

;

(2.9)

with k 2 T
�. Let

‰.xt / WD dist .xt ; @!/; xt 2 !:

�en there exist constants 0 < c1 � c2 < 1 such that

c1‰.xt / �  .xt ; x3/ � c2‰.xt /; xt 2 !; x3 2 T: (2.10)
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�e lower bound in (2.10) can be obtained arguing as in the proof of [9, �eo-

rem 7.1]. �e upper bound follows from the facts that 2 C1. N!�T/, j@!�T D 0,

and in a vicinity of @! there exist smooth coordinates in N! such that the variable

normal to @! is proportional to‰.xt /. Expandingw 2 C1.T/ in a Fourier series,

we easily �nd that

inf
0¤w2C 1.T/

Z

T

jw0 C ikwj2dx
Z

T

jwj2dx
D k2; k 2 T

�:

�erefore,

Z

T

j@3v.xt ; x3/C ikv.xt ; x3/j2dx3 � k2

Z

T

jv.xt ; x3/j2dx3 (2.11)

for any xt 2 ! and v 2 C1.TIC1
0 .!//. Multiplying (2.11) by ‰.xt /

2 and inte-

grating with respect to xt 2 !, bearing in mind (2.10), we obtain the estimate

inf
0¤v2C 1.TIC 1

0
.!//

Z

!

Z

T

 2j@3v C ikvj2dx3dxt

Z

!

Z

T

 2jvj2dx3dxt

� c2
1

c2
2

k2; k 2 T
�: (2.12)

Now (2.9) and (2.12) yield

E1.k/ �E1.0/ � c2
1

.1C c/c2
2

k2; k 2 T
�: (2.13)

In particular we have, E1.k/ > E1.0/ for 0 ¤ k 2 T
�. Since E1 is ana-

lytic in a neighbourhood of k D 0, we �nd that (2.13) also implies E 0
1.0/ D 0,

E 00
1 .0/ > 0.

Remark. �e assumptions @! 2 C1 and ˇ 2 C1.T/ of Proposition 2.2 are too

restrictive; we impose them for the sake of simplicity of the proof.

Let us now comment on the validity in general of conditions (i)–(iii) in Def-

inition 2.1. It is well known that in the case of 1D Schrödinger operators with

2�-periodic potentials (Hill operators), the analogue of condition (i) is always ful-

�lled (see e.g. [20, �eorem XIII.89]). �e results of [17] imply that generically

this is also the case for multidimensional Schrödinger operators with periodic po-

tentials. It is quite likely that the methods of [17] could be successfully applied in

order to show that condition (i) in De�nition 2.1 is generically valid.
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Further, condition (ii) would immediately follow from condition (i) if we know

that the band function E˙
`.j /

is not constant on any interval of positive length.

On the other hand, the non constancy of E˙
`.j /

would follow from the absolute

continuity of �.Hˇ /, which however has not been proven yet in maximal gener-

ality. Probably, the most general results concerning the absolute continuity of the

spectrum for periodic quantum waveguides, are contained in [13]; reduced to the

special case of Hˇ , these results imply that �.Hˇ / is purely absolutely continu-

ous under the (technical) assumption that ˇ is an odd su�ciently regular periodic

function of x3. Essentially less general result could be found in [2] where it is

shown that for each E > 0 there exists " > 0 such that 0 2 ! and diam! < "

imply that �.Hˇ / on .�1; E/ is purely absolutely continuous.

Let us comment brie�y on the possible number of points M˙
j at which the

band function E˙
`.j /

attains its extremal value E˙
j . Since the �ber operator hˇ .k/

is anti-unitarily equivalent to hˇ .�k/ under complex conjugation, in principle, the

band functionsE` could attain their minimal and maximal values at several points

of R=Z (see [5] for an example concerning a particular 2D periodic waveguide, as

well as [6, Example 4.4] concerning a 3D waveguide with weak periodic twisting),

which is re�ected in condition (ii) of De�nition 2.1.

Finally, the analogue of condition (iii) in De�nition 2.1 for Hill operators is

always ful�lled (see e.g. the proof of [20, �eorem XIII.89 (e)]). In the case

of multidimensional Schrödinger operators with periodic electric potentials, the

analogue of this condition is known to hold true at the in�mum of the spectrum

(see [15]) but, as far as the author is informed, there is no general proof that it

holds at the edges of eventual bounded gaps in the spectrum. Note that in our

case conditions (i) and (ii) imply that for each k˙
j;m there exists q 2 N such that

the derivatives of E˙
`.j /

at k˙
j;m of order 1; : : : ; 2q � 1, vanish, but the derivative

of order 2q does not. �e proofs of our main results could be easily extended to

the case of degenerate extrema, i.e. the case q > 1; we do not include these quite

straightforward but tedious extensions just because we do not dispose of examples

that such degenerate extrema could in fact occur.

2.2. Statement of main results. Let T be a self-adjoint operator in a Hilbert

space, and I � R be an interval. Set

NI.T / WD rank1I.T / (2.14)

where 1I.T / is the spectral projection of T corresponding to I. �us, if we have

I\ �ess.T / D ;, then NI.T / is just the number of the (discrete) eigenvalues of T ,

lying on the interval I, and counted with their multiplicities.



Spectral asymptotics for waveguides with perturbed periodic twisting 341

Assume that ˇ 2 C.TIR/, � 2 C.RIR/ \ L1.R/, limjxj!1 �.x/ D 0.

�en the resolvent di�erence H�1
ˇ

� H�1
ˇ��

is a compact operator, and hence

�ess.Hˇ / D �ess.Hˇ��/. �erefore, (2.2) implies

R n �ess.Hˇ��/ D
J

[

j D0

.E�
j ;E

C
j /:

Put

NC
0 .�/ D N

.�1;E
C
0

��/
.Hˇ��/; � > 0:

Fix E 2 .E�
j ;E

C
j /, j � 1, and set

N�
j .�/ D N.E�

j
C�;E/.Hˇ��/; � 2 .0;E � E�

j /;

NC
j .�/ D N

.E;E
C
j

��/
.Hˇ��/; � 2 .0;EC

j � E/:

Assume that the edge point E˙
j is regular (see De�nition 2.1). For x3 2 T and

m D 1; : : : ;M˙
j , introduce the functions

�˙
j;m.x3/

WD 2Re

Z

!

@' 
˙
j .xt ; x3I k˙

j;m/.ˇ.x3/@' C @3 C ik˙
j;m/ 

˙
j .xt ; x3I k˙

j;m/dxt ;

(2.15)

and their mean values

h�˙
j;mi WD 1

2�

Z

T

�˙
j;m.x/dx:

For n 2 ZC and ˛ > 0 set

Sn;˛.R/ WD ¹u 2 C n.RIR/ j ju.`/.x/j � c`.1C jxj/�˛�`; x 2 R; ` D 0; : : : ; nº:
(2.16)

Denote by SC
n;˛.R/ the class of functions u 2 Sn;˛.R/ for which there exist con-

stants C > 0 and R > 0 such that u.x/ � C jxj�˛ for jxj � R. Now we are in

position to formulate our main result.
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�eorem 2.3. Let ˇ 2 C 4.T/, and
�

E�
j ;E

C
j

�

, j � 0, be a gap in �.Hˇ /. Assume

that the edge point E˙
j is regular.

(i) Let ˛ 2 .0; 2/, � 2 SC
4;˛.R/. Assume that there exists at least one integer

m D 1; : : : ;M˙
j , such that ˙h�˙

j;mi > 0. �en we have

N˙
j .�/

D 1

2�

M ˙
j

X

mD1

j¹.x; k/ 2 T �
R j �˙

j;mk
2 � 2�h�˙

j;mi�.x/ < ��ºj.1C o.1//

D 1

�

M ˙
j

X

mD1

.�˙
j;m/

�1=2

Z

R

.˙2�h�˙
j;mi�.x/ � �/1=2

C dx .1C o.1// � �
1
2

� 1
˛ ;

(2.17)

with � # 0, where j � j denotes the Lebesgue measure. In particular, the fact

that N˙
j .�/ grows unboundedly as � # 0 implies that there exists a sequence

of discrete eigenvalues of the operatorHˇ�� which accumulates at E˙
j .

If, on the contrary, we have ˙h�˙
j;mi < 0 for all m D 1; : : : ;M˙

j , then

N˙
j .�/ D O.1/; � # 0; (2.18)

i.e. the discrete spectrum of Hˇ�� does not accumulate at E˙
j .

(ii) Let ˛ 2 .0; 2/, � 2 S4;˛.R/. Assume that ˙h�˙
j;mi � 0 for all m,

and h�˙
j;mi D 0 for some m D 1; : : : ;M˙

j . �en for each � > 0 we have

N˙
j .�/ D O.�

1
2

� 1
2˛

��/; � # 0; (2.19)

if ˛ 2 .0; 1�, while (2.18) holds true if ˛ 2 .1; 2/.
(iii) Let ˛ D 2, � 2 S4;2.R/. Suppose moreover that there exists a �nite limit

L WD lim
jxj!1

x2�.x/:

�en we have

lim
�#0

j ln�j�1N˙
j .�/ D 1

�

M ˙
j

X

mD1

�˙2�h�˙
j;miL

�˙
j;m

� 1

4

�1=2

C
:

If, moreover, ˙8�h�˙
j;miL < �˙

j;m for all m D 1; : : : ;M˙
j , then (2.18) holds

true.

(iv) Let ˛ > 2, � 2 S4;˛.R/. �en (2.18) holds true again.
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Remark. As mentioned in the Introduction, the case of a constant ˇ was consid-

ered in [8]; in this case our �eorem 2.3 reduces, after minor modi�cations of the

assumptions, to [8, �eorem 4.4]. Note that if ˇ is constant, then .�1;EC
0 / is

the only gap in �.Hˇ /, the value EC
0 is attained only by the band function E1 at

the unique point kC
0;1 D 0, and E 00

1 .0/ > 0 (see [8, �eorem 3.1]). Moreover, the

eigenfunction  C
0 .�I 0/ is real valued and independent of x3, so that we have

�C
0;1 D h�C

0;1i D 2ˇ

Z

!

.@' 
C
0 .xt I 0//2dxt :

It could be shown that the analogue of �eorem 2.3 (ii) could be then strength-

ened, namely �C
0;1 D 0 implies that the spectrum of Hˇ�� is purely essential for

any reasonable decaying �, so that NC
0 .�/ D 0 for any � > 0.

2.3. Comments on the main results. Introduce the operator

H˙
j WD

M ˙
j

M

mD1

�

� �˙
j;m

d2

dx2
� 2�h�˙

j;mi�
�

;

self-adjoint in L2.RICM ˙
j /. Proposition 2.4 below shows that H˙

j could be con-

sidered as the e�ective Hamiltonian which governs the asymptotic behaviour of

the discrete spectrum ofHˇ�� near the regular spectral edge E˙
j . More precisely,

N˙
j .�/ � N.�1;��/.H

˙
j /; � # 0: (2.20)

Asymptotic relation (2.20) means that:

� we have

lim
�#0

N˙
j .�/

N.�1;��/.H
˙
j /

D 1

if N.�1;��/.H
˙
j / grows unboundedly as � # 0 (except, possibly, for the case

where (2.19) holds true; then N˙
j .�/ andN.�1;��/.H

˙
j / admit upper bounds

of the same order);

� the function N˙
j .�/ remains bounded as � # 0 if the same is true for

N.�1;��/.H
˙
j / (again except, possibly, for the case where (2.19) holds true).
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Let us now formulate Proposition 2.4. Let � 2 C.TIR/. Set

�` WD 1p
2�

Z 2�

0

�.x/e�i`xdx; ` 2 Z; h�i WD 1

2�

Z 2�

0

�.x/dx:

Let � > 0, � 2 L1.RIR/. Introduce the operator

he� WD �� d2

dx2
� �.x/�.x/; x 2 R;

self-adjoint in L2.R/.

Proposition 2.4. Let � 2 C.TIR/. Assume that ¹�`º`2Z 2 `1.Z/.

(i) Let ˛ 2 .0; 2/, � 2 SC
4;˛.R/. Assume that h�i > 0. �en we have

N.�1;��/.he�/ D 1

2�
j¹.x; k/ 2 T �

R j �k2 � h�i�.x/ < ��ºj.1C o.1//

D 1

�
p
�

Z

R

.h�i�.x/ � �/
1=2
C dx .1C o.1// � �

1
2

� 1
˛ ;

with � # 0.

If, on the contrary, h�i < 0, then

N.�1;��/.he�/ D O.1/; � # 0: (2.21)

(ii) Let ˛ 2 .0; 2/, � 2 S4;˛.R/. Assume that h�i D 0 �en for each � > 0 we

have

N.�1;��/.he�/ D O.�
1
2

� 1
2˛

��/; � # 0;

if ˛ 2 .0; 1�, while (2.21) holds true if ˛ 2 .1; 2/.

(iii) Let ˛ D 2, � 2 S4;2.R/. Suppose moreover that there exists L 2 R such that

limjxj!1 x2�.x/ D L. �en we have

lim
�#0

j ln�j�1N.�1;��/.he�/ D 1

�

�h�iL
�

� 1

4

�1=2

C
:

If, moreover, 4h�iL < �, then (2.21) holds true.

(iv) Let ˛ > 2, � 2 S0;˛.R/. �en (2.21) holds true again.
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Possibly, Proposition 2.4 is known to the experts. However, we could not �nd

it in the literature and that is why we include its proof in the Appendix. �e propo-

sition could be of independent interest due, in particular, to the non semiclassical

nature of some of its results. Proposition 2.4 admits far going extensions to mul-

tidimensional Schrödinger operators; hopefully, we will consider them in a future

work.

3. Proof of the main result

3.1. Auxiliary results. �is subsection contains auxiliary results needed for the

proof of �eorem 2.3.

Let Xj , j D 1; 2, be two separable Hilbert spaces. We denote by S1.X1; X2/

the class of linear compact operators T W X1 ! X2. If X1 D X2 D X , we write

S1.X/ instead of S1.X;X/. Let T D T � 2 S1.X/. For s > 0 set

n˙.sI T / WD N.s;1/.˙T /

(see (2.14)); thus, nC.sI T / (resp., n�.sI T // is just the number of the eigenvalues

of T larger than s (resp., smaller than �s), and counted with the multiplicities.

If Tj D T �
j 2 S1.X/, j D 1; 2, then the Weyl inequalities

n˙.s1 C s2I T1 C T2/ � n˙.s1I T1/C n˙.s2I T2/ (3.1)

hold for sj > 0, j D 1; 2, (see e.g. [4, �eorem 9, Section 2, Chapter 9]).

For T 2 S1.X1; X2/ and s > 0 put

n�.sI T / WD nC.s
2I T �T /: (3.2)

�us, n�.sI T / is the number of the singular values of T larger than s, and counted

with the multiplicities. If Tj 2 S1.X1; X2/, and sj > 0, j D 1; 2, then the Ky Fan

inequalities

n�.s1 C s2I T1 C T2/ � n�.s1I T1/C n�.s2I T2/ (3.3)

hold true (see e.g. [4, eq. (17), Section 1, Chapter 11)]). �e following lemma

contains spectral estimates for �nite-rank and bounded perturbations.
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Lemma 3.1. Let �1 < a < b < 1, T D T �.

(i) [4, �eorem 3, Section 3, Chapter 9]. Let S D S� be bounded and suppose

rankS < 1. �en we have

N.a;b/.T / � rankS � N.a;b/.T C S/ � N.a;b/.T /C rankS:

(ii) [4, Lemma 3, Section 4, Chapter 9]. Let S D S� be bounded and suppose

�.S/ � Œa1; b1�. �en we have

N.a;b/.T / � N.aCa1 ;bCb1/.T C S/:

Further, we recall an abstract version of the Birman-Schwinger principle, suit-

able for our purposes.

Lemma 3.2 ([3, Lemma 1.1]). Let T D T � � 0, and let S D S� be relatively

compact in the sense of the quadratic forms with respect to T . �en we have

N.�1;��/.T � rS/ D nC.r
�1I .T C �/�1=2S.T C �/�1=2/

for any r > 0 and � > 0 .

Our next lemma contains well known results on the asymptotic behaviour of

the discrete spectrum for 1D Schrödinger operators.

Lemma 3.3. Assume that � > 0.

(i) Let V 2 SC
1;˛.R/ with ˛ 2 .0; 2/. �en we have

N.�1;��/

�

� � d2

dx2
� V

�

D 1

�
p
�

Z

R

.V .x/� �/1=2
C dx .1C o.1// � �

1
2

� 1
˛ ;

for � # 0.
(ii) Assume that V 2 S0;2.R/ and there exists a �nite limit

L WD lim
jxj!1

x2V.x/:

�en

lim
�#0

j ln�j�1N.�1;��/

�

� �
d2

dx2
� V

�

D 1

�

�L

�
� 1

4

�1=2

C
:

If, moreover, 4L < �, then

N.�1;��/

�

� � d2

dx2
� V

�

D O.1/; � # 0: (3.4)

(iii) Suppose V 2 S0;˛.R/ with ˛ 2 .2;1/. �en (3.4) holds true again.
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�e �rst part of the lemma is a special case of [20, �eorem XIII.82], the proof

of the second part is contained in [16], while the third part follows from the result

of [20, Problem 22, Chapter XIII].

�e last lemma in this subsection concerns the Fourier transform of a function

u 2 Sn;˛.R/. For u 2 S.R/, introduce its Fourier transform

.Fu/.k/ D Ou.k/ WD .2�/�1=2

Z

R

e�ixku.x/dx; k 2 R: (3.5)

Whenever necessary, the Fourier transform is extended by duality to the dual

Schwartz class S0.R/. We will use the same notations for the partial Fourier trans-

form with respect to x3 2 R in the case u D u.xt ; x3/, .xt ; x3/ 2 �.

Lemma 3.4. Assume that u 2 Sn;˛.R/, n 2 N, ˛ > 0. �en Ou 2 C n�1.R n ¹0º/,
and there exists a constant C such that

sup
jkj��

j Ou.n�1/.k/j � C��2nC1 (3.6)

for each � 2 .0; 1�.

Proof. We have

Ou.n�1/.k/ D
n�1
X

sD0

�

n � 1
s

�

dn�1�s

dkn�1�s
.k�n/

d s

dks
.kn Ou.k//; k 2 R n ¹0º: (3.7)

Moreover,

d s

dks
.kn Ou.k// D i�n�s

.2�/1=2

Z

R

e�ikxxsu.n/.x/dx; k 2 R: (3.8)

�erefore, by (2.16),

sup
k2R

ˇ

ˇ

ˇ

ˇ

d s

dks
.kn Ou.k//

ˇ

ˇ

ˇ

ˇ

� cn

.2�/1=2

Z

R

jxjs.1C jxj/�˛�ndx < 1; (3.9)

for s D 0; : : : ; n � 1 and ˛ > 0. Now (3.7)–(3.9) yield Ou 2 C n�1.R n ¹0º/ and

estimate (3.6).
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3.2. Projection to the spectral edge of Hˇ. In this section we �x the gap

.E�
j ;E

C
j / in �.Hˇ /, choose the edge E�

j or EC
j which is supposed to be regular,

and restrict the analysis to the spectral subspace of the unperturbed operator Hˇ

which corresponds to a small vicinity of this edge. Set

�˙
j .k/ WD

ˇ

ˇ ˙
j .�I k/ih ˙

j .�I k/
ˇ

ˇ ; k 2 I˙
j ;

(see (2.6) for the de�nition of  ˙
j ), and

P˙
j WD

Z ˚

I
˙
j

�˙
j .k/dk; P˙

j WD ˆ�P˙
j ˆ; Q˙

j WD I � P˙
j :

�us, P˙
j andQ˙

j are orthogonal projections in L2.�/. Since they commute with

H�1
ˇ

, they leave invariant D.Hˇ / D D.Hˇ��/ D H2.�/ \ H1
0.�/. Let us recall

now that

Hˇ�� D Hˇ C 2ˇ�@2
' C 2�@'@3 � �2@2

' C �0@' : (3.10)

In particular, the perturbation Hˇ�� �Hˇ is a second-order di�erential operator.

�e spectral properties for second-order localized perturbations of second-order

elliptic operators were considered in [1] in a di�erent context. Further, (3.10)

implies

Hˇ�� D P˙
j Hˇ��P

˙
j

CQ˙
j Hˇ��Q

˙
j C

4
X

iD1

.P˙
j fiLiQ

˙
j CQ˙

j fiLiP
˙

j /;
(3.11)

where

f1 D 2ˇ�; f2 D 2�; f3 D ��2; f4 D �0;

L1 D L3 D @2
' ; L2 D @'@3; L4 D @' :

Let us now write I D H 2
ˇ
H�2

ˇ
, then commute fi with appropriate powers ofH�1

ˇ
.

Taking into account that

Œfi ; H
�1
ˇ � D H�1

ˇ .f 00
i C 2f 0

i D/H
�1
ˇ

where

D WD ˇ@' C @3;

we �nd that

P˙
j fiLiQ

˙
j D

ni
X

nD0

rn;i
X

rD1

P˙
j H

n
ˇ gi;n;rH

�1=2

ˇ
Ki;n;rQ

˙
j ; i D 1; : : : ; 4; (3.12)
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where gi;n;r are the multipliers by decaying functions of x3, andKi;n;r are bounded

operators in L2.�/. Let us de�ne explicitly the functions gi;n;r and the operators

Ki;n;r . Fix i D 1; 2; 3. �en ni D 2, r0;i D 2, and

gi;0;1 D f
.iv/

i ; Ki;0;1 D H
�1=2

ˇ
.H�1

ˇ � 4DH�1
ˇ DH�1

ˇ /Li ;

gi;0;2 D f
000

i ; Ki;0;2 D 2H
1=2

ˇ
.DH�1

ˇ CH�1
ˇ D � 4DH�1

ˇ DH�1
ˇ D/H�1

ˇ Li ;

r1;i D 2, and

gi;1;1 D f
00

i ; Ki;1;1 D �2H�1=2

ˇ
.I � 2DH�1

ˇ D/H�1
ˇ Li ;

gi;1;2 D f
0

i ; Ki;1;2 D �2H 1=2

ˇ
.DH�1

ˇ CH�1
ˇ D/H�1

ˇ Li ;

while r2;i D 1, and

gi;2;1 D fi ; Ki;2;1 D H
�3=2

ˇ
Li :

Finally, if i D 4, then n4 D 1, r0;4 D 2, and

g4;0;1 D f
000

4 ; K4;0;1 D 2H
�1=2

ˇ
DH�1

ˇ L4;

g4;0;2 D f
00

4 ; K4;0;2 D �.H�1=2

ˇ
� 4H 1=2

ˇ
DH�1

ˇ DH�1
ˇ /L4;

while r1;4 D 2, and

g4;1;1 D f 0
4 ; K4;1;1 D �2H�1=2

ˇ
DH�1

ˇ L4;

g4;1;2 D f4; K4;1;2 D H
�1=2

ˇ
L4:

Hence, (3.12) implies that for any � 2 .0; 1/ we have

4
X

iD1

.P˙
j fiLiQ

˙
j CQ˙

j fiLiP
˙

j /

D 2Re

4
X

iD1

ni
X

nD0

rn;i
X

rD1

P˙
j H

n
ˇ jgi;n;r j

1C�
2 Si;n;r.�/Q

˙
j ;

(3.13)

where

Si;n;r.�/ WD signgi;n;r jgi;n;r j 1��
2 H

�1=2

ˇ
Ki;n;r :
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Lemma 3.5. Let @! 2 C 2, ˇ 2 C 4.TIR/, � 2 S4;˛.R/, ˛ > 0. �en the operators

Si;n;r.�/ with � 2 .0; 1/ are compact in L2.�/.

Proof. Since the operatorsKi;n;r are bounded, and supx2R jgi;n;r j.1Cjxj/˛ < 1,

it su�ces to show that the operator .1C jx3j/��H
�1=2

ˇ
with � D ˛.1 � �/=2 > 0

is compact in L2.�/. Evidently, the operator H
1=2
0 H

�1=2

ˇ
is bounded in L2.�/,

so that it su�ces to prove that the operator .1Cjx3j/��H
�1=2
0 is compact in L2.�/.

Expanding the function u 2 L2.�/ with respect to the eigenfunctions of the

Dirichlet Laplacian ��t , self-adjoint in L2.!/, we �nd that .1C jx3j/��H
�1=2
0 is

unitarily equivalent to the orthogonal sum

M

`2N

.1C jxj/��
�

� d2

dx2
C �`

��1=2

; (3.14)

self-adjoint in `2.NI L2.R//; here, ¹�`º`2N is the non decreasing sequence of the

eigenvalue of the Dirichlet Laplacian ��t . Since � > 0, the operator

.1C jxj/��
�

� d2

dx2
C �`

��1=2

with ` 2 N �xed, is compact in L2.R/ by [4, �eorem 13, Section 8, Chapter 11].

On the other hand,





.1C jxj/��
�

� d2

dx2
C �`

��1=2



 � �
�1=2

`
; ` 2 N;

and

lim
`!1

�
�1=2

`
D 0:

�erefore, the orthogonal sum in (3.14) is compact.

Lemma 3.6. Let !, ˇ, and � satisfy the hypotheses of Lemma 3.5. Assume that

E�
j , j � 1 (resp., EC

j , j � 0) is a lower (resp., upper) regular edge point of a gap

in �.Hˇ /. �en the operators jgi;n;r j 1C�
2 Hn

ˇ
P˙

j are compact in L2.�/.

Proof. Since

jgi;n;r j 1C�
2 Hn

ˇP
˙

j D jgi;n;r j 1C�
2 Hn

ˇˆ
�P˙

j ˆ;

it su�ces to prove the compactness of

jgi;n;r j 1C�
2 G˙

j .E
˙
j /

n W L2.I˙
j / �! L2.�/; (3.15)
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where

G˙
j W L2.I˙

j / �! L2.�/

is the operator with integral kernel

 ˙
j .xt ; x3I k/eix3k; .xt ; x3/ 2 �; k 2 I˙

j :

Let us �rst prove that G˙
j is bounded. To this end we will prove the boundedness

of

.G˙
j /

� W L2.�/ �! L2.I˙
j /I

the argument is similar to the proof of [19, Lemma 3.1]. We have

..G˙
j /

�u/.k/ D
Z

�

e�ix3k ˙
j .xt ; x3I k/u.xt ; x3/dxtdx3; k 2 I˙

j :

Write  ˙
j .xt ; x3I k/ as a Fourier series with respect to x3, i.e.

 ˙
j .xt ; x3I k/ D .2�/�1=2

X

`2Z

 ˙
j;`.xt I k/eix3`

with
X

`2Z

Z

!

j ˙
j;`.xt I k/j2dxt D 1; k 2 I˙

j :

�en

..G˙
j /

�u/.k/ D
X

`2Z

Z

!

Ou.xt ; k C `/ ˙
j;`
.xt /dxt ;

and, hence,

Z

I
˙
j

j..G˙
j /

�u/.k/j2dk

�
Z

I
˙
j

�

X

`2Z

Z

!

j Ou.xt ; k C `/j2dxt

��

X

`2Z

Z

!

j ˙
j;`.xt I k/j2dxt

�

dk

�
X

`2Z

Z

T�

Z

!

j Ou.xt ; k C `/j2dxtdk D
Z

R

Z

!

j Ou.xt ; k/j2dxtdk

D
Z

�

ju.x/j2dx

which implies k.G˙
j /

�k D kG˙
j k � 1.
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Now �x N 2 N and denote by �N the characteristic function of the interval

Œ��N; �N �. Write

jgi;n;r j
1C�

2 G˙
j .E

˙
j /

n D �N .x3/jgi;n;r.x3/j
1C�

2 G˙
j .E

˙
j /

n

C .1� �N .x3//jgi;n;r.x3/j
1C�

2 G˙
j .E

˙
j /

n:

(3.16)

We have

k�N jgi;n;r j 1C�
2 G˙

j .E
˙
j /

nk2
HS

� C 2
1N

Z

!

Z

T

Z

I
˙
j

j ˙
j .xt ; x3I k/j2dkdx3dxt

� C 2
1N;

where k � kHS denotes the Hilbert–Schmidt norm, and

C1 WD sup
x2R

jgi;n;r.x/j
1C�

2 sup
k2I˙

j

E˙
j .k/

n:

Moreover,

k.1 � �N /jgi;n;r j 1C�
2 G˙

j .E
˙
j /

nk

� C2.1C �N/�
˛.1C�/

2 kG˙
j k

� C2.1C �N/�
˛.1C�/

2

where

C2 WD sup
x2R

j.1C jxj/˛gi;n;r.x/j.1C�/=2 sup
k2I˙

j

E˙
j .k/

n:

�us, the operator jgi;n;r j 1C�
2 G˙

j .E
˙
j /

n in (3.15) can be approximated in norm by

compact operators, and hence it is compact itself.

For � 2 .�1; 1/ set

��.x3/ WD .1C x2
3/

�˛.1C�/=2; x3 2 R: (3.17)

As usual, we will denote by the same symbol the multiplier by �� , acting in L2.�/

or in L2.R/. Now we are in position to prove the main result of this subsection.
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Proposition 3.7. Under the hypotheses of Lemma 3.6, there exists a c0 � 0 inde-

pendent of � such that for any � 2 .0; 1/ we have

N.�1;��/

�

P�
j .E

�
j �Hˇ�� C c0

2
X

nD0

Hn
ˇ ��H

n
ˇ /P

�
j

�

CO.1/

� N�
j .�/

� N.�1;��/

�

P�
j .E

�
j �Hˇ�� � c0

2
X

nD0

Hn
ˇ ��H

n
ˇ /P

�
j

�

CO.1/;

(3.18)

or, respectively,

N.�1;��/

�

PC
j .Hˇ�� � EC

j C c0

2
X

nD0

Hn
ˇ ��H

n
ˇ /P

C
j

�

CO.1/

� NC
j .�/

� N.�1;��/

�

PC
j .Hˇ�� � EC

j � c0

2
X

nD0

Hn
ˇ ��H

n
ˇ /P

C
j

�

CO.1/;

(3.19)

as � # 0.

Proof. Introduce the operators

A˙ D A˙Ij W L2.�/ �! L2.�IC19/

and

B˙ D B˙Ij W L2.�/ �! L2.�IC19/

by

A˙u D ¹jgi;n;r j
1C�

2 Hn
ˇP

˙
j uºiD1;:::;4InD0;:::ni IrD1;:::;rn;i

;

and

B˙u D ¹Si;n;rQ
˙
j uºiD1;:::;4InD0;:::ni IrD1;:::;rn;i

;

for u 2 L2.�/. By Lemmas 3.5 and 3.6, the operators A˙ and B˙ are compact.

Let us now prove (3.18). Taking into account (3.11) and (3.13), we easily �nd

that

Hˇ�� D P�
j .Hˇ�� C A�

�A�/P
�

j CQ�
j .Hˇ�� C B�

�B�/Q
�
j � C�

>

D P�
j .Hˇ�� � A�

�A�/P
�

j CQ�
j .Hˇ�� � B�

�B�/Q
�
j C C�

< ;
(3.20)
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where

C�
> D .A�

� � B�
�/.A� � B�/

and

C�
< D .A�

� C B�
�/.A� C B�/:

Evidently, the operators C�
> and C�

< are compact and non-negative. Applying

Lemma 3.1, we get

N.E�
j

C�;E�s/.P
�

j .Hˇ�� � A�
�A�/P

�
j /

C N.E�
j

C�;E�s/.Q
�
j .Hˇ�� � B�

�B�/Q
�
j / � nC.sIC�

< /

� N�
j .�/

� N.E�
j

C�;ECs/.P
�

j .Hˇ�� C A�
�A�/P

�
j /

CN.E�
j

C�;ECs/.Q
�
j .Hˇ�� C B�

�B�/Q
�
j /C nC.sIC�

> /;

(3.21)

where s 2 .0;min¹EC
j � E;E � E�

j º/ and � 2 .0;E � E�
j � s/, while the operators

P�
j .Hˇ�� ˙A�

�A�/P
�

j (resp., Q�
j .Hˇ�� ˙B�

�B�/Q
�
j ) are considered as opera-

tors with domain P�
j D.Hˇ/ (resp., Q�

j D.Hˇ/), self-adjoint in the Hilbert space

P�
j L2.�/ (resp., Q�

j L2.�/). Further, by construction,

ŒE�
j ;E

C
j / \ �.Q�

j HˇQ
�
j / D ;:

Due to the compactness of the operators Hˇ�� �Hˇ ˙ B�
�B�, we have

ŒE�
j ;E

C
j / \ �ess.Q

�
j .Hˇ�� ˙ B�

�B�/Q
�
j / D ;;

and, hence,

N.E�
j

C�;E˙s/.Q
�
j .Hˇ�� C B�

�B�/Q
�
j / D O.1/; � # 0: (3.22)

Next, �ess.E
�
j �Hˇ�� � A�

�A�/ � Œ0;1/. �erefore,

N.E�
j

C�;E˙s/.P
�

j .Hˇ�� ˙ A�
�A�/P

�
j /

D N.E�
j

�E�s;��/.P
�

j .E
�
j �Hˇ�� � A�

�A�/P
�

j /

D N.�1;��/.P
�

j .E
�
j �Hˇ�� � A�

�A�/P
�

j /

�N.�1;E�
j

�E�s�.P
�

j .E
�
j �Hˇ�� � A�

�A�/P
�

j /

D N.�1;��/.P
�

j .E
�
j �Hˇ�� � A�

�A�/P
�

j /CO.1/; � # 0:

(3.23)



Spectral asymptotics for waveguides with perturbed periodic twisting 355

It is easy to check that there exists a constant c0 > 0 such that

P�
j A

�
�A�P

�
j � c0

2
X

nD0

P�
j H

n
ˇ ��H

n
ˇP

�
j :

�erefore,

N.�1;��/.P
�

j .E
�
j �Hˇ�� � A�

�A�/P
�

j /

� N.�1;��/

�

P�
j .E

�
j �Hˇ�� � c0

2
X

nD0

Hn
ˇ ��H

n
ˇ /P

�
j

�

;
(3.24)

and

N.�1;��/.P
�

j .E
�
j �Hˇ�� C A�

�A�/P
�

j /

� N.�1;��/

�

P�
j .E

�
j �Hˇ�� C c0

2
X

nD0

Hn
ˇ ��H

n
ˇ /P

�
j

�

:
(3.25)

Finally, due to the compactness of the operators C�
< and C�

> , we have

nC.sIC�
< / < 1; nC.sIC�

> / < 1; s > 0: (3.26)

Putting together (3.21)–(3.26), we obtain (3.18). �e proof of (3.19) is quite sim-

ilar, so that we omit the details, and just point out that the analogue of (3.20) is

Hˇ�� D P�
j .Hˇ�� � A�

CAC/P
�

j CQ�
j .Hˇ�� C B�

CBC/Q
�
j C CC

>

D P�
j .Hˇ�� C A�

CAC/P
�

j CQ�
j .Hˇ�� C B�

CBC/Q
�
j � CC

< ;

where

CC
> D .A�

C C B�
C/.AC C BC/;

CC
< D .A�

C � B�
C/.AC C BC/;

while the analogue of (3.21) is

N
.ECs;E

C
j

��/
.PC

j .Hˇ�� C A�
CAC/P

C
j /

CN
.ECs;E

C
j

��/
.QC

j .Hˇ�� C B�
�B�/Q

C
j / � nC.sICC

< /

� NC
j .�/

� N
.E�s;E

C
j

��/
.PC

j .Hˇ�� � A�
CAC/P

C
j /

CN
.ECs;E

C
j

��/
.QC

j .Hˇ�� � B�
�B�/Q

C
j /C nC.sICC

> /:
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3.3. Reduction to a Schrödinger-type operator. Introduce the unitary opera-

tors

U˙
j W L2.I˙

j / �! P˙
j L2.�/

which act on f 2 L2.I˙
j / as follows

.U˙
j /f /.xt ; x3/ D .ˆ� Qf ˙

j /.xt ; x3/; .xt ; x3/ 2 �;

Qf ˙
j .xt ; x3I k/ D

8

<

:

 ˙
j .xt ; x3I k/f .x/ if.xt ; x3/ 2 ! � T; k 2 I˙

j ;

0 if.xt ; x3/ 2 ! � T; k 2 T
� n I˙

j :

Further, de�ne

�˙
j;` W L2.I˙

j / �! L2.�/; ` D 0; : : : ; 4;

as the operators with integral kernels

eix3k˙
j;`.xt ; x3I k/; .xt ; x3/ 2 �; k 2 I˙

j ;

where

˙
j;0.xt ; x3I k/ WD @' 

˙
j .xt ; x3I k/;

˙
j;1.xt ; x3I k/ WD .ˇ@' C @3 C ik/ ˙

j .xt ; x3I k/;

˙
j;2Cn.xt ; x3I k/ WD  ˙

j .xt ; x3I k/.E˙
`.j /.k//

n; n D 0; 1; 2:

Set

T˙
j;1.c/ WD ˙E˙

j � E˙
j � 2Re.�˙

j;0/
���˙

j;1 ˙ .�˙
j;0/

��2�˙
j;0 � c

4
X

`D2

.�˙
j;`/

����
˙
j;`;

with c 2 R.

Remark. If

� W R �! C

is in a suitable class, then the operator

.�˙
j;`/

���˙
j;m W L2.I˙

j / �! L2.I˙
j /
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admits interpretation as a pseudodi�erential operator (‰DO) with amplitude

A.k; k0I x/ WD 2��.�x/
Z

!

˙
j;`
.xt ;�xI k/˙

j;m.xt ;�xI k0/dxt ; ;

k; k0 2 I˙
j , x 2 R (see e.g. [22, eq. (23.8), Chapter IV]), i.e. as an integral operator

with kernel
1

2�

Z

R

A.k; k0I x/ei.k�k0/xdxI

note that here k plays the role of the “coordinate variable” while x plays the role

of the “momentum variable.” Even though we are in the simple situation where

the underlying domain I˙
j is just a �nite union of bounded intervals, some of the

following arguments will be inspired by the general theory of ‰DOs.

It is straightforward to check that

P˙
j

�

˙Hˇ�� � E˙
j � c

2
X

nD0

Hn
ˇ ��H

n
ˇ

�

P˙
j D U˙

j T˙
j;1.c/ .U

˙
j /

�; c 2 R:

�erefore,

N.�1;��/

�

P˙
j .˙Hˇ�� � E˙

j � c

2
X

nD0

Hn
ˇ ��H

n
ˇ /P

˙
j

�

D N.�1;��/.T
˙

j;1.c//;

(3.27)

with � > 0, c 2 R. Further, introduce the multipliers

a˙
j .�/ WD .˙E˙

`.j / � E˙
j C �/�1=2; � > 0; (3.28)

as well as the operators

T˙
j;2.�I c/

WD a˙
j .�/

�

˙ 2Re.�˙
j;0/

���˙
j;1 � .�˙

j;0/
��2�˙

j;0 C c

4
X

`D2

.�˙
j;`/

����
˙
j;`

�

a˙
j .�/;

(3.29)

compact and self-adjoint in L2.I˙
j /. Applying the Birman–Schwinger principle

(see Lemma 3.2), we get

N.�1;��/.T
˙

j;1.c// D nC.1I T˙
j;2.�I c//; � > 0; c 2 R: (3.30)
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Our next goal is to show that if we replace on the intervals Ij;m, m D 1; : : : ;M˙
j ,

the functions j;i .xt ; x3; k/ by their values at k D k˙
j;m, as well as the functions

E˙
`.j /

.k/ � E˙
j (see (3.28)) by their main asymptotic terms �˙

j;m.k � k˙
j;m/

2 as

k ! k˙
j;m, we will make a negligible error in the asymptotic analysis of N˙

j .�/ as

� # 0. To this end, we de�ne z�˙
j;`

W L2.I˙
j / ! L2.�/, ` D 0; : : : ; 4, as the integral

operators with integral kernels eix3k Q˙
j;`
.xt ; x3I k/, .xt ; x3/ 2 �, k 2 I˙

j , where

Q˙
j;`.xt ; x3I k/ D

M ˙
j

X

mD1

˙
j;`.xt ; x3I k˙

j;m/�
˙
j;m.k/;

and �˙
j;m is the characteristic function of the interval

I˙
j;m D .k˙

j;m � ı; k˙
j;m C ı/:

Denote by Qa˙
j .�/, � > 0, the multiplier by

M ˙
j

X

mD1

.�˙
j;m.k � k˙

j;m/
2 C �/�1=2�˙

j;m.k/; k 2 I˙
j ;

the quantities �˙
j;m being introduced in (2.3). De�ne the operators

zT˙
j;2.�I c/ WD Qa˙

j .�/
�

˙ 2Re.z�˙
j;0/

��z�˙
j;1 C c

4
X

iD0

.z�˙
j;i /

���
z�˙

j;i

�

Qa˙
j .�/;

� > 0, c 2 R, compact and self-adjoint in L2.I˙
j /.

Proposition 3.8. Under the hypotheses of Lemma 3.6, for any c0 2 R there exists

a constant c1 � 0 independent of � such that for any � 2 .0; 1/, and s 2 .0; 1/, we

have

nC.1C sI zT˙
j;2.�I �c1//COs.1/ � nC.1I T˙

j;2.�I c0//; (3.31)

nC.1I T˙
j;2.�I c0// � nC.1� sI zT˙

j;2.�I c1//COs.1/; (3.32)

as � # 0.
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Proof. For de�niteness, let us prove (3.32). It is easy to see that for any given

c0 2 R there exist constants c1; c2 > 0 such that

˙ 2Re.�˙
j;0/

���˙
j;1 � .�˙

j;0/
��2�˙

j;0 C c0

4
X

`D2

.�˙
j;`/

����
˙
j;`

� ˙2Re.z�˙
j;0/

��z�˙
j;1 C c1

4
X

iD0

.z�˙
j;i /

���
z�˙

j;i

C c2

4
X

iD0

.z�˙
j;i � �˙

j;i /
����.z�˙

j;i � �˙
j;i /:

(3.33)

For a given r 2 .0; 1/, pick a ı > 0, the semi-length of the intervals I˙
j;m, so small

that for each � > 0, on I˙
j

a˙
j .�/ � .1� r/ Qa˙

j .�/: (3.34)

Estimates (3.33)–(3.34), the mini-max principle, the Weyl inequalities (3.1), iden-

tity (3.2), and the Ky Fan inequalities (3.3) now imply

nC.1I T˙
j;2.�I c0//

� nC..1� r/3I zT˙
j;2.�I c1//

C
4

X

iD0

n�..1� r/.r=c2/
1=2=5I �1=2

�� .
z�˙

j;i � �˙
j;i / Qa˙

j .�//:

(3.35)

De�ne

G˙
j;i W L2.I˙

j / �! L2.�/; i D 0; : : : ; 4;

as the operator with kernel

eix3k

M ˙
j

X

mD1

˙
j;i .x; k/ � ˙

j;i .x; k
˙
j;m/

k � k˙
j;m

�˙
j;m.k/; k 2 I˙

j ; x D .xt ; x3/ 2 �:

Since

jk � k˙
j;mj.�˙

j;m.k � k˙
j;m/

2 C �/�1=2 � .�˙
j;m/

�1=2; k 2 I˙
j;m; � > 0;

we have

n�.r I �1=2
�� .

z�˙
j;i � �˙

j;i / Qa˙.�// � n�.r.�
˙
j;m/

1=2I �1=2
�� G˙

j;i /; r > 0; � > 0: (3.36)
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Let us prove that the operators

�1=2
�� G˙

j;i W L2.I˙
j / �! L2.�/

are compact, arguing as in the proof of Lemma 3.6. By analogy with (3.16), write

�1=2
�� G˙

j;i D �N�
1=2
�� G˙

j;i C .1� �N /�
1=2
�� G˙

j;i :

It is easy to check that

k�N�
1=2
�� G˙

j;ik2
HS � 2N sup

k2I˙
j

Z

!

Z

T

j@k
˙
j;i .x; k/j2dx;

k�N�
1=2
�� G˙

j;ik2 � .1C �N/�˛.1��/ sup
k2I˙

j

Z

!

Z

T

j@k
˙
j;i .x; k/j2dx;

which implies the compactness of the operators ���G
˙
j;i ; in particular, we have

n�.sI �1=2
�� G˙

j;i / < 1; s > 0: (3.37)

Combining (3.35)–(3.37), we get (3.32). �e proof of (3.31) is analogous.

Next, de�ne the unitary operator

W W L2.I˙
j / �! L2..�ı; ı/ICM ˙

j /

by

.Wu/m.k/ WD u.k C k˙
j;m/; k 2 .�ı; ı/; mD 1; : : : ;M˙

j ;

for u 2 L2.I˙
j /. Set

�˙
j Im;n.x3/ WD

Z

!

˙
j;0.xt ; x3I k˙

j;m/
˙
j;1.x3; xt I k˙

j;n/dxt

D
Z

!

@' 
˙
j .xt ; x3I k˙

j;m/.ˇ.x3/@' C @3 C ik˙
j;n/ 

˙
j .x3; xt I k˙

j;n/dxt ;

and

�˙
j Im;n.x3/ WD

4
X

iD0

Z

!

˙
j;i .xt ; x3I k˙

j;m/
˙
j;i .x3; xt I k˙

j;n/dxt ;

with x3 2 T, m; n D 1; : : : ;M˙
j ; thus 2Re �˙

j Im;m.x3/ coincides with the function

�˙
j Im de�ned in (2.15).
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Let

T˙
j;3.�; c/ W L2..�ı; ı/ICM ˙

j / �! L2..�ı; ı/ICM ˙
j /

be the operators with matrix-valued integral kernels

T˙
j .k; k

0I�; c/ WD ¹T˙
j Im;n.k; k

0I�; c/ºM ˙
j

m;nD1; k; k0 2 .�ı; ı/; (3.38)

with

T˙
j Im;n.k; k

0I�; c/

WD
p
2� Qaj;m.kI�/.F.˙�.�˙

j Im;n C �˙
j In;m/

C c���
˙
j Im;n//.k � k0 C k˙

j;m � k˙
j;n/ Qaj;n.k

0I�/;

where, as indicated in (3.5), F.˙�.�˙
j Im;n C �˙

j In;m/C c���
˙
j Im;n/ is the Fourier

transform of the function ˙�.�˙
j Im;n C �˙

j In;m/C c���
˙
j Im;n, and

Qaj;m.kI�/ WD .�˙
j;mk

2 C �/1=2; m D 1; : : : ; m˙
j ; : : : k 2 .�ı; ı/:

�en we have

zT˙
j;2.�I c/ D W�T˙

j;3.�I c/WI

in particular,

nC.sI zT˙
j;2.�I c// D nC.sI T˙

j;3.�I c//; � > 0; c 2 R: (3.39)

Our next goal is to show that if we omit the o�-diagonal part of (3.38), and replace

in its diagonal part the functions

�j;m WD 2Re�˙
j;m;m and �˙

j;m WD �j Im;m

by their mean values, we will make a negligible error in the asymptotic analysis

of N˙
j .�/ as � # 0. Let

t˙j;m;1.�; c/ W L2.�ı; ı/ �! L2.�ı; ı/; m D 1; : : : ;M˙
j ,

be the operators with integral kernels

�˙
j;m.k; k

0I�; c/ WD
p
2� Qaj;m.kI�/.˙h�˙

j;miO� C ch�˙
j;mi O��/.k � k0/ Qaj;m.k

0I�/;
(3.40)

for k; k0 2 .�ı; ı/.
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Proposition 3.9. Under the hypotheses of Lemma 3.6, for each s > 0, r 2 .0; 1/,
and c 2 R, we have

M ˙
j

X

mD1

nC.s.1C r/I t˙j;m;1.�; c//COs;r .1/

� nC.sI T˙
j;3.�; c//

�
M ˙

j
X

mD1

nC.s.1 � r/I t˙j;m:1.�; c//COs;r .1/; � # 0:

(3.41)

Proof. Set

T˙
j;4.�; c/ WD

M ˙
j

M

mD1

t˙j;m;1.�; c/:

�en,

nC.sI T˙
j;4.�; c// D

M ˙
j

X

mD1

nC.sI t˙j;m;1.�; c//; s > 0; � > 0; c 2 R: (3.42)

On the other hand, the Weyl inequalities imply that for s > 0 and r 2 .0; 1/ we

have

nC.s.1C r/I T˙
j;4.�; c// � n�.sr I T˙

j;3.�; c/ � T˙
j;4.�; c//

� nC.sI T˙
j;3.�; c//

� nC.s.1� r/I T˙
j;4.�; c//C nC.sr I T˙

j;3.�; c/ � T˙
j;4.�; c//:

(3.43)

Bearing in mind (3.42)–(3.43), we �nd that in order to prove (3.41), it su�ces to

show that for each s > 0 we have

nC.sI T˙
j;3.�; c/ � T˙

j;4.�; c// D Os.1/; (3.44)

n�.sI T˙
j;3.�; c/ � T˙

j;4.�; c// D Os.1/; (3.45)

as � # 0. Note that

T˙
j;3.�; c/ � T˙

j;4.�; c/ W L2..�ı; ı/ICM ˙
j / �! L2..�ı; ı/ICM ˙

j /



Spectral asymptotics for waveguides with perturbed periodic twisting 363

can be written as an operator with matrix-valued integral kernel

p
2� Qaj;m.kI�/

�

ım;n.F.˙�.�˙
j Im � h�˙

j Imi/C c��.�
˙
j Im � h�˙

j Imi///.k � k0/

C .1 � ım;n/.F.˙�.�˙
j Im;n C �˙

j In;m/

C c���
˙
j Im;n//.k � k0 C k˙

j;m � k˙
j;n/

�

Qaj;n.k
0I�/;

(3.46)

with k; k0 2 .�ı; ı/ and m; n D 1; : : : ;M˙
j . Pick

~ <
1

2
inf

`2Z; m¤n
j`C k˙

j;m � k˙
j;nj 2 .0; 1=2/;

and ı 2 .0; ~/. Let ‚ 2 C1
0 .R/ be an even real-valued function such that

supp‚ � Œ�2~; 2~�, ‚.k/ D 1 for every k 2 Œ�2ı; 2ı� and ‚.k/ 2 Œ0; 1� for

every k 2 R. �en we can multiply by ‚.k � k0/ the entries of the integral kernel

of the operator T˙
j;3.�; c/ � T˙

j;4.�; c/, de�ned in (3.46), leaving them invariant.

�erefore, the quadratic form of the operator T˙
j;3.�; c/�T˙

j;4.�; c/ can be consid-

ered as the restriction on L2..�ı; ı/ICM ˙
j / of the quadratic form of the operator

F.D2 C �/�1=2
V.D2 C �/�1=2F�;

compact and self-adjoint in L2.RICM ˙
j /. Here

D2 D D2
j;˙ WD �M˙

j

d2

dx2
;

M˙
j is the constant diagonal matrix ¹�˙

j;mım;nºM ˙
j

m;nD1, V is a matrix-valued poten-

tial with entries

Vm;n.x/

WD 2�

Z

R

eikx
�

ım;n

X

`2Z; `¤0

.F.˙�˙
j;mI`� C c�˙

j;mI`��//.k � `/

C .1� ım;n/
X

`2Z

.F.˙.�˙
j;m;nI` C �˙

j;n;mI�`
/�

C c�˙
j;m;nI`��//.k � `C k˙

j;m � k˙
j;n/

�

‚.k/dk;

x 2 R, n;m D 1; : : : ;M˙
j , and �˙

j;mI`
; �˙

j;mI`
; �˙

j;m;nI`
; �˙

j;m;nI`
, are the Fourier co-

e�cients with respect of the system .2�/�1=2ei`x, x 2 T, ` 2 Z, respectively of
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the functions �˙
j;m; �

˙
j;m; �

˙
j;m;n, and �˙

j;m;n. Bearing in mind the unitarity of F, and

applying the mini-max principle, and the Birman–Schwinger principle, we get

nC.sI T˙
j;3.�; c/ � T˙

j;4.�; c// � N.�1;��/.D
2 � s�1

V/; s > 0: (3.47)

Since the series of the Fourier coe�cients of the functions �˙
j;m; �

˙
j;m; �

˙
j;n;m,

and �˙
j;n;m, are absolutely convergent, while Lemma 3.4 implies that the functions

O�.� � `C k˙
j;n � k˙

j;m/; O��.� � `C k˙
j;n � k˙

j;m/; ` 2 Z; m ¤ n;

and O�.� � `/, O��.� � `/, ` 2 Z, ` ¤ 0, together with their derivatives of order up to

three, are uniformly bounded on supp‚, we have

kV.x/k D O..1C jxj/�3/; x 2 R:

Now Lemma 3.3 (iii) easily implies that

N.�1;��/.D
2 � s�1

V/ D O.1/; � # 0; s > 0: (3.48)

Putting together (3.47) and (3.48), we obtain (3.44). �e proof of (3.45) is analo-

gous, and reduces to the replacement of V by �V.

Further, the quadratic forms of the operators t˙j;m;1.�; c/ m D 1; : : : ;M˙
j , can

be considered as restrictions on L2.�ı; ı/ of the quadratic forms of t˙j;m;2.�; c�m/,

where the operators

t˙j;m;2.�; c/

WD F

�

� �˙
j;m

d2

dx2
C �

��1=2

.˙2�h�˙
j;mi� C c��/

�

� �˙
j;m

d2

dx2
C �

��1=2

F�

are compact and self-adjoint in L2.R/. Applying the mini-max principle, we get

nC.sI t˙j;m;1.�; c// � nC.sI t˙j;m;2.�; c1// (3.49)

with

c1 D 2�jh�˙
j;mij:

Let us establish the corresponding lower bound. De�ne

t˙j;m;3.�; c/ W L2.R/ �! L2.R/
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as the operator with integral kernel

�.k; k0I�; c/�.�ı;ı/.k/�.�ı;ı/.k
0/; k; k0 2 R;

see (3.40). Evidently, the non-zero eigenvalues of the operators t˙j;m;1.�; c/ and

t˙j;m;3.�; c/ coincide, and we have

nC.sI t˙j;m;1.�; c// D nC.sI t˙j;m;3.�; c//; � > 0; c 2 R: (3.50)

On the other hand, it is easy to see that for each c 2 R there exist constants

c1; c2 > 0 such that

t˙j;m;3.�; c/ � t˙j;m;2.�;�c1/ � c2.t
˙
j;m;4/

�t˙j;m;4; (3.51)

where t˙j;m;4 W L2.R/ ! L2.R/ is an operator with integral kernel

.1C x2/�˛.1��/=4eikx�Rn.�ı;ı/.k/jkj�1=2; x 2 R; k 2 R:

Estimate (3.51), the mini-max principle and the Weyl inequalities imply

nC.sI t˙j;m;3.�; c// � nC.s.1C r/I t˙j;m;2.�;�c1// � n�.
p

sr=c2I t˙j;m;4/: (3.52)

By [4, �eorem 13, Section 8, Chapter 11], the operator t˙j;m;4 is compact. Hence,

n�.sI t˙j;m;4/ < 1; s > 0: (3.53)

Now, the combination of (3.50), (3.52), and (3.53) imply

nC.sI t˙j;m;1.�; c// � nC.s.1C r/I t˙j;m;2.�;�c1//COs;r.1/; � # 0: (3.54)

Finally, the Birman-Schwinger principle implies

nC.sI t˙j;m;2.�; c// D N.�1;��/

�

� �˙
j;m

d2

dx2
� s�1.˙2�h�˙

j;mi� C c��/
�

: (3.55)

Putting together (3.18), (3.19), (3.27), (3.30), (3.31), (3.32), (3.39), (3.41), (3.49),

(3.54), and (3.55), we �nd that under the hypotheses of �eorem 2.3, there exists

a constant c > 0 such that for each s 2 .0; 1/ and � 2 .0; 1/, we have

M ˙
j

X

mD1

N.�1;��/

�

� �˙
j;m

d2

dx2
� .1C s/�1.˙2�h�˙

j;mi� � c��/
�

COs.1/

� N˙
j .�/

�
M ˙

j
X

mD1

N.�1;��/

�

� �˙
j;m

d2

dx2
� .1� s/�1.˙2�h�˙

j;mi� C c��/
�

COs.1/;

(3.56)

as � # 0.
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Now the results of �eorem 2.3 follow from (3.56) and Lemma 3.3. For the

convenience of the reader, we add just a few hints concerning the details.

� First of all, note that since � > 0 we have ��.x/ D o.�.x// as jxj ! 1.

� If ˙h�˙
j;mi > 0 for some m D 1; : : : ;M˙

j , then (2.17) follows from

Lemma 3.3 (i). Here, we should also take into account the limiting relation

lim
s!0

lim
�#0

Z

R

.˙.1C s/�12�h�˙
j;mi�.x/ � �/

�1=2
C dx

Z

R

.˙2�h�˙
j;mi�.x/ � �/�1=2

C dx

D 1:

� If ˙h�˙
j;mi < 0 for all m D 1; : : : ;M˙

j , and � 2 SC
4;˛.R/, then the positive

part of the function ˙2�h�˙
j;mi�C c�� in (3.56) has a compact support since

� > 0. �erefore, in this case (2.18) follows from Lemma 3.3 (iii).

� If h�˙
j;mi D 0 for some m D 1; : : : ;M˙

j , then the only non-zero term of

the potential in (3.56) is proportional to �� . If ˛ > 1 then we can pick

� 2 .0; 1/ so that ˛.1 C �/ > 2, and in this case (2.18) follows again

from Lemma 3.3 (iii). If ˛ 2 .0; 1�, then (2.19) follows from Lemma 3.3 (i)

and the fact that .1 C �/˛ could be chosen arbitrarily close, but yet smaller

than 2˛.

� If ˛ D 2, �eorem 2.3 (iii) follows from Lemma 3.3 (ii).

� Finally, if ˛ > 2 (and, hence, ˛.1C �/ > 2), then �eorem 2.3 (iv) follows

immediately from Lemma 3.3 (iii).

Appendix A. Proof of Proposition 2.4

Assume the hypotheses of Proposition 2.4 (i)–(iii). By the Birman–Schwinger

principle

N.�1;��/.he�/ D nC.1I a.�/F��F�a.�//; � > 0; (A.1)

where

a.kI�/ WD .�k2 C �/�1=2; k 2 R; � � 0:

Denote by �1 the characteristic function of the interval .�ı; ı/ with ı 2 .0; 1=2/.
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Set

�2 WD 1� �1

and write

a.�/F��F�a.�/

D h�ia.�/F�F�a.�/C
X

j D1;2

a.�/�jF.� � h�i/�F��ja.�/

C 2Re a.�/�1F.� � h�i/�F��2a.�/:

(A.2)

Further, for any u 2 L2.R/,

..2Re a.�/�1F.� � h�i/�F��2a.�//u; u/L2.R/ D 2Re .f; g/L2.R/

where .�; �/L2.R/ is the scalar product in L2.R/, and

f WD �1=2
� F��1a.�/u; g WD �1=2

�� .� � h�i/���1
0 F��2a.�/u; � 2 .0; 1/;

the multiplier �� , � 2 .�1; 1/, being de�ned in (3.17). Evidently, since

��.x/ � ���.x/; x 2 R; � 2 .0; 1/;

we have

� k�1=2
� F�a.�/uk2 � .1C 2C 2/k�1=2

�� F��2a.�/uk2

� �1
2

kf k2 � 2kgk2

� 2Re .f; g/L2.R/

� 1

2
kf k2 C 2kgk2

� k�1=2
� F�a.�/uk2 C .1C 2C 2/k�1=2

�� F��2a.�/uk2;

with

C WD sup
x2R

j�.x/ � h�ij�0.x/
�1j�.x/j:

�erefore,

� a.�/F��F
�a.�/ � .1C 2C 2/a.�/�2F���F

��2a.�/

� 2Re a.�/�1F.� � h�i/�F��2a.�/

� a.�/F��F
�a.�/C .1C 2C 2/a.�/�2F���F

��2a.�/; � 2 .0; 1/:

(A.3)
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Similarly,

� Ca.�/�2F���F
��2a.�/

� �Ca.�/�2F�0F
��2a.�/

� a.�/�2F.� � h�i/�F��2a.�/

� Ca.�/�2F�0F
��2a.�/

� Ca.�/�2F���F
��2a.�/; � 2 .0; 1/:

(A.4)

Now it follows from (A.2)–(A.4) that

a.�/F.h�i� � ��/F
�a.�/

C a.�/�1F.� � h�i/�F��1a.�/

� .1C C C 2C 2/a.�/�2F���F
��2a.�/

� a.�/F��F�a.�/

� a.�/F.h�i� C ��/F
�a.�/

C a.�/F.� � h�i/�F��1a.�/

C .1C C C 2C 2/a.�/�2F���F
��2a.�/:

(A.5)

Applying the mini-max principle and the Weyl inequalities, we �nd that (A.5)

implies

nC.1C sI a.�/F.h�i� � ��/F
�a.�//

� n�.s=2I a.�/�1F.� � h�i/�F��1a.�//

� n�.
p

s=.2.1C C C 2C 2//I �1=2
�� F��2a.0//

� nC.1I a.�/F��F�a.�//

� nC.1� sI a.�/F.h�i� C ��/F
�a.�//

C nC.s=2I a.�/�1F.� � h�i/�F��1a.�//

C n�.
p

s=.2.1C C C 2C 2//I �1=2
�� F��2a.0//; s 2 .0; 1/;

(A.6)

bearing in mind that a.kI�/ � a.kI 0/ for k 2 supp�2 and � � 0.

�e operator a.�/�1F.� � h�i/�F��1a.�/ admits the integral kernel

.2�/�1a.kI�/�1.k/
X

`2Zn¹0º

�` O�.k � k0 � `/�1.k
0/a.k0I�/; k; k0 2 R: (A.7)
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Let ~ 2 .ı; 1=2/, and let ‚ 2 C1
0 .R/ with

supp‚ D Œ�2~; 2~� and supp .1 �‚/ � R n .�2ı; 2ı/;

be the real even function used in the proof of Proposition 3.9. We can multiply

the integral kernel in (A.7) by ‚.k � k0/ without modifying it. Hence, by the

mini-max principle and the Birman–Schwinger principle, we have

n˙.sI a.�/�1F.� � h�i/�F��1a.�//

� n˙.sI .2�/�1=2a.�/F...� � h�i/�/ � O‚/F�a.�//

D N.�1;��/

�

� �
d2

dx2
� s�1.2�/�1=2...� � h�i/�/ � O‚/

�

; s > 0; � > 0:

(A.8)

Arguing as in the proof of Proposition 3.9, we �nd with the help of Lemma 3.4

that

j...� � h�i/�/ � O‚/.x/j D O..1C jxj/�3/; x 2 R: (A.9)

Estimates (A.8)–(A.9) combined with Lemma 3.3 (iii), imply

n˙.sI a.�/�1F.� � h�i/�F��1a.�// D Os.1/; � # 0; s > 0: (A.10)

Finally, the operator �
1=2
�� F��2a.0/ with � < 1 is compact by [4, �eorem 13,

Section 8, Chapter 11]. �erefore,

n�.sI �1=2
�� F��2a.0// < 1; s > 0: (A.11)

Putting together (A.6), (A.10), and (A.11), and applying the Birman-Schwinger

principle, we obtain

N.�1;��/.��
d2

dx2
� .1C s/�1.h�i� � ��//COs.1/

� nC.1I a.�/F��F�a.�//

� N.�1;��/

�

� � d2

dx2
� .1� s/�1.h�i� C ��/

�

COs.1/; � # 0;

(A.12)

for any s 2 .0; 1/ and � 2 .0; 1/. Now parts (i)–(iii) of Proposition 2.4 follow

from estimates (A.1) and (A.12), and Lemma 3.3. Part (iv) of this proposition is

implied directly by Lemma 3.3 (iii).
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