
J. Spectr. �eory 6 (2016), 415–427

DOI 10.4171/JST/128

Journal of Spectral �eory

© European Mathematical Society

�e spectrum of a Schrödinger operator

with small quasi-periodic potential

is homogeneous

David Damanik,1 Michael Goldstein,2 and Milivoje Lukic3

Abstract. We consider the quasi-periodic Schrödinger operator

ŒH �.x/ D � 00.x/C V.x/ .x/

in L2.R/, where the potential is given by

V.x/ D
X

m2Z�n¹0º

c.m/ exp.2�im!x/

with a Diophantine frequency vector ! D .!1; : : : ; !�/ 2 R� and exponentially decaying

Fourier coe�cients jc.m/j � " exp.��0jmj/. In the regime of small " > 0we show that the

spectrum of the operator H is homogeneous in the sense of Carleson.
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1. Introduction and statement of the main result

Consider a Schrödinger operator

ŒH �.x/ D � 00.x/C V.x/ .x/ (1)

in L2.R/. Associated with such an operator is spectral information, such as the

spectrum and the spectral measures.
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For the most part, the spectral analysis of operators of this kind breaks into

two branches, namely direct spectral analysis, where the potential is given and

one seeks information about the spectrum and/or the spectral measures, and in-

verse spectral theory, where information about the spectrum and/or the spectral

measures is given and one seeks information about the potential.

In very special cases one can obtain two-way results of this kind, where cer-

tain classes of potentials are in one-to-one correspondence with certain classes of

spectra and/or spectral measures. Results of this special nature are called “gems

of spectral theory” in Barry Simon’s monograph [20].

Most results in the spectral theory of Schrödinger (or related) operators, how-

ever, are not of this special nature, and they are strictly one-way results. �at is,

for a certain class of potentials one can prove certain spectral properties, or con-

versely, for a certain class of potentials de�ned via the spectral properties of the

associated operators, one can prove certain statements. Whenever this situation

arises, there is a gap in our understanding of the spectral problem at hand, and

we do not have a complete characterization of the class of potentials or spectral

features that correspond to the class on the other side under consideration. In this

case there is a natural interest in closing this gap.

After these general introductory remarks, let us be more concrete. Assum-

ing that V is almost periodic (i.e., the set of its translates is relatively compact in

the uniform topology), there is extensive literature on the direct spectral problem,

that is, proving statements about the spectrum of the operator H and the type of

the spectral measures associated with it. We direct the reader to the recent sur-

veys [6, 14] and the references therein. �e appearance of Cantor sets as spectra

turns out to be typical, and the spectral measures can be of all possible types,

but essentially they have a tendency to be purely absolutely continuous for small

potentials or for large energies, and pure point for large potentials and small ener-

gies, provided that the potential has su�cient regularity properties (in the highly

irregular case, the appearance of purely singular continuous spectral measures is

typical). �e case of regular small quasi-periodic potentials is quite well under-

stood; see, for example, [7, 11]. Here, indeed the spectrum is a Cantor set and

the spectral measures are purely absolutely continuous. It is known due to work

of Kotani [15, 16] and Remling [18] that, as a consequence of absolute continu-

ity, the operators in question are re�ectionless, that is, the boundary values of the

diagonal elements of the Green function are purely imaginary Lebesgue almost

everywhere on the (absolutely continuous) spectrum.
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In the converse direction, there has been extensive work on re�ectionless

Schrödinger operators for certain prescribed spectra. Here one �xes a set S and

considers the set of all potentials V such that the associated Schrödinger operator

has spectrum S and is re�ectionless on it. �e goal is then to �nd out as much as

possible about this class of potentials. Fundamental work in this direction can be

found, for example, in [5, 21]. It is natural to ask about conditions on S that ensure

that all the potentials associated with it are almost periodic and all spectral mea-

sures are purely absolutely continuous. It turns out that the following condition

(cf. [4]) does the job.

De�nition 1.1. A closed set

E D R n
[

n

.E�
n ; E

C
n /

is called homogeneous if there is � > 0 such that for any E 2 E and any � > 0,
we have j.E � �; E C �/ \ Ej > �� .

Assuming �nite total gap length,1 it was shown by Sodin and Yuditskii [21]

that the homogeneity of S implies the almost periodicity of the associated po-

tentials, and it was shown by Gesztesy and Yuditskii [12] that the homogeneity

of S implies the absolute continuity of the associated spectral measures (see also

the more recent paper [17]). On the other hand, it is known that neither conse-

quence holds without a suitable assumption on S, such as for example homo-

geneity. Namely, Poltoratski and Remling study conditions on the set related

to the presence of associated re�ectionless measures with non-trivial singular

component [17] and, working out the continuum analog of work by Volberg and

Yuditskii [23], Damanik and Yuditskii showed that there are sets S such that all

associated potentials are not almost periodic [10].2

Apparently, one has a good way of passing to almost periodicity and absolute

continuity from either side, that is, one has conditions on potentials that ensure

these properties, and one has spectral conditions that ensure these properties as

well. Can one �nd a link between these two rather di�erent sets of results? It is

the main purpose of this paper to establish such a link. Namely, we will show that

the operators studied in [7], which is a direct spectral analysis, have homogeneous

spectra. Since they also clearly have �nite total gap length (and the operators are

1 Finite total gap length means that the sum of the lengths of the bounded gaps of the spectrum

is �nite.

2 �e sets in [10] are essentially explicit. With a non-explicit set, the statement can also be

derived from [3].
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re�ectionless as pointed out above), this puts the operators studied in [7] inside

the scope of the relevant literature on inverse spectral analysis, and in particular

the papers [12, 21]. We mention in passing that another link of this nature will

be established in [8, 9]. Namely it is shown there that if S is of the type that

arises in [7], then all potentials for which the associated operator is re�ectionless

are again of the type studied in [7]. In particular, they are all regular and quasi-

periodic with the same frequency vector. �at is, for these sets S, the potentials

studied in the inverse spectral theory approach are put inside the scope of the

work [7] on the direct spectral problem.

Let us now proceed to the statement of the main result of this paper. Let U.�/

be a real function on the torus T� ,

U.�/ D
X

n2Z�n¹0º

c.n/e2�in� ; � 2 T� :

Let ! D .!1; : : : ; !�/ 2 R�. Assume that the following Diophantine condition

holds,

jn!j � a0jnj�b0 ; n 2 Z� n ¹0º (2)

for some

0 < a0 < 1; � < b0 < 1:

Let V.x/ D U.x!/ and consider the Schrödinger operator (1). Assume that U

is real-analytic, that is, the Fourier coe�cients c.n/ obey

c.n/ D c.�n/; n 2 Z� n ¹0º;

jc.n/j � " exp.��0jnj/; n 2 Z� n ¹0º;

with " > 0, 0 < �0 � 1.

Our main result reads as follows:

�eorem H. �ere exists "0 D "0.�0; a0; b0/ > 0 such that for 0 < " < "0, the
spectrum of the operatorH is homogeneous with � D 1=2.

�e homogeneity of the spectrum is a consequence of detailed quantitative

results we can establish for the structure of the gaps of the spectrum. Since the

latter results are of independent interest, we state them separately in the following

theorem.

�eorem G. �ere exists "0 D "0.�0; a0; b0/ > 0 such that for 0 < " < "0,
the gaps in spectrum of the operator H can be labeled as Gm D .E�

m; E
C
m /,

m 2 Z� n ¹0º, G0 D .�1;
x
E/ so that the following conditions hold:
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(i) for every m 2 Z� n ¹0º, we have

EC
m �E�

m � 2" exp
�

�
�0

2
jmj

�

;

(ii) for every m;m0 2 Z� n ¹0º with m0 ¤ m and jm0j � jmj, we have

dist.ŒE�
m; E

C
m �; ŒE

�
m0 ; E

C
m0 �// � ajm0j�b;

where a; b > 0 are constants depending on a0; b0; �0; �;

(iii) for every m 2 Z� n ¹0º, we have

E�
m �

x
E � ajmj�b :

In the setting described above, Damanik and Goldstein established in [7] a

rather detailed description of the spectrum and the generalized eigenfunctions,

which turn out to be of Floquet type. As a consequence of this description and

the work of Kotani and Remling mentioned above [15, 16, 18] it follows that the

operator H is indeed re�ectionless on its spectrum, which in turn has �nite total

gap length by the estimates in [7]. �us, the only missing piece for one to apply the

theory of Gesztesy, Sodin and Yuditskii [12, 21] is the homogeneity of the spec-

trum. �is missing piece is established by �eorem H. On the more conceptual

level discussed earlier, �eorem H therefore provides a link between the direct and

the inverse spectral theory approach to almost periodicity and absolute continuity.

�e structure of the remainder of the paper is as follows. We prove �eorems H

and G in Section 2 and discuss natural questions for further study in Section 3.

2. Proof of �eorems H and G

In this section we prove �eorem H and G. �e main results from [7] play a crucial

role in these proofs. �ese results, given in �eorems A and B in [7] and restated

below, describe the spectrum and the generalized eigenfunctions of the operator

H with a small analytic quasi-periodic potential V and establish a two-way con-

nection between the decay of the Fourier coe�cients of V and the size of the gaps

of the spectrum of H .

Let us recall these results from [7]. Set

kn D �n!=2; n 2 Z� n ¹0º; K.!/ D ¹kn W n 2 Z� n ¹0ºº;

Jn D .kn � ı.n/; kn C ı.n//; ı.n/ D a0.1C jnj/�b0�3; n 2 Z� n ¹0º;

R.k/ D ¹n 2 Z� n ¹0º W k 2 Jnº; G D ¹k W jR.k/j < 1º;
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where a0; b0 are as in the Diophantine condition (2). Let k 2 G be such that

jR.k/j > 0. Due to the Diophantine condition, one can enumerate the points of

R.k/ asn.`/.k/, ` D 0; : : : ; `.k/, 1C`.k/ D jR.k/j, so that jn.`/.k/j < jn.`C1/.k/j.

Set

Tm.n/ D m � n; m; n 2 Z� ;

m.0/.k/ D ¹0; n.0/.k/º;

m.`/.k/ D m.`�1/.k/ [ Tn.`/.k/.m
.`�1/.k//; ` D 1; : : : ; `.k/:

�e following pair of theorems was established in [7].

�eorem A. �ere exists "0 D "0.�0; a0; b0/ > 0 such that for 0 < " < "0 and
k 2 G n !

2
.Z� n ¹0º/, there exist E.k/ 2 R and '.k/ WD .'.nI k//n2Z� such that

the following conditions hold:

(a) '.0I k/ D 1 and

j'.nI k/j � "1=2
X

m2m.`/

exp
�

�
7

8
�0jn �mj

�

; n … m.`.k//.k/;

j'.mI k/j � 2; m 2 m.`.k//.k/;

(b) the function
 .k; x/ D

X

n2Z�

'.nI k/e2�ix.n!Ck/

is well-de�ned and obeys

� 00.k; x/C V.x/ .k; x/ D E.k/ .k; x/;

(c) w E.k/ D E.�k/, '.nI �k/ D '.�nI k/,  .�k; x/ D  .k; x/, and

.k0/2.k � k1/
2 < E.k/ �E.k1/

< 2k.k � k1/C 2"
X

k1<kn<k

ı.n/;
(3)

for 0 < k � k1 < 1=4; k1 > 0, where k.0/ WD min."0; k=1024/;

(d) the spectrum of H consists of the following set,

S D ŒE.0/;1/ n
[

m2Z�n¹0ºWE�.km/<EC.km/

.E�.km/; E
C.km//;

where
E˙.km/ D lim

k!km˙0; k2GnK.!/
E.k/; for km > 0.
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�eorem B. (a) �e gaps .E�.km/; E
C.km// in �eorem A obey

EC.km/ � E�.km/ � 2" exp
�

�
�0

2
jmj

�

:

(b) Using the notation from �eorem A, there exists ".0/ > 0 such that
if the gaps .E�.km/; E

C.km// obey EC.km/ � E�.km/ � " exp.��jmj/ with
0 < " < ".0/, � > 4�0, then, in fact, the Fourier coe�cients c.m/ obey
jc.m/j � "1=2 exp

�

� �
2
jmj

�

.

We are now in position to prove �eorems G and H.

Proof of �eorem G. Consider the "0 D "0.�0; a0; b0/ > 0 from �eorem A and

label the gaps as in part (d) of �eorem A.

(i) �is statement follows from part (a) of �eorem B.

(ii) Recall that

jm!j > a0jmj�b0 ; m ¤ 0:

In what follows we denote by aj constants depending on a0; b0; �0; �.

Let m0 ¤ m, jm0j � jmj be arbitrary. �en,

jkm � km0 j D j.m �m0/!j=2 � a0.2jm
0j/�b0=2 � a1jm0j�b0 :

Assume for instance that km0 > km > 0. Due to (3) in �eorem A, we have

E�.km0/ �EC.km/ > .k
0/2.km0 � km/

2 � .k0/2a2jm0j�2b0 ;

where

k.0/ WD min."0; km=1024/ � "0a3jm0j�b0 :

�us,

E�.km0/ � EC.km/ > .k
0/2.km0 � km/

2 � "2
0a4jm0j�4b0 D a5jm0j�4b0 ;

which means that

dist.ŒE�
m; E

C
m �; ŒE

�
m0 ; E

C
m0 �/ � ajm0j�b:

�e remaining cases are completely similar.

(iii) �e proof of this statement is completely similar to the proof of (ii) and we

omit it.
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Proof of �eorem H. Let E 2 S, � > 0. Set

C.E; �/ D ¹m ¤ 0 W .E�
m; E

C
m / \ .E � �; E C �/ ¤ ;º:

Using the notation from �eorem A, assume �rst that

.�1;
x
E/ \ .E � �; E C �/ D ;:

Pick m0 D m0.E; �/ so that jm0j D minm2C.E;�/ jmj. Note that for any

m 2 C.E; �/, we have

dist.ŒE�
m; E

C
m �; ŒE

�
m0
; EC

m0
�/ � 2�:

On the other hand, by part (ii) of �eorem G,

dist.ŒE�
m; E

C
m �; ŒE

�
m0
; EC

m0
�/ � ajmj�b ;

where a; b > 0 are constants depending on a0; b0; �0; �. �erefore,

jmj � ˛��ˇ ;

where ˛; ˇ > 0 are constants depending on a0; b0; �0; �. Due to part (i) of �eo-

rem G,

EC
m � E�

m < 2" exp
�

�
�0

2
jmj

�

: (4)

�us,
X

m2C.E;�/n¹m0 º

ˇ

ˇ.E�
m; E

C
m / \ .E � �; E C �/

ˇ

ˇ �
X

m2C.E;�/n¹m0º

EC
m � E�

m

� 2"
X

jmj�˛��ˇ

exp
�

�
�0

2
jmj

�

< �=2;

provided � � �0.a0; b0; �0; �/. Note that since E 2 S, E … .E�
m0
; EC

m0
/. Hence,

j.E�
m0
; EC

m0
/ \ .E � �; E C �/j � �:

�us,

j.E � �; E C �/ \ Sj � 2� � j.�1;
x
E/ \ .E � �; E C �/j

� j.E�
m0
; EC

m0
/ \ .E � �; E C �/j

�
X

m2C.E;�/n¹m0º

j.E�
m; E

C
m / \ .E � �; E C �/j

> 2� � 0 � � � �=2

D �=2;

provided � � �0.a0; b0; �0; �/.
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Now assume that

.�1;
x
E/ \ .E � �; E C �/ ¤ ;:

Note that for any m 2 C.E; �/, we have

E�
m �

x
E � 2�:

On the other hand, by part (iii) of �eorem G, we have

E�
m �

x
E � ajmj�b ;

where a; b > 0 are constants depending on a0; b0; �0; �. �erefore,

jmj � ˛��ˇ ;

where ˛; ˇ > 0 are constants depending on a0; b0; �0; �. Just as above we may

conclude that

X

m2C.E;�/

j.E�
m; E

C
m / \ .E � �; E C �/j < �=2;

provided � � �0.a0; b0; �0; �/. Note that since E 2 S, E … .�1;
x
E/. Hence,

j.�1;
x
E/ \ .E � �; E C �/j � �:

Due to (4),

X

m

.EC
m �E�

m/ < C.�0; �/" < �0.a0; b0; �0; �/=2;

provided 0 < " < "0 D "0.�0; a0; b0/ > 0. �erefore, for any interval .E � � ,

E C �/ with E 2 S and � > �0.a0; b0; �0; �/, we have

j.E � �; E C �/ \ Sj � 2� � j.�1;
x
E/\ .E � �; E C �/j �

X

m

j.E�
m; E

C
m /j

> 2� � � � �=2

D �=2;

which shows that the desired estimate holds in the second case as well. �is con-

cludes the proof.
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3. Some remarks and open problems

We have seen that Schrödinger operators with small analytic quasi-periodic po-

tentials have homogeneous spectrum. It is natural to ask whether this property

persists if " is increased somewhat. It is known that, as " is increased, the pure

absolute continuity of the spectrum does not persist. Indeed for large enough cou-

pling, the spectrum will be pure point with exponentially localized eigenfunctions

(i.e., Anderson localization holds) in the lower energy region. �is is particularly

well understood for the discrete counterpart of this problem, but we expect very

strongly that the continuum versions of the statements known in the discrete case

indeed do hold. Moreover, judging again by the analogy with the discrete case, the

transition from absolute continuity to localization may well go through a critical

regime at which the homogeneity of the spectrum breaks down.3 It is of course

of interest to compare the values of the coupling constant where we experience a

breakdown of absolute continuity and homogeneity, respectively. Let us state one

question in this spirit explicitly.

Question 1. Suppose that "1 > 0 is such that for 0 < " < "1, the spectrum of H
is purely absolutely continuous with generalized eigenfunctions of Floquet type
for almost every energy in the spectrum. Is it true that for each 0 < " < "1,
the spectrum of H is homogeneous?

Another interesting research direction is to explore the same issues in the dis-

crete setting. Given that inverse spectral theory plays a role in this study, one needs

to study the class of Jacobi matrices, that is, operators

ŒJ �n D an nC1 C bn n C an�1 n�1

in `2.Z/ with an > 0 and bn 2 R. �e inverse spectral theory aspects were

worked out by Sodin and Yuditskii as well [22]. �e connection between absolute

continuity and re�ectionlessness follows from the work of Kotani [16] and

Remling [19]. �ere is a very large number of results on the direct spectral problem

for Jacobi matrices with almost periodic coe�cients, we refer the reader again to

the recent surveys [6, 14] and the references therein. In fact, there are more results

in the discrete setting than in the continuum setting. For example, Avila’s global

theory for analytic quasi-periodic one-frequency potentials [1, 2] currently exists

only in the discrete setting. �is suggests that one should try to establish discrete

versions of [7, 8, 9] and of the present paper.

3 Concretely, for the almost Mathieu operator this transition occurs at coupling � D 1, and

at this value of the coupling constant, the spectrum has zero Lebesgue measure.
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By far the most heavily studied discrete Schrödinger operator with a quasi-

periodic potential is the almost Mathieu operator, that is, the Jacobi matrix with

an D 1 and bn D 2� cos.2�Œn! C ��/ with � > 0, ! 2 R n Q and � 2 R. It is

known that the spectrum of this operator does not depend on � , and may therefore

be denoted by ��;! , and has Lebesgue measure Leb.��;!/ D 4j1� �j. Moreover,

all spectral measures are purely absolutely continuous for � < 1 and purely sin-

gular for � � 1. �ere is a rather large number of papers contributing to these

statements, compare [6, 14]. In particular, the operator (has spectrum of positive

Lebesgue measure and) is re�ectionless when � < 1. On the other hand it is not

known whether there are any parameter values for which the spectrum of this op-

erator is homogeneous. Given that almost everything about this operator is known

due to extensive investigation over many decades, this absence of understanding

is somewhat unsettling. Let us state this explicitly as a question.

Question 2. For which values of � is the spectrum of the almost Mathieu operator
homogeneous?

Working out the discrete analog of [7] and the present paper as suggested above

could potentially solve this problem in the regime of small �. We intend to address

this in a forthcoming paper.

Note that by Aubry duality, the spectrum at � is homogeneous if and only if

it is homogeneous at 1=�. �us, we expect homogeneity to hold at least for �

su�ciently small and su�ciently large.

However, homogeneity will not hold for all � > 0. At the critical value � D 1,

the spectrum has zero Lebesgue measure and hence homogeneity fails for trivial

reasons. It is far from clear at this point whether homogeneity will hold for all

� < 1 or whether it breaks down at some smaller threshold. In this context the

work of Hel�er and Sjöstrand [13] may be relevant. In that paper, the gap structure

for the case of critical coupling � D 1 and suitable frequencies ! was studied in

great detail. If it is possible to extend their analysis to non-critical �, this may

allow one to address the homogeneity issue in the almost critical regime. �is

appears to be quite di�cult, however.
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