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Abstract. We use the N@-inverse scattering method to obtain global well-posedness and

large-time asymptotics for the defocussing Davey–Stewartson II equation. We show that

these global solutions are dispersive by computing their leading asymptotic behavior as

t ! 1 in terms of an associated linear problem. These results appear to be sharp.
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1. Introduction

In this paper we will use the inverse scattering method to prove global well-

posedness for the defocussing Davey–Stewartson II (DS II) equation

iut C 2.N@2 C @2/uC .g C Ng/u D 0; (1.1a)

N@g C @.juj2/ D 0; (1.1b)

a nonlinear, completely integrable dispersive equation in two space dimensions.

Here and in what follows, z D x1 C ix2 and

N@ D 1

2

� @

@x1

C i
@

@x2

�
; @ D 1

2

� @

@x1

� i @
@x2

�
:

The defocussing DS II equation may be regarded as a two-dimensional ana-

logue of the defocussing cubic nonlinear Schrödinger equation in one space di-

mension: it is one of a multiparameter family of models proposed by Benny and

Roskes [12] and Davey and Stewartson [19] to model the propagation of weakly

nonlinear surface waves in shallow water (see Ghidaglia and Saut [23] for a phys-

ical derivation and extensive local well-posedness results).

We will prove that the Cauchy problem for (1.1) is globally well-posed for

initial data in the space H 1;1.C/. Here and in what follows, H˛;ˇ .C/ denotes the

weighted Sobolev space

H˛;ˇ .C/ D ¹f 2 L2.C/W hDi˛f; h � iˇf . � / 2 L2.C/º:

Here hzi D .1C jzj2/1=2 and hDiˇ is the Fourier multiplier with symbol h�iˇ .

We will also show, under stronger conditions on the initial data, that solutions

are asymptotic in L1-norm to solutions of the linear problem

ivt C 2.N@2 C @2/v D 0: (1.2)

To state our result precisely, we recall the formulation of (1.1) as a nonlinear in-

tegral equation. Denote by S.t/ the solution operator for the linear problem (1.2).

For T > 0, let

XT D C.Œ0; T �; L2.C// \ L4.Œ0; T � � C/:

We say that a function u 2 XT solves the Davey–Stewartson II equation with

initial data u0 2 L2.C/ if u.t/ solves the equation

u.t/ D S.t/u0 Cƒ.u/.t/; (1.3)
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for t 2 .0; T /. Here

ƒ.u/.t/ D i

Z t

0

S.t � s/.2u.s/ReŒS.ju.s/j2/�/ ds;

where S D @N@�1 is the Beurling transform (see Lemma 2.4). Strichartz esti-

mates for S.t/ (see [23, §2 and Appendix]) show that the solution operator S.t/

and the nonlinear mapping ƒ takes XT to itself, so that (1.3) can be formulated

as a �xed-point problem in this space. It is not di�cult to see that a classi-

cal solution of (1.1) belonging to C 1.Œ0; T �; S.C// also solves (1.3). Ghidal-

gia and Saut [23, Theorem 2.1] showed that for initial data u0 2 L2.C/, prob-

lem (1.3) has a solution in XT for some T > 0 depending on the initial data.

For u0 2 H 1;1.C/ we can globalize this result by the inverse scattering method.

We will prove:

Theorem 1.1. There exists a continuous map

H 1;1.C/ � R �! H 1;1.C/;

.u0; t / 7�! u.t/;

so that the function u is a solution of the Davey–Stewartson II equation (1.1) with

initial datau0 in the sense that the integral equation (1.3) holds for all t . Moreover,

ku.t/k2 is conserved.

Since H 1;1.C/ � Lp.C/ for all p 2 .1;1/ (see (2.2)) it is easy to see that

C.Œ0; T �;H 1;1.C// is continuously embedded in XT . Hence, the global solution

constructed in Theorem 1.1 coincides with the local Ghidaglia-Saut solution for

all T , so that these solutions extend to T D 1 when u0 2 H 1;1.C/.

Our proof exploits the completely integrable method for the defocussing

DS II equation developed by Fokas [22], Ablowitz and Fokas [1, 2, 3], Beals and

Coifman [7, 8, 9], Sung [33], and Brown [13]. For u0 2 S.C/, the function

u.z; t / D IŒe4it Re.. � /2/.Ru0/. � /�.z/ (1.4)

solves the Cauchy problem for (1.1) with initial data u0 2 S.C/ (see Appendix B

for a self-contained proof and for references to the literature). Here R and I are

the direct and inverse scattering transforms for the DS II equation which we now

describe.
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For z D x1 C ix2 and k D k1 C ik2, let ek.z/ be the unimodular function

ek.z/ D e
Nk Nz�kz D exp.�2i.k1x2 C k2x1//:

The direct scattering map R is de�ned by the N@-problem (in the z-variable)

N@�1 D 1

2
eku�2 ; (1.5a)

N@�2 D 1

2
eku�1 ; (1.5b)

lim
jzj!1

.�1.z; k/; �2.z; k// D .1; 0/; (1.5c)

and the representation formula

.Ru/.k/ D 1

�

Z
ek.z/u.z/�1.z; k/ dA.z/ (1.6)

(here and in what follows, dA denotes Lebesgue measure on C). Given u 2 S.C/

one �rst solves (1.5) for �1; �2, and then computes Ru from (1.6). The lineariza-

tion of the map R at u D 0 is the map

.Ff /.k/ D 1

�

Z
ek.z/f .z/ dA.z/ (1.7)

which is the usual two-dimensional Fourier transform up to a linear change of

variables.

The inverse scattering map I is similarly de�ned by the N@-problem

N@k�1 D 1

2
ek Nr �2 ; (1.8a)

N@k�2 D 1

2
ek Nr �1 ; (1.8b)

lim
jkj!1

.�1.z; k/; �2.z; k// D .1; 0/; (1.8c)

and the representation formula

.Ir/.z/ D 1

�

Z
e�k.z/r.k/�1.z; k/ dA.k/: (1.9)

Here N@k denotes the N@-operator acting in the k variable. Given r 2 S.C/, one �rst

solves (1.8) for �1; �2, and then computes Ir from (1.9). The linearization of the

map I at r D 0 is the inverse Fourier transform

.F�1g/.z/ D 1

�

Z
e�k.z/g.k/ dA.k/: (1.10)
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From the de�nitions it is formally obvious that

I D C ı R ı C; (1.11)

where C is complex conjugation. This fact, proved in Lemma 3.11 of what follows

(see also [5, §2]), will allow us to apply our analysis of R directly to I.

The solution formula (1.4) for (1.1) should be compared to the Fourier trans-

form solution formula

v.z; t / D F
�1Œe4it Re.. � /2/.Fv0/. � /�.z/ (1.12)

for the linearized problem (1.2). Using the de�nition (1.8)–(1.9) of the map I,

we can recast the solution formula (1.4) for the DS II equation as a N@-problem

depending on space and time as parameters. Given u0 2 S.C/, one computes

r0 D Ru0 and solves the N@-problem

N@k�1 D 1

2
e�itSr0�2 ; (1.13a)

N@k�2 D 1

2
e�itSr0�1 ; (1.13b)

lim
jkj!1

.�1; �2/ D .1; 0/: (1.13c)

Here

S.z; k; t / D kz � Nk Nz
it

C 4Re.k2/ (1.14)

is a real-valued phase function with a single nondegenerate critical point

kc D iz=4t: (1.15)

We then recover the solution from the formula

u.z; t / D 1

�

Z
eitS.z;k;t/r0.k/�1.z; k; t / dA.k/: (1.16)

By a careful study of the N@-problems (1.5) and (1.8), we will prove:

Theorem 1.2. The maps R and I, initially de�ned on S.C/ by (1.5)–(1.6)

and (1.8)–(1.9), extend to locally Lipschitz continuous maps from H 1;1.C/

to itself. Moreover,Rı I D IıR D I where I is the identity mapping onH 1;1.C/.

Finally, the Plancherel relations kRuk2 D krk2 and kIrk2 D krk2 hold.
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Proof of Theorem 1.1, given Theorem 1.2. First, we show that the map de�ned

by (1.4) has the claimed continuity properties. For u1 and u2 in a �xed bounded

subset of H 1;1.C/ and t; t 0 > 0, let

U1.z; t / D IŒe4it Re.. � /2/
R.u1/�.z/;

U2.z; t
0/ D IŒe4it 0 Re.. � /2/

R.u2/�.z/:

Then

kU1. � ; t /� U2. � ; t 0/kH 1;1 � Cke4it Re.. � /2/
R.u1/ � e4it 0 Re.. � /2/

R.u2/kH 1;1

� Cke4it Re.. � /2/ŒR.u1/ � R.u2/�kH 1;1

C Ck.e4it Re.. � /2/ � e4it 0 Re.. � /2//R.u2/kH 1;1;

where C is uniform in u1 and u2 in a �xed bounded subset of H 1;1.R/.

The continuity now follows from the Lipschitz continuity of R, the estimate

ke4it Re.. � /2/f kH 1;1 � C.1C jt j/kf kH 1;1

and the fact that

lim
jt j!0

kŒe4it Re.. � /2/ � 1�f kH 1;1 D 0

for each �xed f 2 H 1;1.C/ by dominated convergence.

Next we prove that the map (1.4) solves the DS II equation (1.3) for initial data

u0 2 H 1;1.R2/. For u1 and u2 in a �xed bounded subsetB ofH 1;1.C/ and T > 0,

we have

sup
t2Œ0;T �

kU1. � ; t /� U2. � ; t /kH 1;1 � Cku1 � u2kH 1;1; (1.17)

where C D C.T; B/, by Theorem 1.2. Now let u0 2 H 1;1.C/ be given and let

¹un;0º1
nD1 be a sequence from S.C/ with un;0 ! u0 in H 1;1.C/. Let

Un.z; t / D I.e4it Re.. � /2/
R.un;0//

and

U.z; t/ D I.e4it Re.. � /2/
R.u0//:

By (1.17),

sup
t2Œ0;T �

kUn. � ; t /� U. � ; t /kH 1;1 � Ckun;0 � u0kH 1;1

so that, in particular, Un ! U in XT . Since un;0 2 S.C/, we have Un 2
C.Œ0; T �; S.C//, and each Un satis�es

Un.t / D S.t/un;0 Cƒ.Un/.t /: (1.18)
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Since

kU � UnkXT
� C.T / sup

t2Œ0;T �

kU. � ; t /� Un. � ; t /kH 1;1.C/

and ƒ is a continuous mapping from XT to itself, it follows that ƒ.Un/ ! ƒ.U /

in XT . Taking limits in (1.18) in the XT -topology, we conclude that

U.t/ D S.t/u0 Cƒ.U /.t/

so that U solves the DS II equation (1.3) with initial data u0. �

Through a careful study of the N@-problem (1.13a), we will prove:

Theorem 1.3. Suppose that u0 2 H 1;1.C/ \ L1.C/. The solution u of the

defocussing DS II equation with Cauchy data u0 obeys the asymptotic formula

u.z; t / D v.z; t /C o.t�1/

in L1
z -norm, where

v.z; t / D F
�1.e4it Re.. � /2/.Ru0/. � //:

Remark 1.4. In an earlier version of this paper, the hypothesis that u0 2 L1.C/

was erroneously omitted. The condition u0 2 L1.C/ implies that r0 is continuous

(see Remark 3.7). The additional hypothesis appears to be necessary for the proof:

see Lemma 5.9 for the key step where the continuity of r0 is used.

Remark 1.5. This result shows that, in contrast to the one-dimensional cubic non-

linear Schrödinger equation, there is no “logarithmic phase shift” in the solution

due to the nonlinear term. See Deift-Zhou [20] for an analysis of this phenomenon

and for references to the literature.

Remark 1.6. Suppose that r0 is continuous and that F�1r0 2 L1.C/. This

assumption holds, for example, when u0 2 S.C/, so that r0 2 S.C/ by Sung’s

work [33, Paper II, §4] on the scattering transform. The function v.z; t / is given

by

v.z; t / D
Z
�t .z � z0/.F�1r0/.z

0/ dA.z0/;

where

�t .z/ D ei.z2CNz2/=8t

4t
:
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From this formula, we obtain

lim
t!1

�t .z/
�1v.z; t / D

Z
.F�1r0/.z

0/ dA.z0/ D �r0.0/

which shows that the remainder o.t�1/ is indeed of lower order provided r0.0/¤ 0.

The results of Theorem 1.3 were �rst obtained by Kiselev [24] (see also [25,

Theorem 7]). On the one hand, Kiselev’s result treats both the focusing and

defocussing DS II equations; on the other, he imposes a “small data” restriction

and more stringent integrability and regularity assumptions. Kiselev’s analysis

relies in part on separate asymptotic expansions of the solution �1.z; k; t / in the

‘exterior region’ jk�kcj � t�1=4 and in the ‘interior region’ jk�kcj < 2t1=4 with

matching in the transition region.

In our proof, we remove Kiselev’s small data restriction in the defocussing case

and replace the asymptotic expansions with a �ner analysis of the integral operator

M (see (5.3)) used to solve (1.13a). Our analysis rests on scaling arguments and

on the simple integration by parts formula (2.9) previously used by Bukhgeim [17]

in his analysis of the inverse conductivity problem.

Inverse scattering for the defocussing Davey–Stewartson II equation was stud-

ied by Fokas [22], Ablowitz and Fokas [1, 2, 3], Beals and Coifman [7, 8, 9],

Sung [33], and Brown [13]. Beals and Coifman construct global solutions for the

defocussing DS II equation with initial data in S.C/ by inverse scattering meth-

ods, while Sung constructs solutions for the same case if u 2 L1 \ L1 and the

Fourier transform of u lies in L1 \L1 (see paper III of [33]). Sung [34] obtained

the leading t�1 decay rate (but not the asymptotic formula) for solutions of the

DS II equation with Schwarz class initial data, using his earlier work [33] on the

inverse scattering method for DS II. Sung and Brown construct solutions to the

focusing DS II equations with small initial data; the small data hypothesis avoids

soliton solutions (see [4] and Section 10.5 of [21] for an exposition and additional

references) and the blow-up phenomena discussed below. Brown actually shows

Lipschitz continuity of the solution map for (1.2) for small Cauchy data in L2 for

either the focusing or defocussing DS II equation. More recently, Astala, Faraco,

and Rogers [5] proved Lipschitz continuity of the scattering map R from H s;s to

L2 for s 2 .0; 1/ and proved a Plancherel identity for R.

The same analysis used here can also be applied to the focusing DS II equation

with small initial data, which di�ers from (1.1) in that the second equation reads

N@g � N@.juj2/ D 0;

changing the sign of the nonlinear term. The “small data” condition is used to

replace the Fredholm argument in Lemma 3.1. Details will be given in [30].
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Ozawa [28] constructed a solution to the focusing DS II equation with the follow-

ing properties: (1) the initial data u0 2 L2, but jru0.z/j; jzu.z/j � C.1C jzj/�1

for a positive constant C , (2) the measure ju.z; t /j2dA.z/ concentrates to a ı-

function in �nite time (see also C. Sulem and P. Sulem [32], pp. 229-230). Since

ru0 and . � /u0. � / lie in weak-L2 but notL2, Ozawa’s results suggest thatH 1;1.C/

is a natural limit for the inverse scattering method.

In [29], we use the results of this paper and previous work of Lassas, Mueller,

and Siltanen [26] and Lassas, Mueller, Siltanen, and Stahel [27] to �nd global so-

lutions of the Novikov–Veselov equation with initial data of conductivity type by

the inverse scattering method. In [14], co-authored with Russell Brown, Katharine

Ott, and Nathan Serpico, we show that the maps R and I have mapping proper-

ties between weighted Sobolev spaces which parallel those of the Fourier trans-

form. Our analysis in [14] relies in part on a key estimate of Astala, Faraco, and

Rogers [5] that generalizes our Lemma 3.2. These authors prove a Plancherel for-

mula for the map R under less restrictive hypotheses than ours.

We close by sketching the contents of this paper. In §2, we �x notation,

recall basic facts about integral operators associated to the N@-problem, recall key

Brascamp–Lieb inequalities, and prove an important lemma on integration by

parts. In §3, we study the N@-problem (1.5) in depth. We apply these results

in §4 to prove Theorem 1.2. Finally, we prove Theorem 1.3 in §5. Appendix A,

written by Michael Christ, proves Brown’s multilinear estimate (Proposition 2.5

and [13, Lemma 3]) by the methods of Bennett, Carbery, Christ, and Tao [10, 11].

In Appendix B we present a concise proof that the inverse scattering formula (1.4)

gives a classical solution of the DS II equation for initial data in S.C/. Appendix C

computes large-z asymptotic expansions for solutions of (1.8) that are used in

Appendix B.
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2. Preliminaries

Notation, function spaces. We denote by C 0.C/ the bounded continuous func-

tions on C equipped with the sup norm, and by C0.C/ the continuous functions

that vanish at in�nity. The spaces Lp.C/ are the usual Lebesgue spaces and p0

the Hölder conjugate exponent. We sometimes write L
p
z .C/ or L

p

k
.C/ to clarify

the choice of integration variable z or k. The space L2;1.C/ consists of complex-

valued measurable functions f 2 L2.C/with hzif 2 L2.C/. We denote by hf; gi
the dual pairing

hf; gi D 1

�

Z
f .z/g.z/ dA.z/: (2.1)

To quantify regularity of solutions for (1.5) and (1.8), we use the usual Hölder

spaces. For ˛ 2 .0; 1/, let C ˛ denote the bounded, Hölder continuous functions

of order ˛ on C equipped with the norm

kf kC ˛ D kf k1 C sup
z¤z0

jf .z/ � f .z0/j
jz � z0j˛ :

If X and Y are Banach spaces, B.X; Y / (resp. xB.X; Y /) is the Banach space

of linear (resp. antilinear) operators from X to Y . We write B.X/ for B.X;X/,

and similarly for xB.X/.
The space H 1;1.C/ is continuously embedded in Lp.C/ for any p 2 .1;1/.

Thus, for any s 2 .1;1/,

kuks � CskukH 1;1; (2.2)

where Cs depends only on s. We also have the following standard compact

embedding result. We give a proof since we have not found a reference although

the result is well-known.

Lemma 2.1. The space H 1;1.C/ is compactly embedded in Lp.C/ for any p 2
.1;1/.

Proof. Observe thatF preservesH 1;1.C/ and mapsLp.C/ continuously toLp0

.C/

for p 2 Œ1; 2�. Hence, if we show that H 1;1.C/ is compactly embedded in Lp.C/

for p 2 .1; 2�, the same fact for p 2 Œ2;1/ is follows by composing with the

continuous map F.

To show that H 1;1.C/ is compactly embedded in Lp.C/ for p 2 .1; 2�, let

� 2 C1
0 .C/ with �.w/ D 1 for jwj � 1 and �.w/ D 0 for jwj � 2, and let

�R.z/ D �.w=R/. Let TRf D �R � f . Since TR is a bounded map from H 1;1.C/

toW 1;p.C/ for anyp 2 Œ1; 2�, it follows from the Rellich-Kondrakov Theorem that

TR is a compact mapping fromH 1;1.C/ toLq.C/ for any q 2 Œ1;1/. For q 2 .1; 2�
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we have by Hölder’s inequality that k.I � TR/f kq � CqR
2.1�q/

q kf kL2;1, so that

k.I � TR/kB.Lq/ vanishes asR ! 1. The compact embedding now follows from

norm-closure of the compact operators. �

Estimates and vanishing theorem for the N@-problem. The solid Cauchy trans-

form is given by

.Pf /.z/ D 1

�

Z
1

z � � f .�/ dA.�/

and is an inverse for the N@-operator in the sense that, for f 2 C1
0 .C/,

P.N@f / D N@.Pf / D f: (2.3)

Results analogous to those described below also hold for the operator

. xPf /.z/ D 1

�

Z
1

Nz � N�
f .�/ dA.�/

which is an inverse for the @-operator.

The following estimates extend P to a larger domain. They are proved, for

example, in Vekua [35, Chapter I.6] or Astala, Iwaniec, and Martin [6, §4.3].

(1) Fractional integration and Hölder estimates. If q 2 .1; 2/ then Qq denotes

the Sobolev conjugate . Qq/�1 D q�1 � 1=2. It follows from the Hardy-Littlewood-

Sobolev inequality that

kPf k Qq � Cqkf kq: (2.4)

We usually take Qq D p and q D 2p=.p C 2/ for p 2 .2;1/. From this inequality

and Hölder’s inequality we see that for p 2 .2;1/, v 2 L2.C/ and u 2 Lp.C/

kP.vf /kp � Cpkvk2kf kp: (2.5)

It follows from Hölder’s inequality that for any q; r with 1 < q < 2 < r < 1,

kPf k1 � Cq;r .kf kq C kf kr /: (2.6)

(2) Hölder continuity and asymptotic behavior. For any p > 2 and f 2
Lp.C/ \ Lp0

.C/,

j.Pf /.z/ � .Pf /.z0/j � Cpjz � z0j1�2=pkf kp: (2.7)

If p 2 .2;1/ and f 2 Lp \ Lp0

then

lim
jzj!1

.Pf /.z/ D 0: (2.8)
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By (2.6) and a density argument, it is enough to show that (2.8) holds for

f 2 C1
0 .C/. This is a straightforward computation.

The following lemma will allow us to recast (1.5), (1.8), and (1.13a) as integral

equations.

Lemma 2.2. Suppose f 2 Lq.C/ for q 2 .1; 2/. A function u 2 L Qq.C/ solves
N@u D f in distribution sense if and only if u D Pf .

Proof. For any f 2 Lq.C/, it follows from (2.3) and (2.4) that u D Pf solves
N@u D f in distribution sense.

Suppose, on the other hand, that f 2 Lq.C/, that u 2 L Qq.C/, and that N@u D f

in distribution sense. Let v D u�Pf . It follows that @N@v D 0 in distribution sense,

so that v 2 C1 by Weyl’s lemma. Thus, v is a holomorphic function belonging

to Lp.C/, so v vanishes identically by Liouville’s Theorem. �

The following vanishing theorem is a special case of Brown and Uhlmann [16,

Corollary 3.11] that will su�ce for our purpose.

Lemma 2.3. Suppose that w 2 Lp.C/ \ L2
loc.C/ for some p 2 .1;1/, that

a 2 L2.C/, and that N@w D a Nw in distribution sense. Then w D 0.

Basic estimates on the Beurling transform. The Beurling transform S is de-

�ned on C1
0 .C/ by

.Sf /.z/ D � 1
�

lim
"#0

Z

jw�zj>"

1

.z �w/2f .w/ dA.w/

and obeys the relation N@.Sf / D @f . We refer the reader to [6, §4.3] for discussion

and proofs.

Lemma 2.4. The operator S extends to a bounded operator from Lp.C/ to itself

for any p 2 .1;1/, unitary if p D 2. Moreover, if r' belongs to Lq.C/ for some

q 2 .1;1/, then S.N@'/ D @'.

Thus, if u 2 Lp.C/ for some p 2 .1;1/ and ru 2 Lq.C/ for q 2 .1;1/,

the norms kN@ukq, k@ukq , and krukq are mutually equivalent.

We will also use the analogous results for the transform

.S�f /.z/ D � 1
�

lim
"#0

Z

jw�zj>"

1

. Nz � Nw/2f .w/ dA.w/

which satis�es @.S�f / D N@f on C1
0 .C/.
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Integration by parts. If '.z; �/ is a smooth, real-valued function with isolated

critical points in the integration variable z, and if f 2 C1
0 with support away

from the critical points of ', then

P Œei'f �.z/ D ei'

i' Nz

f .z/ � 1

i
P Œei' N@z.'

�1
Nz f /�.z/: (2.9)

In case i'.z; k/ D Nk Nz � kz for k ¤ 0, the phase function ' has no critical points.

Hence, for any f 2 C1
0 .C/, the identity

P Œekf � D ek

Nk
f � 1

Nk
P Œek.N@zf /� (2.10)

holds.

Let q 2 .1; 2/. Approximating f 2 W 1;q.C/ by a sequence from C1
0 .C/,

we can conclude that for f 2 W 1;q.C/, the equality (2.10) holds in L Qq . Note that,

if f 2 W 1;q.C/, Sobolev embedding implies that f 2 L Qq so the statement makes

sense. From this we obtain the estimate

kP Œekf �k Qq � Cqhki�1kf kW 1;q : (2.11)

Brascamp–Lieb type estimates. The following multilinear estimate, due to

Russell Brown [13, Lemma 3] (see also Nie-Brown [15]), plays a crucial role in

the analysis of solutions to (1.5) and (1.8). See Appendix A for a proof of the

estimate by the methods of Bennett, Carbery, Christ and Tao [10, 11]. De�ne

ƒn.�; u0; u1; : : : ; u2n/ D
Z

C2nC1

j�.�/jju0.z0/j : : : ju2n.z2n/jQ2n
j D1 jzj �1 � zj j

dA.z/;

where dA.z/ is product measure on C
2nC1 and

� D
2nX

j D0

.�1/j zj :

Proposition 2.5. [13] For any functions �; u0; u1; : : : ; u2n 2 L2.C/, the estimate

jƒn.�; u0; u1; : : : ; u2n/j � Cnk�k2

2nY

j D0

kuj k2 (2.12)

holds.



442 P. A. Perry

Remark 2.6. Let T .j / D Pekuj
N where uj 2 L2.C/. Consider the form

h1; eku0T
.1/ : : : T .2n/1i (2.13)

which de�nes a function of k. Integrating (2.13) against a test function b� in the

k-variable and applying (2.12) shows that (2.13) de�nes an L2 function of k with

kh1; eku0T
.1/ : : : T .2n/1ik2 � Cn

2nY

j D0

kuj k2:

For details we refer the reader to the proof of Theorem 2 in [13] where a very

similar estimate is proved.

3. An oscillatory N@-problem

In this section we study the N@ problem (1.5). The main results used in §4 are

Lemmas 3.6 and 3.12. Because the problem (1.8) has a nearly identical structure,

the results of this section apply to the problem (1.8) with typographical changes.

Fix p 2 .2;1/, k 2 C and u 2 H 1;1.C/. It follows from Lemma 2.2 that a pair

of functions .�1; �2/ with �1 � 1; �2 2 Lp.C/ solves (1.5a)–(1.5b) if and only if

�1 � 1 D Tk�2; (3.1)

�2 D Tk�1;

where Tk is the antilinear operator

ŒTk �.z/ D 1

2
P Œek. � /u. � / . � /�.z/:

We sometimes write Tk;u for Tk to emphasize its dependence on u. We will

solve these integral equations and then check that (1.5c) holds for the solutions

so constructed (see (3.15)).

Formally, �1 D .I � T 2
k
/�11. To prove and analyze this solution formula, we

will need the following estimates which are easily deduced from (2.4)–(2.7). Here

Cp (resp. Cp;q) represent numerical constants depending only on p (resp. p; q).

kTkkxB.Lp/ � Cpkuk2; (3.2)

kTk;u � Tk;u0kxB.Lp/ � Cpku � u0k2; (3.3)

kTkkxB.Lp ;L1/ � Cp.kuk2p=.p�1/ C kukp.pC2/=.p�2//; (3.4)
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j.Tk /.z/ � .Tk /.z
0/j � Cp0;pjz � z0j1�2=p0kukH 1;1k kp; 2 < p0 < p;

(3.5)

kTk;u � Tk0;u0kxB.Lp/ � Cp.k.ek�k0. � /� 1/uk2 C ku � u0k2/; (3.6)

kTk;u � Tk;u0kxB.Lp ;L1/ � Cp.ku � u0k2p=.p�1/ C ku � u0kp.pC2/=.p�2//; (3.7)

kTk;u � Tk0;ukxB.Lp ;L1/ � Cp.k.ek�k0 � 1/uk2p=.p�1/

C k.ek�k0 � 1/ukp.pC2/=.p�2//:
(3.8)

In (3.4), we used (2.6) with q D 2p=.p C 1/ and r D .p C 2/=2. In (3.5),

we used (2.7) together with ku kp0
� kuksk kp for s�1 D p�1

0 � p�1.

Estimate (3.7) follows from (3.4) and the linear dependence of Tk;u on u. Esti-

mate (3.8) follows from (3.4) and the linear dependence of Tk;u on eku.

We also have from (2.2) and (2.4) that

kTk1kp � CpkukH 1;1; (3.9)

kTk;u1 � Tk;u01kp � Cpku � u0kH 1;1 : (3.10)

Using the inequality jei� � 1j � 21�˛j� j˛ for any ˛ 2 Œ0; 1�, (2.4), and Hölder’s

inequality, we have

kTk1� Tk01kp � Cpjk � k0j˛kukL2;1; ˛ 2 Œ0; 1� 2=p/; (3.11)

while from (2.6) with q D 2p=.p C 1/, r D .p C 2/=2, we have

kTk1� Tk01k1 � Cp.k.ek�k0 � 1/uk2p=.pC1/ C k.ek�k0 � 1/uk.pC2/=2/: (3.12)

In what follows, it will be important to track uniformity of estimates for u in

bounded subsets of H 1;1.C/. For given M0 > 0, we denote

B0 D ¹u 2 H 1;1.C/W kukH 1;1 � M0º:

We denote by C.M0/ a constant depending only on M0.

We �rst construct the resolvent .I � T 2
k;u
/�1 for .k; u/ 2 C � L2.C/ using

Fredholm theory.

Lemma 3.1. For any .k; u/ 2 C � L2.C/ and p 2 .2;1/, .I � T 2
k;u
/�1 exists as

a bounded operator on Lp and the map

.k; u/ 7�! .I � T 2
k;u/

�1

is continuous from C � L2 into B.Lp/.
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Proof. First, we show that Tk is a compact operator on Lp. By the norm-closure

of compact operators, the estimate (3.3), and the density of C1
0 .C/ in L2.C/, it

su�ces to show thatTk is compact foru 2 C1
0 .C/. Letp0 2 .1; 2/ be the conjugate

exponent to p. It su�ces to show that the Banach space adjoint T 0
k

D �1
2
ekuP

is compact from Lp0

.C/ to itself. Let � � C be a bounded set with smooth

boundary containing the support of u. If f 2 Lp0

.C/ then Pf 2 L2p=.p�2/.C/

by (2.4) while rPf 2 Lp0

.C/ by Lemma 2.4. Thus

kuPf kW 1;p0 � C.1C j�j1=2/kf kp0

and compactness follows from the Rellich-Kondrakov Theorem.

Next, we recall the standard argument (see, for example, [8, §7]) that

ker.I � T 2
k
/ is trivial. Suppose that  2 Lp.C/ with  D T 2

k
 . Then by

Lemma 2.2, the pair . ; T / is a weak solution of the system (1.5a)–(1.5b).

It follows that �C D  C T and �� D  � T each solve the scalar prob-

lem N@w D a Nw with a D ˙1
2
eku 2 L2.C/ and w 2 Lp.C/. We now conclude

from Lemma 2.3 that �C D �� D 0 so  D 0.

It now follows from the Fredholm alternative that .I �T 2
k;u
/�1 exists. To prove

that the resolvent is continuous in .k; u/ 2 C � L2.C/, we appeal to (3.2), (3.6),

the Dominated Convergence Theorem, and the second resolvent formula. �

For u 2 H 1;1.C/, the operator T 2
k

has small norm for large jkj.

Lemma 3.2. Fix p 2 .2;1/. For u 2 H 1;1.C/ and jkj � 1, the estimate

kT 2
k;ukB.Lp/ � Cpkuk2

H 1;1hki�1

holds. Moreover,

kT 2
k;u1kp � Cpkuk2

H 1;1hki�1:

Proof. From (2.11) with f D u N and q D 2p=.p C 2/ we have the estimate

kTk kp � Cphki�1.kuk2k kp C kN@uk2k kp C kukpkN@ N k2/ (3.13)

so that

kT 2
k  kp � Cphki�1.kuk2kTk kp C kN@uk2kuk2k kp C kukpkuk2p=.p�2/k kp/:

In the second term we used (3.2), and in the third term, we used kN@ Tk k2 D
k@Tk k2 D ku k2 (the second step follows from the unitarity of the Beurling

transform; see Lemma 2.4). Using (2.2) and (3.2), we obtain the �rst estimate.

To obtain the second estimate, we use (3.13) with  D Tk1 together with (2.2)

and (2.4). �
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From Lemma 3.1 and Lemma 3.2, we obtain the following uniform estimate

on the resolvent.

Lemma 3.3. Fix M0 > 0 and p > 2. The estimate

sup¹k.I � T 2
k;u/

�1kB.Lp/W k 2 C; u 2 B0º � C.M0; p/

holds.

Proof. By Lemma 3.2, givenM0, we can �ndR0 so that k.I � T 2
k;u
/�1kB.Lp/ � 2

for all .k; u/ with jkj > R0 and kukH 1;1 � M0. On the other hand, the set

¹.k; u/ W jkj � R0; kukH 1;1 � M0º

is bounded in C�H 1;1, hence precompact in C�L2 by Lemma 2.1. The image of

this set under the map .k; u/ 7! .I � T 2
k;u
/�1 is therefore a bounded set in B.Lp/

by the continuity asserted in Lemma 3.1. �

Lemma 3.4. Let u 2 H 1;1.C/. For each k 2 C and any p 2 .2;1/, the functions

�1 WD 1C .I � T 2
k /

�1T 2
k 1; �2 WD Tk�1 (3.14)

are the unique solutions of (3.1) with �1 � 1; �2 2 C ˛ \Lp. For these solutions,

lim
jzj!1

.�1; �2/ D .1; 0/: (3.15)

Moreover, for any p 2 .2;1/, any ˛ 2 Œ0; 1 � 1=.2p//, any M0 > 0 and any

u 2 B0, the following estimates hold:

sup
k2C

.k�1 � 1kp C k�2kp/ � C.M0; p/; (3.16)

sup
k2C

.k�1kC ˛.C/ C k�2kC ˛.C// � C.M0; ˛/: (3.17)

Proof. Let p > p0 > 2. It follows from (3.4) and (3.5) that for u 2 H 1;1, Tk

maps Lp.C/ into C 1�2=p0.C/ with bound uniform in k 2 C and u in bounded

subsets ofH 1;1.C/. From (3.9), we have Tk1 2 Lp with norm bounded uniformly

in k 2 C and u with kukH 1;1 � M0. It follows from this fact and Lemma 3.1 that

.I � T 2
k
/�1T 2

k
1 D Tk.I � T 2

k
/�1Tk1 2 Lp.C/ \ C 1�2=p0.C/ for p0 > p > 2.

Hence, the functions given by (3.14) solve (3.1) with �1 � 1 2 Lp \ C 1�2=p0 .

The assertion about limiting behavior follows from (2.8).

Estimate (3.16) follows from (3.2), (3.9), and Lemma 3.3. Estimate (3.17)

follows from the uniform estimate on kTkkxB.Lp ;C 1�2=p0/. �
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Next, we study the k-dependence of the solutions (3.14). For brevity we write

� D .�1; �2/.

Lemma 3.5. Fix p > 2, M0 > 0 and u 2 B0. Then

k�. � ; k/� �. � ; k0/kLp � C.M0; ˛/jk � k0j˛; (3.18)

for any ˛ 2 Œ0; 1� 2=p/, and

sup
z2C

j�.z; k/� �.z; k0/j � C.M0; ˛/F.jk � k0j/; (3.19)

where F.0/ D 0, F is continuous, and F depends only on u and p. Finally, for

each �xed z 2 C,

lim
jkj!1

.�1.z; k/; �2.z; k// D .1; 0/: (3.20)

Proof. From (3.6) and the inequality jek.z/ � 1j � 21�˛jkj˛jzj˛ , we easily see

that for any p 2 .2;1/ and ˛ 2 Œ0; 1�, the estimate

kTk � Tk0kxB.Lp/ � Cp;˛kukH 1;1jk � k0j˛ (3.21)

holds. From this estimate, Lemma 3.3, and the second resolvent formula, we

conclude that k.I � T 2
k
/�1 � .I � T 2

k0/
�1kB.Lp/ � C.M0; p; ˛/jk � k0j˛ for any

˛ 2 Œ0; 1�. From (3.11), (3.14), and (3.21) again, we conclude that

k�1. � ; k/� �1. � ; k0/kLp � C.M0; p; ˛/jk � k0j˛; ˛ 2 Œ0; 1� 2=p/:

A similar estimate holds for �2 by the formula �2 D Tk�1, estimates (3.2)

and (3.11), the continuity estimate on �1, and (3.21). This proves (3.18).

Using (3.18), estimates (3.2), (3.4),(3.6), (3.8), (3.12), (3.16), and the identity

�1.z; k/ � �1.z; k
0/ D .T 2

k �1/.z; k/ � .T 2
k0�1/.z; k

0/;

we conclude that (3.19) holds for �1 with

F.k � k0/ D k.ek�k0 � 1/uk2p=.p�1/ C k.ek�k0 � 1/uk.pC2/=p

C k.ek�k0 � 1/uk2p=.p�1/ C k.ek�k0 � 1/ukp.pC2/=.p�2/:

To estimate �2 we write �2 D Tk�1 and use (3.4), (3.8), (3.12), (3.16), and (3.18)

to obtain an estimate with the same F as above.

From (3.17) and (3.19), it follows that the solutions (3.14) are jointly continu-

ous in .z; k/ so that, in particular, point evaluations make sense. If we can show

that limjkj!1 Tk1 D 0 in Lp.C/, (3.20) will follow from (3.14), Lemma 3.3,

and the uniform estimate (3.4). By (3.10) and a density argument, it su�ces to

show that limjkj!1 Tk1 D 0 for u 2 C1
0 .C/. This is an immediate consequence

of (2.10). �
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Next, we prove Lipschitz continuity of� as a function of u. We write �.z; k; u/

to emphasize the dependence of � on u.

Lemma 3.6. Fix M0 > 0 and p 2 .2;1/, and suppose that u; u0 2 B0. Then

sup
k2C

k�. � ; k; u/� �. � ; k; u0/kp � C.M0/ku� u0kH 1;1; (3.22)

sup
.z;k/2C�C

j�.z; k; u/� �.z; k; u0/j � C.M0/ku� u0kH 1;1 : (3.23)

Proof. If (3.22) holds, we can use (3.2), (3.3), (3.4), (3.7), and the identity

.�1 � 1; �2/ D .T 2
k
�1; Tk�1/ to conclude that (3.23) holds.

If (3.22) holds with � replaced by �1, then the same estimate for �2 follows

from the formula �2 D Tk1C Tk.�1 � 1/ and (3.2), (3.3), and (3.10).

It remains to prove (3.22) for � replaced by �1. By the second resolvent

formula, (3.2), (3.3), and Lemma 3.3, for any u, u0 in B ,

k.I � T 2
k;u/

�1 � .I � T 2
k;u0/

�1kB.Lp/ � C.M0; p/ku� u0k2: (3.24)

Using the identity

�1. � ; k; u/� �1. � ; k; u0/ D ŒTk;u.I � T 2
k;u/

�1Tk;u1 � Tk;u0.I � T 2
k;u0/

�1Tk;u01�;

estimates (3.2), (3.3), (3.9), (3.10), the uniform estimate from Lemma 3.3, and

the Lipschitz estimate (3.24), we conclude that �1 satis�es the Lp Lipschitz

estimate. �

We now turn to the scattering map (1.6). If u 2 H 1;1.C/we may de�ne r D Ru

by

r.k/ D 1

�

Z
ek.z/u.z/ dA.z/C 1

�

Z
ek.z/u.z/.�1.z; k/ � 1/ dA.z/: (3.25)

The �rst term is a Fourier transform and is well-de�ned as an element ofH 1;1.C/.

The second integral de�nes a bounded continuous function of k by (3.18) since

u 2 Lp0

. It follows from (3.25) that if r D Ru, r 0 D Ru0, and kukH 1;1; ku0kH 1;1 �
M0, then

r � r 0 D 1

�

Z
ek.u � u0/

C 1

�

Z
ek.uŒ�1.z; kIu/� 1�� u0Œ�1.z; kIu0/ � 1�/

D I1.k/C I2.k/;
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where for any p 2 .2;1/

kI1kp � Cpku � u0kp0 ; kI2k1 � C.M0/ku � u0kH 1;1 : (3.26)

The �rst estimate follows from the Hausdor�-Young inequality. In the second

estimate, we used (3.22) and (3.16).

Remark 3.7. If u 2 H 1;1.C/ \ L1.C/ and r D Ru, we may compute

r.k/ D
Z
ek.z/u.z/�1.z; k/ dA.z/;

where the integral is absolutely convergent by (3.17). By the Dominated Conver-

gence Theorem and (3.18), this expression de�nes a continuous function of k.

We claim that, moreover, r 2 C0.C/, the continuous functions vanishing at

in�nity. To see this we use (3.25) and note that the �rst term vanishes as jkj ! 1
by the Riemann–Lebesgue lemma, while the second term vanishes as jkj ! 1
by (3.20) and dominated convergence.

We now give a self-contained proof of the standard result (see [8, §3.2], the

formal argument in [33, I, §1], and justi�cation in [33, II, §4]) that the functions

.�1; �2/ are determined by the N@-data r . More precisely, we will show that the

functions

�1 D �1; �2 D ek�2 (3.27)

solve the N@k problem (1.8). We will prove this by direct di�erentiation of the

solution formulas (3.14) in k.

To do so, we will need the following well-known lemma which shows that the

‘analyticity defect’ of the operator T 2
k

is a rank-one operator. We give a proof for

completeness.

Lemma 3.8. The identity

.N@kT
2
k / D 1

2
.Tk1/F

�1. Nu � / (3.28)

holds as a derivative in B.Lp/ operator norm, where F�1 is given by (1.10).
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Proof. This identity is formally obvious but we need an explicit estimate to prove

di�erentiability in operator norm. Write z D x1 C ix2 and k D k1 C ik2 so that

ek.z/ D exp.�2i.k1x2 C k2x1// and N@k D .1=2/.@k1
C i@k2

/. We claim that

� @

@k1

T 2
k f

�
.z/

D � i

2�2

Z
1

z � z0
ek.z

0 � z00/
x0

2 � x00
2

Nz0 � Nz00 u.z
0/u.z00/f .z00/ dA.z00/ dA.z0/;

(3.29)

� @

@k2

T 2
k f

�
.z/

D � i

2�2

Z
1

z � z0
ek.z

0 � z00/
x0

1 � x00
1

Nz0 � Nz00 u.z
0/u.z00/f .z00/ dA.z00/ dA.z0/;

(3.30)

from which (3.28) follows. We will prove (3.29) since the proof of (3.30) is similar.

Using the estimate

jeiht � 1 � iht j � 21�� jhj1C� jt j1C�

(for � 2 .0; 1/ to be chosen), denoting T 2
k
f by F.k1/, and denoting the right-hand

side of (3.29) by F 0.k1/, we can estimate jh�1.F.k1 C h/ � F.k1// � F 0.k1/j by

jhj� times

Z jx0
2 � x00

2 j�
jz � z0j ju.z0/j ju.z00/j jf .z00/j dA.z00/ dA.z0/: (3.31)

To prove norm di�erentiability, it su�ces to bound (3.31) as an Lp function of z

uniformly in f with kf kp � 1. The Lp norm of the expression (3.31) is bounded

by 2�� times the sum of the Lp norms of the functions

I1.z/ D
Z

1

jz � z0j jz
0j� ju.z0/j ju.z00/j jf .z00/j dA.z00/ dA.z0/;

I2.z/ D
Z

1

jz � z0j jz
00j� ju.z0/j ju.z00/j jf .z00/j dA.z00/ dA.z0/:

By Hölder’s inequality and (2.4),

kI1kp � kukp0k. � /�u. � /k2p=.pC2/;

kI2kp � kuk2p=.pC2/k. � /�u. � /kp0 ;
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so it su�ces to choose � so the weighted norms of u are bounded for u 2 H 1;1.

A short calculation shows that the norm k. � /�u. � /ks is bounded by constants

times kh � iu. � /k2 provided 0 < � < 2 � 2=s. Choosing any � with 0 < � <

min.1� 2=p; 2=p/ gives the desired bound. �

First, we consider u 2 S.C/.

Lemma 3.9. Let u 2 S.C/, and let .�1; �2/ be given by (3.14). Then, for each

z 2 C, �1.z; � /; �2.z; � / de�ned by (3.27) are strong solutions of the system (1.8).

Proof. The asymptotic condition (1.8c) is an immediate consequence of (3.20)

and the de�nition of .�1; �2/. To show that .�1; �2/ satisfy (1.8a)–(1.8b), it su�ces

to show that

N@k�1 D 1

2
Nr�2; .@k C z/�2 D 1

2
r�1: (3.32)

We will prove these identities by di�erentiating the solution formulas (3.14) with

respect to k and using (3.28).

For u 2 S.C/ it is easy to see that

N@kT
2
k 1 D .F�1 Nu/.k/.Tk1/;

where the Fourier transform de�nes a continuous function of k since u 2 S.C/.

Using the operator identity

N@k.I � T 2
k /

�1 D .I � T 2
k /

�1.N@kT
2
k /.I � T 2

k /
�1

together with the formula �1 � 1 D .I � T 2
k
/�1T 2

k
1 and (3.28), we compute

N@k�1 D N@k..I � T 2
k /

�1T 2
k 1/

D Œ.I � T 2
k /

�1Tk1�.F
�1. Nu.�1 � 1//C Œ.I � T 2

k /
�1Tk1�F

�1. Nu/

D �2F
�1. Nu�1/

D Nr�2:

To compute .@Ck/�2 we will use the identity .@k Cz/Tkf D F.u Nf /CTk.N@kf /,

which holds pointwise if u 2 S.C/, f . � ; k/ 2 C.C/, and .N@kf /. � ; k/ 2 C.C/with
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bounds uniform in k. We then compute

.@k C z/�2 D .@k C z/Tk�1

D F.u�1/C Tk.@k�1/

D r C rTk�2

D r�1;

where in the last step we used Tk�2 D T 2
k
�1 D �1 � 1. �

Next, we use Lemma 3.6 to extend the result to u 2 H 1;1.

Lemma 3.10. Let u 2 H 1;1.C/ and let .�1; �2/ be given by (3.14). Then, for each

z 2 C, �1.z; � /; �2.z; � / de�ned by (3.27) are weak solutions of the system (1.8).

Proof. It su�ces to show that for each ' 2 C1
0 .C/ and each �xed z 2 C,

Z
.�N@k'/�1.z; k/ dA.k/ D 1

2

Z
'.k/r.k/�2.z; k/ dA.k/; (3.33)

Z
.�@C z/'.k/�2.z; k/ dA.k/ D 1

2

Z
'.k/r�1.z; k/ dA.k/: (3.34)

Let ¹unº1
nD1 be a sequence from C1

0 .C/ converging in H 1;1.C/ to u, and denote

by �1;n; �2;n the corresponding solutions given by (3.14). Finally, let

rn D ��1

Z
ekun�1;n:

By Lemma 3.9 and an integration by parts, the identities
Z
.�N@k'/�1;n.z; k/ dA.k/ D 1

2

Z
'.k/rn.k/�2;n.z; k/ dA.k/; (3.35)

Z
..�@C z/'.k//�2;n.z; k/ dA.k/ D 1

2

Z
'.k/rn�1;n.z; k/ dA.k/ (3.36)

hold. We will prove (3.33)–(3.34) by taking limits in (3.35)–(3.36) as n ! 1.

We give the proof for (3.33) since the other is similar. The left-hand side of (3.35)

converges to the left-hand side of (3.33) as n ! 1 by (3.23). To show convergence

of the right-hand side, we estimate
ˇ̌
ˇ̌
Z
'.k/.rn.k/�2;n � r.k/�2.z; k// dA.k/

ˇ̌
ˇ̌ � C.M0/kun � ukH 1;1;

where we used uniform bounds (3.16) and (3.17) together with Lipschitz

estimates (3.22), (3.23), and (3.26). �



452 P. A. Perry

We now brie�y discuss the N@-problem (1.8) and prove:

Lemma 3.11. For any r 2 S.C/, the relation (1.11) holds.

Proof. Let Sz be the antilinear operator

ŒSz �.k/ D 1

2
PkŒe. � /.z/r. � / . � /�.k/;

where Pk is the Cauchy transform acting on the k variable. Write Sz D Sz;r to

emphasize the dependence of Sz on r . Observe that, as operators on Lp.C/, we

have

ŒSz;rf �.k/ D ŒTz; Nrf �.k/: (3.37)

Formally, (1.8) is solved by

�1 WD 1C .I � S2
z /

�1S2
z 1; �2 WD Sz�1 (3.38)

(compare (3.14)). Tracing through the proofs of Lemmas 3.1–3.4 one can easily

prove that these formulas give the unique solution to (1.8). The uniqueness of

solutions to the N@-problems for � and � and the identity ek.z/ D ez.k/ easily

imply the identity

�1.z; k; r/D �1.k; z; Nr/: (3.39)

One may then compute, for r 2 S.C/,

.C ı R ı C/.r/ D C ı R. Nr/

D C
� 1
�

Z
ez.k/r.k/�1.k; zI Nr/dA.k/

�

D 1

z

Z
e�k.z/r.k/�1.z; k; r/ dA.k/

D I.r/;

where we used ek.z/ D ez.k/ and, in the third line, we used (3.39). �

Finally, we obtain expansions for the solution � which will facilitate a �ner

analysis of the scattering map.
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Lemma 3.12. Fix M0 > 0 and suppose that u 2 B0. Then for any positive

integer N ,

�1.z; k/ D 1C
NX

j D1

T 2j1CR1;N .z; kIu/;

�2.z; k/ D
NX

j D0

T 2j C11CR2;N .z; kIu/;

where for any p 2 .2;1/

kR1;N . � ; zIu/kp � C.p;M0/hki�N �1; (3.40)

kR2;N . � ; zIu/kp � C.p;M0/hki�N �1: (3.41)

Moreover for any p 2 .2;1/ and u; u0 2 B0, the estimates

sup
k2C

hkiN kR1;N . � ; k; u/�R1;N . � ; k; u0/kp � C.M0; p/ku� u0kH 1;1; (3.42)

sup
k2C

hkiN kR2;N . � ; k; u/� R2;N . � ; k; u0/kp � C.M0; p/ku� u0kH 1;1 (3.43)

hold.

Proof. By iterating the integral equations (3.1), we see that

�1 D 1C
NX

j D1

T
2j

k
1C T 2N C2

k
�1;

�2 D
NX

j D0

T
2j C1

k
1C T 2N C3

k
�2:

Thus

R1;N D T 2N C2
k

�1 and R2;N D T 2N C3
l

�2:

The norm estimates (3.40)–(3.41) follow from (3.2), (3.9), Lemma 3.2, and (3.16).

The Lipschitz estimates (3.42)–(3.43) follow from Lemma 3.2 and (3.22). �

4. Direct and inverse scattering transforms

In this section we study the direct and inverse maps R and I de�ned respectively

by (1.5)–(1.6) and (1.8)–(1.9). As in §3, for given M0 > 0, B0 denotes the ball of

radius M0 in H 1;1.C/.
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First, we will prove:

Proposition 4.1. The map R de�ned initially on S.C/ by (1.5) and (1.6) extends

to H 1;1.C/. Moreover, for any M0 > 0, u; u0 2 B0, we have Ru;Ru0 2 H 1;1.C/

and

kRu � Ru0kH 1;1 � C.M0/ku � u0kH 1;1:

Remark 4.2. The proof of Proposition 4.1 shows that for u 2 H 1;1.C/, the

scattering transform can be computed as

.Ru/.k/ D F.u/.k/C 1

�

Z
ek.�/u.�/.�1.�; k/ � 1/ dA.�/;

where the second right-hand term is an absolutely convergent integral for each k.

We prove Proposition 4.1 in several steps.

Lemma 4.3. Fix M0 > 0. For u; u0 2 B0, Ru and Ru0 belong to L2.C/ and the

estimate

kRu� Ru0k2 � C.M0/ku � u0kH 1;1

holds.

Proof. We use Lemma 3.12 with N D 2. Substituting the expansion for �1 into

the integral formula (3.25) we see that

Ru D 1

�

Z
eku.z/ dA.z/C 1

�

Z
ek.z/u.z/.T

2
k 1C T 4

k 1/ dA.z/

C 1

�

Z
eku.z/R1;2.z; k/ dA.z/:

The �rst term is a Fourier transform which is Lipschitz continuous as a map from

H 1;1 to L2. The second two terms are multilinear forms in u and de�ne L2

functions of k by Remark 2.6. Lipschitz continuity follows from multilinearity.

Since R1;2.�; k/ has Lp norm of order hki�2, it follows from Hölder’s inequality

and (3.40) that the last right-hand term de�nes a function in L2, Lipschitz contin-

uous in u by (3.42). �

Now we extend the Lipschitz estimates to the weighted spaceL2;1.C/. Initially

we compute for u 2 S.C/ to justify the integrations by parts that occur.

Lemma 4.4. Fix M0 > 0. For u; u0 2 B0, Ru and Ru0 belong to L2;1.C/ and

kRu� Ru0kL2;1 � C.M0/ku� u0kH 1;1:
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Proof. By Lemma 4.3, it su�ces to show that the map u 7! . � /r. � / is well-

de�ned and Lipschitz continuous from H 1;1 to L2. We will prove Lipschitz

continuity on the dense subset S.C/ and extend by continuity to H 1;1.C/.

Using the trivial identity @z.ek/ D �kek and integrating by parts in (3.25),

we see that kr.k/ D F.@zu/C I1 C I2 where

I1 D 1

�

Z
ek.�/.@�u/.�/.�1.�; k/ � 1/ dA.�/;

I2 D 1

2�

Z
ju.�/j2�2.�; k/ dA.�/;

where in the second line we used (1.5a).

To analyze I1, let � 2 C1
0 .C/ with �.z/ D 1 for jzj � 1 and �.z/ D 0 for

jzj � 2. Then I1 D I11 C I12 where

I11 D 1

�

Z
ek.�/�.�/ .@�u/.�/ Œ�1.�; k/ � 1� dA.�/;

I12 D 1

�

Z
ek.�/.1 � �.�// .@�u/.�/ Œ�1.�; k/ � 1� dA.�/:

In I11, the function �@�u belongs to Lp0

for any p 2 .2;1/, so we can show that

I11 has the required continuity properties by mimicking the proof of Lemma 4.3

with u replaced by �@�u. In I12, substitute

�1.�; k/ � 1 D 1

2��

Z
ek.�

0/u.�0/ �2.�0; k/ dA.�0/

C 1

2��

Z
ek.�

0/

� � �0
�0u.�0/ �2.�0; k/ dA.�0/:

(4.1)

Inserting the second right-hand term of (4.1) in I12 leads to an integral that can be

analyzed along the same lines as I1 since .1��.�// N��1.@�u/.�/ belongs toLp0

for

p 2 .2;1/ while �u.�/ belongs to L2. Inserting the �rst right-hand term of (4.1)

into I12 gives the product of F. N��1.1 � �/@�u/ and
R
e�k Nu�2. The �rst factor is

the Fourier transform of an L2 function and Lipschitz continuous from H 1;1 into

L2. Thus, it su�ces to show that the second factor is a Lipschitz continuous map

from H 1;1 into L1. This follows from Hölder’s inequality, (2.2) with s D p0,

(3.16), and (3.22).
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To analyze I2, we use Lemma 3.12 with N D 2. The term corresponding to

R2;N belongs to Lp with appropriate Lipschitz continuity by (3.41) and (3.43)

together with the fact that kjuj2kp0 is bounded for any p 2 .2;1/ using (2.2) with

s D 2p0. The remaining terms take the form

hjuj2; T 2j C11i D 1

2
hjuj2; P.eku.T 2j1//i D he�kw; T 2j1i; (4.2)

where w D Nu NP.juj2/ satis�es kwk2 � Ckuk3
H 1;1 owing to (2.2) and (2.4). By

Remark 2.6, the form (4.2) de�nes a multilinear map from H 1;1 to L2. �

To �nish the proof that R is Lipschitz continuous from H 1;1 to itself, we

consider the derivatives @kr and N@kr .

Lemma 4.5. Fix M0 > 0. For any u; u0 2 B0, r.Ru/ and r.Ru0/ belong to L2

and the estimate

kr.Ru/ � r.Ru0/k2 � C.M0/ku � u0kH 1;1

holds.

Proof. By Lemma 2.4, to show Lipschitz continuity of u 7! r.Ru/, it su�ces

to study the map u 7! @kr . As usual, we check Lipschitz continuity on S.C/ and

extend by density.

For u 2 S.C/ we compute @kr D �F.. � /u. � //C I1 C I2 where

I1 D � 1
�

Z
ek.�/ �u.�/ Œ�1.�; k/ � 1� dA.�/;

I2 D 1

2�
r.k/

Z
ek.�/u.�/�2.�; k/ dA.�/;

where we used the �rst equation in (3.32). To see that u 7! I1 is Lipschitz

continuous, we may mimic the analysis of I1 in the proof of Lemma 4.4. The map

u 7! I2 de�nes a Lipschitz continuous map since u 7! r is Lipschitz continuous

as a map from H 1;1 to L2 by Lemma 4.3, u 2 Lp0

by (2.2), and u 7! �2 is

Lipschitz continuous from H 1;1 into Lp by Lemma 3.6. �

Proof of Proposition 4.1. An immediate consequence of Lemmas 4.3-4.5. �

The following result is an immediate consequence of Lemma 3.11 and Propo-

sition 4.1.
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Proposition 4.6. The map I, initially de�ned on S.C/ by (1.8) and (1.9), extends

to H 1;1.C/. Moreover, for any M0 > 0, and r; r 0 2 B0, we have Ir; Ir 0 2 H 1;1.C/

and

kIr � Ir 0kH 1;1 � C.M0/kr � r 0kH 1;1:

Remark 4.7. In analogy to Remark 4.2, the extension of I to H 1;1.C/ can be

computed as

.Ir/.z/ D F
�1.r/.z/C 1

�

Z
e�k.z/r.k/.�1.z; k/ � 1/ dA.k/;

where the second right-hand integral is absolutely convergent.

Next, we show that R and I are mutual inverses.

Lemma 4.8. Suppose that u 2 H 1;1.C/ and that r D Ru. Let .�1; �2/ solve the

system (1.8) with r D Ru. Then

u.z/ D 1

�

Z
e�k.z/r.k/�1.z; k/ dA.k/:

That is, .I ı R/u D u for all u 2 H 1;1.C/. Similarly, .R ı I/r D r for all

r 2 H 1;1.C/.

Proof. If I ı R is the identity map I on H 1;1.C/, the relation R ı I D I is an

immediate consequence of (1.11). Hence, it su�ces to show that I ı R is the

identity map.

The analysis of §3 applies with no essential changes to (1.8) and shows that this

equation has a unique solution for each �xed z 2 C and given r 2 H 1;1.C/. By

this uniqueness, the functions .�1; �2/ obtained by setting .�1; �2/ D .�1; ek�2/

coincide with the functions .�1; �2/ obtained by solving the N@-problem (1.8) with

r D Ru. We will �rst show that

lim
jkj!1

.@z C k/�2 D 1

2
Nu;

where �2 D ek�2, u is the given u 2 H 1;1.C/, and the limit is taken in the Ls.C/

topology for some s 2 .2;1/. We will then show that, if �2 is the solution to (1.8),

the relation

lim
jkj!1

.@z C k/�2 D 1

2�

Z
ek.z/ r.k/�1.z; k/ dA.k/ D 1

2
Ir

also holds. This proves that u D Ir in Ls.C/. Since u and Ir belong to H 1;1.C/,

it follows that the equality holds in H 1;1.C/.
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First, we may compute for each k 2 C that

.@z C k/�2 D ek.N@z�2/ D 1

2
Nu�1 D 1

2
Nu �1

as vectors in Lp.C/ where we used (1.5b). On the other hand,

�1 � 1 D 1

2
Pk.ek Nr �2/

by (1.8a) and Lemma 2.2, so that

.@z C k/�2 � 1

2
Nu D 1

4
NuPk.ek Nr �2/:

For each k and any s 2 .2;1/ we may therefore estimate

k.@z C k/�2 � 1

2
Nu ks � 1

4
kuksk�2kC 0.C�C/ jPk.jr j/.k/j:

The second right-hand factor is bounded owing to (3.17) since �2 D ek�2.

The third right-hand factor is a bounded function that vanishes as jkj ! 1
by (2.8).

Second, from the formula �2 D 1
2
PkŒek Nr�1�, the fact that �1 D �1, and (1.5a),

we may compute

.@z C k/�2 � Ir D .@z C k/�2 � 1

2�

Z
ekr.k/�1.z; k/ dA.k/

D 1

2
PkŒe�k Nr N@z�1�

D 1

4
NuPk Œ Nr�2�:

We may then estimate, for each k 2 C,

k NuPk Œ Nr�2�ks � kuksk�2kC 0.C�C/jPk.jr j/j

and conclude as before that k NuPk Œ Nr�2�ks vanishes as k ! 1. �

Next, we prove Plancherel-type identities for R and I.

Lemma 4.9. For u and r belonging to H 1;1.C/, the identities

kRuk2 D krk2; kIrk2 D kuk2

hold.



Well-posedness for the Davey–Stewartson II equation 459

Proof. We prove the �rst since the second then follows from (1.11). By Lipschitz

continuity it su�ces to prove the result for u 2 C1
0 .C/. Letting r D Ru we may

compute

Z
jr.k/j2 dA.k/ D lim

R!1

1

�

Z

jkj�R

r.k/

� Z
ek.�/u.�/�1.�; k/ dA.�/

�
dA.k/

D lim
R!1

1

�

Z
u.�/

� Z

jkj�R

ek.�/r.k/�1.�; k/ dA.k/

�
dA.�/

D lim
R!1

.I1.R/C I2.R//;

where

I1.R/ D 1

�

Z
u.�/

� Z

jkj�R

ek.�/r.k/ dA.k/

�
dA.�/;

I2.R/ D 1

�

Z
u.�/

� Z

jkj�R

ek.�/r.k/Œ�1.�; k/ � 1� dA.k/
�
dA.�/:

Since 1
�

R
jkj�R ek.�/r.k/ dA.k/ converges in L2 to F. Nr/ we have

lim
R!1

I1.R/ D
Z
u.�/.F Nr/.�/ dA.�/:

The analogue of Lemma 3.4 for (1.8) guarantees that �1.�; � / � 1 2 Lp.C/

uniformly in � 2 C, so that

lim
R!1

I2.R/ D 1

�

Z
u.�/

� Z
ek.�/r.k/Œ�1.�; k/ � 1� dA.k/

�
dA.�/:

The Plancherel identity now follows from Remark 4.7 and the identity F Nr D
F�1r . �

Proof of Theorem 1.2. An immediate consequence of Propositions 4.1 and 4.6

together with Lemmas 4.8 and 4.9. �

5. Large-time asymptotics

In this section, we prove Theorem 1.3 using the formulation (1.16) of the inverse

scattering method. For u0 2 H 1;1.C/\L1.C/, we have r0 2 H 1;1.C/\C0.C/ by

Remark 3.7. In this section we will assume that r0 2 H 1;1.C/ \ C0.C/ and set

 D kr0kH 1;1 C kr0kC 0.C/:
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Observe that the solution formula (1.12) for initial data v0 D F�1r0 may be written

v.z; t / D 1

�

Z
eitS.z;k;t/r0.k/ dA.k/; (5.1)

where the real-valued phase function S is given by (1.14).

By (5.1), to prove Theorem 1.3, we need to show that

u.z; t / � v.z; t / D 1

�

Z
eitS.z;k;t/r0.k/Œ�1.z; k; t /� 1� dA.k/ D o.t�1/ (5.2)

in L1
z -norm, where �1 is determined by (1.13a).

To solve the N@-problem (1.13a) and obtain the estimates on �1 � 1 needed to

prove (5.2), we introduce the integral operator

M D 1

2
Pk.e

�itSr0 / (5.3)

which depends parametrically on z and t through the phase function S . It follows

from the theory of §3 thatM is a compact operator onL
p

k
.C/ for each �xed z; t and

any p 2 .2;1/, that the resolvent .I �M 2/�1 is a bounded operator on L
p

k
.C/,

and

�1 � 1 D .I �M 2/�1M 21 (5.4)

as vectors in L
p

k
.C/. In Lemma 5.5 we reduce the proof of estimate (5.2) to the

estimate
1

�

Z
eitS.z;k;t/r0.k/.M

21/.z; k; t / dA.k/D o.t�1/ (5.5)

in L1
z .C/ norm. We prove estimate (5.5) in Lemmas 5.6–5.9. For the proofs of

Lemmas 5.6–5.8, it su�ces to assume that r 2 H 1;1.C/\C 0.C/. For Lemma 5.9,

we need to assume that r 2 C0.C/.

We begin with stationary phase estimates on the operatorM . Recalling (1.14)

and (1.15) we may write

S.z; k; t / D 4Re..k � kc/
2/C S0; S0 D 1

4
Re.z2=t2/:

Hence

S Nk.z; k; t / D 4. Nk � Nkc/:

Since S has a single stationary point at k D kc , we introduce a cuto� function

�.k/ D �.t1=4.k � kc//;

where � 2 C1
0 .C/ with �.w/ D 1 for jwj � 1 and �.w/ D 0 for jwj � 2. Note

that, for any � 2 Œ1;1�,

k�k� � C� t
�1=.2�/: (5.6)
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We will estimate M by splitting M D M�CM.1 � �/, use the small support of

� to estimate the �rst term, and the oscillations of the factor exp.i tS/ to estimate

the second term.

Lemma 5.1. Suppose that p 2 .2;1/, that 2 W 1;p.C/, and that r0 2 H 1;1.C/.

Then, as vectors in Lp.C/,

MŒ.1 � �/ � D � e
�itS

2itS Nk

.1� �/r0 C 1

2it
PkŒe

�itS N@k.S
�1
Nk
.1� �/r0 N /�:

Proof. For  ; r0 2 C1
0 .C/ this is a direct consequence of the integration by parts

formula (2.9) with ' replaced by �tS . Now let  2 W 1;p.C/ and r0 2 H 1;1.C/.

If ¹ nº and ¹rnº are sequences from C1
0 .C/ with  n !  in W 1;p and rn ! r0

in H 1;1.C/, we have  n !  in sup norm so rn n ! r0 in Lp \ L2p=.pC2/

and N@� .rn n/ ! N@.r0 / in L2p=.pC2/. Using (2.5), we conclude that the identity

holds in Lp-sense for  2 W 1;p and r0 2 H 1;1.C/. �

We’ll use the following estimates on singular factors S�1
Nk

and S�2
Nk

that occur

in the integrations by parts. We omit the elementary proofs.

Lemma 5.2. For any � 2 .2;1�,

kS�1
Nk
.1 � �/k� � C� t

1=4�1=.2�/: (5.7)

For any � 2 .1;1�,

kS�2
Nk
.1 � �/k� � C� t

1=2�1=.2�/; (5.8)

kS�1
Nk
.N@k�/k� � C� t

1=2�1=.2�/: (5.9)

Using the estimates above we can now estimate M away from points of sta-

tionary phase.

Lemma 5.3. Suppose that r0 2 H 1;1.C/ \ C 0.C/. For any p 2 .2;1/, the

estimate

kM.1 � �/ kp � Cp t
�3=4.k kp C k@ kp/ (5.10)

holds.
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Proof. We will use Lemma 5.1. We compute

M.1� �/ D e�itS

i tS Nk

.1� �/r0 (5.11)

C 1

�it

Z
e�itS

k � �
N@� .S

�1
Nk
.1 � �/r0 / dA.�/

so that

kM.1 � �/ kp � Cpt
�1

� 4X

j D0

kJj kp

�
: (5.12)

Here, J0 is t times the �rst right-hand term in (5.11). The terms J1, J2, J3, J4 are

t times the integrals that arise in the second right-hand term of (5.11) by applying

the product rule to

N@�.S
�1
Nk
.1 � �/r0 x / D �4S�2

Nk
.1 � �/r0 x � S�1

Nk
.N@�/r0 x 

C S�1
Nk
.1� �/N@ r0 x C S�1

Nk
.1 � �/r0 @ :

(5.13)

By (2.4), to estimate kJikp for i D 1; 2; 3; 4, we must estimate the L2p=.pC2/

norms of each of the four right-hand terms in (5.13).

J0: Using Hölder’s inequality and (5.7), we estimate

kJ0kp � kS�1
Nk
.1� �/r0 N kp � Cpt

1
4 k kp

which shows that J0 is estimated by a constant times t1=4.

J1, J2: We estimate J1 since the estimate for J2 is similar. Using (5.8), we

have

kJ1kp � Cpk4S�2
Nk
.1� �/r0 N k2p=.pC2/ � Cp;� t

1
4 k kp;

where in the last step we used Hölder’s inequality, (5.8) with � D 2, and the bound

kr0k1 �  . In the estimate for J2, we replace (5.8) by (5.9).

J3, J4: To estimate J3, we use (5.7) and Hölder’s inequality to conclude that

kJ3kp � CpkS�1
Nk
.1� �/@r0 N k2p=.pC2/

� CpkS�1
Nk
.1� �/k�1

k@r0k2 k k�2

� Cp t
1=4�1=.2�1/k k�2

:

Here ��1
1 C ��1

2 D p�1. If �2 D p we may take �1 D 1. Hence, we can

estimate J3 in all cases by a constant times t1=4. The estimate for J4 is similar,

with k@r0k2 replaced by kr0k2 in the estimates. Recalling (5.12) and combining

these estimates leads to (5.10). �
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We will make use of the following estimates on M .

Lemma 5.4. Suppose that r0 2 H 1;1.C/ \ C 0.C/. For any p with p > 2, the

following estimates hold:

kMkxB.Lp/ � Cp; (5.14)

kM�kxB.Lp/ � Cp t
�1=4; (5.15)

kM 2kB.Lp/ � Cpt
�1=42; (5.16)

kM�1kp � Cp t
�1=4�1=.2p/; (5.17)

kM.1 � �/1kp � Cp t
�3=4; (5.18)

kM 41kp � Cp
4t�1�1=.2p/: (5.19)

Proof. Estimate (5.14) is an immediate consequence of (2.5).

To prove (5.15), we use (2.5) to estimate

kM� kp � Cpkr0�k2k kp � Cpk�k2k kp

and use (5.6) with � D 2.

To prove (5.16), we use (5.10) and (5.15) to estimate

kM'kp � Cp.t
�1=4k'kp C t�3=4.k'kp C kN@'kp//;

where in the last term we used k@'kp � CpkN@'kp owing to Lemma 2.4. Setting

' D M and using the estimate above, (5.14), and the trivial estimate kN@M kp �
k kp we obtain (5.16).

To prove (5.17), we use (2.4) to estimate kM�1kp � Cpk�k2p=.pC2/ and

apply (5.6).

To prove (5.18), we trace through the proof of (5.10) with  D 1.

To prove (5.19), we �rst note that

kM1kp � Cp t
�1=4�1=.2p/ (5.20)

by (5.17) and (5.18). Next, from (5.10) and (5.15), the estimate

kM kp � Cp t
�1=4.k kp C t�1=2kN@ kp/ (5.21)

holds, where in the last term we used Lemma 2.4. Starting with (5.20) and iterating

with (5.21) we see that

kM j1kp � Cp
j t�j=4�1=.2p/:

The case j D 4 gives (5.19). �
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From (5.16) it follows that for each p 2 .2;1/, there is a T D T .; p/ > 0 so

that

sup
t>T .;p/

k.I �M 2/�1kB.Lp/ � 2: (5.22)

Lemma 5.5. Suppose that r0 2 H 1;1.C/ \ C 0.C/. Then, the estimate

sup
z2C

ˇ̌
ˇ̌u.z; t / � v.z; t /� 1

�

Z
eitSr0M

21

ˇ̌
ˇ̌ � C.p; /t�1�1=.2p/

holds for any p 2 .2;1/ and all t > T .; p/.

Proof. From the �rst equality in (5.2), (5.4), and the identity

.I �M 2/�1 � I �M 2 D .I �M 2/�1M 4

we conclude that

u.z; t /� v.z; t /� 1

�

Z
eitSr0M

21 D 1

�

Z
eitSr0.I �M 2/�1M 41:

The result now follows from Hölder’s inequality, the fact that r0 2 Lp0

.C/ for any

p 2 .2;1/, (5.19), and (5.22). �

It remains to estimate
Z
eitSrM 21 D I1 C I2 C I3 C I4; (5.23)

where

I1 D
Z
eitSr0MŒ.1 � �/M.�/�;

I2 D
Z
eitSrMŒ�M.1 � �/�;

I3 D
Z
eitSrMŒ.1� �/M.1� �/�;

I4 D
Z
eitSrMŒ�M.�/�:

First, we analyze the mixed terms I1 and I2. In each integral we will split

eitSr0 D eitSr0� C eitSr0.1 � �/ and bound each of the terms separately.

To control the �rst type of term, we will use the estimate

ˇ̌
ˇ̌
Z
eitSr0� 

ˇ̌
ˇ̌ � Ct1=.2p/�1=2k kp (5.24)
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true for any p 2 .2;1/. To control the second type of term, we will use the

integration by parts formula
Z
eitSr0.1 � �/ D � 1

it

Z
eitS N@k.S

�1
Nk
r0.1� �/ /:

Expanding the N@k-derivative into four terms, using Hölder’s inequality, and apply-

ing the inequalities (5.7)–(5.9), we conclude that for any p 2 .2;1/,
ˇ̌
ˇ̌
Z
eitSr0.1� �/ 

ˇ̌
ˇ̌ � Cp t

1=.2p/�1k kp C Cp t
1=.2p/�1k kp (5.25)

C Cp t
1=.2p/�1k kp C Cp t

1=.2p/�1kN@ kp

� Cp t
1=.2p/�1.k kp C kN@ kp/:

First, we consider I1.

Lemma 5.6. Suppose that r0 2 H 1;1.C/ \ C 0.C/, p 2 .2;1/, and t > 1. Then
ˇ̌
ˇ̌
Z
eitSrMŒ.1 � �/M��

ˇ̌
ˇ̌ � Cp

3t1=.2p/�5=4: (5.26)

Proof. We split I1 D J1 C J2 where

J1 D
Z
eitS�rMŒ.1� �/M��;

J2 D
Z
eitS.1 � �/rMŒ.1� �/M��:

To bound J1, we use (5.24) with  D M.1 � �/M� and (5.10) with s D p to

estimate

jJ1j � Cp t
1=.2p/�1=2kM.1 � �/M�kp

� Cp
2t1=.2p/�5=4.kM�kp C kN@.M�/kp/

� Cp
3t�5=4;

where in the last step we used kN@.M�/kp D kr0�kp and (5.6).

To bound J2, we (5.25) with  D M.1 � �/M�, the operator bound (5.14),

and (5.17) to estimate

jJ2j � Cp t
1=.2p/�1.kM.1 � �/M�kp C kN@M.1 � �/M�kp/

� Cp
3t1=.2p/�5=4:

Combining these two estimates completes the proof. �
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Next, we consider I2.

Lemma 5.7. Suppose that r0 2 H 1;1.C/ \ L1.C/, t > 1, and p 2 .2;1/. Then

ˇ̌
ˇ̌
Z
eitSrMŒ�M.1 � �/�

ˇ̌
ˇ̌ � Cp

3t1=.2p/�5=4: (5.27)

Proof. As before we write I2 D J1 C J2 where

J1 D
Z
eitSr0�MŒ�M.1 � �/�;

J2 D
Z
eitSr0.1 � �/MŒ�M.1 � �/�:

To estimate J1, we use (5.24) with  D M�M.1 � �/, (5.14), and (5.18) to

estimate

jJ1j � Cp
2t1=.2p/�1=2k�M.1 � �/kp

� Cp
3t1=.2p/�5=4:

To estimate J2, we use (5.25) with  D M�M.1 � �/, (5.14), and (5.18) to

estimate

jJ2j � Cp t
1=.2p/�1kM�M.1� �/kp C kN@M�M.1� �/kp

� Cp
2t1=.2p/�1kM.1 � �/kp

� Cp
3t1=.2p/�7=4:

Combining these estimates completes the proof. �

Next, we bound I3.

Lemma 5.8. Suppose r0 2 H 1;1.C/\ C 0.C/, t > 1, and p 2 .2;1/. Then

ˇ̌
ˇ̌
Z
eitSrM.1 � �/MŒ.1� �/�

ˇ̌
ˇ̌ � Cp

3t1=.2p/�5=4: (5.28)

Proof. First, we insert 1 D �C .1 � �/ and write the integral to be estimated as

J1 C J2 where

J1 D
Z
eitS�r0MŒ.1 � �/MŒ.1� �/�� dA;

J2 D
Z
eitS .1� �/r0MŒ.1 � �/MŒ.1� �/�� dA:
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We estimate, using (5.24) with  D M.1 � �/ŒM.1� �/�,

jJ1j � Cp t
1=.2p/�1=2kM.1 � �/M.1� �/kp

� Cp
3t1=.2p/�5=4;

where in the last step we used (5.18) and (5.14).

To estimate J2, we use (5.25) with  D M.1��/M.1��/, (5.14), and (5.18)

to conclude that

jJ2j � Cp t
1=.2p/�1.kM.1 � �/M.1� �/kp C kM.1 � �/kp/

� Cp
3t1=.2p/�7=4:

Combining these two estimates completes the proof. �

Finally, we show that I4 is o.t�1/. Recall that, for u0 2 L1.C/, r0 2 C0.C/ by

Remark 3.7.

Lemma 5.9. Suppose r0 2 H 1;1.C/ \ C0.C/. Then

lim
t!C1

t

Z
eitSr0 M.�.M.�1/// D 0: (5.29)

Proof. We �rst write

t

Z
eitSr0M.�.M.�1/// D J1 C J2;

where

J1 D t

Z
eitS�r0 M ; J2 D t

Z
eitS.1 � �/r0 M ;

and

 M D M.�.M.�1///:

We �rst show that J2 ! 0 as t ! 1 using estimate (5.25) with  D  M .

We obtain, for any p 2 .2;1/,

jJ2j � Cp t
1=.2p/.k M kp C kN@ M kp/

� Cp t
1=.2p/.k M kp C k�M.�/kp/

� Cp
3t�1=4:

In the second step, we used (5.14), and in the last step, we used (5.17). This shows

that J2 ! 0 as t ! 1.
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We now turn to J1. Let us write Qk for k � kc . We may compute

J1 D teitS0

4�2

Z

C3

e4it Re. Qk2�. Qk0/2C. Qk
00

/2/G.k; k0; k00/

.k � k0/.k0 � k00/
dA.k; k0; k00/;

where

G.k; k0; k00/ D r0.k/r0.k0/r0.k
00/�.k/�.k0/�.k00/:

De�ne � D t1=4.k � kc/ and similarly for �0 and �00. We see that the expression J1

is given by

I.z; t / D eitS0

4�2

Z
e4it1=2 Re.�2�� 02C� 002/H.�; �0; �00/

.� � �0/.�0 � �00/
dA.�; �0; �00/;

where

H.�; �0; �00/ D �.�/�.�0/�.�00/ � r0.kc C �=
4
p
t/ r0.kc C �0=

4
p
t / r0.kc C �00=

4
p
t /:

Clearly, jI.z; t /j � Ckr0k3
C0.C/

, where C is bounded uniformly in z and t , and

I.z; t / is a continuous multilinear function of r0 2 C0.C/. Thus, to show that

limt!1 I.z; t / D 0, it su�ces to check for r0 2 C1
0 .C/ since such r0 are dense

in C0.C/. For such r0, we have

I.z; t / D eitS0jr0.kc/j2r0.kc/

Z
e4it1=2 Re.�2�� 02C� 002/�.�/�.�0/�.�00/

.� � �0/.�0 � �00/
dA.�; �0; �00/

C O.t�1=4/:

Consider now the integral

J.t/ D
Z
e4it1=2 Re.�2�� 02C� 002/�.�/�.�0/�.�00/

.� � �0/.�0 � �00/
dA.�; �0; �00/:

The integrand is an L1.C3/ function owing to the compact support of �. The

integral J.t/ is thus a special case of the integral

J.t I f / D
Z

C3

e4it1=2 Re.�2�� 02C� 002/f .�; �0; �00/ dA.�; �0; �00/:

It su�ces to show that J.t; f / ! 0 as t ! 1. Owing to the trivial bound

jJ.t; f /j � kf k1, it su�ces to do so for a dense set of f 2 L1.C3/. We �rst

observe that �nite linear combinations of compactly supported product functions

of the form g1.�/g2.�
0/g3.�

00/ are dense in L1.C3/, so it su�ces to show that

lim
t!1

Z
e4it1=2 Re �2

g.�/ dA.�/ D 0:
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Now write � D �1 C i�2 and note that, by a further density argument, we may take

g.�/ D h1.�1/h2.�2/. As Re.�2/ D �2
1 � �2

2 it now su�ces to show that

lim
t!1

Z
e˙4it1=2s2

h.s/ ds D 0

for bounded and compactly supported h. This is now an easy consequence of the

Riemann–Lebesgue lemma and a simple change of variables.

�

Proof of Theorem 1.3. An immediate consequence of Lemma 5.5, (5.23), and

estimates (5.26), (5.27), (5.28), and (5.29). �

Appendices

A. Multilinear estimates

Michael Christ

In this appendix we establish a rather general multilinear inequality in terms

of weak type Lebesgue spaces, then specialize it to deduce the inequality of

Brown [13] stated in Proposition 2.5.

Let F be one of the two �elds F D R or F D C, equipped with Lebesgue

measure in either case. Consider C–valued multilinear functionals

ƒ.f1; f2; : : : ; fm/ D
Z

FN

mY

j D1

fj . j̀ .y// dy; (A.1)

where each j̀ W FN ! F
Nj is a surjective F-linear transformation, fj WFNj ! C,

and dy denotes Lebesgue measure on F
N . A complete characterization of those

exponents .p1; : : : ; pm/ 2 Œ1;1�m for which there are inequalities of the form

ˇ̌
ƒ.f1; f2; : : : ; fm/

ˇ̌
� C

mY

j D1

kfj kL
pj (A.2)

has been obtained in [11]. Such an inequality implicitly includes the assertion

that the integral (A.2) converges absolutely whenever each fj belongs to Lpj .

To review this result, we �rst recall key de�nitions from [10] and [11].

Denote by dimF.V / the dimension of a vector space V over F. Throughout the

discussion, F should be considered as �xed; vector spaces, subspaces, and linear

mappings are de�ned with respect to F.
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De�nition A.1. Relative to a set of exponents ¹pj º, a subspace V � F
N is said to

be critical if

dimF.V / D
X

j

p�1
j dimF. j̀ .V //; (A.3)

to be supercritical if the right-hand side is strictly less than dimF.V /, and to be

subcritical if the right-hand side is strictly greater than dimF.V /.

Throughout the discussion, the reciprocal of any in�nite exponent is inter-

preted as 0. The subspace ¹0º is always critical.

Theorem A.2 ([11]). Let F D R or F D C. Let N � 1 and Nj � 1 for all

j 2 ¹1; 2; : : : ; mº. For each index j 2 ¹1; 2; : : : ; mº let j̀ WFN ! F
Nj be an

F–linear surjective mapping. Let pj 2 Œ1;1�. Then (A.2) holds if and only if FN

is critical relative to ¹pj º and no proper subspace of FN is supercritical relative

to ¹pj º.

This theorem was stated in [11] only for F D R, but the proof given in [11]

applies equally well to F D C. See also [10] for a di�erent proof and more

thorough analysis for the case F D R.

In order to extend this theorem to include Brown’s inequality (2.12), we will

utilize the Lorentz spaces Lp;r as de�ned for instance in [31]. These spaces

are de�ned for .p; r/ 2 Œ1;1/ � Œ1;1�, and are Banach spaces except in the

exceptional case .p; r/ D .1; 1/. Throughout the following discussion, we assume

that .p; r/ is not equal to .1; 1/. The facts needed about the Lorentz spaces for our

discussion are these.

(i) Lp;p equals the Lebesgue space Lp.

(ii) Lp;1 equals weak Lp. That is, f 2 Lp;1.Fn/ if and only if there exists

Cf < 1 such that for every ˛ 2 .0;1/,
ˇ̌
¹x 2 F

nW jf .x/j > ˛º
ˇ̌

� C
p

f
˛�p.

Here jEj denotes the Lebesgue measure of a subsetE of Fn. The in�mum of

all such Cf is denoted by kf kLp;1 . This quantity is not in general a norm,

but is equivalent to one unless .p; r/ D .1; 1/; see [31].

(iii) In particular, the functions jxj�d=p and jzj�2d=p belong to Lp;1.Rd / and to

Lp;1.Cd /, respectively.

(iv) If r � p then kf kLp;r � Ckf kLp for all functions f , whereC < 1 depends

only on p; r .
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The next result extends Theorem A.2 to Lorentz spaces, although perhaps not

in the most de�nitive manner.

Theorem A.3. Let F D R or F D C. Let N � 1 and Nj � 1 for all

j 2 ¹1; 2; : : : ; mº. For each index j 2 ¹1; 2; : : : ; mº let j̀ WFN ! F
Nj be an

F–linear surjective mapping. Let each exponent pj belong to the open interval

.1;1/.

Suppose that with respect to ¹pj º, the total space F
N is critical, and every

nonzero proper subspace of FN is subcritical. Then for all exponents rj 2 Œ1;1�

satisfying X

j

r�1
j D 1 (A.4)

and, for all functions fj 2 Lpj ;rj .FNj /,
Qm

j D1 fj ı j̀ belongs to L1.FN /.

Moreover, there exists C < 1 independent of ¹fj º such that

ˇ̌
ƒ.f1; f2; : : : ; fm/

ˇ̌
� C

mY

j D1

kfj kL
pj ;rj : (A.5)

The proof will utilize the following crude multilinear interpolation theorem,

established in [18].

Proposition A.4. Let aj 2 Œ0;1/, and suppose that at least one of these numbers

is nonzero. Let � D
®
.t1; : : : ; tj / 2 .0; 1/mW

P
j aj tj D 1

¯
, equipped with the

topology induced by its embedding in .0; 1/m. Let .X;A; �/ be any measure space.

Let ƒ D ƒ.f1; : : : ; fm/ be a complex-valued multilinear form de�ned for all

m-tuples of measurable simple functions fj WX ! C.

LetO be a nonempty open subset of�. Suppose that for each t D .t1; : : : ; tm/ 2
O there exists Ct < 1 such that

jƒ.f1; : : : ; fm/j � Ct

Y

j

kfj k
L

pj ;1; where pj D t�1
j , (A.6)

for all m-tuples of simple functions fj . Then for any relatively compact subset

O0 � O there exists C < 1 such that for all t 2 O0 and all exponents rj satisfyingPm
j D1 r

�1
j D 1, for all m-tuples of measurable simple functions,

jƒ.f1; : : : ; fm/j � C
Y

j

kfj kL
pj ;rj ; where pj D t�1

j : (A.7)
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Proof of Theorem A.3. It su�ces to apply Theorem A.2 and Proposition A.4

in combination. Indeed, if an m-tuple p D ¹pj W 1 � j � mº satis�es the

hypotheses of Theorem A.3, then so does any m-tuple q D ¹qj W 1 � j � mº
satisfying the equation

P
j

Nj

N
q�1

j D 1 such that each q�1
j is su�ciently close

to p�1
j . Indeed, as V varies over all nonzero proper subspaces of FN , the numbers

P
j p

�1
j

dimF. j̀ .V //

dimF.V /
take on �nitely many values, and are all strictly greater than

one by the subcriticality hypothesis. Therefore these strict inequalities continue

to hold whenever q is su�ciently close to p. The hypotheses of Proposition A.4

are thus satis�ed. Applying that Proposition yields inequality (A.5). �

Consider now the multilinear inequality of Brown [13]. Let

ƒn.�; q0; q1; : : : ; q2n/ D
Z

C2nC1

j�.�/jjq0.z0/j : : : jq.z2n/jQ2n
j D1 jzj �1 � zj j

d�.z/;

where d�.z/ is product measure onC
2nC1 and � D

P2n
j D0.�1/j zj . The inequality

states that

jƒn.�; q0; q1; : : : ; q2n/j � Ck�k2

2nY

j D0

kqj k2: (A.8)

Note that since ƒn is multilinear, it follows directly from this statement that the

map

.�; q0; q1; : : : ; q2n/ 7�! ƒn.�; q0; q1; : : : ; q2n/

is Lipschitz continuous from any bounded subset of .L2.C//2nC1 to C.

To deduce (A.8) from Theorem A.3, set F D C,N D 2nC1, andm D 4nC2.

Let the index j range over Œ0; 4nC1�, setNj D 1 for all j 2 ¹0; : : : ; 4nC1º, write

z D .z0; : : : ; z2n/, and consider the linear functionals lj W C2nC1 ! C
1 de�ned

by

lj .z/ D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

zj for 0 � j � 2n,

zj �2n � zj �2n�1 for 2n < j � 4n;

2nX

iD0

.�1/izi for j D 4nC 1:

(A.9)

The following linear algebraic fact will be proved below.

Lemma A.5. The .4nC 2/-tuple of exponents p D .pj / D .2; 2; : : : ; 2/ satis�es

the hypotheses of Theorem A.3.
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To apply the lemma to inequality (A.8), set rj D .2nC 2/�1 for 0 � j � 2n

and for j D 4n C 1, and rj D 1 for 2n < j � 4n. For each j 2 .2n; 4n�,

de�ne fj WC1 ! RC by fj .w/ D jwj�1. Each of these functions belongs to

L2;1.C1/. The factors jzj � zj �1j�1 appearing in (A.8) are then jzj � zj �1j�1 D
fj . j̀ .z//, for j 2 .2n; 4n�. Setting fj D qj for all j 2 Œ0; 2n� and f4nC1 D
�, ƒn.�; q0; : : : ; q2n/ equals ƒ.f0; : : : ; f4nC1/ D

R
CN

Q4nC1
j D0 fj . j̀ .z// dz. By

Theorem A.3 in conjunction with Lemma A.5,

jƒn.�; q0; : : : ; q2n/j � Ck�k2;r

2nY

j D0

kqj kL2;r ;

where r D 2nC 2. Since 2nC 2 � 2, the L2;r norm is majorized by a constant

multiple of the L2 norm. �

This reasoning yields various re�nements of (A.8). For instance, any one of

the functions �; qj may be taken to be in L2;1.C/ rather than in L2.

Proof of Lemma A.5. Firstly, N D 2nC 1, while

4nC1X

j D0

p�1
j dimC. j̀ .C

N // D
4nC1X

j D0

p�1
j Nj D

4nC1X

j D0

2�1 � 1 D 2�1 � .4nC 2/ D N:

Thus FN is critical relative to .2; 2; : : : ; 2/.

It remains to show that any nonzero proper complex subspace V of C
N is

subcritical. For any index j , since j̀ is a linear mapping from C
N to C

1, either

dimC. j̀ .V // D 1, or j̀ vanishes identically on V . Let S be the set of all

j 2 Œ0; : : : ; 2n� such that zj � 0 for all z D .z0; : : : ; z2n/ 2 V , and let T be

the set of all j 2 Œ1; 2n� such that zj � zj �1 � 0 for all z 2 V , but neither j nor

j � 1 belongs to S .

The mapping lj C2nWV ! C is surjective if j 2 Œ1; 2n� and j … T [ S .

For if not, then it vanishes identically; zj � zj �1 D 0 for all z 2 V . Since j … T ,

the de�nition of T forces at least one of the indices j; j � 1 to belong to S , that

is, at least one of the functions z 7! zj and z 7! zj �1 vanishes identically on S .

The equation zj �zj �1 � 0 then forces both of these functions to vanish identically.

Therefore both indices j; j � 1 belong to S , contradicting the hypothesis that

j … T [ S .

A further consequence is that the number of j 2 .0; 2n� such that j … T , but

zj � zj �1 � 0 for all z 2 V , is at most jS j � 1. Equality occurs if and only if

S D Œk; k � 1C jS j� for some k 2 Œ0; 2n�.
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The set of mappings ¹ j̀ W j 2 Sº [ ¹ j̀ C2nW j 2 T º is linearly independent,

and V is contained in the intersection of their nullspaces, so

dimC.V / � 2nC 1 � jS j � jT j:

On the other hand,

4nC1X

j D0

2�1 dimC. j̀ .V //

D
2nX

j D0

2�1 dimC. j̀ .V //C
4nX

j D2nC1

2�1 dimC. j̀ .V //C 2�1 dimC.`4nC1.V //

� 2�1.2nC 1� jS j/C 2�1.2n� jT j � .jS j � 1//C 2�1 dimC.`4nC1.V //

D
�
2nC 1 � jS j � jT j

�
C 2�1jT j C 2�1 dimC.`4nC1.V //

� dimC.V /C 2�1jT j C 2�1 dimC.`4nC1.V //:

This is strictly greater than dimC.V / unless T D ;, V is contained in the nullspace

of `4nC1, dimC.V / D 2nC 1� jS j, and S D Œk; k � 1C jS j� for some k 2 Œ0; 2n�
with k � 1C jS j � 2n.

Suppose that T D ;, and that V is contained in the nullspace of `4nC1.

S cannot be all of Œ0; 2n�, for this would force V D ¹0º, contrary to hypothesis.

Therefore the equation `4nC1jV � 0 is not forced by the equations j̀ jV � 0

for all j 2 S , so dimC.V / must be strictly less than 2n C 1 � jS j. There-

fore
P4nC1

j D0 2�1 dimC. j̀ .V // is strictly greater than dimC.V / in all cases; every

nonzero proper subspace of CN is subcritical. �

B. Time evolution of scattering maps

The purpose of this appendix is to give a self-contained proof that the function

u de�ned by (1.4) solves the DS II equation for u0 2 S.C/. Previous proofs may

be found, for example, in the papers of Beals-Coifman [7, 8, 9] and Sung [33],

Part III. We suppose that r 2 C 1.Rt I S.C// obeys a linear equation

Pr D i'r;

where ' is a real-valued polynomial in k and Nk. We will obtain an e�ective formula

for Pu if u D I.r/ by di�erentiating

u D hek Nr; �1i
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and exploiting solutions .�#
1; �

#
2/ to a ‘dual’ problem

N@k�
#
1 D 1

2
ekr# �#

2 ; (B.1a)

N@k�
#
2 D 1

2
ekr# �#

1 ; (B.1b)

where r# D Nr . The following lemma on symmetries of the map R shows that

r# D R.u#/ where u#.z/ D u.�z/.

Lemma B.1. Let u; u[ 2 H 1;1.C/ and let r D R.u/, r[ D R.u[/:

(i) if u[.z/ D �u.z/, then r[.k/ D �r.k/,
(ii) if u[.z/ D �u.�z/, then r[.k/ D �r.�k/, and

(iii) if u[.z/ D Nu.z/, then r[.k/ D �r.k/.

Proof. In what follows we let .�[
1; �

[
2/ denote the solutions to (1.5) with u replaced

by u[.

(i) follows from (1.6) and the fact that �[
1 D �1.

(ii) follows from (1.6) and the fact that �[
1.z; k/ D �1.�z;�k/

(iii) From the de�nition (1.6) we compute (recall (2.1))

r[.k/ D he�k Nu; �[
1i

D he�ku; .I � xPke�kuPkek Nu/�11i

D h.I � e�ku xPk NuekPk/
�1e�ku; 1i

D h.I � xPk NuekPke�ku/
�11; ek Nui

D r.�k/

as claimed. �

From the formula

Œ@t ; T
2
k � D � i

4
Pkek NrŒ'; xPk�e�kr

we have

P�1 D Œ@t ; .I � T 2
k /

�1�1

D � i
4
.I � T 2

k /
�1Pkek NrŒ'; xPk�e�kr�1
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so that

Pu D ihek' Nr; �1i � i

4
hek Nr; .I � T 2

k /
�1Pkek NrŒ'; xPk�e�kr�1i

D ihe�krf1; 'g1i C i hf2; 'e�kr�1i;

where

f1 D xPk.I � .T 2
k /

�/�1ek Nr;
g1 D xPke�kr�1;

f2 D 1C e�kr xPk.I � .T 2
k /

�/�1ek Nr:

Noting that .T 2
k
/� D 1

4
ek Nr xPke�krP , it is not di�cult to see that

f1.z; k/ D �#
2.�z; k/;

g1.z; k/ D �2.z; k/;

f2.z; k/ D �#
1.�z; k/;

so that

Pu.z; t / D ihe�kr�
#
2.�z; � /; '�2.z; � /i C ih�#

1.�z; � /; 'e�kr�1.z; � /i;

where we have suppressed the t -dependence of � and �#. Setting

�.z; k/ D 1

2
ek.z/ Nr.k/�#

2.�z; k/�2.z; k/C 1

2
�#

1.�z; k/e�k.z/r.k/�1.z; k/

we have

Pu.z/ D 2i

Z
'.k/�.z; k/ dA.k/:

Using (1.8) and (B.1), we can write

�.z; k/ D N@k Œ�
#
2.�z; k/�1.z; k/�

and

�.z; k/ D N@k Œ�
#
1.�z; k/�2.z; k/�

so that, if '.k/ D 4Re.k2/, we conclude that

Pu.z/ D 4i.I1 C I2/

(the complex conjugate on I2 is intentional), where

I1 D
Z
k2 N@kŒ�

#
2.�z; k/�1.z; k/� dA.k/;
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I2 D
Z
k2 N@kŒ�

#
1.�z; k/�2.z; k/� dA.k/:

The integrands in I1 and I2 are exact di�erentials and, for r 2 S.C/, vanish rapidly

at in�nity. We can evaluate I1 and I2 using the fact that, if h is a smooth function

with N@h of rapid decay and

h �
X

j �0

hj

kj C1
(B.2)

then Z
kn N@kh dA.k/ D 2�ihn:

We compute the large-k asymptotic expansions of �1 and �2 in Appendix C. Write

Œh�j for hj in the expansion (B.2). In terms of the expansion (C.2) we have

Œ�#
2.�z; k/�1.z; k/�2 D �#

2;0�1;2 C �#
2;1�1;1 C �#

2;2�1;0;

Œ�#
1.�z; k/�2.z; k/�2 D �#

2;0�1;2 C �#
2;1�1;1 C �#

2;2�1;0;

where �# corresponds to the potential u#, and, since �# is evaluated at �z, we re-

place u by � Nu, P by �P , and @ by �@ in (C.3) and (C.4)–(C.6) to �nd the expan-

sion coe�cients for �#. Straightforward computation using (C.3) and (C.4)–(C.6)

gives

Œ�#
2.�z; k/�1.z; k/�2 D 1

4
u.S.juj2// � 1

2
@2u;

where we used the identity .N@�1f /2 D 2N@�1.f N@�1f / with f D juj2 to eliminate

terms of �fth order in u. Similarly,

Œ�#
1.�z; k/�2.z; k/�2 D �1

4
u.S.juj2//C 1

2
@2 Nu:

Finally, we obtain

i Pu.z/ D �2.@2uC N@2u/ � u.g C Ng/;

where

g D �S.juj2/:

This is exactly the DS II equation.
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C. Asymptotic expansions

In this section we compute large-parameter asymptotic expansions of the solutions

� D .�1; �2/ of (1.8). Exploiting the fact that � D .�1; ek�2/, we conclude

from (1.5) that

N@z�1 D 1

2
u�2; (C.1)

.@z C k/�2 D 1

2
Nu�1:

For r 2 S.C/, the functions .�1; �2/ admit a large-k asymptotic expansion of the

form

� � .1; 0/C
X

`�0

k�.`C1/�.`/; (C.2)

where �.`/ D .�1;`; �2;`/
T . From the system (C.1) we easily deduce that

�1;0 D 1

4
N@�1.juj2/; �2;0 D 1

2
Nu; (C.3)

while for ` � 1,

�2;` D 1

2
Nu�1;`�1 � @�2;`�1;

�1;` D 1

2
P.u�2;`/:

It easily follows that

�1;1 D 1

16
P.juj2P.juj2// � 1

4
P.u@ Nu/; (C.4)

�2;1 D 1

8
NuP.juj2/ � 1

2
@ Nu; (C.5)

�2;2 D 1

32
Nu P.juj2P.juj2//

C 1

8
@. Nu P.juj2// � 1

8
NuP.u@ Nu/C 1

2
@2 Nu:

(C.6)

Remark C.1. In a similar way one can show that for r 2 S.C/, � has a large-

z asymptotic expansion whose coe�cients are computed in terms of r and its

derivatives. Thus for example

�1.z; k/ D 1C 1

z

�1
4

N@�1
k .jr j2/

�
C O.jzj�2/;

�2.z; k/ D 1

z

�1
2
r
�

C O.jzj�2/:
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