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1. Introduction

One aspect of the classical theory of Sturm-Liouville problems is concerned with

the existence of trace formulae relating, for instance, a regularized (in�nite) sum

of eigenvalues to the potential. Given the problem

8

<

:

�u00.x/C q.x/u.x/ D �u.x/;

u.0/ D u.�/ D 0;
(1.1)

the classical example due to Gelfand and Levitan in 1953 [6] reads as follows
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where �k D �k.q/ denotes the kth eigenvalue corresponding to the potential q.

From the Weyl asymptotics for the eigenvalues of (1.1), namely,

�k D k2 C
1

�

Z �

0

q.t/ dt C O.k�2/; (1.3)

we have the convergence of the series on the left-hand side of (1.2).

This and other examples of this type of identity may be found in the books by

Levitan and Sargsjan [13, 14] (see also [7]) and have more recently been shown to

have extensions to the case of the perturbed harmonic oscillator on the whole real

line – see [17] and the references therein.

The main purpose of this paper is to show that these trace identities are limiting

situations of inequalities satis�ed by �nite sums of eigenvalues. As we shall see

below, in the case of equation (1.1) and the corresponding trace formula (1.2),

if we expand the potential q.x/ in a Fourier series

q.x/ D
q0

2
C

1
X

kD1

qk cos.kx/; (1.4)

where

qk D
2

�

Z �

0

q.x/ cos.kx/ dx; k D 0; 1; : : : ; (1.5)

we actually have

n
X

kD1

�

�k � k2 �
1

�

Z �

0

q.t/ dt

�

� �
1

2

n
X

kD1

q2k; (1.6)

(see Theorem 3.1) and it is not very di�cult to check that the right-hand side

converges to the right-hand side of (1.2). We also show that there exists no lower

bound for the left-hand side of (1.6) depending on a �nite number of Fourier

coe�cients alone – see Remark 3.2. It is, however, possible to use our results in

combination with an argument given in [2] to obtain an alternative proof of (1.2)

and we explore this approach in Section 6.

Such inequalities, including for other problems such as the case of Neumann

boundary conditions and N -dimensional �at tori, in fact follow from elementary

test function arguments. The general principle is that if the potential q is written

out as a Fourier series as in (1.4), the eigenfunctions of the corresponding zero-

potential problem (in one dimension, sines and cosines) behave well when tested

against the resulting series. The resulting sharp inequalities in terms of the Fourier
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coe�cients of q, which are completely explicit if q is known, also contain inter-

esting special cases under various less explicit assumptions on q (cf. Theorems 4.1

and 5.1). We remark that the case of (non-periodic) Schrödinger operators on the

whole line may be addressed via similar methods and this will appear in another

paper [5].

Although the underlying principle is quite simple, surprisingly, its application

in this context appears to be new and we have not been able to �nd any similar

results in the literature. The earliest results regarding �nite sums of eigenvalues

seem to be those for sums of reciprocals of eigenvalues of the Laplacian, typically

on inhomogeneous membranes, such as the classical work of Pólya and Schi�er in

1954 [16, Chapter III]; see also, for example, [9, 10]. In higher dimensions, there

are bounds for sums of eigenvalues and spectral zeta functions (cf. (2.4)) of the

Laplacian based on the geometry of the underlying domain, such as in [3, 11, 12].

For Schrödinger operators, besides the vast literature on Lieb–Thirring in-

equalities (which are concerned with rather di�erent issues and bounds from (1.6);

see, e.g., [8]), there are well-established bounds on the number of eigenvalues less

than a given positive constant as in [15], which also cover the case of Schrödinger

operators on domains; see also [4] and the references therein. However, these

are all of a fundamentally di�erent nature from (1.6), typically involving ei-

ther estimates purely in terms of eigenvalues, eigenfunctions and/or geometric

or dimensional quantities, or else integral expressions for q such as of the form
R

�
.q C ˛/N=2

� dx for an arbitrary given constant ˛ � 0 and dimension N � 3, as

in [15].

This paper is organized as follows. Section 2 lays out the general setting and

notation. In Section 3, we consider summation bounds of the form of (1.6) for

eigenvalues of Schrödinger operators on �nite intervals subject to either Dirich-

let or Neumann boundary conditions (see Theorems 3.1 and 3.3, respectively).

We also sum the one-dimensional Dirichlet and Neumann bounds in Theorem 3.4,

obtaining a bound independent of the Fourier coe�cients of q, and a generaliza-

tion to “zeta function”-type bounds, where powers of eigenvalues are considered

(see Theorem 3.6).

We then apply Theorems 3.1 and 3.3 to a particular class of potentials in

Section 4 (see Theorem 4.1), obtaining a simpli�ed eigenvalue bound in dimension

one under additional assumptions on the potential q, which include the case where

q is convex. We show that one can essentially trivially obtain a similar bound on

�at tori in Section 5.

In Section 6 we consider the relationship between our �nite bounds and (known

and potential) trace formulae. We show in particular how our one-dimensional
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results (Theorems 3.1 and 3.3) can be used to replace some of the arguments of

Dikiı̆’s proof [2] of the Gelfand–Levitan formula (1.2), which are arguably more

natural than their counterparts in [2].

The �nal Sections 7 and 8 have the nature of appendices, the former giving

generic results which allows our bounds to be generalized to powers of eigenvalues

(i.e. zeta functions), and the latter proving the sharpness of (the �nite versions of)

our inequalities: roughly speaking, equality can be achieved in the inequalities for

�nite sums only if the potential is constant.

2. Notation and preliminaries

We will consider the general Schrödinger eigenvalue equation

��u.x/C q.x/u.x/ D �u.x/; (2.1)

where � D
PN

iD1
@2

@x2
i

is the Laplace operator on either a �nite interval (N D 1)

or an N -dimensional torus. In either case we understand the problem in the usual

weak sense. If q � 0, (2.1) reduces to the usual Laplacian eigenvalue problem,

i.e. the Helmholtz equation. For general q 6� 0, unless otherwise speci�ed we

make the standing assumption throughout the paper that q may be expanded

as an absolutely convergent Fourier series in terms of the eigenfunction of the

Helmholtz equation (cf. (1.4)).

Under these assumptions the operator associated with (2.1) admits a discrete

sequence of eigenvalues �1.q/ < �2.q/ � � � � ! 1, which we repeat according

to multiplicities. We will often abbreviate �n.q/ as �n if there is no danger of

confusion, and we will write �n.q/ (or �n) instead of �n.q/ for the Neumann

eigenvalues. An (arbitrary) eigenfunction associated with �n.q/ or �n.q/ will be

denoted by 'n. For the case of a zero potential, that is, the ordinary Laplacian or

Helmholtz equation, we will in general write �n.0/ (or �n.0/ as appropriate) for

the nth ordered eigenvalue and  n for any corresponding eigenfunction.

For either a bounded interval or a torus, which we for now denote generically

by�, given a potential q W � ! R and a test function � 2 V D H 1
0 .�/ orH 1.�/

as appropriate, we denote by

RŒq; �� WD
Q.�/

k�k2
2

WD

Z

�

jr�.x/j2 dx C

Z

�

q.x/�2.x/ dx

Z

�

�2.x/ dx

(2.2)

the Rayleigh quotient associated with q at �, whereQ.�/ D Q.�; �/ is the bilinear

form associated with the Schrödinger operator. A standard generalization of the
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usual min-max formula for the eigenvalues of (2.1) states that if �1; : : : ; �n is a

collection of n � 1 such test functions mutually orthogonal in L2.�/, then

n
X

kD1

�k.q/ �

n
X

kD1

RŒq; �k� (2.3)

(see, e.g., [1]). If q � 0 and we consider (2.1) with Dirichlet boundary conditions

on .0; �/, then �n.0/ D n2 with associated eigenfunction n.x/ D sin.nx/, mean-

ing in particular that if s > 1=2, then the in�nite sum of powers of eigenvalues

1
X

kD1

��s
k .0/ D

1
X

kD1

1

k2s
D �.2s/

equals the Riemann zeta function, which we write as �.2s/ DW �0.s/. By way

of analogy we de�ne, as standard, the generalized (or spectral) zeta function

associated with the potential q as

�q.s/ WD

1
X

kD1

��s
k .q/: (2.4)

Finally, we denote by h : ; : i the usual inner product in L2.�/, and by k : kp the

Lp-norm on �, 1 � p � 1.

3. Summation bounds on �nite intervals

We �rst treat one-dimensional Schrödinger operators on the interval .0; �/. This

means we can write the potential q as a cosine Fourier series as in (1.4), where we

note in particular that q0=2 is the average value of q,

q0

2
D �

Z �

0

q.x/ dx WD
1

�

Z �

0

q.x/ dx:

Our starting point is the following bound for the Dirichlet problem.

Theorem 3.1. If in the problem (1.1) the potential q admits the expansion (1.4),
then its eigenvalues �k D �k.q/ satisfy

n
X

kD1

�

�k � k2 �
q0

2

�

� �
1

2

n
X

kD1

q2k: (3.1)

for all n � 1. Equality for any n � 1 implies q is constant. As n goes to in�nity,
the right-hand side of the above inequality converges to

1

2
�

Z �

0

q.x/ dx �
q.0/C q.�/

4
: (3.2)
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Proof. Using  k.x/ D sin.kx/, k D 1; : : : ; n, as test functions in (2.2) we have

n
X

kD1

�k �

n
X

kD1

Z �

0

k2 cos2.kx/C q.x/ sin2.kx/ dx

Z �

0

sin2.kx/ dx

D

n
X

kD1

�

k2 C
2

�

Z �

0

q.x/ sin2.kx/ dx

�

:

By expanding q as in (1.4), and using the identities sin2.kx/ D .1� cos.2kx//=2

and cos.jx/ cos.2kx/ D .cos.jx C 2kx/C cos.jx � 2kx//=2, we obtain

Z �

0

q.x/ sin2.kx/ dx D
1

2

Z �

0

hq0

2
C

1
X

j D1

qj cos.jx/
i

Œ1� cos.2kx/� dx

D
�

4
.q0 � q2k/:

Replacing this in the expression above yields

n
X

kD1

�k �

n
X

kD1

h

k2 C
q0 � q2k

2

i

as desired. If we evaluate the Fourier series for q at x D 0 and at x D � and add

the resulting sums we see that

q.0/C q.�/ D q0 C 2

1
X

kD1

q2k; (3.3)

showing that the limit of the sum on the right-hand side of inequality (3.1) is given

by (3.2). The statement in case of equality follows from Theorem 8.2. �

Remark 3.2. (i) It is not possible to �nd a lower bound for
Pn

kD1 �k depending

only on the �rst 2n Fourier coe�cients of q (or indeed, the �rst m for any �xed

m � 0) and the eigenvalues k2, as the following simple example shows. For

arbitrary n � 1, if we let q.x/ D t cos.2nC 2/x, where t > 0 is taken very large,

then we have q2nC2 D t , while qk D 0 for all other k � 0. In this case, using an

argument as in the proof of Theorem 3.1 with sin.x/; : : : ; sin.n� 1/x, sin.nC 1/x

as our n test functions, we see

n
X

kD1

�k �

n�1
X

kD1

k2 C .nC 1/2 �
t

2
�! �1
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if we let t ! 1, even though q0 D � � � D q2n D 0. We could construct a

similar example which also satis�es q.0/ D q.�/ D 0 by taking, for example,

q.x/ D t cos.2n C 2/x � t cos.2n C 4/x. It seems that any lower bound would

have to take into account a quantity such as supn2N jq2nj or supx2.0;�/ jq.x/j, or

else only be valid asymptotically (e.g. via the inclusion of an O.ns/-type error

term). It is easy to construct analogous examples for the other problems we will

consider.

(ii) The inequality (3.1) is valid without convergenceof the Fourier series (1.4),

provided only that the coe�cients qk given by (1.5) are well de�ned.

There is a direct analogue of Theorem 3.1 for the Neumann problem.

Theorem 3.3. For all n � 0,

n
X

kD0

�

�k � k2 �
q0

2

�

�
1

2

n
X

kD1

q2k : (3.4)

Equality for some n � 0 implies that q is constant. The right-hand side of the
above inequality converges to

�
1

2
�

Z �

0

q.x/ dx C
q.0/C q.�/

4

as n goes to in�nity.

Proof. The proof is exactly the same as for Theorem 3.1, except that we use

 k.x/ D cos.kx/, k D 0; 1; : : : ; n as test functions. We omit the details. �

As in the Dirichlet case, a classical trace formula analogous to (1.2) (see e.g.

[14, Section 1.14]) implies there is equality in the limit in (3.4) as n ! 1.

By combining our separate estimates for Dirichlet and Neumann eigenvalues,

we can simplify the resulting sums. This e�ectively corresponds to considering

the eigenvalues of the circle; cf. Theorem 5.1. In this case, however, the result is

an immediate consequence of Theorems 3.1 and 3.4.

Theorem 3.4. For all n � 1,

n
X

kD1

�

�k C �k

2
� k2 � �

Z �

0

q.x/ dx

�

C
1

2

�

�0 � �

Z �

0

q.x/ dx

�

� 0: (3.5)

with equality for any n � 1 implying q is constant.
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Remark 3.5. As in the Dirichlet and Neumann cases, the Weyl asymptotics imply

that the left-hand side of (3.5) converges as n ! 1, and by combining the separate

trace formulae for �k and �k we see there is again equality in the limit.

This combination of boundary conditions also allows us to obtain the following

“zeta function”-type bound.

Theorem 3.6. Suppose that �0 > 0. Then for all n � 1 and s > 0,
n

X

kD1

��s
k C

n
X

kD0

��s
k � 2

n
X

kD1

�

k2 C �

Z �

0

q.x/ dx

��s

C

�

�

Z �

0

q.x/ dx

��s

:

If s > 1=2, then both sides of the above inequality converge as n ! 1.

The proof is a variant of that of Theorem 7.1 and is therefore delayed until Sec-

tion 7.

4. An application to a particular class of potentials on the interval

Here we give an application, or special case, of Theorems 3.1 and 3.3. We recall

that �k and �k denote the ordered Dirichlet and Neumann eigenvalues associated

with q, respectively.

Theorem 4.1. Suppose that q admits the expansion (1.4) and is absolutely con-
tinuous on .0; �/.

(i) If q0.x/ � q0.� � x/ a.e. on .0; �
2
/, then for all n � 1,

n
X

kD1

�

�k � k2 � �

Z �

0

q.x/ dx

�

� 0:

(ii) If q0.x/ � q0.� � x/ a.e. on .0; �
2
/, then for all n � 0,

n
X

kD0

�

�k � k2 � �

Z �

0

q.x/ dx

�

� 0:

(iii) Under the assumptions of (i), if in addition
R �

0 q.x/ dx � 0, then for all
s > 1=2 we also have

n
X

kD1

��s
k �

n
X

kD1

k�2s

for all n � 1, and �q.s/ � �.2s/.

Equality in any of the above �nite inequalities implies that q is constant on .0; �/.
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Remark 4.2. The assumptions of the Dirichlet case (i) are always satis�ed by con-

vex potentials, i.e. potentials q for which q00.x/ � 0 a.e. in .0; �/, while concave

potentials, i.e. with q00.x/ � 0 a.e., always satisfy the Neumann condition (ii).

Proof of Theorem 4.1. (i) Fix n � 1. Recalling that �
R �

0
q.x/ dx D q0=2 and using

Theorem 3.1, we only need to show that the right-hand side of (3.1) is non-positive.

Recalling the de�nition of q2k and integrating by parts,

q2k D
2

�

Z �

0

q.x/ cos.2kx/ dx D
2

�

Z �
2

0

Œq.x/C q.� � x/� cos.2kx/ dx

D �
1

�k

Z �
2

0

Œq0.x/ � q0.� � x/� sin.2kx/ dx:

Summing over k and noting that d
dx

cos2.kx/=k D � sin.2kx/, this means

�
1

2

n
X

kD1

q2k D �
1

2�

Z �
2

0

Œq0.x/ � q0.� � x/�
d

dx

�

n
X

kD1

cos2.kx/

k2

�

dx:

It is known that
Pn

kD1 cos2.kx/=k2 is decreasing on .0; �=2/ for every n � 1

(cf. [9, pp. 322–3]). Our assumptions on q therefore imply that the above integrand

is positive for almost all x 2 .0; �=2/, and thus

n
X

kD1

�

�k � k2 �
q0

2

�

� �
1

2

n
X

kD1

q2k � 0:

Equality for some n � 1 means that

0 D

n
X

kD1

�

�k � k2 �
q0

2

�

� �
1

2

n
X

kD1

q2k � 0;

so that every inequality is an equality. In this case there is also equality in

Theorem 3.1, and so q is constant.

(ii) Applying Theorem 3.3 in place of Theorem 3.1, we obtain

n
X

kD0

�

�k � k2 �
q0

2

�

�
1

2

n
X

kD1

q2k

�
1

2�

Z �
2

0

Œq0.x/C q0.� � x/�
d

dx

�

n
X

kD1

cos2.kx/

k2

�

dx:

This time the integrand is negative almost everywhere. The case of equality

follows in the same way as in (i).

(iii) This follows from Theorem 7.1 with ak D bk D k2. �
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5. Summation bounds for the circle and �at tori

In the case of N -dimensional �at tori we can obtain an especially simple bound

which may be seen as the natural multi-dimensional generalization of Theo-

rem 3.4. By writing the zero-potential eigenfunctions as complex exponentials

instead of sines and cosines, as is more natural on a torus, the proof becomes

essentially trivial.

In order to proceed, we shall need some notation. We will denote by T

an N -dimensional �at torus, N � 1, spanned by linearly independent vectors

v1; : : : ; vN 2 R
N . That is, if we de�ne a lattice � � R

N as

� D ¹n1v1 C � � � C nN vN W ni 2 Z; i D 1 : : : ; N º:

and an action of � on R
N by .x/ WD  C x,  2 �, x 2 R

N , then our torus is

given by T D R
N=�. If N D 1 then of course T is the circle.

We de�ne the vectors w1; : : : ; wN 2 R
N by .wj ; vk/ D ıjk, the Kronecker

delta, where . : ; : / is the usual inner product on R
N . Denote by W the matrix

whose j th row is given by the vector wj . Then for each ˛ D .˛1; : : : ; ˛N / 2 Z
N ,

we may de�ne an eigenfunction ˛ of the zero-potential problem (2.1) with q D 0

on the manifold without boundary T by

 ˛.x/ WD e2�i˛TW x I

if we denote the .m; n/th entry of W by wmn, then the associated eigenvalue

�˛ D �˛.0/ is given by

�˛ D 4�2

N
X

nD1

�

N
X

mD1

˛mwmn

�2

:

In the one-dimensional case, we have just one vector v D 2�a 2 R (without

loss of generality v � 0), in this case just one vector w D v�1 > 0, and the

eigenfunctions become 4 n D einx=a, with �n D .n=a/2, n 2 Z.

Ordering the eigenvalues �˛ as an increasing sequence ¹�k.0/ºk2Z with

�0.0/ D 0 (corresponding to ˛ D 0), for each k � 1 there exists ˛ D ˛.k/

for which �k.0/ D �˛. The exact relationship between ˛ and k depends on the vj ,

and to the best of our knowledge there is no known explicit formula for this for

arbitrary vj . We will order the eigenvalues �k.q/ of (2.1) with potential q on T

similarly.

Theorem 5.1. For any integrable q and for all n � 0,
n

X

kD0

�

�k.q/ � �k

�

�

Z

T

q.x/ dx

��

� 0: (5.1)
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Proof. We use the  ˛ as test functions in the Rayleigh quotient (2.2): for any

˛ 2 Z
N , we have

RŒq;  ˛� D �˛ C

Z

T

q.x/j ˛.x/j
2 dx

Z

T

j ˛.x/j
2 dx

D �˛ C �

Z

T

q.x/ dx;

since obviously j ˛.x/j D 1 for all x 2 T and all ˛ 2 Z
N . Choosing the functions

corresponding to the �rst nC1 eigenvalues (counting multiplicities) and using the

principle (2.3) gives us the inequality. �

Theorem 5.2. Suppose that �0.q/ > 0. Then for all n � 1 and s > 0,
n

X

kD0

��s
k .q/ �

n
X

kD0

�

�k

�

�

Z

T

q.x/ dx

���s

:

Proof. Since 0 < �0.q/ � �
R

T
q.x/ dx by Theorem 5.1, we may apply Theorem 7.1,

from which the conclusion follows immediately. �

6. On the associated trace formulae

We have already observed that there is equality in the limit as n ! 1 in Theo-

rems 3.1, 3.3 and 3.4, since we have convergence to the classical trace formulae

of Gelfand–Levitan type. What is interesting is that the theorems from Section 3

allow us to obtain a new (part of a) proof of the trace formulae. Our starting point

is a paper by Dikiı̆ [2], who gave an alternative proof of the trace formula which

is, in some sense, more natural that that in [6], which was based on a study of the

asymptotics of the associated Green’s functions.

This proof involves a two-part argument, which in our notation is as follows.

If we denote the ordered eigenfunctions associated with the zero potential by  k

and those associated with q by 'k , and assuming without loss of generality that the

mean value q0 of q is zero, Dikiı̆ proved using trigonometric identities, integration

by parts and a manipulation of the resulting sums that

n
X

kD1

.RŒq;  k� � k
2/ �! �

q.0/C q.4/

2
(6.1)

as n ! 1. The second part of the proof consists in using eigenvalue and

eigenfunction asymptotics to show that

lim
n!1

n
X

kD1

.RŒq; 'k� � RŒq;  k�/ D 0: (6.2)
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If we denote by H D �� C q the Schrödinger operator on L2.0; �/ associated

with q (and the Dirichlet boundary condition), then we may formally rewrite (6.2)

as

lim
n!1

n
X

kD1

.h'k ; H'ki � h k ; H ki/ D 0: (6.3)

In some sense we can think of (6.3) as asserting that the action of H is invariant

with respect to a “change of basis” from ¹'kº to ¹ kº; we note that the arguments

in [2] were phrased in these terms, and did not involve the use of Rayleigh

quotients. Indeed, for k;m � 1, we shall write

ak
m D h k ; 'mi;

so that

 k D

1
X

mD1

ak
m'm and 'm D

1
X

kD1

ak
m k ;

with
1

X

kD1

.ak
m/

2 D

1
X

mD1

.ak
m/

2 D 1

under the normalization k kk2 D k'mk2 D 1. Then the sum (6.2) is equivalent

to

1
X

kD1

1
X

mD1

�k.a
k
m/

2 �

n
X

kD1

1
X

mD1

�m.a
k
m/

2

D

n
X

kD1

1
X

mDnC1

�k..a
m
k /

2 � .ak
m/

2/C

n
X

kD1

1
X

mDnC1

.�k � �m/.a
k
m/

2:

(6.4)

Dikiı̆ showed that for the problem on the interval the two sums on the right-hand

side of (6.4) tend to zero as n ! 1 by using the basic asymptotic estimates

�k D k2 CO.1/ and 'k D  k CO.k�1/, the latter holding uniformly in x 2 .0; �/

(see, e.g., [14]).

The proof of Theorem 3.1, whose conclusion says exactly that

n
X

kD1

.RŒq; 'k�� RŒq;  k�/ � 0

for all n � 1, also gives an alternative proof of (6.1) along the way. In a sense this

is more natural than the proof in [2], at least when taken together with (6.2), since

it computes the �nite sum
Pn

kD1 RŒq;  k� explicitly in terms of q.
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Remark 6.1. It would be interesting to know if such arguments might also work

in higher dimensions, where there are next to no known trace formulae. We will

not explore this here, but as an example we remark that equality in the limit as

n ! 1 in Theorem 5.1 is equivalent to (6.2) holding on the torus. The di�culty

in using Dikiı̆’s idea in higher dimensions is that the asymptotic behaviour of the

�k and 'k changes; for example, in two dimensions, we now have �k � k, not k2.

This makes it harder to obtain e�ective bounds on the sums in (6.4).

7. Generalization to power bounds and zeta functions

Here we will prove a theorem from which the power bound generalizations stated

in earlier sections, such as Theorem 4.1 (iii), will follow immediately; it was

inspired by, and based upon, a similar result and argument in [9, Section 4].

We also give the very similar proof of Theorem 3.6.

Theorem 7.1. Suppose the sequences .�k/k�1 and .ak/k�1 are positive and that
.ak/k�1 is non-decreasing in k � 1. Suppose also that the sequence .bk/k�1

satis�es
Pm

kD1 �k �
Pm

kD1 bk for all m � 1. Then for all s > 0 and all n � 1 we
have

n
X

kD1

.�k/
�s �

n
X

kD1

..s C 1/.ak/
�s � s.ak/

�s�1bk/: (7.1)

If the sequence .bk/k�1 is itself positive and non-decreasing in k � 1, then the
right-hand side of (7.1) is maximized when ak D bk for all 1 � k � n.

Notice that if ak D bk for all k � 1, then (7.1) simpli�es to

n
X

kD1

.�k/
�s �

n
X

kD1

.bk/
�s:

Proof. We will use the notation Œy�C, y 2 R, to mean the expression taking on the

value y if y � 0 and zero otherwise; Œf .x/�g.x/�y will represent f .x/ if g.x/ � y

and zero otherwise. We start with the following identity, valid for � > 0,

��s D s.s C 1/

Z 1

0

˛�s�2Œ˛ � ��C d˛ (7.2)
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For n � 1, s > 0 arbitrary, applying this to both �k and ak , we have

n
X

kD1

�

��s
k � a�s

k

�

D s.s C 1/

Z 1

0

˛�s�2

n
X

kD1

.Œ˛ � �k �C � Œ˛ � ak �C/ d˛

� s.s C 1/

Z 1

0

˛�s�2

n
X

kD1

Œak � �k�˛�ak
d˛

� s.s C 1/

Z 1

0

˛�s�2

n
X

kD1

Œak � bk �˛�ak
d˛

D

n
X

kD1

s.s C 1/.ak � bk/

Z 1

ak

˛�s�2 d˛;

which after simpli�cation and rearrangement gives us (7.1). (Note that we needed

the sequence ak to be weakly increasing to justify the third line above.) For the

maximizing property we consider each term on the right-hand side of (7.1) as a

function of ak by setting gk.ak/ WD .sC 1/.ak/
�s � s.ak/

�s�1bk . Di�erentiating

in ak shows that gk reaches its unique maximum when ak D bk . �

Proof of Theorem 3.6. Keeping the notation from the proof of Theorem 7.1 and

using (7.2), we have

n
X

kD1

��s
k C

n
X

kD0

��s
k

D s.s C 1/

Z 1

0

˛�s�2
�

n
X

kD1

Œ˛ � �k�C C

n
X

kD0

Œ˛ � �k�C

�

d˛

� s.s C 1/

Z 1

0

˛�s�2
�

n
X

kD1

Œ2˛ � �k � �k�˛�k2C
q0
2

C Œ˛ � �0�˛�
q0
2

�

d˛:

For each �xed ˛ � q0=2C 1, the sum in the latter integral is from k D 1 to some

m D m.˛/ � n; if ˛ 2 Œq0=2; q0=2C1/, then the bracketed term reduces to ˛��0,

and otherwise it is zero. This means that for each �xed ˛ � q0=2C1we may apply

Theorem 3.4 (or Theorem 3.3 with n D 0 if ˛ 2 Œq0=2; q0=2C 1/) to obtain

m.˛/
X

kD1

Œ2˛��k ��k�˛�k2C
q0
2

C Œ˛��0�˛�
q0
2

�

m.˛/
X

kD1

Œ2˛�2k2 �q0�C C Œ˛�q0=2�C

for each ˛ > 0. Substituting this back into the above expression for
Pn

kD1 �
�s
k

C
Pn

kD0 �
�s
k

and applying (7.2) in the other direction yields the theorem. �
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8. The case of equality

Finally, we will prove the sharpness of our inequalities, in the sense that equality

for some n � 1 in a bound of the form (2.3) forces the potential q to be a constant.

This stems from the fact that the only functions that can minimize the Rayleigh

quotient expression (2.2) are sums of eigenfunctions of the corresponding equa-

tion. Although we doubt this is new, we do not know of any explicit reference in

the literature and so give a proof here. We suppose we have the equation (2.1)

in any one of the cases considered and two di�erent potentials q1; q2 2 L1.�/.

We denote by V D H 1
0 .�/ or H 1.�/ the appropriate Hilbert space. We will

write �k.q2/, k � 1 for the eigenvalues of the problem associated with q2,

ordered by increasing size and repeated according to multiplicities, and  k for

the corresponding eigenfunctions which form an orthonormal basis of L2.�/.

Lemma 8.1. Suppose that for some n � 1,

n
X

kD1

�k.q1/ D

n
X

kD1

RŒq1;  k�: (8.1)

Then there exist eigenfunctions 'k , k � 1 corresponding to �k.q1/ (ordered by
increasing magnitude) such that

span¹ 1; : : : ;  nº D span¹'1; : : : ; 'nº (8.2)

in L2.�/, that is, each  k may be expressed as a �nite linear combination
 k.x/ D

Pn
mD1 a

k
m'm.x/ for suitable constants ak

m 2 R.

Of course, if �n.q1/ is not simple, then we need to choose the right eigen-

function(s) 'n (and possibly 'n�1; : : : ; 'n�m) in the corresponding eigenspace.

We also note that this is really an abstract result which is true for any two positive,

self-adjoint operators on a (real) Hilbert space, and in particular valid in greater

generality. In general, however, it does not seem so easy to prove that q1 � q2 is

constant in � (following from ak
m D ıkm in Lemma 8.1, so that the  k are di-

rectly eigenfunctions of q1). Here, we will deal only with the case of an interval

with Dirichlet or Neumann boundary conditions, and with q2 D 0. A key element

of our proof, as in Section 3, is the fact that products of eigenfunctions of the

zero potential, namely sines and cosines, are mutually orthogonal in the relevant

L2-space. We expect the same idea should work on theN -dimensional torus, since

the eigenfunctions are complex exponentials, but the argument is complicated by

various issues related to the multiplicity of the eigenvalues, and we do not explore

it here. So we now return to having q2 � 0 and labelling q1 as q, given by (1.4).
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Theorem 8.2. Suppose that for some n � 1, there is equality in (3.1), respec-
tively (3.4). Then q.x/ is constant in .0; �/ with eigenfunctions given by

'k.x/ D sin.kx/; k � 1;

and

'k.x/ D cos.kx/; k � 0;

in the Dirichlet and Neumann cases, respectively.

Proof of Lemma 8.1. For each k � 1, as in Section 6 we write k D
P1

mD1 a
k
m'm,

where ak
m D h k ; 'mi and the 'k are, for the meantime, an arbitrary set of

eigenfunctions for q, in the sense that we allow an arbitrary decomposition of any

eigenspace of dimension � 2. The orthonormality relations imply
P1

mD1 a
k
ma

l
m D

ıkl . Using (8.1) and denoting by Q the bilinear form associated with q (cf (2.2))

we have

n
X

kD1

�k.q/ D

n
X

kD1

RŒq;  k� D

n
X

kD1

Q
�

1
X

mD1

ak
m'm;

1
X

lD1

ak
l 'l

�

:

Since everything converges, and since Q.'m; 'l / D ıml�m.q/, this reduces to

n
X

kD1

�k.q/ D

n
X

kD1

1
X

mD1

.ak
m/

2�m.q/ D

1
X

mD1

�

n
X

kD1

.ak
m/

2
�

�m.q/: (8.3)

Since the functions 'm D
P1

kD1 a
k
m k are also normalized, we have

n
X

kD1

.ak
m/

2 � 1 for all m � 1

and
1

X

mD1

�

n
X

kD1

.ak
m/

2
�

D n:

Hence the only way we can have equality in (8.3) is if the coe�cient of�m.q/ in the

sum on the right-hand side is zero whenever�m.q/ > �n.q/, which means by de�-

nition of the ak
m that spanL2.�/¹ kºn

kD1
is contained in the union of the eigenspaces

associated with �1.q/; : : : ; �n.q/ (which may be more than n-dimensional if �n

is not simple). However, since spanL2.�/¹ kºn
kD1

is n-dimensional, we can �nd a

decomposition of the eigenspace associated with �n.q/ so that spanL2.�/¹ kºn
kD1

is equal to the span of the corresponding �rst n eigenfunctions for q. �
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Proof of Theorem 8.2. We will give the proof in detail only for the Dirichlet

case (3.1); it is elementary, though tedious, to work through the (very similar)

details in the Neumann case (3.4), and so we will brie�y sketch the proof of

the Neumann case afterwards. Supposing that equality holds in (3.1) for some

n � 2 (the case n D 1 being trivial), denoting by 'k , k D 1; : : : ; n the �rst n

eigenfunctions associated with q, without loss of generality chosen and numbered

so that the conclusion of Lemma 8.1 holds, since 'k.x/ ¤ 0 almost everywhere in

.0; �/, for each k � 1 we may write

q.x/ D �k.q/C
'00

k
.x/

'k.x/
;

which is valid pointwise almost everywhere. In particular, this means that for all

j; k D 1; : : : ; n and almost all x 2 .0; �/,

'00

k
.x/

'k.x/
D Ck;j C

'00
j .x/

'j .x/
; (8.4)

where R 3 Ck;j D �k.q/ � �j .q/. Since by Lemma 8.1 we have

'k.x/ D

n
X

mD1

ak
m sin.mx/

for appropriate ak
m 2 R, after rearranging, we may rewrite (8.4) explicitly as

h

n
X

mD1

m2ak
m sin.mx/

ih

n
X

lD1

a
j

l
sin.lx/

i

D �Ck;j

h

n
X

mD1

ak
m sin.mx/

ih

n
X

lD1

a
j

l
sin.lx/

i

C
h

n
X

mD1

ak
m sin.mx/

ih

n
X

lD1

l2a
j

l
sin.lx/

i

which in turn may be rewritten as

n
X

l;mD1

m2ak
ma

j

l
Œcos.l �m/x � cos.l Cm/x�

D �Ck;j

n
X

l;mD1

ak
ma

j

l
Œcos.l �m/x � cos.l Cm/x�

C

n
X

l;mD1

l2ak
ma

j

l
Œcos.l �m/x � cos.l Cm/x�:

(8.5)
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We observe that (8.5) is a sum of the form

2n
X

pD0

bp cos.px/ D 0;

where the coe�cients bp are obtained by summing all the relevant coe�cients of

cos.l�m/x with jl�mj D p and cos.lCm/x with lCm D p. Since this holds for

almost every x 2 .0; �/, orthogonality of the (�nite) family cos.px/ implies that

bp D 0 for all p � 0; we will use this to show that no combination of coe�cients

ak
m other than ak

m D cımk (with c a normalizing constant) can satisfy (8.4), and

hence no non-constant q is possible.

To do so we make a particular choice of j; k: without loss of generality, we may

assume there exist two distinct eigenfunctions 'j , 'k such that a
j
n ; a

k
n ¤ 0, that

is, both have non-zero L2-projection onto span¹sin.nx/º; otherwise, (8.2) forces

'i .x/ D sin.nx/ for some 1 � i � n, and by comparing the two eigenfunction

equations of the form (1.1) that sin.nx/must therefore satisfy, a routine argument

shows that q must be constant. So let us assume we have our 'j and 'k and

consider the equation for b2n. That is, equating the coe�cients of cos.2nx/

in (8.5),

n2ak
na

j
n D �Ck;ja

k
na

j
n C n2ak

na
j
n:

Since a
j
n; a

k
n ¤ 0, this implies Ck;j D 0, that is, �k.q/ D �j .q/. We claim that in

this case

ak
m

ak
n

D
a

j
m

a
j
n

(8.6)

for all m D 1; : : : ; n � 1. Let us �rst show why this proves the theorem. Assum-

ing (8.6) holds, and writing ak
m D cma

k
n , a

j
m D cma

j
n for cm 2 R,

n
X

mD1

c2
m.a

k
n/

2 D

n
X

mD1

.ak
m/

2 D k'kk2
2 D k'j k2

2 D

n
X

mD1

.aj
m/

2 D

n
X

mD1

c2
m.a

j
n/

2;

implying ak
n D a

j
n . Equation (8.6) now implies inductively that ak

m D a
j
m for

all m D 1; : : : ; n, that is, 'k D 'j , contradicting our assumption that 'k and 'j

were two distinct eigenfunctions with non-trivial projection onto span¹sin.nx/º.

The only possibility is therefore that sin.nx/ is itself an eigenfunction associated

with q.x/, which implies q is constant, as can be seen directly from the equa-

tion (1.1).
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It remains to prove (8.6). We will proceed by induction on p from 2n down to

n C 1, equating the coe�cients of cos.l C m/x, l C m D p in (8.5) in order to

obtain (8.6) for ak
p�n, a

j
p�n. Observe that for eachp D nC1; : : : ; 2n, equation (8.6)

reduces in this case to
X

.m2 � l2/ak
ma

j

l
D 0; (8.7)

where the sum is over all l; m D 1; : : : ; n such that l Cm D p. When p D 2n� 1,

this says

.n � 1/2ak
n�1a

j
n C n2ak

na
j
n�1 D n2ak

n�1a
j
n C .n � 1/2ak

na
j
n�1;

which upon rearrangement gives (8.6) for n� 1. Suppose now that (8.6) holds for

p D 2n�1; : : : ; nC iC1, i � 1. Taking (8.7) for p D nC i and dividing through

by ak
na

j
n , we have

n
X

mDi

m2 a
k
m

ak
n

a
j
nCi�m

a
j
n

D

n
X

lDi

l2
ak

nCi�l

ak
n

a
j

l

a
j
n

:

Using the induction hypothesis that (8.6) holds for m D i C 1; : : : ; n, we see we

can cancel all but the �rst terms in the above equality, leaving

i2
ak

i

ak
n

a
j
n

a
j
n

D i2
ak

n

ak
n

a
j
i

a
j
n

:

Hence (8.6) holds for i , proving our claim.

Finally, let us remark that in the case of Neumann boundary conditions (3.4),

formula (8.4) is unchanged, while the expression for 'k is now

'k.x/ D

n
X

mD0

ak
m cos.mx/:

This means (8.5) remains the same, except that expressions of the form

Œcos.l �m/x C cos.l Cm/x�

replace

Œcos.l �m/x � cos.l Cm/x�;

and the summation is from m D 0 to n rather than 1 to n. Hence our induction

proceeds down to p D n. �
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