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boson Z0 into electrons and positrons. We show that the spectrum of the Hamiltonian is

composed of a unique isolated ground state and a semi-axis of essential spectrum. Using

an infrared regularization and a suitable extension of Mourre’s theory, we prove that the
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1. Introduction

In this paper, we study a mathematical model for the weak decay of the vector
boson Z0 into electrons and positrons. The model we consider is an example of
models of the weak interaction that can be patterned according to the Standard
Model of Quantum Field Theory. Another example, describing the weak decay
of the intermediate vector bosons W ˙ into the full family of leptons, has been
considered previously in [7, 4]. Comparable models describing quantum elec-
trodynamics processes can be constructed in a similar manner, see [2, 5, 8, 21].
We also mention [14, 17] where the spectral analysis of some related abstract quan-
tum �eld theory models have been studied.

Unlike [4], the physical phenomenon considered in the present paper only
involves massive particles. In some respects, e.g. as far as the existence of a ground
state is concerned, this feature considerably simpli�es the spectral analysis of the
Hamiltonian associated with the physical system we study. The main drawback is
that, due to the positive masses of the particles, an in�nite number of thresholds

occur in the spectrum of the free Hamiltonian (i.e. the full Hamiltonian where the
interaction between the di�erent particles has been turned o�). Understanding the
nature of the spectrum of the full Hamiltonian near the thresholds as the interaction
is turned on then becomes a subtle question. Spectral analysis near thresholds, in
particular by means of perturbation theory, is indeed well-known to be a delicate
subject. This is the main concern of the present work.

Our main result will provide a complete description of the spectrum of the
Hamiltonian below the boson mass. We will show that the spectrum is composed
of a unique isolated eigenvalue E (the ground state energy), and the semi-axis of
essential spectrum ŒE C me;1/, me being the electron mass. Moreover, using a
version of Mourre’s theory allowing for a non self-adjoint conjugate operator and
requiring only low regularity of the Hamiltonian with respect to this conjugate
operator, we will prove that the essential spectrum below the boson mass is purely
absolutely continuous.

In order to prove our main results we use a spectral representation of the self-
adjoint Dirac operator generated by the sequence of spherical waves. See [19]
and Section 2. If we have been using the plane waves, for example the four ones
associated with the helicity (see [32]), the two kernels G.˛/.�/ of the interaction
(see below) would have had to satisfy an infrared regularization with respect to
the fermionic variables. By our choice of the sequence of the spherical waves, the
kernels of the interaction have to satisfy an infrared regularization for only two

values of the discrete parameters characterizing the sequence of spherical waves.
For any other value of the discrete parameters, we do not need to introduce an
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infrared regularization. Thus we have reduced the problem of proving that the
spectrum is absolutely continuous in a neighborhood of a threshold to a simpler
one, which still remains to be solved.

Before precisely stating our main results in Section 3, we begin with introduc-
ing in details the physical model we consider.

2. Description of the model

2.1. The Fock space of electrons, positrons and Z 0 bosons

2.1.1. Free Dirac operator. The energy of a free relativistic electron of mass
me is described by the Dirac Hamiltonian (see [28, 32] and references therein)

HD WD ˛ � 1
i

r C ˇ me;

acting on the Hilbert spaceH D L2.R3IC4/, with domainD.HD/ D H 1.R3IC4/.
We use a system of units such that „ D c D 1. Here ˛ D .˛1; ˛2; ˛3/ and ˇ are
the Dirac matrices in the standard form:

ˇ D
�
I 0

0 �I

�

; ˛i D
�
0 �i

�i 0

�

; i D 1; 2; 3;

where �i are the usual Pauli matrices. The operator HD is self-adjoint, and
spec.HD/ D .�1; �me�[ Œme; C1/.

The generalized eigenfunctions associated with the continuous spectrum of the
Dirac operatorHD are labeled by the total angular momentum quantum numbers

j 2
°1

2
;
3

2
;
5

2
; : : :

±

; mj 2 ¹�j;�j C 1; : : : ; j � 1; j º; (2.1)

and by the quantum numbers

�j 2
°

˙
�

j C 1

2

�±

: (2.2)

In the sequel, we will drop the index j and set


 D .j; mj ; �j / ; (2.3)

and a sum over 
 will thus denote a sum over j 2 N C 1
2
, mj 2 ¹�j;

�j C1; : : : ; j �1; j º and �j 2
®

˙
�

j C 1
2

�¯

. We denote by � the set
®

.j; mj ; �j /;

j 2 N C 1
2
; mj 2 ¹�j;�j C 1; : : : ; j � 1; j º; �j 2

®

˙
�

j C 1
2

�¯¯

.
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For p 2 R
3 being the momentum of the electron, and p WD jpj, the continuum

energy levels are given by ˙!.p/, where

!.p/ WD .me
2 C p2/

1
2 : (2.4)

We set the notation
� D .p; 
/ 2 RC � �: (2.5)

The continuum eigenstates of HD are denoted by (see Appendix A for a
detailed description)

 ˙.�; x/ D  ˙..p; 
/; x/ :

We then have
HD  ˙..p; 
/; x/ D ˙!.p/  ˙..p; 
/; x/:

The generalized eigenstates  ˙ are here normalized in such a way that
Z

R3

 
�
˙..p; 
/; x/  ˙..p

0; 
 0/; x/ dx D ı

 0ı.p � p0/;

Z

R3

 
�
˙..p; 
/; x/  �..p

0; 
 0/; x/ dx D 0:

Here  �˙..p; 
/; x/ is the adjoint spinor of  ˙..p; 
/; x/.

According to the hole theory [23, 28, 29, 32, 34], the absence in the Dirac
theory of an electron with energyE < 0 and charge e is equivalent to the presence
of a positron with energy �E > 0 and charge �e.

Let us split the Hilbert space H D L2.R3IC4/ into

Hc� D P.�1;�me�.HD/H and HcC D PŒme;C1/.HD/H:

Here PI .HD/ denotes the spectral projection of HD corresponding to the inter-
val I .

Let † WD RC � �. From now on, we identify the Hilbert spaces Hc˙ with

Hc WD L2.†IC/ '
M




L2.RCIC/;

by using the unitary operators Uc˙ de�ned from Hc˙ to Hc as

.Uc˙�/.p; 
/ D L:i:m:
Z

 
�
˙..p; 
/ ; x/ �.x/ dx: (2.6)

On Hc , we de�ne the scalar products

.g; h/ D
Z

g.�/h.�/d� D
X


2�

Z

RC

g.p; 
/h.p; 
/ dp : (2.7)

In the sequel, we shall denote the variable .p; 
/ by �1 D .p1; 
1/ in the case of
electrons, and �2 D .p2; 
2/ in the case of positrons, respectively.
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2.1.2. The Fock space for electrons and positrons. Let

Fa WD Fa.Hc/ D
1
M

nD0

n
O

a

Hc ;

be the Fermi–Fock space over Hc , and let

FD WD Fa ˝ Fa

be the Fermi–Fock space for electrons and positrons, with vacuum �D (see
Appendix C for details).

2.1.3. Creation and annihilation operators for electrons and positrons. We
set, for every g 2 Hc ,

b
;C.g/ D bC.P
g/;

b�

;C.g/ D b�

C.P
g/;

where P
 is the projection of Hc onto the 
-th component, and bC.P
g/ and
b�

C.P
g/ are respectively the annihilation and creation operator for an electron
de�ned in Appendix C.

As above, we set, for every h 2 Hc ,

b
;�.h/ D b�.P
h/;

b�

;�.h/ D b�

�.P
h/;

where b�.P
g/ and b�
�.P
g/ are respectively the annihilation and creation oper-

ator for a positron de�ned in Appendix C, according to which b]
;C.g/ and b]
�.g/

anticommute (see (C.2)).

As in [27, Chapter X], for � D .p; 
/, we introduce operator-valued distribu-
tions b˙.�/ D b
;˙.p/ and b�

˙.�/ D b�

;˙.p/ that ful�ll, for g 2 Hc ,

b˙.g/ D
Z

b
;˙.p/ .P
g/ .p/ d�;

b�
˙.g/ D

Z

b�

;˙.p/ .P
g/ .p/ d�;

where we used the notation of (2.7).
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2.1.4. Fock space for the Z 0 boson. Let S be any separable Hilbert space. Let
Nn
s S denote the symmetric n-th tensor power of S. The symmetric Fock space

over S, denoted by Fs.S/, is the direct sum

Fs.S/ D
1
M

nD0

n
O

s

S; (2.8)

where
N0
s S � C. The state �s D .1; 0; 0; : : : ; 0; : : :/ denotes the vacuum state

in Fs.S/.

Let

†3 WD R
3 � ¹�1; 0; 1º:

The one-particle Hilbert space for the particle Z0 is L2.†3/ with scalar product

.f; g/ D
Z

†3

f .�3/g.�3/d�3; (2.9)

with the notations

�3 D .k; �/ and
Z

†3

d�3 D
X

�D�1;0;1

Z

R3

dk; (2.10)

where �3 D .k; �/ 2 †3.
The bosonic Fock space for the vector boson Z0, denoted by FZ0 , is thus

FZ0 D Fs.L
2.†3//: (2.11)

For f 2 L2.†3/, we de�ne the annihilation and creation operators, denoted
by a.f / and a�.f / by

a.f / D
Z

†3

f .�3/a.�3/d�3 (2.12)

and

a�.f / D
Z

†3

f .�3/a
�.�3/d�3 (2.13)

where the operators a.�3/ (respectively a�.�3/) are the bosonic annihilation
(respectively bosonic creation) operator for the boson Z0 (see e.g [24, 6, 7]).
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2.2. The Hamiltonian

2.2.1. The free Hamiltonian. The quantization of the Dirac Hamiltonian HD,
denoted by HD, and acting on FD , is given by

HD D
Z

!.p1/ b
�
C.�1/ bC.�1/d�1 C

Z

!.p2/ b
�
�.�2/ b�.�2/d�2;

with !.p/ given in (2.4). The operator HD is the Hamiltonian of the quantized
Dirac �eld.

Let DD denote the set of vectors ˆ 2 FD for which ˆ.r;s/ is smooth and has a
compact support and ˆ.r;s/ D 0 for all but �nitely many .r; s/. Then HD is well-
de�ned on the dense subset DD and it is essentially self-adjoint on DD. The self-
adjoint extension will be denoted by the same symbol HD , with domain D.HD/.

The operators number of electrons and number of positrons, denoted respec-
tively by NC and N�, are given by

NC D
Z

b�
C.�1/ bC.�1/d�1 and N� D

Z

b�
�.�2/ b�.�2/d�2 : (2.14)

They are essentially self-adjoint on DD. Their self-adjoint extensions will be also
denoted by NC and N�.

We have

spec.HD/ D ¹0º [ Œme;1/:

The set Œme;1/ is the absolutely continuous spectrum of HD .

The Hamiltonian of the bosonic �eld, denoted by HZ0 , acting on FZ0 , is

HZ0 WD
Z

!3.k/ a
�.�3/a.�3/ d�3

where

!3.k/ D
q

jkj2 C mZ0
2: (2.15)

The operator HZ0 is essentially self-adjoint on the set of vectors ˆ 2 FZ0 such
thatˆ.n/ is smooth and has compact support andˆ.n/ D 0 for all but �nitely many
n. Its self-adjoint extension is denoted by the same symbol.

The spectrum of HZ0 consists of an absolutely continuous spectrum covering
ŒmZ0 ;1/ and a simple eigenvalue, equal to zero, whose corresponding eigenvector
is the vacuum state �s 2 FZ0 .
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The free Hamiltonian is de�ned on H WD FD ˝ FZ0 by

H0 D HD ˝ 1 C 1 ˝ HZ0 : (2.16)

The operatorH0 is essentially self-adjoint on D.HD/˝D.HZ0/. Since me < mZ0 ,
the spectrum of H0 is given by

spec.H0/ D ¹0º [ Œme; 1/:

More precisely,

specpp.H0/ D ¹0º; specsc.H0/ D ;; specac.H0/ D Œme; 1/; (2.17)

where specpp, specsc, specac denote the pure point, singular continuous and abso-
lutely continuous spectra, respectively. Furthermore, 0 is a non-degenerate eigen-
value associated to the vacuum �D ˝�s.

2.2.2. The Interaction. The interaction between the electrons/positrons and the
boson vectors Z0, in the Schrödinger representation, is given, up to coupling
contant, by (see [20, (4.139)] and [35, (21.3.20)])

I D
Z

‰e.x/

˛.g0

V � 
5/‰e.x/Z˛.x/ dx C h:c:; (2.18)

where 
˛, ˛ D 0; 1; 2; 3, and 
5 are the Dirac matrices, g0
V is a real parameter

such that g0
V ' 0; 074 (see e.g [20]), ‰e.x/ and ‰e.x/ are the Dirac �elds for the

electron e� and the positron eC of mass me, and Z˛ is the massive boson �eld
for Z0.

With the notations of Subsection 2.1.1, ‰e.x/ is formally de�ned by

‰e.x/ D
Z

 C.�; x/bC.�/C Q �.�; x/b
�
�.�/ d�;

where
Q �.�; x/ D Q �..p; 
/; x/ D  �..p; .j;�mj ;��j //; x/ : (2.19)

The boson �eld Z˛ is formally de�ned by (see e.g. [34, equation (5.3.34)]),

Z˛.x/ D .2�/�
3
2

Z
d�3

.2.jkj2CmZ0
2/

1
2 /

1
2

.�˛.k; �/a.�3/e
ik:x

C ��
˛.k; �/a

�.�3/e
�ik:x/;

with �3 D .k; �/ according to (2.10), and where the vectors �˛.k; �/ are the
polarizations vectors of the massive spin 1 bosons (see [34, Section 5.3]).
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If one considers the full interaction I in (2.18) describing the decay of the
gauge boson Z0 into massive leptons and if one formally expands this interac-
tion with respect to products of creation and annihilation operators, we are left
with a �nite sum of terms with kernels yielding singular operators which can-
not be de�ned as closed operators. Therefore, in order to obtain a well-de�ned
Hamiltonian (see e.g [13, 8, 9, 7, 4]), we replace these kernels by square integrable
functions G.˛/.

This implies in particular to introduce cuto�s for high momenta of electrons,
positrons and Z0 bosons. Moreover, we con�ne in space the interaction be-
tween the electrons/positrons and the bosons by adding a localization function
f .jxj/, with f 2 C1

0 .Œ0;1//. The interaction Hamiltonian is thus de�ned on
H D FD ˝ FZ0 by

HI D H
.1/
I CH

.1/
I

�
CH

.2/
I CH

.2/
I

�
; (2.20)

with

H
.1/
I D

Z � Z

R3

f .jxj/ C.�1; x/

�.g0

V � 
5/ Q �.�2; x/
��.�3/
p

2!3.k/
eik�x dx

�

G.1/.�1; �2; �3/b
�
C.�1/b

�
�.�2/a.�3/ d�1d�2d�3;

(2.21)

H
.1/
I

�
D
Z � Z

R3

f .jxj/ Q �.�2; x/

�.g0

V � 
5/ C.�1; x/
��
�.�3/

p

2!3.k/
e�ik�x dx

�

G.1/.�1; �2; �3/a
�.�3/b�.�2/bC.�1/ d�1d�2d�3;

(2.22)

H
.2/
I D

Z � Z

R3

f .jxj/ C.�1; x/

�.g0

V � 
5/ Q �.�2; x/
��
�.�3/

p

2!3.k/
e�ik�x dx

�

G.2/.�1; �2; �3/b
�
C.�1/b

�
�.�2/a

�.�3/ d�1d�2d�3;

(2.23)

and

H
.2/
I

�
D
Z � Z

R3

f .jxj/ Q �.�2; x/

�.g0

V � 
5/ C.�1; x/
��.�3/
p

2!3.k/
eik�x dx

�

G.2/.�1; �2; �3/a.�3/b�.�2/bC.�1/ d�1d�2d�3:

(2.24)
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Performing the integration with respect to x in the expressions above, we see that
H
.1/
I and H .2/

I can be written under the form

H
.1/
I WD H

.1/
I .F .1// WD

Z

F .1/.�1; �2; �3/b
�
C.�1/b

�
�.�2/a.�3/ d�1d�2d�3; (2.25)

H
.2/
I WD H

.2/
I .F .2// WD

Z

F .2/.�1; �2; �3/b
�
C.�1/b

�
�.�2/a

�.�3/ d�1d�2d�3;

(2.26)

where, for ˛ D 1; 2,

F .˛/.�1; �2; �3/ WD h.˛/.�1; �2; �3/G
.˛/.�1; �2; �3/; (2.27)

and h.1/.�1; �2; �3/, h.2/.�1; �2; �3/ are given by the integral over x in (2.21)

and (2.23), respectively.
Our main result, Theorem 3.9 below, requires the coupling functions

F .˛/.�1; �2; �3/ to be su�ciently regular near p1 D 0 and p2 D 0 (where, recall,
�l D .pl ; 
l/ for l D 1; 2). The behavior of the generalized eigenstates  C.�; x/

and �.�; x/ near � D 0, and therefore the behavior of h.˛/.�1; �2; �3/ near p1 D 0

and p2 D 0, will be analyzed in Appendix A.

2.2.3. The total Hamiltonian

De�nition 2.1. The Hamiltonian of the decay of the boson Z0 into an electron
and a positron is

H WD H0 C gHI :

where g is a real coupling constant.

3. Main results

For p 2 RC, j 2
®
1
2
; 3
2
; : : :

¯

, 
 D .j; mj ; �j / and 
j D j C 1
2
, we de�ne

A.�/ D A.p; 
/ WD .2p/
j

�.
j /

�!.p/C me

!.p/

� 1
2

�Z 1

0

jf .r/jr2
j .1C .pr/2/dr

� 1
2

;

(3.1)

where � denotes Euler’s Gamma function, and f 2 C1
0 .Œ0;1// is the localization

function appearing in (2.21)–(2.24). We make the following hypothesis on the
kernels G.˛/.
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Hypothesis 3.1. For ˛ D 1; 2,

Z

A.�1/
2A.�2/

2.jkj2 C mZ0
2/

1
2 jG.˛/.�1; �2; �3/j2d�1d�2d�3 < 1: (3.2)

Remark 3.2. Note that up to universal constants, the functions A.�/ in (3.1) are
upper bounds for the integrals with respect to x that occur in (2.21). These bounds
are derived using the inequality (see [34, equations (5.3.23)–(5.3.25)])

ˇ
ˇ
ˇ
ˇ

��.�3/
p

2!3.k/

ˇ
ˇ
ˇ
ˇ

� CmZ0 .1C jkj2/ 1
4 : (3.3)

For CmZ0 being the constant de�ned in (3.3), and CZ D 156CmZ0 , let us de�ne

K1.G
.˛//2 WD CZ

2

�Z

A.�1/
2A.�2/

2 jG.˛/.�1; �2; �3/j2d�1d�2d�3
�

; (3.4a)

K2.G
.˛//2 WD CZ

2

�Z

A.�1/
2A.�2/

2 jG.˛/.�1; �2; �3/j2.jkj2 C 1/
1
2 d�1d�2d�3

�

:

(3.4b)

Theorem 3.3 (self-adjointness). Assume that Hypothesis 3.1 holds. Let g0 > 0 be

such that

g0
2
� X

˛D1;2

K1.G
.˛//2

�� 1

me
2

C 1
�

< 1: (3.5)

Then for any real g such that jgj � g0, the operatorH D H0CgHI is self-adjoint

with domain D.H0/. Moreover, any core for H0 is a core for H .

Remark 3.4. 1) Combining (2.17), relative boundedness of HI with respect
to H0 (see Section 4) and standard perturbation theory of isolated eigenvalues
(see e.g. [25]), we deduce that, for jgj � me, inf spec.H/ is a non-degenerate
eigenvalue of H . In other words, H admits a unique ground state.

2) LetQ be the total charge operator

Q D NC �N�;

where NC and N� are respectively the operator number of electrons and the
operator number of positrons given by (2.14).
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The total HamiltonianH commutes withQ, andH is decomposed with respect
to the spectrum of the total charge operator as

H '
M

z2Z

Hz :

Each Hz reducesH and by mimicking the proof given in [31] one proves that the
ground state of H belongs to H0.

Theorem 3.3 follows from the Kato–Rellich Theorem together with standard
estimates of creation and annihilation operators in Fock space, showing that the
interaction Hamiltonian HI is relatively bounded with respect to H0. For the
convenience of the reader, a sketch of the proof of Theorem 3.3 is recalled in
Subsection 4.1.

For a self-adjoint operator A, we denote by specess.A/ the essential spectrum
of A.

Theorem 3.5 (location of the essential spectrum). Assume that Hypothesis 3.1
holds and let g0 be as in (3.5). Then, for all jgj � g0,

specess.H/ D Œinf spec.H/C me;1/:

Theorem 3.5 is proven in Subsection 4.2. Our proof is based on a method due
to Dereziński and Gérard [11] that we adapt to our context.

To establish our next theorems, we need to strengthen the conditions on the
kernels G.˛/. Given a function f 2 L1.Œ0;1//, we make the convention that the
Fourier transform of f is the Fourier transform of the function Qf 2 L1.R/ de�ned
by Qf .p/ D f .p/ if p � 0 and Qf .p/ D f .�p/ otherwise.

Hypothesis 3.6. For ˛ D 1; 2, the kernels G.˛/ 2 L2.† �† �†3/ satisfy

(i) there exists a compact set K � RC � RC � R
3 such that

G.˛/.p1; 
1; p2; 
2; k; �/ D 0

if .p1; p2; k/ … K;

(ii) there exists " � 0 such that
X


1;
2;�

Z

.1C x21 C x22/
1C"j yG.˛/.x1; 
1; x2; 
2; k; �/j2dx1dx2dk < 1;

where yG.˛/ denote the Fourier transform ofG.˛/ with respect to the variables
.p1; p2/, and xj is the variable dual to pj ;

(iii) if 
1j D 1 or 
2j D 1, where for l D 1; 2, 
lj D j�jl
j (with 
l D

.jl ; mjl
; �jl

/), and if p1 D 0 or p2 D 0, then G.˛/.p1; 
1; p2; 
2; k; �/ D 0.
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Remark 3.7. 1) The assumption thatG.˛/ is compactly supported in the variables
.p1; p2; k/ is an “ultraviolet” constraint that is made for convenience. It could be
replaced by the weaker assumption that G.˛/ decays su�ciently fast at in�nity.

2) Hypothesis 3.6(ii) comes from the fact that the coupling functions G.˛/

must satisfy some “minimal” regularity for our method to be applied. In fact,
Hypothesis (ii) could be slightly improved with a re�ned choice of interpolation
spaces in our proof (see Section 5 for more details). In Hypothesis 3.6(iii), we need
in addition an “infrared” regularization. We remark in particular that Hypotheses
(ii) and (iii) imply that, if 
1j D 1 or 
2j D 1,

ˇ
ˇG.˛/.p1; 
1; p2; 
2; k; �/

ˇ
ˇ . jpl j

1
2

C"; l D 1; 2;

for 0 � " < 1=2. We emphasize, however, that this infrared assumption is required
only in the case 
lj D 1, that is, for j D 1=2. For all other j 2 N C 1

2
, we

do not need to impose any infrared regularization on the generalized eigenstates
 ˙.p; 
/; They are already regular enough.

3) One veri�es that Hypotheses 3.6(i) and 3.6(ii) imply Hypothesis 3.1.

Theorem 3.8 (location of the spectrum). Assume that Hypothesis 3.1 holds. There

exists g1 > 0 such that, for all jgj � g1,

spec.H/ D ¹inf spec.H/º [ Œinf spec.H/C me;1/:

In particular, H has no eigenvalue below its essential spectrum except for the

ground state energy, inf spec.H/, which is a simple eigenvalue.

Theorem 3.9 (absolutely continuous spectrum). Assume that Hypothesis 3.6
holds with " > 0 in Hypothesis 3.6(ii). For all ı > 0, there exists gı > 0 such that,

for all jgj � gı , the spectrum of H in the interval

Œinf spec.H/C me; inf spec.H/C mZ0 � ı�
is purely absolutely continuous.

Remark 3.10. In Theorem 5.5 below, we prove a stronger result than Theorem 3.9,
which is of independent interest, namely we show that a limiting absorption

principle holds for H in the interval Œinf spec.H/C me; inf spec.H/C mZ0 � ı�.
Another consequence of the limiting absorption principle of Theorem 5.5 is the
local decay property (5.32).

Theorems 3.8 and 3.9 are proven in Section 5. Our proofs rely on Mourre’s
Theory with a non-self adjoint conjugate operator. Such extensions of the usual
conjugate operator theory [26, 3] have been considered in [22], [30], and later
extended in [15, 16].
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We use in this paper a conjugate operator, A, similar to the ones of [22] and
[15, 16], and prove regularity of the total Hamiltonian with respect to this conjugate
operator. Combined with a Mourre estimate, this regularity property allows us to
deduce a virial theorem and a limiting absorption principle, from which we obtain
Theorems 3.8 and 3.9.

Our main achievement consists in proving that the regularized physical inter-
action Hamiltonian HI is regular enough for the Mourre theory to be applied,
except for the terms associated to the “�rst” generalized eigenstates (j D 1=2).
For the latter, we need to impose a non-physical infrared condition. To establish
the regularity of HI with respect to A, we use in particular real interpolation the-
ory, together with a version of the Mourre theory requiring only low regularity of
the Hamiltonian with respect to the conjugate operator.

We remark that if we make the further assumption that the kernels G.˛/ are
su�ciently regular with respect to the Z0 variable k, similarly to what is assumed
in Hypothesis 3.6(ii) for the variables p1, p2, it is possible to extend the result of
Theorem 3.9 to the interval Œinf spec.H/Cme;M/, for anyM > inf spec.H/Cme.
To do that, one would have to add to the conjugate operatorA a term acting on FZ0 ,
similar to the ones acting on FD (see (5.2)), which would yield a Mourre estimate
on any interval of the form Œinf spec.H/C me;M/, M > inf spec.H/C me. The
regularity of G.˛/ in p1, p2 and k would insure that H is regular enough with
respect to A. For simplicity of exposition, we do not present the details of such an
extension of Theorem 3.9 here.

Our paper is organized as follows. As mentioned above, Section 4 is devoted
to the proof of Theorems 3.3 and 3.5, and Section 5 is devoted to the proof of
Theorems 3.8 and 3.9. In Appendix A, we give the estimates on the generalized
eigenfunctions of the Dirac operator that are used in this paper. In Appendix B,
we recall the abstract results from Mourre’s theory that we need. Finally, for
the convenience of the reader, standard de�nitions and properties of creation and
annihilation operators in Fock space are recalled in Appendix C.

4. Self-adjointness and location of the essential spectrum

In this section we prove Theorems 3.3 and 3.5.

4.1. Self-adjointness. We sketch the standard proof of Theorem 3.3 relying on
the Kato–Rellich Theorem.
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Proof of Theorem 3.3. We use the N� estimates of [13] and follow the proof
of [9, Theorem 2.6] (see also [8]). For

Ki.G/
2 WD

X

˛D1;2

Ki .G
.˛//2; i D 1; 2 ; (4.1)

and

C1;ˇ WD
� 1

me
2

C 1C 2ˇ
� 1

2

; C2;ˇ� WD
� �

me
2

�

1C 2ˇ
�� 1

2

;

B1;ˇ WD
�

1C 1

2ˇ

� 1
2

; B2;ˇ� WD
�

�
�

1C 1

2ˇ

�

C 1

4�

� 1
2

;

we obtain, for any  2 D.H/,

kHI k � .K1.G/C1;ˇ CK2.G/C2;ˇ /kH0 k
C .K1.G/B1;ˇ CK2.G/B2;ˇ�/k k:

(4.2)

Therefore, with (3.5) and for ˇ and � small enough, using the Kato–Rellich
Theorem concludes the proof. �

If we note that K2.G/ � K1.G/, and set

K.G/ WD K2.G/ ; Cˇ� WD C1;ˇ C C2;ˇ� ; Bˇ� WD B1;ˇ C B2;ˇ� ;

we obtain from (4.2) the following relative bound:

Corollary 4.1. For any  2 D.H/,

kHI k � K.G/.Cˇ�kH0 k C Bˇ�k k/:

In the sequel, for the sake of simplicity, we shall use this relative bound instead
of the stronger result (4.2).

4.2. Location of the essential spectrum. In this subsection, we prove Theo-
rem 3.5. We use the Dereziński–Gérard partition of unity [11] in a version that
accommodates the Fermi–Dirac statistics and the CAR (such a partition of unity
was used previously in [1]). Let

Ua W Fa.Hc ˚ Hc/ �! Fa.Hc/˝ Fa.Hc/ D Fa ˝ Fa;

be de�ned by

Ua�a D �a ˝�a;

Uab
�.'1 ˚ '2/ D .b�.'1/˝ 1 C .�1/N ˝ b�.'2//Ua;
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where .�1/N denotes the bounded operator on Fa de�ned by its restriction to
Nr
a hc as .�1/Nu D .�1/ru for any u 2

Nr
a hc . Clearly, using the anti-

commutation relations, Ua extends by linearity to a unitary map on Fa.Hc ˚Hc/.
Let j0 2 C1.Œ0;1/I Œ0; 1�/ be such that j0 � 1 on Œ0; 1=2� and j0 � 0 on Œ1;1/,
and let j1 be de�ned by the relation j 20 C j 21 � 1. Let y WD irp account for
the position variable of the fermions. Given R > 0, we introduce the bounded
operators jR0 WD j0.jyj=R/ and jR1 WD j1.jyj=R/ on Fa.Hc/. Let

jRa WHc �! Hc ˚ Hc ;

' 7�! .jR0 '; j
R
1'/:

Lifting the operator jRa to the Fock space Fa.Hc/ allows one to de�ne a map
�.jRa /WFa.Hc/ ! Fa.Hc ˚ Hc/. The Dereziński–Gérard partition of unity is
de�ned by

{�a.jRa /WFa ! Fa ˝ Fa; {�a.jRa / D Ua�.j
R
a /:

Using the relation j 20 C j 21 � 1, one easily veri�es that {�a.jRa / is isometric.

We construct a similar partition of unity, {�s.jRs /, acting on the bosonic Fock
space FZ0 D Fs.L

2.†3//. It is de�ned by

{�s.jRs /WFZ0 �! FZ0 ˝ FZ0 ; {�s.jRs / D Us�.j
R
s /;

where

UsWFs.L2.†3/˚ L2.†3// �! FZ0 ˝ FZ0 ;

is the unitary operator de�ned by

Us�s D �s ˝�s ;

Usa
�.'1 ˚ '2/ D .a�.'1/˝ 1 C 1 ˝ a�.'2//Us;

and jRs is the bounded operator de�ned by

jRs W L2.†3/ �! L2.†3/˚ L2.†3/;

' 7�! .jR0 '; j
R
1'/:

Here we have used similar notations as above, namely jR0 WD j0.jy3j=R/ and
jR1 WD j1.jy3j=R/, where y3 WD irk accounts for the position variable of the
bosons.
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Let N denote the number operator, acting either on Fa or on FZ0 . To shorten
notations, we de�ne the operators

N0 WD N ˝ 1; N1 WD 1 ˝N;

acting on Fa ˝ Fa and on FZ0 ˝ FZ0 .

We recall the following properties that can be easily proven using the de�ni-
tions of the operators involved (see [1, 11]).

Lemma 4.2. With the previous notations, we have the following properties.

(i) Let '1; : : : ; 'n 2 Hc . Then

{�a.jRa /
n
Y

iD1

b�.'i /�a

D
n
Y

iD1

.b�.jR0 'i /˝ 1 C .�1/N ˝ b�.jR1'i //�a ˝�a:

Let '1; : : : ; 'n 2 L2.†3/. Then

{�s.jRs /
n
Y

iD1

a�.'i /�s D
n
Y

iD1

.a�.jR0 'i /˝ 1 C 1 ˝ a�.jR1'i //�s ˝�s:

(ii) Let ! be an operator on Hc such that the commutators Œ!; jR# �, de�ned as

quadratic forms on D.!/, extend to bounded operators on Hc , where j#

stands for j0 and j1. Then

k.N0 CN1/
� 1

2 ..d�.!/˝ 1 C 1 ˝ d�.!//{�a.jRa /

� {�a.jRa /d�.!//N� 1
2P?

�a
k � kzad!.j

R
a /k;

where P�a
denotes the orthogonal projection onto the vacuum sector in Fa,

and

zad!.j
R
a / WD .Œ!; jR0 �; Œ!; j

R
1�/:

The same estimate holds ifFa,Hc , j
R
a , {�a and�a are replaced respectively

by FZ0 , L2.†3/, j
R
s , {�s and �s .
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Recall that the total Hilbert space can be written as H D Fa ˝ Fa ˝ FZ0 .
As in [1, 11], it is convenient to introduce an “extended” Hamiltonian,H ext, acting
on the “extended” Hilbert space

Hext WD
4
O

iD1

Fa ˝
2
O

jD1

FZ0 :

In our setting, the extended Hamiltonian is given by the expression

H ext WD H ext
0 C gH ext

I ;

where

H ext
0 WDd�.HD/˝ 1˝2Fa

˝ 1˝2F
Z0

C 1˝2Fa
˝ d�.HD/˝ 1˝2F

Z0

C 1˝4Fa
˝ d�.HZ0/˝ 1F

Z0
C 1˝4Fa

˝ 1F
Z0

˝ d�.HZ0/;

and H ext
I is given by (2.20)–(2.24), except that the creation and annihilation

operators for the electrons, b#
C D b# ˝ 1˝ 1, acting on H D Fa ˝ Fa ˝ FZ0 , are

replaced by

b
#;0
C WD b# ˝ 1˝3Fa

˝ 1˝2F
Z0

(acting onHext), likewise, the creation and annihilation operators for the positrons,
b#

� D .�1/NC ˝ b# ˝ 1, are replaced by

b#;0
� WD .�1/NC;0 ˝ .�1/NC;1 ˝ b# ˝ 1Fa

˝ 1˝2F
Z0
;

and the creation and annihilation operators for the bosons, a#, are replaced by

a#;0 WD 1˝4Fa
˝ a# ˝ 1F

Z0
:

Here we have set

NC;0 WD .N ˝ 1Fa
/˝ 1˝2Fa

˝ 1˝2F
Z0
;

NC;1 WD .1Fa
˝N/˝ 1˝2Fa

˝ 1˝2F
Z0
;

on Hext. We de�ne similarly the number operators

N�;0 WD 1˝2Fa
˝ .N ˝ 1Fa

/˝ 1˝2F
Z0
;

N�;1 WD 1˝2Fa
˝ .1Fa

˝N/˝ 1˝2F
Z0
;
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and

NZ0;0 WD 1˝4Fa
˝ .N ˝ 1F

Z0
/;

NZ0;1 WD 1˝4Fa
˝ .1F

Z0
˝N/;

and the creation and annihilation operators

b
#;1
C WD 1Fa

˝ b# ˝ 1˝2Fa
˝ 1˝2F

Z0
;

b#;1
� WD .�1/NC;0 ˝ .�1/NC;1 ˝ 1Fa

˝ b# ˝ 1˝2F
Z0
;

and

a#;1 WD 1˝4Fa
˝ 1F

Z0
˝ a#:

Now, we introduce an isometric map,

{�RWH �! Hext;

by setting
{�R WD {�a.jRa /˝ {�a.jRa /˝ {�s.jRs /:

Theorem 3.5 will be a consequence of the following lemma.

Lemma 4.3. Assume that Hypothesis 1 holds and let g0 be as in (3.5). Let

� 2 C1
0 .R/. Then, for all jgj � g0,

k{�R�.H/� �.H ext/{�Rk �! 0; as R ! 1:

Proof. Using the Hel�er-Sjöstrand functional calculus, we represent �.H/ as the
integral

�.H/ D 1

�

Z
@ Q�
@ Nz .z/.H � z/�1d Rez d Imz;

where Q� 2 C1
0 .C/ denotes an almost analytic extension of � satisfying Q�jR D �

and j@ Nz Q�.z/j � CnjIm zjn for any n 2 N. The same representation holds for
�.H ext/, from which we deduce that

{�R�.H/� �.H ext/{�R

D 1

�

Z
@ Q�
@ Nz .z/.H

ext � z/�1.H ext {�R � {�RH/.H � z/�1d Rez d Imz:
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By Lemma 4.2(ii), together with

kN
1
2

# .H � z/�1k � C jIm zj�1;

k.H ext � z/�1.N#;0 CN#;1/
1
2 k � C jIm zj�1;

where N# stands for NC, N� or NZ0 (and likewise for N#;0 and N#;1), we obtain

k.H ext � z/�1.H ext
0

{�R � {�RH0/.H � z/�1k

� C.kzad!.j
R
a /k C kzad!3

.jRs /k/jIm zj�2:
(4.3)

Here, ! is given by (2.4) and !3 is given by (2.15). Using e.g. pseudo-di�erential
calculus, one easily veri�es that

kzad!.j
R
a /k D O.R�1/ and kzad!3

.jRs /k D O.R�1/; as R ! 1.

Hence, (4.3) combined with the properties of the almost analytic extension Q� show
that







Z
@ Q�
@ Nz .z/.H

ext � z/�1.H ext
0

{�R � {�RH0/.H � z/�1d Rez d Imz





 D O.R�1/:

It remains to estimate
Z
@ Q�
@ Nz .z/.H

ext � z/�1.H ext
I

{�R � {�RHI /.H � z/�1d Rez d Imz:

The di�erent interaction terms appearing in the de�nition (2.20) ofHI are treated
in the same way. Consider for instance the interaction Hamiltonian H .1/

I given
by (2.21), written under the form given in (2.25),

H
.1/
I D

Z

F .1/.�1; �2; �3/b
�
C.�1/b

�
�.�2/a.�3/ d�1d�2d�3 ;

with F .1/ 2 L2.d�1d�2d�3/. We let H .1/;ext
I be de�ned by the same expression,

except that the creation and annihilation operators b�
C, b�

�, a are replaced by b�;0
C ,

b�;0
� , a0 de�ned above. Using Lemma 4.2(i), a straightforward computation gives

H
.1/;ext
I

{�R � {�RH .1/
I D

Z

j1.jirp1
j; jirp2

j; jirkj/F .1/.�1; �2; �3/

b
�;0
C .�1/b

�;0
� .�2/a

0.�3/{�R d�1d�2d�3 ;

C
X

l>1

Z

jl .jirp1
j; jirp2

j; jirkj/F .1/.�1; �2; �3/

b
�;]
C .�1/b

�;]
� .�2/a

].�3/{�R d�1d�2d�3 ;
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where we have set

j1.jy1j; jy2j; jy3j/ D 1� j0.jy1j=R/j0.jy2j=R/j0.jy3j=R/

and, for l ¤ 1, jl.jy1j; jy2j; jy3j/ is of the form

jl .jy1j; jy2j; jy3j/ D j#1.jy1j=R/j#2.jy2j=R/j#3.jy3j=R/

with j#i D j0 or j#i D j1, and at least one of the j#i ’s is equal to j1. Moreover,
b

�;]
C stands for b�;0

C or b�;1
C , and likewise for b�;]

� and a].
It follows from the N� estimates (see [13]) that

k.H ext � z/�1.H
.1/;ext
I

{�R � {�RHI;.1//.H � z/�1k

� C jIm zj�2
X

l

kjl.jirp1
j; jirp2

j; jirkj/F .1/k:

Therefore, using the fact that

kjl.jirp1
j; jirp2

j; jirkj/F .1/k ! 0;

as R ! 1 and the properties of Q�, we deduce that









Z
@ Q�
@ Nz .z/.H

ext � z/�1.H .1/;ext
I

{�R � {�RH .1/
I /.H � z/�1d Rez d Imz










�! 0;

asR ! 1. Since the other interaction terms in (2.20) are treated in the same way,
this concludes the proof. �

We are now ready to prove Theorem 3.5.

Proof of Theorem 3.5. We prove that

specess.H/ � Œinf spec.H/C me;1/: (4.4)

Let � 2 C1
0 ..�1; inf spec.H/C me//. Since {�R is isometric, we can write

�.H/ D {��
R

{�R�.H/ D {��
R�.H

ext/{�R C oR.1/; (4.5)

where oR.1/ stands for a bounded operator vanishing asR ! 1. The last equality
above follows from Lemma 4.3. Observing thatNtot;1 WD NC;1 CN�;1 CNZ0;1

commutes with H ext and that

H ext
1Œ1;1/.Ntot;1/ � .inf spec.H/C me/1Œ1;1/.Ntot;1/;

we deduce that
�.H ext/ D 1¹0º.Ntot;1/�.H

ext/:
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Hence (4.5) yields

�.H/ D {��
R1¹0º.Ntot;1/�.H

ext/{�R C oR.1/

D {��
R1¹0º.Ntot;1/{�R�.H/C oR.1/;

(4.6)

where we used again Lemma 4.3 in the last equality. Inspecting the de�nition of
the operator {�R, it is easy to see that

{��
R1¹0º.Ntot;1/{�R D �..jR0 /

2/˝ �..jR0 /
2/˝ �..jR0 /

2/:

Since

�..jR0 /
2/˝ �..jR0 /

2/˝ �..jR0 /
2/.H0 C i/�1

is compact, and since .H0 C i/�.H/ is bounded, we conclude that

{��
R1¹0º.Ntot;1/{�R�.H/

is compact. Therefore, by (4.6), the operator �.H/ is also compact, which
proves (4.4).

To prove the converse inclusion, it su�ces to construct, for any

� 2 .inf spec.H/C me;1/;

a Weyl sequence associated to �. This can be done in the same way as in [11,
Theorem 4.1] or [1, Theorem 4.3]. We do not give the details. �

5. Proofs of Theorems 3.8 and 3.9

In this section, we prove Theorems 3.8 and 3.9 by applying a suitable version of
Mourre’s theory. We begin with de�ning the conjugate operatorA that we consider
in Subsection 5.1; We show that the semi-group generated byA preserves the form
domain of the total Hamiltonian H . In Subsection 5.2, we establish regularity of
H with respect toA and in Subsection 5.3, we prove a Mourre estimate. Putting all
together, we �nally deduce in Subsection 5.4 that the statements of Theorems 3.8
and 3.9 hold.

5.1. The conjugate operator and its associated semigroup. Let a be the oper-
ator on L2.RC/ de�ned by the expression

a D i

2
.f .p/@p C @pf .p// D if .p/@p C i

2
f 0.p/; (5.1)
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where
f .p/ WD p�1!.p/ D p�1

p

p2 C me
2

and f 0 stands for the derivative of f . The operator a with domain C1
0 ..0;1// is

symmetric; its closure is denoted by the same symbol.
We construct the C0-semigroup, wt , associated with a. Let

g.p/ WD
Z p

0

1

f .r/
dr D

p

p2 C me
2 � me:

Note that the function g is bijective on Œ0;1/, with inverse

g�1.p/ D
p

.p C me/2 � me
2:

For all t � 0, let  t be de�ned on Œ0;1/ by

 t .p/ WD

8

<

:

0 if p <
p

.t C me/2 � me
2 D g�1.t /,

g�1.�t C g.p// otherwise.

Setting
.wtu/.p/ WD .@p t .p//

1
2u. t .p//;

one easily veri�es that wt is the C0-semigroup of isometries associated with a,
namely wtCs D wtws for t; s � 0, and .@twtu/jtD0.p/ D i.au/.p/. We observe
that a is maximal symmetric with de�ciency index nC D dim Ker.a� � i/ D 0.

On Hc D
L


 L
2.RC/, the operator

L


 a is still denoted by the symbol a.
Our conjugate operator, A, acting on the full Hilbert space H D Fa ˝ Fa ˝ FZ0 ,
is then given by

A WD d�.a/˝ 1 ˝ 1 C 1 ˝ d�.a/˝ 1: (5.2)

From the properties of a, we deduce that A is maximal symmetric and generates
the C0-semigroup

Wt WD �.wt /˝ �.wt /˝ 1:

The adjoint semigroup, W �
t , with generator �A�, is given as follows: For any

p; t � 0, let
�t .p/ WD g�1.t C g.p//:

One can verify that the adjoint semigroup of wt is the C0-semigroup of contrac-
tions given by

.w�
t u/.p/ D .@p�t .p//

1
2u. t .p//:
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We deduce that
W �
t D �.w�

t /˝ �.w�
t /˝ 1;

and that W �
t is a C0-semigroup (of contractions) on H.

The form domain of H is denoted by

G WD D.jH j 1
2 / D D.H

1
2

0 /:

Proposition 5.1. For all t � 0, we have that

Wt G � G; W �
t G � G;

and

kH
1
2

0 Wt .H
1
2

0 C 1/�1k � 1; kH
1
2

0 W
�
t .H

1
2

0 C 1/�1k � 1:

In particular, Hypothesis B.1 of Appendix B is satis�ed.

Proof. We prove the statement forW �
t , the proof forWt is similar. First, we show

that w�
t D.!/ � D.!/ and that

k!� 1
2 wt ! w

�
t !

� 1
2 k � 1; (5.3)

where, recall, ! is the multiplication operator by !.p/ D
p

p2 C me
2 onL2.RC/.

For any u 2 C1
0 ..0;1//, we have that

k! w�
t uk2 D

Z

!.p/2j@p�t .p/j ju.�t .p//j2dp:

Using the de�nition of �t , one sees that �t .p/ � p for all t � 0, and hence

k! w�
t uk2 �

Z

!.�t .p//
2j@p�t .p/j ju.�t .p//j2dp D k! uk2:

Since C1
0 ..0;1// is a core for !, this implies that w�

t D.!/ � D.!/ and that



! w�

t !
�1



 � 1:

Using the fact that wt is isometric and an interpolation argument, we obtain (5.3).
Now, let ' 2 Fa;�n.D.!//˝ Fa;�n.D.!//˝ FZ0 , where Fa;�n.D.!// denotes

the set of vectors .'0; '1; : : : / in
L1
nD0

Nn
aD.!/ (algebraic tensor product) such

that 'n D 0 for all but �nitely many n’s. We compute

kH
1
2

0 W
�
t 'k2 D h';WtH0W �

t 'i

D h'; .d�.wtw�
t ; wt!w

�
t /˝ �.wtw

�
t /˝ 1

C �.wtw
�
t /˝ d�.wtw

�
t ; wt!w

�
t /˝ 1

C �.wtw
�
t /˝ �.wtw

�
t /˝ d�.!3//'i;
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where, for c1, c2 operators on Hc , the operator d�.c1; c2/ on Fa is de�ned by
(see [1, 11])

d�.c1; c2/�a D 0;

d�.c1; c2/jNn
aHc

D
n
X

jD1

c1 ˝ � � � ˝ c1
„ ƒ‚ …

j�1

˝c2 ˝ c1 ˝ � � � ˝ c1
„ ƒ‚ …

n�j

:

Combining (5.3), the bound kwtw�
t k � 1, and [1, Lemma 2.3] (see also [11,

Lemma 2.8]), we obtain

kH
1
2

0 W
�
t 'k2 � k.d�.!/ 1

2 ˝ 1 ˝ 1/'k2 C k.1 ˝ d�.!/
1
2 ˝ 1/'k2

C k.1 ˝ 1 ˝ d�.!3/
1
2 /'k2

D kH
1
2

0 'k2:
This concludes the proof. �

5.2. Regularity of the Hamiltonian with respect to the conjugate operator.

Recall that the conjugate operator A is de�ned by the expressions (5.1) and (5.2).
In this subsection, we prove the following proposition.

Proposition 5.2. Assume that Hypothesis 3.6 holds. Let jgj � me. Then we have

that

H 2 C1;1.AGIAG�/;

in the sense of Hypothesis B.5 of Appendix B.

To prove Proposition 5.2, we use real interpolation. We have that

ŒH0; iA� D NC ˝ 1 ˝ 1 C 1 ˝ N� ˝ 1;

in the sense of quadratic forms on D.H0/\D.A/. Since D.H0/\D.A/ is a core
forH0 and sinceNC˝1˝1C1˝N�˝1 is relativelyH0-bounded, Proposition 5.1
together with Proposition B.3 imply thatH0 belongs to C1.AGIAG�/. Next, since
ŒH0; iA� commutes with A, we easily deduce that H0 2 C2.AGIAG�/, and hence
in particular H0 2 C1;1.AGIAG�/. Here we recall that, for all 0 � � � 1 and
1 � q < 1,

C�;q.AGIAG�/

WD
²

T 2 B.GIG�/; W �
t T Wt � T 2 B.GIG�/ for all t 2 .0; 1/;

Z 1

0

t��q�1kW �
t T Wt � T kq

B.GIG�/
dt < 1

³

:

(5.4)
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In order to prove that H 2 C1;1.AGIAG�/, it remains to show that the inter-
action Hamiltonian HI 2 C1;1.AGIAG�/. Using in particular Proposition B.3,
we see that it su�ces, in fact, to verify that the commutator ŒHI ; iA� belongs to
B.GIG�/ and that ŒHI ; iA� 2 C0;1.AGIAG�/. This is the purpose of the remainder
of this section.

We use the notation (2.27). Using Hypothesis 3.6 and the estimates of Appen-
dix A (see (A.6)–(A.7) and (A.9)–(A.12)), we can rewrite

F .˛/.�1; �2; �3/ WD Qh.˛/.�1; �2; �3/ zG.˛/.�1; �2; �3/; (5.5)

where Qh.˛/.�1; �2; �3/ is of the form

Qh.˛/.�1; �2; �3/ D p1p2s
.˛/.�1; �2; �3/; (5.6)

with s.˛/ satisfying, for all n;m 2 ¹0; 1; 2º,

j@np1
@mp2
s.˛/.�1; �2; �3/j . p�n

1 p�m
2 ; (5.7)

in a neighborhood of 0.

Moreover the kernels zG.˛/ satisfy:

(a0) there exists a compact set K � RC � RC � R
3 such that

zG.˛/.p1; 
1; p2; 
2; k; �/ D 0

if .p1; p2; k/ … K;

(b0) there exists " > 0 such that

X


1;
2;�

Z

.1C x21 C x22/
1C"j yzG

.˛/

.x1; 
1; x2; 
2; k; �/j2dx1dx2dk < 1;

where, recall, yzG
.˛/

denote the Fourier transform of zG.˛/ with respect to the
variables .p1; p2/, and xl , l D 1; 2, is the variable dual to pl ;

(c0) if p1 D 0 or p2 D 0, then zG.˛/.p1; 
1; p2; 
2; k; �/ D 0.

Our strategy consists in working with interaction operators of the form (2.20)

with H
.1/
I , H .2/

I given by (2.25)–(2.26) and F .1/, F .2/ satisfying (5.5)–(5.7).
We then use an interpolation argument for the kernels zG.˛/.
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Lemma 5.3. Consider the operatorHI of the form (2.20) with H
.1/
I , H

.2/
I given

by (2.25)–(2.26) and F .1/, F .2/ satisfying (5.5)–(5.7).

(i) Suppose that zG.˛/ 2 L2.† �† �†3/ satisfy the following conditions:

(i.a) there exists a compact set K � RC � RC � R
3 such that

zG.˛/.p1; 
1; p2; 
2; k; �/ D 0

if .p1; p2; k/ … K;

(i.b)
X


1;
2;�

Z

.1C x21 C x22/j
yzG
.˛/

.x1; 
1; x2; 
2; k; �/j2dx1dx2dk < 1I

(i.c) if p1 D 0 or p2 D 0, then zG.˛/.p1; 
1; p2; 
2; k; �/ D 0.

ThenH 0
I D ŒHI ; iA� 2 C0.AGIAG�/ � B.GIG�/.

(ii) Suppose that zG.˛/ 2 L2.† �† �†3/ satisfy the following conditions:

(ii.a) there exists a compact set K � RC � RC � R
3 such that

zG.˛/.p1; 
1; p2; 
2; k; �/ D 0

if .p1; p2; k/ … K;

(ii.b)
X


1;
2;�

Z

.1C x21 C x22/
3j yzG

.˛/

.x1; 
1; x2; 
2; k; �/j2dx1dx2dk < 1I

(ii.c) if p1 D 0 or p2 D 0, then Dˇ zG.˛/.p1; 
1; p2; 
2; k; �/ D 0 for all

multi-index ˇ D .ˇ1; ˇ2/, jˇj � 2, with Dˇ D @ˇ1Cˇ2=@
x

ˇ1
1

@
x

ˇ2
2

.

ThenH 0
I D ŒHI ; iA� 2 C1.AGIAG�/.

Proof. (i) Recall that the conjugate operator A is de�ned by equation (5.2), with

a D if .p/@p C i

2
f 0.p/;

and f .p/ D p�1
p

p2 C me
2. We use the notation al D if .pl /@pl

C i
2
f 0.pl /,

for l D 1; 2. We then have that

ŒHI ; iA� D HI .�ia1F /CHI .�ia2F /; (5.8)

in the sense of quadratic forms on D.H0/ \ D.A/.
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Recalling the notations �l D .pl ; 
l/, we compute

.a1F
.˛//.�1; �2; �3/ D

h i

2
p1p2f

0.p1/s
.˛/.�1; �2; �3/C ip2f .p1/s

.˛/.�1; �2; �3/

C ip1p2f .p1/.@p1
s.˛//.�1; �2; �3/

i

QG.˛/.�1; �2; �3/

C ip1p2f .p1/s
.˛/.�1; �2; �3/.@p1

zG.˛//.�1; �2; �3/:
(5.9)

Using (5.7) and the de�nition of f , we see that the term in brackets satisfy
ˇ
ˇ
ˇ
i

2
p1p2f

0.p1/s
.˛/.�1; �2; �3/C ip2f .p1/s

.˛/.�1; �2; �3/

C ip1p2f .p1/.@p1
s.˛//.�1; �2; �3/

ˇ
ˇ
ˇ . p�1

1 p2;

in any compact set. Now, since p1 7! zG.˛/.p1; 
1; �2; �3/ 2 H 1
0 .RC/ by the

conditions (i.b) and (i.c), and since zG.˛/ is compactly supported in the variables
.p1; p2; k/ by the condition (i.a), we deduce that

p�1
1 p2 zG.˛/.�1; �2; �3/ 2 L2.d�1d�2d�3/:

Here we used that

kp�1
1 p2 zG.˛/.�1; �2; �3/kL2.d�1d�2d�3/

. kp2@p1
zG.˛/.�1; �2; �3/kL2.d�1d�2d�3/

;

by Hardy’s inequality at the origin in H 1
0 .RC/. Likewise, we have that

ˇ
ˇip1p2f .p1/s

.˛/.�1; �2; �3/
ˇ
ˇ . 1;

in any compact set, and hence, using again that p1 7! zG.˛/.p1; 
1; �2; �3/ 2
H 1
0 .RC/ and that zG.˛/ is compactly supported in the variables .p1; p2; k/,

it follows that

ip1p2f .p1/s
.˛/.�1; �2; �3/.@p1

zG.˛//.�1; �2; �3/ 2 L2.d�1d�2d�3/:

The previous estimates show that

.a1F
.˛//.�1; �2; �3/ 2 L2.d�1d�2d�3/;

and proceeding in the same way, one veri�es that

.a2F
.˛//.�1; �2; �3/ 2 L2.d�1d�2d�3/:

Using the expression (5.8) of the commutator ŒHI ; iA� and the N� estimates of
[13], we immediately deduce that ŒHI ; iA� 2 B.GIG�/ D C0.AGIAG�/.
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(ii) It su�ces to proceed similarly. More precisely, we compute the second
commutator

ŒŒHI ; iA�; iA� D �HI .a21F / �HI .a22F / � 2HI .a1a2F /: (5.10)

Computing a21F , a22F and a1a2F yields to several terms that are estimated sepa-
rately. Each term, however, can be treated in the same way, using Hardy’s inequal-
ity together with the assumptions .i i/.a/, .i i/.b/, .i i/.c/. We give an example.
Consider the �rst term inside the brackets of (5.9) and apply to it the operator
if .p1/@p1

. This gives in particular a term of the form

�1
2
p2f .p1/f

0.p1/s
.˛/.�1; �2; �3/ zG.˛/.�1; �2; �3/;

that will appear in the expression of a21F . From (5.7) and the de�nition of f ,
it follows that

ˇ
ˇp2f .p1/f

0.p1/s
.˛/.�1; �2; �3/ zG.˛/.�1; �2; �3/

ˇ
ˇ . p�3

1 p2
ˇ
ˇ zG.˛/.�1; �2; �3/

ˇ
ˇ;

in any compact set. Since p1 7! zG.˛/.p1; 
1; �2; �3/ 2 H 3
0 .RC/ by the condi-

tions .i i/.b/ and .i i/.c/, and since zG.˛/ is compactly supported in the variables
.p1; p2; k/ by the condition .i i/.a/, we obtain as above that

p2f .p1/f
0.p1/s

.˛/.�1; �2; �3/ zG.˛/.�1; �2; �3/ 2 L2.d�1d�2d�3/:

Here we used that

kp�3
1 p2 zG.˛/.�1; �2; �3/kL2.d�1d�2d�3/

. kp2@3p1
zG.˛/.�1; �2; �3/kL2.d�1d�2d�3/

;

by Hardy’s inequality at the origin in H 3
0 .RC/. Treating all the other terms in a

similar manner, we deduce that

a21F C a22F C 2a1a2F 2 L2.d�1d�2d�3/;

and therefore that ŒŒHI ; iA�; iA� 2 B.GIG�/. Together with Proposition 5.1, this
shows (ii). �

Proof of Proposition 5.2. By the comment after the statement of Proposition 5.2,
we already know that H0 2 C1;1.AGIAG�/. Hence, to conclude the proof of
Proposition 5.2, it su�ces to verify that HI 2 C1;1.AGIAG�/. Recall that HI
is the sum of 4 terms, see (2.20). We consider for instance the �rst one, H .1/

I .
The other terms can be treated in the same way.
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Let K0 � RC � RC � R
3 be a compact set. Let S(i) denote the set of all

zG.1/ 2 L2.† � † � †3/ satisfying the conditions (i.a) (with K D K0), (i.b),
and (i.c), equipped with the norm

k zG.1/kS(i) WD
X


1;
2;�

Z

.1C x21 C x22/j
yzG
.1/

.x1; 
1; x2; 
2; k; �/j2dx1dx2dk:

Likewise, we denote by S(ii) the set of all zG.1/ 2 L2.† � † � †3/ satisfying the
conditions (ii.a) (with K D K0), (ii.b), and (ii.c), equipped with the norm

k zG.1/kS(ii) WD
X


1;
2;�

Z

.1C x21 C x22/
3j yzG

.1/

.x1; 
1; x2; 
2; k; �/j2dx1dx2dk:

By Lemma 5.3 and its proof, the map

S(i) 3 zG.1/ 7�! H
.1/0

I . Qh.1/ zG.1// 2 C0.AGIAG�/ (5.11)

is linear and continuous, and, likewise, the map

S(ii) 3 zG.1/ 7�! H
.1/0

I .zh.1/ zG.1// 2 C1.AGIAG�/ (5.12)

is linear and continuous. Here we have used the notation

H
.1/0

I . Qh.1/ zG.1// WD ŒH
.1/
I . Qh.1/ zG.1//; iA�:

By real interpolation, we deduce that

.S(i); S(ii)/�;2 3 zG.1/ 7�! H
.1/0

I . Qh.1/ zG.1// 2 .C0.AGIAG�/;C1.AGIAG�//�;2;

(5.13)

for all 0 � � � 1.
Now, by [3, Section 5], we have that

.C0.AGIAG�/;C1.AGIAG�//�;2 D C�;2.AGIAG�/; (5.14)

for all 0 < � < 1, and using the de�nition (5.4), one easily veri�es that

C�;2.AGIAG�/ � C0;1.AGIAG�/:

On the other hand, from the de�nition of the interpolated space .S(i); S(ii)/�;2

and mimicking the method allowing one to compute the interpolation of Sobolev
spaces (see e.g. [33]), it is not di�cult to verify that, for 0 < " < 2� < 1, the
set of all kernels zG.1/ 2 L2.† � † � †3/ satisfying the conditions (a0), (b0)
and (c0) stated above is included in .S(i); S(ii)/�;2. This shows, in particular, that

H
.1/0

I 2 C0;1.AGIAG�/, and hence that H .1/
I 2 C1;1.AGIAG�/. Since the other

terms, H .1/
I

�
, H .2/

I and H .2/
I

�
, can be treated in the same way, this concludes the

proof. �
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5.3. The Mourre estimate. Given zF D . zF .1/; zF .2// 2 .Hc ˝ Hc ˝ L2.†3//
2,

and for H .i/
I . zF .i// given by (2.25)–(2.26), we de�ne

HI . zF / D H
.1/
I . zF .1//C .H

.1/
I . zF .1///� CH

.2/
I . zF .2//C .H

.2/
I . zF .2///� :

Proposition 5.4. Assume that Hypothesis 3.6 hold and let ı 2 .0; me/. There exist

gı > 0, cı > 0 and C 2 R such that, for all jgj � gı , and for

� WD Œı;mZ0 � ı�;

we have, in the sense of quadratic forms on D.A/ \ D.H0/,

H 0 � ŒH; iA� � cı1 � C1
?
�.H � E/hH i; (5.15)

where we have set E WD inf spec.H/, 1
?
�.H � E/ WD 1 � 1�.H � E/ and

hH i WD .1 CH 2/1=2.

Proof of Proposition 5.4. As in Subsection 5.2, we have, in the sense of quadratic
forms on D.A/ \ D.H0/,

ŒH0; iA� D NC ˝ 1 ˝ 1 C 1 ˝N� ˝ 1; (5.16)

whereNC (respectivelyN�) is the number operator for electrons (respectively po-
sitrons) as de�ned in (2.14). In the sequel, by abuse of notation, we shall omit the
identity operators in NC ˝ 1 ˝ 1 and 1 ˝ N� ˝ 1 and denote them respectively
again by NC and N�.

Let a1 D a ˝ 1 ˝ 1 be the conjugate operator for electron acting on the p1
variable in Hc ˝ Hc ˝L2.†3/ and a2 D 1 ˝ a˝ 1 be the conjugate operator for
positron acting on the p2 variable. As in (5.8), we have that

ŒHI ; iA� D HI .�ia1F /CHI .�ia2F /; (5.17)

in the sense of quadratic forms on D.A/ \ D.H0/. Here we recall that a1F and
a2F belong to L2.d�1d�2d�3/ as follows from the estimates of Appendix A and
Hypothesis 3.6 (see more precisely the proof of Lemma 5.3(i)).

For P�a��a
WD P�a

˝P�a
˝1 being the projection onto the electron/positron

vacuum, we have that
NC CN� C P�a��a

� 1: (5.18)

Since H D H0 C gHI , and for E D inf spec.H/, we obtain from (5.16)-(5.17)

that

ŒH; iA� D .NC CN� C P�a��a
/ � P�a��a

C g.HI .�ia1F /CHI .�ia2F //

� 1 � P�a��a
C g.HI .�ia1F /CHI .�ia2F //;

(5.19)
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where we used the operator inequality (5.18) in the last inequality. We estimate
separately the two remainder terms occuring in the right hand side of (5.19).

Let us de�ne a function f� 2 C1
0 .R/ such that 0 � f� � 1 and

f�.�/ D

8

<

:

1 if � 2 Œı;mZ0 � ı�;

0 if � < ı=2 or � > mZ0 � ı=2:
(5.20)

We observe that
P�a��a

f�.H0/ D 0 : (5.21)

The last identity holds because P�a��a
is a projection commuting with H0 and

because supp.f�/ \ spec.H0P�a��a
/ D ;. As in the proof of Lemma 4.3, let

Qf 2 C1
0 .C/ denote an almost analytic extension of f� satisfying Qf jR D f� and

j@ Nz
Qf .z/j � CnjIm zjn for any n 2 N. Thus, for d Qf .z/ WD � 1

�
@ Qf
@z
.z/ dRe z dIm z,

using Hel�er-Sjöstrand functional calculus and the second resolvent equation,
we obtain

f�.H � E/ � f�.H0/ D
Z

.H � E � z/�1.H �E �H0/.H0 � z/�1 d Qf .z/

D
Z

.H � E � z/�1gHI .F /.H0 � z/�1 d Qf .z/

� E

Z

.H �E � z/�1.H0 � z/�1 d Qf .z/:

(5.22)

From Corollary 4.1, since Hypothesis 3.1 holds, there exists a constant C such that

kHI .F /.H0 C 1/�1k � CK.G/; (5.23)

where h.˛/G.˛/ D F .˛/ (see (2.27)) and K.G/ D K2.G/ is given by (3.4)

and (4.1).
Therefore, with the inequality

k.H0 C 1/.H0 � z/�1k � 1C 1C jzj
jIm zj ; (5.24)

and the properties of Qf , we obtain that there exists a constant C1 > 0 depending
only on f� and K.G/ such that









Z

.H � E � z/�1gHI .F /.H0 � z/�1 d Qf .z/









� jgj
Z �

1C 1C jzj
jIm zj

�

k.H �E � z/�1k kHI .G/.H0 C 1/�1k d Qf .z/

� C1 jgj:

(5.25)
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Moreover, using again (5.23), standard perturbation theory yields that there
exists g1 > 0 such that for all jgj � g1, we have

jEj � jgj K.G/Bˇ�

1� g1K.G/Cˇ�
; (5.26)

where Bˇ� and Cˇ� are the positive constants de�ned in Subsection 4.1. Thus,
there exists a constant C2 depending on f� and K.G/ such that









E

Z

.H �E � z/�1.H0 � z/�1 d Qf .z/









� C2jgj: (5.27)

Inequalities (5.22), (5.25) and (5.27) give

kf�.H �E/ � f�.H0/k � .C1 C C2/ jgj: (5.28)

For shortness, let 1� � 1�.H �E/ and 1
?
� � 1

?
�.H �E/. We have that

�P�a��a
D �1�P�a��a

1� � 1�P�a��a
1

?
�

� 1
?
�P�a��a

1� � 1
?
�P�a��a

1
?
�

� �1�P�a��a
1� � 1�P�a��a

1
?
� � 1

?
�P�a��a

1� � 1
?
�:

(5.29)

Using (5.21) and (5.28), we obtain that

k1�P�a��a
k � kf�.H �E/P�a��a

k
D k.f�.H �E/ � f�.H0//P�a��a

k � .C1 C C2/ jgj;

from which we deduce that

�1�P�a��a
1� � 1�P�a��a

1
?
� � 1

?
�P�a��a

1� � �3.C1 C C2/ jgj1:

Together with (5.29), this shows that

�P�a��a
� �3.C1 C C2/jgj1 � 1

?
�: (5.30)

To bound the last term in the right hand side of (5.19), it su�ces to use the
relative bound in Corollary 4.1 and the fact that Hypothesis 3.6 holds (and hence
also Hypothesis 3.1), to obtain that the operators HI .�ialF / (l D 1; 2/ are norm
relatively bounded with respect to H0 with relative bounds depending on K.G/
and K.�ialG/. Therefore, there exists C3 depending on K.G/ and K.�ialG/
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such that

g.HI .�ia1F /CHI .�ia2F //

� �C3jgjhH i

D �C3jgjhH i1�.H �E/ � C3jgjhH i1?
�.H �E/

� �C4jgj1�.H �E/ � C3jgjhH i1?
�.H �E/

� �C4jgj1 � C5jgjhH i1?
�.H � E/;

(5.31)

for some constants C4; C5 2 R.

Estimates (5.19), (5.30), and (5.31) yield (5.15), which concludes the proof.
�

5.4. Proofs of the main theorems

Proof of Theorem 3.8. As above, we use the notationE D inf spec.H/. The proof
of Theorem 3.8 is divided into two main steps.

Step 1. Let 0 < ı < me. There exists gı > 0 such that, for all 0 � jgj � gı ,

inf.spec.H/ n ¹Eº/ � ı:

To prove this, we use the min-max principle. Let�2 denote the second point above
E in the spectrum of H . The min-max principle implies that

�2 � inf
 2D.H/;k kD1;

 2Œ�D˝�s �
?

h ;H i

D inf
 2D.H/;k kD1;

 2Œ�D˝�s �
?

.h ;H0 i C gh ;HI i/;

where Œ�D˝�s�? denotes the orthogonal complement of the subspace spanned by
�D˝�s in the total Hilbert spaceH. SinceHI is relatively bounded with respect
to H0, there exists a positive constant C such that h ;HI i � �Ch ;H0 i, and
therefore

�2 � inf
 2D.H/;k kD1;

 2Œ�D˝�s �
?

1 � Cjgj/h ;H0 i � .1� Cjgj/me;

the last inequality being a consequence of (2.17). This proves Step 1.
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Step 2. Let 0 < ı < me. There exists gı > 0 such that, for all 0 � jgj � gı ,

spec.H/ \ Œı;me CE/ D ;:

Observe that E < 0 satis�es E � �Cjgj with C a positive constant, as follows
from standard perturbation theory (see (5.26)), and therefore, for gı small enough
and jgj � gı , we have that ı < me C E. By Theorem 3.5, we know that
inf specess.H/ D me C E. Thus we only have to show that H do not have
discrete eigenvalue in the interval Œı;meCE/: This is a simple, usual consequence
of the virial theorem (see Theorem B.4) combined with the Mourre estimate of
Proposition 5.4. �

We introduce the notation hAi D .1CA�A/1=2 D .1C jAj2/1=2 for any closed
operator A. As mentioned before, Theorem 3.9 is a consequence of the following
stronger result, which itself follows from Propositions 5.1, 5.2, 5.4, and the abstract
results of Appendix B.

Theorem 5.5 (limiting absorption principle). Assume that Hypothesis 3.6 holds

with " > 0 in Hypothesis 3.6(ii). For all ı > 0, there exists gı > 0 such that, for

all jgj � gı and 1=2 < s � 1,

sup
z2 z�

khAi�s.H � z/�1hAi�sk < 1;

with � WD Œinf spec.H/ C me; inf spec.H/ C mZ0 � ı� and z� WD ¹z 2 C,

Re z 2 �; 0 < jIm zj � 1º; : Moreover, the map z 7! hAi�s.H � z/�1hAi�s 2
B.H/ is uniformly Hölder continuous of order s � 1=2 on z� and the limits

hAi�s.H � � � i0˙/�1hAi�s WD lim
"!0˙

hAi�s.H � � � i"/�1hAi�s ;

exist in the norm topology of B.H/, uniformly in � 2 �. Finally, the map

� 7! hAi�s.H � � � i0˙/�1hAi�s 2 B.H/ is uniformly Hölder continuous of

order s� 1=2 on� and, for any 1=2 < s � 1,H satis�es the local decay property

khAi�se�itH
1�.H/hAi�sk . hti�sC 1

2 ; (5.32)

for all t 2 R.

Proof. By Propositions 5.1, 5.2, and 5.4, we see that Hypotheses B.1, B.5, and B.6
of Appendix B are satis�ed, the open interval I of Hypothesis B.6 being chosen,
for instance, as I D .inf spec.H/C me � ı; inf spec.H/C mZ0 � ı=2/. Therefore
we can apply Theorem B.7 with J D �, which proves Theorem 5.5. �
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A. Generalized eigenfunctions of the free Dirac operator

In this section we describe the properties of the generalized eigenfunctions of the
Dirac operator HD introduced in Subsection 2.1.1. More details can be found in
[19, Section 9.9, (44), (45), (63)].

Recall that the generalized eigenfunctions of HD are labeled by the angular
momentum quantum numbers

j 2
°1

2
;
3

2
;
5

2
; : : :

±

; mj 2 ¹�j;�j C 1; : : : ; j � 1; j º;

and by the quantum numbers

�j 2
°

˙
�

j C 1

2

�±

:

We de�ne, for 
j WD j�j j,

g�j ;˙.p; r/ D C˙
1

j!.p/j 1
2

.2pr/
j

r

1

2
p
�

�.
j /

�.2
j C 1/

¹e�iprei�j 
jF.
j C 1; 2
j C 1; 2ipr/

C eipre�i�j 
jF.
j C 1; 2
j C 1; �2ipr/º

(A.1)

with CC
1 D

p

!.p/C me when we consider a positive energy !.p/ > me and
C�
1 D

p

!.p/� me when we consider a negative energy �!.p/ < �me.
We also de�ne

f�j ;˙.p; r/ D iC˙
2

j!.p/j 1
2

1

2
p
�

.2pr/
j

r

�.
j /

�.2
j C 1/

¹e�iprei�j 
jF.
j C 1; 2
j C 1; 2ipr/

� eipre�i�j 
jF.
j C 1; 2
j C 1; �2ipr/º

(A.2)

with CC
2 D

p

!.p/ � me, for energies !.p/ > me and C�
2 D �

p

!.p/C me for
energies �!.p/ < �me.

The functions F that occur in (A.1) and (A.2) are the con�uent hypergeometric
functions. Their integral representations for 
j > 1=2 are

F.
j C 1; 2
j C 1; ˙2ipr/ D �.2
j C 1/

�.
j C 1/�.
j /

Z 1

0

e˙2ipruu
j .1 � u/
j du:

(A.3)
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The generalized eigenfunctions

 ˙;.j;mj ;�j /.p; x/ D  ˙;
 .p; x/ D  ˙.�; x/;

where C refers to positive energies !.p/ > me and � refers to negative energies
�!.p/ < �me, ful�ll

HD  ˙..p; 
/; x/ D ˙!.p/  ˙..p; 
/; x/;

and are de�ned by

 ˙;.j;mj ;�j /.p; x/ WD

0

@

ig�j ;˙.p; r/ˆ
.1/
mj ;�j

.�; '/

�f�j ;˙.p; r/ˆ
.2/

.mj ;�j /
.�; '/

1

A

where the spinors ˆ.1/mj ;�j and ˆ.2/mj ;�j are orthogonal and de�ned by

ˆ
.1/

mj ;.jC 1
2
/
.�; '/ WD

0

B
B
B
B
@

�
s

j �mj C 1

2j C 2
YjC 1

2
;mj � 1

2
.�; '/

s

j Cmj C 1

2j C 2
YjC 1

2
;mj � 1

2
.�; '/

1

C
C
C
C
A

;

ˆ
.2/

mj ;.jC 1
2
/
.�; '/ WD

0

B
B
B
B
@

s

j Cmj

2j
Yj� 1

2
;mj � 1

2
.�; '/

s

j �mj
2j

Yj� 1
2 ;mj C 1

2
.�; '/

1

C
C
C
C
A

;

and

ˆ
.1/

mj ;�.jC 1
2
/
.�; '/ D ˆ

.2/

mj ;.jC 1
2
/
.�; '/;

ˆ
.2/

mj ;�.jC 1
2
/
.�; '/ D ˆ

.1/

mj ;.jC 1
2
/
.�; '/:

It follows from (2.19) that

Q �;.j;mj ;�j /.p; x/ WD
 

ig��j ;�.p; r/ˆ
.1/
�mj ;��j .�; '/

�f��j ;�.p; r/ˆ
.2/
�mj ;��j .�; '/

!

:
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For positive energies !.p/ > me, we have the following estimates for the
functions g�j ;˙ and f�j ;˙,

jgjC 1
2
;C.p; r/j �

�!.p/C me

!.p/

� 1
2 pp

�
.2pr/
j

1

�.
j /
; (A.4a)

jfjC 1
2
;C.p; r/j �

�!.p/ � me

!.p/

� 1
2 2pp

�
.2pr/
j �1 1

�.
j /
; (A.4b)

jg�.jC 1
2
/;C.p; r/j �

�!.p/C me

!.p/

� 1
2 2pp

�
.2pr/
j �1 1

�.
j /
; (A.4c)

jf�.jC 1
2 /;C

.p; r/j �
�!.p/ � me

!.p/

� 1
2 pp

�
.2pr/
j

1

�.
j /
; (A.4d)

and for negative energies �!.p/ < �me , we have

jgjC 1
2
;�.p; r/j �

�!.p/� me

!.p/

� 1
2 pp

�
.2pr/
j

1

�.
j /
; (A.5a)

jfjC 1
2
;�.p; r/j �

�!.p/C me

!.p/

� 1
2 2pp

�
.2pr/
j �1 1

�.
j /
; (A.5b)

jg�.jC 1
2
/;�.p; r/j �

�!.p/� me

!.p/

� 1
2 2pp

�
.2pr/
j �1 1

�.
j /
; (A.5c)

jf�.jC 1
2
/;�.p; r/j �

�!.p/C me

!.p/

� 1
2 pp

�
.2pr/
j

1

�.
j /
: (A.5d)

We also can bound the �rst and second derivatives. Below, we give such
bounds for jpj � 1. For p larger than one, the functions are locally in Lq for
any value of q.

There exists a constant C such that for jpj � 1, and for positive energies
!.p/ > me we have

ˇ
ˇ
ˇ
ˇ

@

@p
gjC 1

2
;C.p; r/

ˇ
ˇ
ˇ
ˇ

� C

�.
j /
Œ.2pr/
j C pr.
j � 1/.2pr/
j �1 C pr.2pr/
j �1�;

(A.6a)

ˇ
ˇ
ˇ
ˇ

@

@p
fjC 1

2
;C.p; r/

ˇ
ˇ
ˇ
ˇ

� C

�.
j /
Œp.2pr/
j �1 C p2r.
j � 1/.2pr/
j �2 C p2r.2pr/
j �;

(A.6b)
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ˇ
ˇ
ˇ
ˇ

@

@p
g�.jC 1

2
/;C.p; r/

ˇ
ˇ
ˇ
ˇ

� C

�.
j /
Œ.2pr/
j �1 C pr.
j � 1/.2pr/
j �2 C pr.2pr/
j �;

(A.6c)

ˇ
ˇ
ˇ
ˇ

@

@p
f�.jC 1

2
/;C.p; r/

ˇ
ˇ
ˇ
ˇ

� C

�.
j /
Œp.2pr/
j C p2r.
j � 1/.2pr/
j �1 C p2r.2pr/
j �1�;

(A.6d)

and for jpj � 1 and negative energies �!.p/ < �me, we have

ˇ
ˇ
ˇ
ˇ

@

@p
gjC 1

2
;�.p; r/

ˇ
ˇ
ˇ
ˇ

� C

�.
j /
Œp.2pr/
j C p2r.
j � 1/.2pr/
j �1 C p2r.2pr/
j �1�;

(A.7a)

ˇ
ˇ
ˇ
ˇ

@

@p
fjC 1

2
;�.p; r/

ˇ
ˇ
ˇ
ˇ

� C

�.
j /
Œ.2pr/
j �1 C pr.
j � 1/.2pr/
j �2 C pr.2pr/
j �;

(A.7b)

ˇ
ˇ
ˇ
ˇ

@

@p
g�.jC 1

2 /;�
.p; r/

ˇ
ˇ
ˇ
ˇ

� C

�.
j /
Œp.2pr/
j �1 C p2r.
j � 1/.2pr/
j �2 C p2r.2pr/
j �;

(A.7c)

ˇ
ˇ
ˇ
ˇ

@

@p
f�.jC 1

2 /;�
.p; r/

ˇ
ˇ
ˇ
ˇ

� C

�.
j /
Œ.2pr/
j C pr.
j � 1/.2pr/
j �1 C pr.2pr/
j �1�:

(A.7d)

The estimates (A.6) and (A.7) yield, for a being the operator de�ned by (5.1),
and for positive energies !.p/ > me,

ja gjC 1
2
;C.p; r/j

� C

�.
j /

h!.p/

p
..2pr/
j C pr.
j � 1/.2pr/
j �1 C pr.2pr/
j �1/

C !.p/
�

1C 1

p2

�

p.2pr/
j /
i

;

(A.8a)
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ja fjC 1
2
;C.p; r/j

� C

�.
j /

h!.p/

p
.p.2pr/
j �1 C p2r.
j � 1/.2pr/
j �2 C p2r.2pr/
j /

C !.p/
�

1C 1

p2

�

p2.2pr/
j /
i

;

(A.8b)

ja g�.jC 1
2
/;C.p; r/j

� C

�.
j /

h!.p/

p
..2pr/
j �1 C pr.
j � 1/.2pr/
j �2 C pr.2pr/
j /

C !.p/
�

1C 1

p2

�

p.2pr/
j �1/
i

;

(A.8c)

ja f�.jC 1
2
/;C.p; r/j

� C

�.
j /

h!.p/

p
.p.2pr/
j C p2.
j � 1/.2pr/
j �1 C p2r.2pr/
j �1/

C !.p/
�

1C 1

p2

�

p2.2pr/
j /
i

:

(A.8d)

And for negatives energies �!.p/ < �me, we get the same estimates for

ja gjC 1
2
;�.p; r/j; ja fjC 1

2
;�.p; r/j;

ja g�.jC 1
2
/;�.p; r/j; ja f�.jC 1

2
/;�.p; r/j;

respectively for

ja f�.jC 1
2
/;C.p; r/j; ja g�.jC 1

2
/;C.p; r/j

ja fjC 1
2
;C.p; r/j; ja gjC 1

2
;C.p; r/j:

Estimates for the second derivatives are given for .p; r/ near .0; 0/ by
ˇ
ˇ
ˇ
ˇ

@2

@p2
gjC 1

2
;C.p; r/

ˇ
ˇ
ˇ
ˇ

�
C
2j

�.
j /
p
j �1r
j ; (A.9)

ˇ
ˇ
ˇ
ˇ

@2

@p2
fjC 1

2
;C.p; r/

ˇ
ˇ
ˇ
ˇ

�
C
2j

�.
j /
p
j �1r
j �2; (A.10)

ˇ
ˇ
ˇ
ˇ

@2

@p2
g�.jC 1

2
/;C.p; r/

ˇ
ˇ
ˇ
ˇ

� C.
j � 1/
j
�.
j /

p
j �2r
j �1 C C
j

�.
j /
p
j r
j �1; (A.11)

ˇ
ˇ
ˇ
ˇ

@2

@p2
f�.jC 1

2
/;C.p; r/

ˇ
ˇ
ˇ
ˇ

�
C
2j

�.
j /
p
j r
j �1; (A.12)
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and the same estimates for negatives energies hold respectively for

ˇ
ˇ
ˇ
@2

@p2
f�.jC 1

2
/;�.p; r/

ˇ
ˇ
ˇ;

ˇ
ˇ
ˇ
@2

@p2
g�.jC 1

2
/;�.p; r/

ˇ
ˇ
ˇ;

ˇ
ˇ
ˇ
@2

@p2
fjC 1

2
;�.p; r/

ˇ
ˇ
ˇ;

ˇ
ˇ
ˇ
@2

@p2
gjC 1

2
;�.p; r/

ˇ
ˇ
ˇ:

B. Mourre theory: abstract framework

In this section, we recall some abstract results from Mourre’s theory that were
used in Section 5. We work with an extension of the original Mourre theory
[26] that allows, in particular, the so-called conjugate operator to be maximal
symmetric (not necessarily self-adjoint). Such an extension was considered in
[22] and further re�ned in [15, 16] (see also [12, 18]). Here we mainly follow the
presentation of [12].

Let H be a complex separable Hilbert space. Consider a self-adjoint operator
H on H and a symmetric operator H 0 on H such that D.H/ � D.H 0/. Let

G WD D.jH j 1
2 /;

equipped with the norm

k'k2G WD kjH j 1
2'k2 C k'k2:

We set

k'k2G� WD k.jH j C 1/�
1
2'k2:

The dual space G� of G identi�es with the completion of H with respect to the
norm k � kG� , and the operators H , H 0 identify with elements of B.GIG�/, the set
of bounded operators from G to G�.

Let A be a closed and maximal symmetric operator on H. In particular, the
de�ciency indices n� D dim Ker.A� ˙ i/ of A obey either nC D 0 or n� D 0.
We suppose that nC D 0, so that A generates a C0-semigroup of isometries
¹Wt ºt�0 (see e.g. [10, Theorem 10.4.4]). Recall that a C0-semigroup on Œ0;1/

is, by de�nition, a map t 7! Wt 2 B.H/ such that W0 D 1, WtWs D WtCs

for t; s � 0, and w- limt!0C Wt D 1, where B.H/ denotes the set of bounded
operators on H and w- lim stands for weak limit. The fact that A is the generator
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of the C0-semigroup ¹Wtºt�0 means that

D.A/ D ¹u 2 H; lim
t!0C

.i t /�1.Wtu � u/ existsº;

iAu D lim
t!0C

t�1.Wtu � u/:

We make the following hypotheses.

Hypothesis B.1. For all t > 0, Wt and W �
t preserve G and, for all ' 2 G,

sup
0<t<1

kWt'kG < 1; sup
0<t<1

kW �
t 'kG < 1:

In particular, t 7! Wt jG 2 B.G/ is a C0-semigroup, and the extension of Wt to
G� (which will be denoted by the same symbol) de�nes a C0-semigroup on B.G�/

(see [12, Remark 1.4.1)]. Their generators are denoted byAG andAG� , respectively.

Hypothesis B.2. The operator H 2 B.GIG�/ is of class C1.AGIAG�/, meaning
that there exists a positive constant C such that, for all 0 � t � 1,

kWtH �HWtkB.GIG�/ � Ct:

Moreover, for all ' 2 D.H/,

lim
t!0C

1

t
.h';WtH'i � hH';Wt'i/ D h';H 0'i:

Proposition B.3. Suppose that Hypothesis B.1 holds and that the sesquilinear

form ŒH; iA� de�ned on D.A/ \ G by

hu; ŒH; iA�vi WD ihu;HAvi � ihA�u;Hvi;

extends to a bounded quadratic form on G. Then H is of class C1.AGIAG�/ in

the sense of Hypothesis B.2, and the operator H 0 2 B.GIG�/ is the operator

associated with the quadratic form ŒH; iA�.

Under Hypotheses B.1 and B.2, we have the following version of the virial
theorem.

Theorem B.4 (virial theorem). Assume Hypotheses B.1 and B.2. For any eigen-

state ' of H , we have that

h';H 0'i D 0:
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The limiting absorption principle stated in Theorem B.7 below requires some
more regularity of H with respect to A:

Hypothesis B.5. The operator H 2 B.GIG�/ is of class C1;1.AGIAG�/, i.e.

Z 1

0

kŒWt ; ŒWt ; H ��kB.GIG�/

dt

t2
< 1:

We recall that hAi D .1CA�A/1=2 D .1C jAj2/1=2 for any closed operator A.
Our last hypothesis is a version of a strict Mourre estimate.

Hypothesis B.6. There exist an open interval I � R and constants c0 > 0, C 2 R,
such that, in the sense of quadratic forms on D.H/,

H 0 � c01 � C1
?
I .H/hH i; (B.1)

where 1
?
I .H/ WD 1 � 1I .H/.

The following theorem shows that a limiting absorption principle holds for
H in any compact interval where a Mourre estimate is satis�ed in the sense of
Hypothesis B.6. The proof of Theorem B.7 can be found in [15] (see also [22] for
a similar result under slightly stronger assumptions).

Theorem B.7 (limiting absorption principle). Assume that Hypotheses B.1, B.5,

and B.6 hold. Let J � I be a compact interval, where I is given by Hypothe-

sis B.6, and let

zJ D ¹z 2 C;Re z 2 J; 0 < jIm zj � 1º:

For any 1=2 < s � 1, we have that

sup
z2 zJ

khAi�s.H � z/�1hAi�sk < 1;

and the map z 7! hAi�s.H � z/�1hAi�s 2 B.H/ is uniformly Hölder continuous

of order s � 1=2 on zJ . In particular, the limits

hAi�s.H � � � i0˙/�1hAi�s WD lim
"!0˙

hAi�s.H � � � i"/�1hAi�s ;

exist in the norm topology of B.H/, uniformly in � 2 J . This implies that

the spectrum of H in J is purely absolutely continuous. Moreover, the map

� 7! hAi�s.H � � � i0˙/�1hAi�s 2 B.H/ is uniformly Hölder continuous of

order s � 1=2 on J .
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Remark B.8. 1) Theorem B.7 is established in [15] in the more general context
of singular Mourre theory. More precisely, as shown in [15], the assumption
that the commutator H 0 is relatively bounded with respect to H can be relaxed.
This is of fundamental importance for the application to massless quantized �elds
considered in [16], but is not needed for the model studied in the present paper.
Therefore, we content ourselves with the simpler setting of regular Mourre theory

(i.e. we suppose that H 0 is H -bounded).

2) The results in [15] are formulated under a stronger assumption than Hypoth-
esis B.5, namely that H 2 C2.AGIAG�/. Nevertheless, as mentioned in [15], one
can verify that Hypothesis B.5 is su�cient for Theorem B.7 to hold.

3) By Fourier transform, Theorem B.7 implies the local decay property

khAi�se�itH�.H/hAi�sk D O.hti�sC 1
2 /;

for any � 2 C1
0 .I IR/ and 1=2 < s � 1.

C. Creation and annihilation operators in Fermi–Fock space

Let G be any separable Hilbert space. Let
Nn
aG denotes the antisymmetric n-th

tensor power of G, appropriate to Fermi–Dirac statistics. We de�ne the Fermi–
Fock space over G, denoted by Fa.G/, to be the direct sum

Fa.G/ D
1
M

nD0

n
O

a

G;

where, by de�nition, we have set
N0
aG WD C. We shall denote by�a the vacuum

vector in Fa.G/, i.e., the vector .1; 0; 0; : : : /.
Let Fa be the Fermi–Fock space over Hc ,

Fa WD Fa.Hc/ :

The Fermi–Fock space for electrons and positrons, denoted by FD , is the following
Hilbert space

FD WD Fa ˝ Fa: (C.1)

We denote by �D WD �a ˝�a the vacuum of electrons and positrons. One has

FD D
1
M

r;sD0

F.r;s/a ;
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where

F.r;s/a WD
� r
O

a

Hc

�

˝
� s
O

a

Hc

�

:

For every ' 2 H we de�ne in Fa.H/ the annihilation operator, denoted by b.'/
as

b.'/� D 0;

and, for any n 2 N,

b.'/ .AnC1.'1 ˝ � � � ˝ 'nC1//

D
p
nC 1

.nC 1/Š

X

�

sgn.�/ .'; '�.1// '�.2/ ˝ � � � ˝ '�.nC1/;

where 'i 2 H. Note that the operator b.'/ maps
NnC1
a H to

Nn
a H. It extends by

linearity to a bounded operator on Fa.H/.

The creation operator, denoted by b�.'/, is the adjoint of b.'/. The operators
b�.'/ and b.'/ satisfy kb.'/k D kb�.'/k D k'k.

We now de�ne the annihilation and creation operators in the Fermi–Fock space
FD for electrons and positrons.

We �rst de�ne the creation and annihilation operators for the electrons. For
any g 2 Hc , we de�ne in FD D Fa ˝ Fa the annihilation operator, denoted by
bC.g/, as

bC.g/ WD b.g/˝ 1:

Observe that bC.g/ maps F.rC1;s/
a into F

.r;s/
a as follows:

bC.g/.ArC1.g1 ˝ � � � ˝ grC1/˝ As.h1 ˝ � � � ˝ hs//

D Œb.g/ArC1.g1 ˝ � � � ˝ grC1/�˝ As.h1 ˝ � � � ˝ hs/:

The creation operator b�
C.g/ D b�.g/˝ 1 is the adjoint of bC.g/. The operators

b�
C.g/ and bC.g/ are bounded operators in FD .

We set, for every g 2 Hc ,

b
;C.g/ D bC.P
g/;

b�

;C.g/ D b�

C.P
g/;

where P
 is the projection of Hc onto the 
-th component.
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We next de�ne the creation and annihilation operators for the positrons.
For every h 2 Hc , we de�ne in FD the annihilation operator, denoted by b�.h/, as

b�.h/ WD .�1/Ne ˝ b.h/;

where .�1/Ne denotes the bounded operator on Fa de�ned by its restriction to
Nr
a hc as .�1/Neu D .�1/ru for any u 2

Nr
a hc .

In other words, b�.h/ maps F.r;sC1/a into F
.r;s/
a as follows:

b�.h/.Ar.g1 ˝ � � � ˝ gr /˝ AsC1.h1 ˝ � � � ˝ hsC1//

D Ar.g1 ˝ � � � ˝ gr /˝ Œ.�1/rb.h/AsC1.h1 ˝ � � � ˝ hsC1/�:

The creation operator b�
�.h/ D .�1/Ne ˝ b�.h/ is the adjoint of b�.h/; b�

�.h/ and
b�.h/ are bounded operators in FD.

As above, we set, for every h 2 Hc ,

b
;�.h/ D b�.P
h/;

b�

;�.h/ D b�

�.P
h/:

A simple computation shows that the following anti-commutation relations
hold

¹b
;˙.g1/; b�
ˇ;˙.g2/º D ı
;ˇ .P
g1; P
g2/L2.RC/

;

and

¹b]1


;C.g1/; b
]2

ˇ;�
.g2/º D 0 ;

where g1, g2 2 Hc , and ]i (i D 1; 2/ stand either for � or for no symbol.

As in [27, chapter X], we introduce operator-valued distributions b
;˙.p/ and
b�

;˙.p/ that ful�lls

b
;˙.g/ D
Z

RC

b
;˙.p/ .P
g/ .p/ dp;

b�

;˙.g/ D

Z

RC

b�

;˙.p/ .P
g/ .p/ dp;

where g 2 Hc .
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We also de�ne for � D .p; 
/,

b
]
˙.�/ WD b

]

;˙.p/ :

Note that with the notation of (2.7), we have

b
]
˙.g/ D

Z

b
]
˙.�/g.�/ d� :

We now give a representation of b
;˙.p/ and b�

;˙.p/. Recall that DD denote

the set of smooth vectors ˆ 2 FD for which ˆ.r;s/ has a compact support and
ˆ.r;s/ D 0 for all but �nitely many .r; s/.

For every �1 D .p; 
/, bC.�1/ maps F
.rC1;s/
a \ DD into F

.r;s/
a \ DD and we

have

.bC.�1/ˆ/
.r;s/.p1; 
1; : : : ; pr ; 
r Ip0

1; 

0
1; : : : ; p

0
s; 


0
s/

D
p
r C 1ˆ.rC1;s/.p; 
; p1; 
1; : : : ; pr ; 
r Ip0

1; 

0
1; : : : ; p

0
s; 


0
s/I

b�
C.�1/ is then given by

.b�
C.�1/ˆ/

.rC1;s/.p1; 
1; : : : ; prC1; 
rC1Ip0
1; 


0
1; : : : ; p

0
s; 


0
s/

1p
r C 1

rC1
X

iD1

.�1/iC1ı
i
ı.p � pi /;
ˆ.r;s/.p1; 
1; : : : ;1pi ; 
i ; : : : ; prC1; 
rC1Ip0

1; 

0
1; : : : ; p

0
s; 


0
s/

where O� denotes that the i-th variable has to be omitted.
Similarly, for �2 D .p0; 
 0/, b�.�2/ maps F.r;sC1/a \ DD into F

.r;s/
a \ DD such

that

.b�.�2/ˆ/
.r;s/.p1; 
1; : : : ; pr ; 
r Ip0

1; 

0
1; : : : ; p

0
s; 


0
s/

D ..�1/NC ˝ b.�2/ˆ/
.r;s/.p1; 
1; : : : ; pr ; 
r Ip0

1; 

0
1; : : : ; p

0
s; 


0
s/

D
p
s C 1.�1/rˆ.r;sC1/.p1; 
1; : : : ; pr ; 
r Ip0; 
 0; p0

1; 

0
1; : : : ; p

0
s; 


0
s/I

b�
�.�2/ is then given by

.b�
�.�2/ˆ/

.r;sC1/.p1; 
1; : : : ; pr ; 
r Ip0
1; 


0
1; : : : ; p

0
sC1; 


0
sC1/

D 1p
s C 1

.�1/r
sC1
X

iD1

.�1/iC1ı
 0;
 0
i
ı.p0 � p0

i /

ˆ.r;s/.p1; 
1; : : : ; pr ; 
r I

p0
1; 


0
1; : : : ;

1p0
i ; 


0
i ; : : : ; p

0
sC1; 


0
sC1/:
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Let us recall that ˆ.r;s/ is antisymmetric in the electron and the positron variables
separately. We have

¹b
;C.p/; b�

 0;C.p

0/º D ¹b
;�.p/; b�

 0;�.p

0/º D ı
;
 0ı.p � p0/ : (C.2)

Any other anti-commutators equal zero.
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