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Spectral theory near thresholds
for weak interactions with massive particles
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Abstract. We consider a Hamiltonian describing the weak decay of the massive vector
boson Z° into electrons and positrons. We show that the spectrum of the Hamiltonian is
composed of a unique isolated ground state and a semi-axis of essential spectrum. Using
an infrared regularization and a suitable extension of Mourre’s theory, we prove that the
essential spectrum below the boson mass is purely absolutely continuous.
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1. Introduction

In this paper, we study a mathematical model for the weak decay of the vector
boson ZY into electrons and positrons. The model we consider is an example of
models of the weak interaction that can be patterned according to the Standard
Model of Quantum Field Theory. Another example, describing the weak decay
of the intermediate vector bosons W into the full family of leptons, has been
considered previously in [7, 4]. Comparable models describing quantum elec-
trodynamics processes can be constructed in a similar manner, see [2, 5, 8, 21].
We also mention [14, 17] where the spectral analysis of some related abstract quan-
tum field theory models have been studied.

Unlike [4], the physical phenomenon considered in the present paper only
involves massive particles. In some respects, e.g. as far as the existence of a ground
state is concerned, this feature considerably simplifies the spectral analysis of the
Hamiltonian associated with the physical system we study. The main drawback is
that, due to the positive masses of the particles, an infinite number of thresholds
occur in the spectrum of the free Hamiltonian (i.e. the full Hamiltonian where the
interaction between the different particles has been turned off). Understanding the
nature of the spectrum of the full Hamiltonian near the thresholds as the interaction
is turned on then becomes a subtle question. Spectral analysis near thresholds, in
particular by means of perturbation theory, is indeed well-known to be a delicate
subject. This is the main concern of the present work.

Our main result will provide a complete description of the spectrum of the
Hamiltonian below the boson mass. We will show that the spectrum is composed
of a unique isolated eigenvalue E (the ground state energy), and the semi-axis of
essential spectrum [E 4 me, 00), me being the electron mass. Moreover, using a
version of Mourre’s theory allowing for a non self-adjoint conjugate operator and
requiring only low regularity of the Hamiltonian with respect to this conjugate
operator, we will prove that the essential spectrum below the boson mass is purely
absolutely continuous.

In order to prove our main results we use a spectral representation of the self-
adjoint Dirac operator generated by the sequence of spherical waves. See [19]
and Section 2. If we have been using the plane waves, for example the four ones
associated with the helicity (see [32]), the two kernels G@® () of the interaction
(see below) would have had to satisfy an infrared regularization with respect to
the fermionic variables. By our choice of the sequence of the spherical waves, the
kernels of the interaction have to satisfy an infrared regularization for only two
values of the discrete parameters characterizing the sequence of spherical waves.
For any other value of the discrete parameters, we do not need to introduce an
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infrared regularization. Thus we have reduced the problem of proving that the
spectrum is absolutely continuous in a neighborhood of a threshold to a simpler
one, which still remains to be solved.

Before precisely stating our main results in Section 3, we begin with introduc-
ing in details the physical model we consider.

2. Description of the model
2.1. The Fock space of electrons, positrons and Z° bosons

2.1.1. Free Dirac operator. The energy of a free relativistic electron of mass
m, is described by the Dirac Hamiltonian (see [28, 32] and references therein)

1
Hp :=a--V + Bm,,
i

acting on the Hilbert space $ = L2(R3; C*), with domain ®(Hp) = H'(R3; C*).
We use a system of units such that 4 = ¢ = 1. Here « = (a1, 3, o3) and B are
the Dirac matrices in the standard form:

I 0 0 o .
= bl ] = b = 172737
A (0 —1) % (Ui 0) l

where o; are the usual Pauli matrices. The operator Hp is self-adjoint, and
spec(Hp) = (—00, —me] U [me, +00).

The generalized eigenfunctions associated with the continuous spectrum of the
Dirac operator Hp are labeled by the total angular momentum quantum numbers

i 135 . . .
16{5,5,5,...}, mje{—j,—j+1,....j—1]j}, 2.1

and by the quantum numbers

K; e{:l:(j+%)}. 2.2)

In the sequel, we will drop the index j and set
y = 0. mj. &), (2.3)

and a sum over y will thus denote a sum over j € IN + %, m; € {—],
—j+1,....j—1j}and«; € {£(j +3)}. Wedenote by I' the set {(j, m;., k),
jeEN+ LI mjel{—j—j+1L....j—Ljhke{x(+3)}}
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For p € R? being the momentum of the electron, and p := |p|, the continuum
energy levels are given by £ w(p), where
o(p) = (me? + p?)?. (24)
We set the notation
E=(p.y) eRy xT. (2.5)

The continuum eigenstates of Hp are denoted by (see Appendix A for a
detailed description)

V(6 x) =v+((p,y),x).
We then have

HD Wi((ﬁv )/)’ X) =+ Cl)(p) Wi((}’, )’)’ X).
The generalized eigenstates 4. are here normalized in such a way that

| L0008 = 8= 1),

| VL v 0 dx =0,

Here wi ((p,y), x) is the adjoint spinor of ¥+ ((p, y), x).

According to the hole theory [23, 28, 29, 32, 34], the absence in the Dirac
theory of an electron with energy £ < 0 and charge e is equivalent to the presence
of a positron with energy —FE > 0 and charge —e.

Let us split the Hilbert space $ = L?(IR3; C*) into

Ne= = Pleco,—m](Hp)$H and 9.+ = P, +00)(Hp)$H.

Here P;(Hp) denotes the spectral projection of Hp corresponding to the inter-
val 1.
Let ¥ := R+ x I'. From now on, we identify the Hilbert spaces )+ with

$ie 1= LA(2:0) =~ P L*(R4: 0).
14

by using the unitary operators U,+ defined from §)_+ to £, as

(U,+$)(p.y) = Lim. / v (poy) . x) b dx. 2.6)

On $., we define the scalar products
Ch) = | g(®)h(E)dE = h(p,y)dp. 2.7
(g. h) /g(é)(é)é yezrfwg(”)(”)” @.7)

In the sequel, we shall denote the variable (p, y) by §&; = (pi1, y1) in the case of
electrons, and &, = (p», y») in the case of positrons, respectively.
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2.1.2. The Fock space for electrons and positrons. Let

Sa = Sa(f)c) = @ ®f)c’
n=0 a
be the Fermi—Fock space over $)., and let

$D =354 ® T4

be the Fermi—Fock space for electrons and positrons, with vacuum Qp (see
Appendix C for details).

2.1.3. Creation and annihilation operators for electrons and positrons. We
set, for every g € 9,

by,+(g) = b+(Pyg),
by (g) = bi(Pyg),

where P, is the projection of ). onto the y-th component, and b, (P, g) and
b} (Pyg) are respectively the annihilation and creation operator for an electron
defined in Appendix C.

As above, we set, for every h € $,

by—(h) = b_(P,h),
b _(h) = b (Pyh),

where b_(P,g) and b* (P, g) are respectively the annihilation and creation oper-
ator for a positron defined in Appendix C, according to which bﬁ’ 4+(g)and bﬁ_ (2)
anticommute (see (C.2)).

As in [27, Chapter X], for £ = (p, y), we introduce operator-valued distribu-
tions b+ (§) = by,+(p) and b1 (§) = by  (p) that fulfill, for g € H,

bilg) = / byt () (Prg) () de.

bi(g) = / b3 4 (p) (Pyg) (p) de.

where we used the notation of (2.7).
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2.1.4. Fock space for the Z° boson. Let & be any separable Hilbert space. Let
&) G denote the symmetric n-th tensor power of &. The symmetric Fock space
over G, denoted by F;(S), is the direct sum

5©) =P Res. (2.8)

n=0 s

where ®2 6 = C. The state 25 = (1,0,0,...,0,...) denotes the vacuum state
in Ss(@)
Let

Y3 :=R3x{-1,0, 1}.

The one-particle Hilbert space for the particle Z° is L?(X3) with scalar product

(f.9) = [, T, 2.9)
¥3
with the notations
& = (k, ) and dé; = dk, (2.10)
3 A=—Zl,0,1 /R3

where &3 = (k, A) € Z3.
The bosonic Fock space for the vector boson Z°, denoted by 40, is thus

Fz0 = Fs(L?(23)). (2.11)

For f € L?(X3), we define the annihilation and creation operators, denoted
by a(f) and a*(f) by

a(f) = /2 FEna(Edes 2.12)

and

a*(f) = /2 FEna® (E)des 2.13)

where the operators a(£3) (respectively a*(£3)) are the bosonic annihilation
(respectively bosonic creation) operator for the boson Z° (see e.g [24, 6, 7]).
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2.2. The Hamiltonian

2.2.1. The free Hamiltonian. The quantization of the Dirac Hamiltonian Hp,
denoted by Hp, and acting on §p, is given by

Hp = [ o(p1) b (1) by (E1)dEs + [ (p2) b* (&) b-(E2)dEs,

with w(p) given in (2.4). The operator Hp is the Hamiltonian of the quantized
Dirac field.

Let ©p denote the set of vectors ® € Fp for which &%) is smooth and has a
compact support and ®%) = 0 for all but finitely many (r, s). Then Hp is well-
defined on the dense subset © p and it is essentially self-adjoint on ® p. The self-
adjoint extension will be denoted by the same symbol Hp, with domain ©(Hp).

The operators number of electrons and number of positrons, denoted respec-
tively by N4 and N_, are given by

Vo= [ prEnbiGods ad M= [ bt EbEae. @1

They are essentially self-adjoint on ©p. Their self-adjoint extensions will be also
denoted by Ny and N_.
We have

spec(Hp) = {0} U [mg, 00).

The set [me, 00) is the absolutely continuous spectrum of Hp.
The Hamiltonian of the bosonic field, denoted by H,o, acting on § o, is

Hy = / w3 (k) a* (E)a(Es) dés

where

w3(k) = /Ik|2 + myo2. (2.15)

The operator Hyo is essentially self-adjoint on the set of vectors & € §zo such
that @ is smooth and has compact support and & = 0 for all but finitely many
n. Its self-adjoint extension is denoted by the same symbol.

The spectrum of H,o consists of an absolutely continuous spectrum covering
[my0, 00) and a simple eigenvalue, equal to zero, whose corresponding eigenvector
is the vacuum state Q5 € §zo.
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The free Hamiltonian is defined on 3 := §p ® Fzo by
Ho=Hp ®1+ 1 ® Hyo. (2.16)

The operator Hy is essentially self-adjoint on ©(Hp) ® D (Ho). Since me < myo,
the spectrum of H is given by

spec(Hop) = {0} U [me, 00).
More precisely,
specy,(Ho) = {0}, specy.(Ho) =@, spec,.(Ho) = [me, 00), 2.17)

where spec,,,, spec,., spec,. denote the pure point, singular continuous and abso-
lutely continuous spectra, respectively. Furthermore, 0 is a non-degenerate eigen-
value associated to the vacuum Qp ® .

2.2.2. The Interaction. The interaction between the electrons/positrons and the
boson vectors Z°, in the Schrodinger representation, is given, up to coupling
contant, by (see [20, (4.139)] and [35, (21.3.20)])

1= [Ty (s~ 9% Za0) dx + e (2.18)

where y*, @ = 0,1,2,3, and ys are the Dirac matrices, g/, is a real parameter
such that g7, >~ 0,074 (see e.g [20]), W, (x) and W, (x) are the Dirac fields for the
electron e_ and the positron ey of mass me, and Z,, is the massive boson field
for Z°.

With the notations of Subsection 2.1.1, W, (x) is formally defined by

We(x) = / V(€ )b+ (§) + Y—(§, )bZ(E) &,

where
Y- x) =y-((p.y). x) = ¥-((p. (j, —mj, —kj)). X) . (2.19)
The boson field Z, is formally defined by (see e.g. [34, equation (5.3.34)]),

O (elk. DalEs)ei
(kP +mg2) )}

Zut) = )2 |

+ Xk, Aa*(E3)e k),

with &5 = (k, A) according to (2.10), and where the vectors €4(k, A) are the
polarizations vectors of the massive spin 1 bosons (see [34, Section 5.3]).
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If one considers the full interaction / in (2.18) describing the decay of the
gauge boson Z° into massive leptons and if one formally expands this interac-
tion with respect to products of creation and annihilation operators, we are left
with a finite sum of terms with kernels yielding singular operators which can-
not be defined as closed operators. Therefore, in order to obtain a well-defined
Hamiltonian (see e.g [13, 8, 9, 7, 4]), we replace these kernels by square integrable
functions G @,

This implies in particular to introduce cutoffs for high momenta of electrons,
positrons and Z° bosons. Moreover, we confine in space the interaction be-
tween the electrons/positrons and the bosons by adding a localization function
f(x|), with f € C§°([0, 00)). The interaction Hamiltonian is thus defined on
H =Tp ® Fzo by

H=H"+H" +H?® + H?", (2.20)

with

= V(61 x) Y _u(83) ke
H; _/(/133 FUxDY+Er )y (gy — vs)¥-(&2, X)\/T(k)e dx)

GW (&1, &, E3)b%(E1)b* (E2)a(%3) d&1dErdEs,
2.21)

* - E)
i = | (/R E)TAES x)V“<gv—V5W+(E“X)/E§TT3(k)e k dx)

G (&1, &, &3)a™ (E3)b—(62)b4 (£1) dE1dérdEs,
(2.22)

)
() _ w —zk-x
H! / ( / FONTET D7y =9 (e ) dx)

GP (&1, &, E)DL(ENDE(62)a* (&) d1dErdés,
(2.23)

and

@* _ e i €u(€3)  ikx )
" = [ [ #0070 e~ v . N T

G (&1, &, &3)a(E3)b_(£2)by (§1) dE1dErdéEs.
(2.24)
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Performing the integration with respect to x in the expressions above, we see that
H ;1) and H 1(2) can be written under the form

HY = H{(FV) = / FOE1, &, &)DLEDD (E2)a(E) dédédEs, (2.25)

1P = HP(FO) i= [ FO . . 6007 €)D" (2)a () d61d6ads
(2.26)

where, fora =1, 2,

F@ (&, &, £3) := 9 (51,6,5)G P (&1, £, £3), (2.27)

and KV (&, £, &), P (&, &, &) are given by the integral over x in (2.21)
and (2.23), respectively.

Our main result, Theorem 3.9 below, requires the coupling functions
F@ (&1, &, &3) to be sufficiently regular near p; = 0 and p, = 0 (where, recall,
& = (p1,y;) for I = 1,2). The behavior of the generalized eigenstates ¥ (§, x)
and ¥_ (&, x) near § = 0, and therefore the behavior of 1(¥ (£}, &,, &3) near p; = 0
and p, = 0, will be analyzed in Appendix A.

2.2.3. The total Hamiltonian

Definition 2.1. The Hamiltonian of the decay of the boson Z° into an electron
and a positron is
H:=Hy+ gHy.

where g is a real coupling constant.

3. Main results

ForpeRy,j€{3. 2....},y =(j.mj. k) and y; = j + 3, we define

2p)Yi NS/ [® , 3
A€ = AGp.y) = TS (BLEE) ([T 1+ ryar)
3.1)

where I' denotes Euler’s Gamma function, and f € Cg°([0, 00)) is the localization
function appearing in (2.21)-(2.24). We make the following hypothesis on the
kernels G@.
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Hypothesis 3.1. Fora =1, 2,
/ A AE) (K + mp?) 2 |G (&, &, &)PdE1dEdEs <00, (3.2)

Remark 3.2. Note that up to universal constants, the functions A(£) in (3.1) are
upper bounds for the integrals with respect to x that occur in (2.21). These bounds
are derived using the inequality (see [34, equations (5.3.23)-(5.3.25)])

€u(83)
v 2w3 (k)

For szo being the constant defined in (3.3), and Cz = 156 szo, let us define

< o1+ (33)

Ki(G@)? = Cz2( / AEVAE) GO b, &)Fd&d&d&), (3.42)

K»(G@)? = CZZ( / AED)?AE)? |GW (&1, &. £)P(KI* + 1)5dsldszds3).
(3.4b)

Theorem 3.3 (self-adjointness). Assume that Hypothesis 3.1 holds. Let gg > 0 be
such that

20 ( Y Kl(G“”V)(# +1) <1, (3.5)
a=1,2 ¢

Then for any real g such that |g| < go, the operator H = Hy+ gHj is self-adjoint
with domain ©(Hy). Moreover, any core for Hy is a core for H.

Remark 3.4. 1) Combining (2.17), relative boundedness of H; with respect
to Hy (see Section 4) and standard perturbation theory of isolated eigenvalues
(see e.g. [25]), we deduce that, for |g| < me, inf spec(H) is a non-degenerate
eigenvalue of H. In other words, H admits a unique ground state.

2) Let Q be the total charge operator
Q=Ni—N_,

where Ny and N_ are respectively the operator number of electrons and the
operator number of positrons given by (2.14).



516 J.-M. Barbaroux, J. Faupin, and J.-C. Guillot

The total Hamiltonian H commutes with Q, and HH is decomposed with respect
to the spectrum of the total charge operator as

J{:@TJ—CZ.
zZ€Z

Each H; reduces H and by mimicking the proof given in [31] one proves that the
ground state of H belongs to Hy.

Theorem 3.3 follows from the Kato—Rellich Theorem together with standard
estimates of creation and annihilation operators in Fock space, showing that the
interaction Hamiltonian Hj is relatively bounded with respect to Hy. For the
convenience of the reader, a sketch of the proof of Theorem 3.3 is recalled in
Subsection 4.1.

For a self-adjoint operator A, we denote by spec,.(A4) the essential spectrum
of A.

Theorem 3.5 (location of the essential spectrum). Assume that Hypothesis 3.1
holds and let gg be as in (3.5). Then, for all |g| < go,

SpecCes (H) = [inf spec(H) + me, 00).

Theorem 3.5 is proven in Subsection 4.2. Our proof is based on a method due
to Dereziriski and Gérard [11] that we adapt to our context.

To establish our next theorems, we need to strengthen the conditions on the
kernels G, Given a function f € L'([0, c0)), we make the convention that the
Fourier transform of f" is the Fourier transform of the function f € L'(R) defined

by f(p) = f(p)if p = 0and f(p) = f(~p) otherwise.
Hypothesis 3.6. For « = 1,2, the kernels G® € L2(Z x ¥ x X3) satisfy

(i) there exists a compact set K C R4 x Ry x R? such that
G (pr,y1, pa,y2.k, A) = 0

if (p1, p2,k) ¢ K;
(ii) there exists & > 0 such that

Do A+ + DG (k1. 71 x2.v2. kL M) Pdxidiadk < oo,
V1,Y2,A
where G @ denote the Fourier transform of G @ with respect to the variables
(p1, p2), and x; is the variable dual to p;;
(iii) if y1; = 1 or yo; = 1, where for [ = 1,2, y;; = |kj,| (with y; =
(ji.mj,.k5,)), and if py = 0 or p» = 0, then G (py1, y1, p2.y2.k, 1) = 0.
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Remark 3.7. 1) The assumption that G is compactly supported in the variables
(p1, p2, k) is an “ultraviolet” constraint that is made for convenience. It could be
replaced by the weaker assumption that G® decays sufficiently fast at infinity.

2) Hypothesis 3.6(ii) comes from the fact that the coupling functions G@®
must satisfy some “minimal” regularity for our method to be applied. In fact,
Hypothesis (ii) could be slightly improved with a refined choice of interpolation
spaces in our proof (see Section 5 for more details). In Hypothesis 3.6(iii), we need
in addition an “infrared” regularization. We remark in particular that Hypotheses
(ii) and (iii) imply that, if y;; = L or y»; =1,

1
1G@ (p1,y1. p2.yv2. k. V| S I p2Fe, 1=1.2,

for 0 < ¢ < 1/2. We emphasize, however, that this infrared assumption is required
only in the case y;; = 1, thatis, for j = 1/2. For all other j € N + %, we
do not need to impose any infrared regularization on the generalized eigenstates
Y+ (p,y); They are already regular enough.

3) One verifies that Hypotheses 3.6(i) and 3.6(ii) imply Hypothesis 3.1.

Theorem 3.8 (location of the spectrum). Assume that Hypothesis 3.1 holds. There
exists g1 > 0 such that, for all |g| < g1,

spec(H) = {inf spec(H)} U [inf spec(H) + me, 00).

In particular, H has no eigenvalue below its essential spectrum except for the
ground state energy, inf spec(H ), which is a simple eigenvalue.

Theorem 3.9 (absolutely continuous spectrum). Assume that Hypothesis 3.6
holds with ¢ > 0 in Hypothesis 3.6(ii). For all § > 0, there exists gg > 0 such that,
forall |g| < gs, the spectrum of H in the interval

[inf spec(H ) + me, inf spec(H) + myzo — §]
is purely absolutely continuous.

Remark 3.10. In Theorem 5.5 below, we prove a stronger result than Theorem 3.9,
which is of independent interest, namely we show that a limiting absorption
principle holds for H in the interval [inf spec(H) 4+ me, inf spec(H) + myo — §].
Another consequence of the limiting absorption principle of Theorem 5.5 is the
local decay property (5.32).

Theorems 3.8 and 3.9 are proven in Section 5. Our proofs rely on Mourre’s
Theory with a non-self adjoint conjugate operator. Such extensions of the usual
conjugate operator theory [26, 3] have been considered in [22], [30], and later
extended in [15, 16].
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We use in this paper a conjugate operator, A, similar to the ones of [22] and
[15,16], and prove regularity of the total Hamiltonian with respect to this conjugate
operator. Combined with a Mourre estimate, this regularity property allows us to
deduce a virial theorem and a limiting absorption principle, from which we obtain
Theorems 3.8 and 3.9.

Our main achievement consists in proving that the regularized physical inter-
action Hamiltonian Hj is regular enough for the Mourre theory to be applied,
except for the terms associated to the “first” generalized eigenstates (j = 1/2).
For the latter, we need to impose a non-physical infrared condition. To establish
the regularity of H; with respect to A, we use in particular real interpolation the-
ory, together with a version of the Mourre theory requiring only low regularity of
the Hamiltonian with respect to the conjugate operator.

We remark that if we make the further assumption that the kernels G are
sufficiently regular with respect to the Z° variable k, similarly to what is assumed
in Hypothesis 3.6(ii) for the variables p;, p,, it is possible to extend the result of
Theorem 3.9 to the interval [inf spec(H )+me, M), forany M > inf spec(H )+ me.
To do that, one would have to add to the conjugate operator 4 a term acting on § zo,
similar to the ones acting on §p (see (5.2)), which would yield a Mourre estimate
on any interval of the form [inf spec(H) + me, M), M > inf spec(H) + m.. The
regularity of G@ in p1, p2 and k would insure that H is regular enough with
respect to A. For simplicity of exposition, we do not present the details of such an
extension of Theorem 3.9 here.

Our paper is organized as follows. As mentioned above, Section 4 is devoted
to the proof of Theorems 3.3 and 3.5, and Section 5 is devoted to the proof of
Theorems 3.8 and 3.9. In Appendix A, we give the estimates on the generalized
eigenfunctions of the Dirac operator that are used in this paper. In Appendix B,
we recall the abstract results from Mourre’s theory that we need. Finally, for
the convenience of the reader, standard definitions and properties of creation and
annihilation operators in Fock space are recalled in Appendix C.

4. Self-adjointness and location of the essential spectrum

In this section we prove Theorems 3.3 and 3.5.

4.1. Self-adjointness. We sketch the standard proof of Theorem 3.3 relying on
the Kato—Rellich Theorem.
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Proof of Theorem 3.3. We use the N, estimates of [13] and follow the proof
of [9, Theorem 2.6] (see also [8]). For

Ki(G):= > Ki(G®)? i=1.2, (4.1

a=1,2

and

Nl—
Il
N
=
N
~—
p—
_'.
N
=
N—
—
(]

1
Cljﬂ = (m—ez + 1+ 2,3) , C2,ﬂ77 :

Bigi=(1+ %)i Bapy = (n(1+ %) + 4%7)2,

we obtain, for any ¢ € ©(H),

[Hryll < (Ki(G) Cip + K2(G)Cap) | Hov ||
+ (K1(G)By,g + Ka(G) By gp) |V |-

Therefore, with (3.5) and for § and 5 small enough, using the Kato—Rellich
Theorem concludes the proof. |

If we note that K>(G) > K;(G), and set
K(G) := K»2(G), Cpp:=Cig+Copy. Bpy:=Big+ Brgy.
we obtain from (4.2) the following relative bound:
Corollary 4.1. Forany y € D(H),

IHry |l < K(G)(Cpyll Hoy [l + Bpyll¥[D)-

In the sequel, for the sake of simplicity, we shall use this relative bound instead
of the stronger result (4.2).

4.2. Location of the essential spectrum. In this subsection, we prove Theo-
rem 3.5. We use the Derezifiski-Gérard partition of unity [11] in a version that
accommodates the Fermi—Dirac statistics and the CAR (such a partition of unity
was used previously in [1]). Let

Us : Sa(Hec @ He) — Fa(9e) @ Fa(He) = Fa ® Sa,
be defined by
UaQa = Qa ® Qa,

Uab™ (91 @ ¢2) = (0*(91) @ 1+ (=1)Y ® b*(¢2)) Vs,
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where (—1)" denotes the bounded operator on §, defined by its restriction to
Q' be as (=D)Nu = (=1)"u for any u € @ b.. Clearly, using the anti-
commutation relations, U, extends by linearity to a unitary map on §, (. & H.).
Let jo € C*°([0, 00); [0, 1]) be such that jo = 1 on [0,1/2] and jo = 0 on [1, c0),
and let jo, be defined by the relation j@ + j2 = 1. Let y := iV, account for
the position variable of the fermions. Given R > 0, we introduce the bounded
operators ji® := jo(ly|/R) and j& := jeo(|y|/R) on Fa($c). Let

jaR:‘s’)C _>5;jc GBf)c,
o — (oo, jiRe).

Lifting the operator jaR to the Fock space §,($.) allows one to define a map
FGR):Fa®e) — FaHe ® H:). The Derezifiski-Gérard partition of unity is
defined by

Lo R G = 5 ®Fan Ta(GR =UTGH).

Using the relation j& + j2 = 1, one easily verifies that La( 7B is isometric.
We construct a similar partition of unity, f‘s ( st), acting on the bosonic Fock
space Fzo = Is(L2(Z3)). It is defined by

(R F 00 — 20 ©F20. TR = UT(R),

where
Us: §5s(L3(Z3) @ L*(Z3)) —> F20 ® T 20,

is the unitary operator defined by
UsQy = Q5 ® Qp,
Usa™ (g1 ® ¢2) = (a*(p1) ® 1T + 1 ® a*(¢2))Us,
and jR is the bounded operator defined by

iR L2(Z5) — L2(Z3) @ LA(Z,),
¢ > (o 9. joo®)-
Here we have used similar notations as above, namely j& := jo(|y3|/R) and

R := joo(lys|/R), where y3 := iV} accounts for the position variable of the
bosons.
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Let N denote the number operator, acting either on §, or on §zo. To shorten
notations, we define the operators

No=N®1, No:=1Q®N,

actingon §,; ® §, and on §z0 ® Fxo.
We recall the following properties that can be easily proven using the defini-
tions of the operators involved (see [1, 11]).

Lemma 4.2. With the previous notations, we have the following properties.

() Let g1, ...,¢0n € Hc. Then
LoD T 1" (02
i=1

=[J0*Gfe) @1+ (DY @b*(jR0i)Q0 ® Q.

i=1

Let g1, ...,¢n € L?(Z3). Then

n n
LGB [Ta* s = [@* Gfen) @ 1+ 1@ a* (iR i) ® Q.

i=1 i=1

(ii) Let w be an operator on ). such that the commutators [w, j#R], defined as
quadratic forms on ®(w), extend to bounded operators on )., where ju
stands for jo and joo. Then

I(No 4+ Noo) "2 (dT(@) ® 1 + 1 ® dT (@) Tu (i R)
— TR AT (@) N2 PE | < [ladu GR)I,

where Pq, denotes the orthogonal projection onto the vacuum sector in §q,
and

ady (i) = (@, jd [0, j&).

The same estimate holds if §a, H¢, j X, Ta and Q, are replaced respectively
by §z0, L2(Z3), jR, Ty and Q5.
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Recall that the total Hilbert space can be written as H = §; ® §4 ® §zo0-
As in [1, 11], it is convenient to introduce an “extended” Hamiltonian, H X, acting
on the “extended” Hilbert space

4 2
j’CeXt = ®&a ® ®Szo.
i=1 j=1

In our setting, the extended Hamiltonian is given by the expression

Hext = (f):xt + gHext
where

ngt =dT'(Hp) ® 1g23, ® ]1®2320 + 1g2z, ®dI'(Hp) ® ]1®2320
+ ]1®4Su ® dF(Hzo) ® ]1320 + ]l®43"u ® ]1320 ® dr(Hz()),

and H}"’“ is given by (2.20)—(2.24), except that the creation and annihilation
operators for the electrons, b = b* ® 1 ® 1, acting on H = F4 ® Fa ® T 20, are
replaced by

#0 . _ o4
by":=b"®lgsz, ®lg2g

(acting on H®*), likewise, the creation and annihilation operators for the positrons,
b* = (=1)M+ ® b* ® 1, are replaced by

PO = ()Mo @ ()M @ bF @ 15, ® 125

#

and the creation and annihilation operators for the bosons, a*, are replaced by

a0 = lgaz, ® a* ® I3 -
Here we have set
Nio:=(N®1g,) ®lgg, ®lgg .
Nioo = (Ig, ® N) ® lg25, ®@ Ig2g .
on H*!, We define similarly the number operators
N_jo = lg2z, ® (N ® 15,) ® Igoz_,.

N—,OO = 1®2%~a ® (]134 ® N) ® 1@23:20,
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and
Nzog:=1lgiz, ® (N ® 15 ).
Nz0 00 = Lgiz, ® (g0 @ N),
and the creation and annihilation operators
bE® =15, @b @ lg2g, ® lg2g_,,

b = ()M @ (<)Y @ 1y, @5 @ Loy,
and

a*® i=1gaz ® 15, ® a*.

Now, we introduce an isometric map,
Lr:H —> ™,

by setting
I'r = Fa(jaR) ® Fa(jaR) ® FS(st)'

Theorem 3.5 will be a consequence of the following lemma.

Lemma 4.3. Assume that Hypothesis 1 holds and let gy be as in (3.5). Let
X € CP(R). Then, for all |g| < go,

ITrx(H) — x(H®YI'g|| — 0, as R — oo.

Proof. Using the Helffer-Sjostrand functional calculus, we represent y(H ) as the
integral

| (07
1(H) = — | ZL(2)(H = 2)"'dRez dImz,
T 0z

where y € C3°(C) denotes an almost analytic extension of y satisfying y|r = x
and |03 ¥(z)| < Cu|Imz|" for any n € IN. The same representation holds for
y (H®Y), from which we deduce that

Trx(H) — x(H™)T'g

1 % v -
= _/ g_)_((z)(HeXt —2) N (H™'Tg —TrH)(H — z)"'dRez dImz.
b/ z
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By Lemma 4.2(ii), together with
ING (H =27 < Climz|™,
J(H™ = 2)7! (Nio + Nioo) || < Climz| ™,
where Ny stands for Ny, N_ or Nzo (and likewise for Ny ¢ and Ny ), we obtain
I(H™ — z) " (H"Tr — TrHo)(H —2)|| 43
< C(ado G + 2oy R Iim 2| -

Here, w is given by (2.4) and w3 is given by (2.15). Using e.g. pseudo-differential
calculus, one easily verifies that

lade (GO = OR™") and [adw, (j &) = O(R™!). as R — oo.

Hence, (4.3) combined with the properties of the almost analytic extension y show
that

3y SN
H / a—)zf(z)(zarext — ) N (HET'g — TrHo)(H — z)"'dRez d Imz H — O(R™).
It remains to estimate
d ..
/ 8—;‘(2)(17(ext —2) Y HTgr —TrH)(H — z)"'dRez d Imz.

The different interaction terms appearing in the definition (2.20) of Hj are treated
in the same way. Consider for instance the interaction Hamiltonian H ;1) given
by (2.21), written under the form given in (2.25),

H;" = / FO 1 &, 8)bL(EDDI (E)a () di1deadss

with F e L2(dg dEydEs). We let H ,(1)’6’“ be defined by the same expression,
except that the creation and annihilation operators b% , b*, a are replaced by bi’o,
b*°, a° defined above. Using Lemma 4.2(i), a straightforward computation gives
Hy"Tp —TrH;" = / J1i V. 1V, | [ VD FD 1. o, £5)
b3 (E1)b™0(2)a® (63)'r df1dEads
+ 3 [ 3Ll VD F V6 o 60
I>1 4 g # ~
b (61)DZ7 (62)a" (63)T'r d€1déadEs
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where we have set

Ju(yils 1vals [ysD) = 1= jo(Iy1l/R) jo(|y2l/R) jo(ly3l/R)

and, for I # 1, ji(Iy1], |y2l. [y3]) is of the form

Jilyals 1y2ls [ysl) = jsr(Iy1l/R) je2(|y21/ R) jus(1y3l/R)

with j& = jo Or j#i = joo, and at least one of the jy;’s is equal to j.,. Moreover,
bi’ﬁ stands for bi’o or b, and likewise for b** and a".
It follows from the N, estimates (see [13]) that

I(H — 2y (HD ™ Tg — TrHp ) (H —2)7!|

< Cltmz|7> Y |11l Vp, |, [i Vo [V DF D
1

Therefore, using the fact that
111 Vp, 1, 1§ Vo iV D F DY = 0,

as R — oo and the properties of y, we deduce that

— 0

’

| 2Lyt oy Py — 2yt d i

as R — oo. Since the other interaction terms in (2.20) are treated in the same way,
this concludes the proof. |

We are now ready to prove Theorem 3.5.
Proof of Theorem 3.5. We prove that

specs(H) C [inf spec(H) + me, 00). 4.4)

ess
Let y € C{°((—oo0, inf spec(H ) 4+ me)). Since I'g is isometric, we can write
1(H) = TR (H) = Trx(H™)T'r + 0r(1), (4.5)

where o g (1) stands for a bounded operator vanishing as R — oo. The last equality
above follows from Lemma 4.3. Observing that Niot,00 := N+ 00+ N— 00+ Nz0 o
commutes with H ' and that

Hem]l[l,oo) (Ntot,oo) > (inf SpeC(H) + me)]l[l,oo) (Ntot,oo),

we deduce that
X (H®Y) = 1403 (Niot,00) X (H).
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Hence (4.5) yields

X(H) = 5110y (Niotoo) x (HFYTR + 0r(1) we)
= T 110} (Niot,oo) TR (H) + 0&(1),

where we used again Lemma 4.3 in the last equality. Inspecting the definition of
the operator ['g, it is easy to see that

I3 10y (Niowoo) TR = T((IP?) @ TGP @ T((GED).
Since
TP @ T((HH @ T((HH(Ho + i)~

is compact, and since (Hy + i) y(H) is bounded, we conclude that
3140y (Niotoo) TR X (H)

is compact. Therefore, by (4.6), the operator y(H) is also compact, which
proves (4.4).
To prove the converse inclusion, it suffices to construct, for any

A € (inf spec(H) + me, 00),

a Weyl sequence associated to A. This can be done in the same way as in [,
Theorem 4.1] or [1, Theorem 4.3]. We do not give the details. O

5. Proofs of Theorems 3.8 and 3.9

In this section, we prove Theorems 3.8 and 3.9 by applying a suitable version of
Mourre’s theory. We begin with defining the conjugate operator A that we consider
in Subsection 5.1; We show that the semi-group generated by A preserves the form
domain of the total Hamiltonian H. In Subsection 5.2, we establish regularity of
H with respect to A and in Subsection 5.3, we prove a Mourre estimate. Putting all
together, we finally deduce in Subsection 5.4 that the statements of Theorems 3.8
and 3.9 hold.

5.1. The conjugate operator and its associated semigroup. Let a be the oper-
ator on L?(RR+) defined by the expression

a= %(f(l’)ap + 3, 1(p) = if(p)d, + %f/(p), 5.1)
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where

f(p):=p~lo(p) = p~'Vp? + m?

and f” stands for the derivative of f. The operator a with domain C3°((0, 00)) is
symmetric; its closure is denoted by the same symbol.
We construct the Cy-semigroup, w;, associated with a. Let
P

1
——dr = Vp? + m? — me.
o f(r)

Note that the function g is bijective on [0, co), with inverse

g(p) =

g ' (p) = V(p + me)> —mc2.

For all ¢ > 0, let y; be defined on [0, co) by

ifp </t +me)?—m?=g7')
Vi(p) = . .
g Y (~t + g(p)) otherwise.

Setting 1
(weu)(p) := @p¥:(p)2uYi(p)).

one easily verifies that w; is the Cy-semigroup of isometries associated with a,
namely w;4+s = w,;w;s for ¢, s > 0, and (3, w;u)|r=o(p) = i(au)(p). We observe
that ¢ is maximal symmetric with deficiency index ny = dim Ker(a* —i) = 0.

On 9. = P, L?(R), the operator D, a is still denoted by the symbol a.
Our conjugate operator, A, acting on the full Hilbert space H = §, ® §, ® § o0,
is then given by

A=dl@)®10®1+1®d(@) ® 1. (5.2)

From the properties of a, we deduce that A is maximal symmetric and generates
the Cp-semigroup
Wt = F(wt) ® F(wt) ® 1.
The adjoint semigroup, W,*, with generator —A*, is given as follows: For any
p,t=>0,let
¢ (p) =g ' (t +g(p)).
One can verify that the adjoint semigroup of w; is the Cy-semigroup of contrac-

tions given by

Wiu)(p) = Bppe (P) Ui (p)).
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We deduce that
W =T(w/)®'w)) 1,

and that W;* is a Cy-semigroup (of contractions) on J{.
The form domain of H is denoted by

1
G:=D(H|?) = D(Hy).

Proposition 5.1. Forall t > 0, we have that
w;GcS§, Wr§Gcg,

and
1 1 1 1
IHE Wy (H¢ + D)7 <1, |[H§W(H + D7 <1

In particular, Hypothesis B.1 of Appendix B is satisfied.

Proof. We prove the statement for W,*, the proof for W; is similar. First, we show
that w; ©(w) C D (w) and that

||a)_% wr w W) a)_%|| <1, (5.3)

where, recall,  is the multiplication operator by w(p) = v/ p? + me2 on L2(Ry).
For any u € C5°((0, 00)), we have that

oo wf ul? = / o(2)?13pbe (P)] Ju(be (p))Pdp.

Using the definition of ¢,, one sees that ¢;(p) > p for all + > 0, and hence

lo> wy ul|* < /w(¢z(p))2|3p¢z(p)l u(¢e(p))Pdp = llou|.
Since C3°((0, 00)) is a core for w, this implies that w} D (w) C D(w) and that
”a) wy a)_IH <1.

Using the fact that w; is isometric and an interpolation argument, we obtain (5.3).

Now, let ¢ € Fa,in(D(®)) ® Fa,in(D(©)) ® Fz0, Where Fa,6n(D (@) denotes
the set of vectors (¢o, @1, ...) in P~ , &~ D(w) (algebraic tensor product) such
that ¢, = 0 for all but finitely many n’s. We compute

IHE W, oI = (g, W Ho W, )
= (p, (AT (w;w;, wiow;) @ T'(w,w;) @ 1
+ F(ww)) @ AT (w,w], wrow]) ® 1
+ T(wwy) ® T'(wwy) ® dT'(w3))e),
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where, for ¢y, ¢ operators on $., the operator dI'(c, c2) on §, is defined by
(see [1, 11])

dI'(c1,2)Rq =0,

n
dF ? > n = e > > > e S
(61,62)|®aﬁc 261 Q- ®c1®2®c1 Q-+
J=1 j-1 n—j
Combining (5.3), the bound |w,w/| < 1, and [l, Lemma 2.3] (see also [ll,
Lemma 2.8]), we obtain

Lo 1 1
I|HE W p|* < |(dTM(@)2 ® 1 ® L)p|* + ||(1 ® d['(0)2 ® 1)g]|?
1
+ 11 ® 1 ®dl(ws)2)e|?
1
= |Hg ol

This concludes the proof. |

5.2. Regularity of the Hamiltonian with respect to the conjugate operator.
Recall that the conjugate operator A is defined by the expressions (5.1) and (5.2).
In this subsection, we prove the following proposition.

Proposition 5.2. Assume that Hypothesis 3.6 holds. Let |g| < me. Then we have
that
H e C"!(Ag; Ag),

in the sense of Hypothesis B.5 of Appendix B.

To prove Proposition 5.2, we use real interpolation. We have that
[Ho,iA]=N+ ®101+1® N_-®1,

in the sense of quadratic forms on ©(Hy) N D(A). Since D (Hp) N D(A) is a core
for Hy andsince N+ ® 1®1+1Q® N_®1 is relatively Hy-bounded, Proposition 5.1
together with Proposition B.3 imply that Hq belongs to C!(Ag; Ag+). Next, since
[Hy,iA] commutes with A4, we easily deduce that Hy € C?(Ag; Ag+), and hence
in particular Hy € CV!(Ag; Ag+). Here we recall that, for all 0 < § < 1 and
1 <g < oo,

C™(Ag; Agr)

= {T € B(G:S*). W TW, — T € B(G; §*) forall 1 € (0, 1), 5.4)

1
/ 10 \WrET W, =T dr < oo}.
0

q
B(5;5%)
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In order to prove that H € C!(Ag; Ag+), it remains to show that the inter-
action Hamiltonian H; € C"!(Ag; Ag«). Using in particular Proposition B.3,
we see that it suffices, in fact, to verify that the commutator [Hj, i A] belongs to
B(G; G*) and that [H;,iA4] € C%!(Ag; Ag+). This is the purpose of the remainder
of this section.

We use the notation (2.27). Using Hypothesis 3.6 and the estimates of Appen-
dix A (see (A.6)—(A.7) and (A.9)—-(A.12)), we can rewrite

F@ (&, &, £) := i (E1, 6, 6)G@ (51,5, &), (5.5)

where 1@ (¢, &,, £3) is of the form

9 (&), €2, 83) = p1pas@ (&1, 62, £3), (5.6)

with 5@ satisfying, for all n,m € {0, 1, 2},

jon a7 s©) (81,62, €3)| < pr" P2 (5.7)

in a neighborhood of 0.
Moreover the kernels G® satisfy:

(ap) there exists a compact set K C R4 x Ry x R? such that
G (p1.y1, p2.y2.k, ) =0
if (p1. p2.k) ¢ K;
(bg) there exists & > 0 such that

2 (@)
> /(1 +x2 4+ x)G (x1, y1, X2, v2, b, A)Pdxdxadk < oo,
ylsVZaA

2 () ~
where, recall, G denote the Fourier transform of G©@ with respect to the
variables (p1, p2), and x;, [ = 1, 2, is the variable dual to p;;

(co) if p1 = 0or p, =0, then G(a)(pl’ Y1, P2, Y2, k, A) = 0.

Our strategy consists in working with interaction operators of the form (2.20)
with ", H® given by (2.25)~(2.26) and F®, F® satisfying (5.5)~(5.7).
We then use an interpolation argument for the kernels G @,
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Lemma 5.3. Consider the operator Hy of the form (2.20) with HY, HI(Z) given
by (2.25)—(2.26) and FOV, F® satisfying (5.5)-(5.7).

(i) Suppose that G® € L2(T x T x ¥3) satisfy the following conditions:

(i.a) there exists a compact set K C Ry x Ry x R? such that
6(0[)(])1’ Y1, P2, Y2, k, A') =0

if (p1. p2.k) € K;

a (@)
(i.b) Z /(1 +x2 4+ x)|G (X1, 1. X2, 2.k, A)Pdxydxadk < oo;
Y1,¥2,A

(i.c) if p1 = 0o0r pp =0, then G (py., y1. p2. y2.k. ) = 0.
Then H; = [Hy,iA] € C%(Ag: Ag+) = B(G: §%).

(i) Suppose that G® ¢ L%(Z x I x X3) satisfy the following conditions:
(ii.a) there exists a compact set K C Ry x Ry x R? such that

GOpr.yi.p2.ya. kX)) =0

if (p1. p2.k) ¢ K;

2 ()
dib) Y /(1 +x2 4+ 223G (x1, 71, X2, v2. k, V)|Pdx dxpdk < oo
Y1:¥2,4

(ii.c) if p1 = 0 or ps = 0, then DEG@ (py,y1, pa.y2. k. ) = 0 for all
multi-index B = (B1, B2), |B] < 2, with D? = aﬂ1+ﬂ2/ax”1 axﬁz'
1 2

Then H, = [H;,iA] € C'(Ag; Ag»).
Proof. (i) Recall that the conjugate operator A is defined by equation (5.2), with
) i
a=if(p)dy+ 51 ().

and f(p) = p~'y/p? + m2. We use the notation a; = if(p;)d,, + %f/(pl),
for I = 1,2. We then have that

[H;. iA] = Hi(—ia1 F) + Hi(—iasF). (5.8)

in the sense of quadratic forms on ©(Hp) N D(A).
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Recalling the notations & = (p;, y;), we compute

(@1 FO)(E1.6.6) = [%plpzf/(pl)s@ (1,62, 8) +ipa ()5 (1,62, 63)

+ip1p2 f(p1)(3p, s @) (&1, &2, 53)]6(‘1)(51, €2, €3)

+ipipaf(P)S@(E1, £, £3)(0p, G @) (&1, 62, 63).
(5.9)

Using (5.7) and the definition of f, we see that the term in brackets satisfy

%Plpzf/(m)s(a)(flfm £3) +ip2 f(p1)s®@ (€1, 2. &3)

+ip1p2f(P1)(0p, s @) (€1, E2.63)| < P72

in any compact set. Now, since p; +— G@(py, Y1,6.8) € HI(R4) by the
conditions (i.b) and (i.c), and since G® is compactly supported in the variables
(p1, p2, k) by the condition (i.a), we deduce that

U PG @ (&1, 62, £3) € L2(dE1dErdEs).

Here we used that

17! p2G@ (€1, 62, £3) | 120t derdes) S 1P20p G @ (1. E2. 63) [l L2t dtaes)

by Hardy’s inequality at the origin in HJ (R+). Likewise, we have that

ip1p2 f(ps@ (&1L 6. 8)| S 1,

in any compact set, and hence, using again that p; — G@(p1,y1,&.&3) €
H}(R4) and that G@ is compactly supported in the variables (pi1, p2.k),
it follows that

ip1p2f(P1)s@ (61, 62, 6) (05, G @) (61, &2, &) € LP(dE1dE2dEs).
The previous estimates show that
(a1 F @) (1. 62.65) € L(d51d52dEs).
and proceeding in the same way, one verifies that
(@2 F @) (1. £2. 63) € L?(d§1dEdEs).

Using the expression (5.8) of the commutator [Hj,iA] and the N, estimates of
[13], we immediately deduce that [Hy,iA] € B(G:; G*) = CO(Ag; Ag*).
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(ii) It suffices to proceed similarly. More precisely, we compute the second
commutator

[[Hy,iA),iAdl = —H(a?F) — H(a5F) —2H(a1a, F). (5.10)

Computing a%F , a%F and a;a, F yields to several terms that are estimated sepa-
rately. Each term, however, can be treated in the same way, using Hardy’s inequal-
ity together with the assumptions (ii)(a), (ii)(b), (ii)(c). We give an example.
Consider the first term inside the brackets of (5.9) and apply to it the operator
if(p1)dp,. This gives in particular a term of the form

2P P (s 6, £ )G 6, 65),

that will appear in the expression of af F. From (5.7) and the definition of f,
it follows that

P2 f(P) [/ (P1)s@ (E1.62.£3)G @ (61, 6. 83)| < P12 p2|G @ (£1. 62.83)

’

in any compact set. Since p; — G (p1.y1.6.63) € HZ(R4) by the condi-
tions (ii)(b) and (ii)(c), and since G is compactly supported in the variables
(p1, p2, k) by the condition (ii)(a), we obtain as above that

P2 f(p1) [ (P1)s@ (€1, £2,53)G @ (61, 6, &3) € L?(dE1dE2dEs).

Here we used that

1> P2G @ (51, 2. £3) | L2, denaes) < I1P203, G (€1, £2. €3) 112t derdes) -

by Hardy’s inequality at the origin in H3(R4). Treating all the other terms in a
similar manner, we deduce that

a%F +a§F + 2a1axF € Lz(dfldézd%}),

and therefore that [[H,iA],iA] € B(G; G*). Together with Proposition 5.1, this
shows (ii). O

Proof of Proposition 5.2. By the comment after the statement of Proposition 5.2,
we already know that Hy € CU'!(Ag; Ag+). Hence, to conclude the proof of
Proposition 5.2, it suffices to verify that H; € C1(Ag; Ag+). Recall that H;
is the sum of 4 terms, see (2.20). We consider for instance the first one, H ;1).
The other terms can be treated in the same way.



534 J.-M. Barbaroux, J. Faupin, and J.-C. Guillot

Let Ko C Ry x Ry x R? be a compact set. Let S denote the set of all
G e L*(T x I x X3) satisfying the conditions (i.a) (with K = Kj), (i.b),
and (i.c), equipped with the norm

~ ¢y
1GPlsg, = D / (I +x7 +xDIG (1. y1.x2. v2. k. D)dxidxodk.
Y1 SVZaA
Likewise, we denote by S the set of all GD e L2(T x T x ¥3) satisfying the
conditions (ii.a) (with K = Kj), (ii.b), and (ii.c), equipped with the norm

_ 2(1)
||G(1)||S(ii) = Z /(1 +x7 +x3)°G (X1, 1, X2, y2. k, A)Pdx1dxadk.
ylaVZsA'

By Lemma 5.3 and its proof, the map
Sty 3GV — HY HOGW) € C(Ag: Agr) (5.11)
is linear and continuous, and, likewise, the map
Sy 2 GV — HY' (RVGW) e C(Ag: Agr) (5.12)
is linear and continuous. Here we have used the notation
HY' (ROGW) .= [HOHOGW), iA].
By real interpolation, we deduce that

(St Sii)e.2 3 GV r— HY (RMGW) € (CO(Ag; Agr), CH(Ag: Ag+))az,

(5.13)
forall0 <6 < 1.
Now, by [3, Section 5], we have that
(C(Ag: Agr), C'(Ag: Ag))an = C2(Ag: Ag), (5.14)

for all 0 < 6 < 1, and using the definition (5.4), one easily verifies that
C92(Ag; Agr) € CO¥1(Ag: Agr).

On the other hand, from the definition of the interpolated space (S, S¢i))g,2
and mimicking the method allowing one to compute the interpolation of Sobolev
spaces (see e.g. [33]), it is not difficult to verify that, for 0 < ¢ < 20 < 1, the
set of all kernels GO ¢ L?(X x ¥ x X3) satisfying the conditions (ag), (bg)
and (cp) stated above is included in (S). Siy)g,2. This shows, in particular, that
HY" e C%!(Ag; Agr), and hence that H" € C1!(4g; Ag«). Since the other
terms, H ;1)*, H ;2) and H ,(2)*, can be treated in the same way, this concludes the
proof. O
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5.3. The Mourre estimate. Given F=((FWD F?) e (9 @H ®L23))2,
and for H\" (F®) given by (2.25)~(2.26), we define

Hi(F) = HY(FO) + (HP(FO)Y* + HP (FP) + (HP (F@))*.

Proposition 5.4. Assume that Hypothesis 3.6 hold and let § € (0, m). There exist
gs >0, cs > 0and C € R such that, for all |g| < gs, and for

A = [§, my — 4],
we have, in the sense of quadratic forms on D(A) N D(Hy),
H' =[H,iA] > cs1 —ClL(H — E)(H), (5.15)

where we have set E := infspec(H), ]I{A-(H — FE) ;=1 —1A(H — E) and
(H) := 1+ H?)'2

Proof of Proposition 5.4. As in Subsection 5.2, we have, in the sense of quadratic
forms on D(A) N D(Hyp),

[Ho, iA] =N+ ®1Q®1+1QN-Q1, (5.16)

where N (respectively N_) is the number operator for electrons (respectively po-
sitrons) as defined in (2.14). In the sequel, by abuse of notation, we shall omit the
identity operators in Ny ® 1 ® 1 and 1 ® N_ ® 1 and denote them respectively
again by N4 and N_.

Leta; = a ® 1 ® 1 be the conjugate operator for electron acting on the p;
variable in , ® 9. ® L?(X3) anda, = 1 ® a ® 1 be the conjugate operator for
positron acting on the p, variable. As in (5.8), we have that

[HI,iA]=H1(—ia1F)—|—H1(—ia2F), (5.17)

in the sense of quadratic forms on D(A) N D(Hyp). Here we recall that a; F' and
a> F belong to L2?(d&;d£,déE3) as follows from the estimates of Appendix A and
Hypothesis 3.6 (see more precisely the proof of Lemma 5.3(i)).
For Pq,xq, := Po, ® Pq, ®1 being the projection onto the electron/positron
vacuum, we have that
Ny + N_ + Pgyxq, > 1. (5.18)
Since H = Hy + gHj, and for E = inf spec(H ), we obtain from (5.16)-(5.17)
that
[H, iA] = (N+ + N_ + PanQa) - PanQa
+ g(H(—iaF) + Hi(—iax F)) (5.19)

>1- Pg,xo, + g(Hi(—iaF)+ Hi(—iayF)),
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where we used the operator inequality (5.18) in the last inequality. We estimate
separately the two remainder terms occuring in the right hand side of (5.19).
Let us define a function fao € C3°(R) such that 0 < fa < 1 and
{1 if A €[5, myp0 — 5],
fa) = (5.20)

0 ifA<d/20rA>my —38/2.
We observe that

Payxqa fa(Ho) = 0. (5.21)
The last identity holds because Pgq xgq, is a projection commuting with Hy and
because supp(fa) N spec(Ho Po,xq,) = @. As in the proof of Lemma 4.3, let
f € C3°(C) denote an almost analytic extension of fa satisfying f lr = fa and
195 (2)| < CylImz|" for any n € N. Thus, for d f(z) := —ig(z) dRez dImz,

7w 0z
using Helffer-Sjostrand functional calculus and the second resolvent equation,

we obtain

fa(H — E) — fa(Ho) = / (H - E—2)"(H — E — Ho)(Ho — 2" d(2)
- / (H — E —2)"\gH; (F)(Ho — 2" d f(2)
—E /(H —E—2)"Y(Hy—2)"'df(2).

(5.22)
From Corollary 4.1, since Hypothesis 3.1 holds, there exists a constant C such that
|H; (F)(Ho + D)7l < CK(G). (5.23)

where h@G@ = F@ (see (2.27)) and K(G) = K,(G) is given by (3.4)
and (4.1).
Therefore, with the inequality

1+ |z|

Ho+ D(Hy—2)"Y <1 ,
|(Ho+ 1)(Ho—2) || < +|Imz|

(5.24)

and the properties of f, we obtain that there exists a constant C; > 0 depending
only on fa and K(G) such that

'/(H — E—2)""gH(F)(Ho —2)" df(2)

= lgl / (1 + 1|I;rn|zz||) I(H—E —2)"Y|H(G)(Ho + D)7 df(z) (5.25)

<Cilgl
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Moreover, using again (5.23), standard perturbation theory yields that there
exists g1 > 0 such that for all |g| < g1, we have

K(G)B
IEI < Igl 5 o

——— 5.26
- 81K(G)Cgyy (20

where Bg, and Cg, are the positive constants defined in Subsection 4.1. Thus,
there exists a constant C, depending on fa and K(G) such that

HE /(H —E—2)"Y(Ho—2)7'df(2)| < Calgl. (5.27)
Inequalities (5.22), (5.25) and (5.27) give
| fa(H — E) — fa(Ho)|| = (C1 + C2) [g]. (5.28)

For shortness, let 1o = 1a(H — E) and 11 = 15 (H — E). We have that

—Pa,x9, = —1aPo,x0,1a — 1aPa,xa, 1%
—1x Pa,xa.1a — 15 Pagxsalx (5.29)

> —]IAPQaXQa]lA — ]lAPQaXQa]li — ]IXPQ“XQ“]IA — ]li‘.
Using (5.21) and (5.28), we obtain that

1A Pa,xeqll < I fa(H — E)Po,xa, |
= [[(fa(H — E) — fa(Ho)) Pa,xa,ll < (C1 + C2) |gl.

from which we deduce that
—1aPgo,xa,0a — 1A Pa,xa, 1% — 15 Pa,xa,1a > —3(C1 + C2) |g] 1.
Together with (5.29), this shows that
—Pq,xq, = —3(C1 + Cy)|g|1 — 15%. (5.30)

To bound the last term in the right hand side of (5.19), it suffices to use the
relative bound in Corollary 4.1 and the fact that Hypothesis 3.6 holds (and hence
also Hypothesis 3.1), to obtain that the operators Hy(—ia; F) (I = 1, 2) are norm
relatively bounded with respect to Hy with relative bounds depending on K(G)
and K(—ia;G). Therefore, there exists C3 depending on K(G) and K(—ia;G)
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such that
g(Hi(—ia\F) + Hi(—iayF))
> —Cs|g|(H)
= —Cs|g|(H)1a(H — E) — C3|g|(H)15(H — E) (5.31)
> —Culglla(H — E) — Cs|g|(H)1x(H — E)
> —C4lg|1l — Cs|g|(H)1x(H — E),
for some constants C4, C5 € R.

Estimates (5.19), (5.30), and (5.31) yield (5.15), which concludes the proof.
O

5.4. Proofs of the main theorems

Proof of Theorem 3.8. As above, we use the notation £ = inf spec(H ). The proof
of Theorem 3.8 is divided into two main steps.

Step 1. Let 0 < § < m.. There exists gg > 0 such that, forall 0 < |g| < gs,
inf(spec(H) \ {E}) > 6.

To prove this, we use the min-max principle. Let i, denote the second point above
E in the spectrum of H. The min-max principle implies that

> inf ,H
M2 o VY

Ve[Qp Q]+
= inf ’H + ,H ’
WE©<HL||¢||=1,(W o) + &y, Hryr))
VvelQpeQs]t

where [Qp ® Q]+ denotes the orthogonal complement of the subspace spanned by
Qp ® Q2 in the total Hilbert space H. Since Hj is relatively bounded with respect
to Hy, there exists a positive constant C such that (v, Hyy) > —C{(y, Hoy'), and
therefore

> inf 1-C ,H, > (1 — Clg|)me.
H2 = coumivi=1, gD (. Hoy) = (1 - Clgl)me

WE[QD@)S.ZS]l

the last inequality being a consequence of (2.17). This proves Step 1.
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Step 2. Let 0 < § < me. There exists gg > 0 such that, for all 0 < |g| < gs,
spec(H) N [§,me + E) = 0.

Observe that E < 0 satisfies £ > —C|g| with C a positive constant, as follows
from standard perturbation theory (see (5.26)), and therefore, for gs small enough
and |g| < gs, we have that § < me + E. By Theorem 3.5, we know that
infspec, (H) = me + E. Thus we only have to show that H do not have
discrete eigenvalue in the interval [§, me + E): This is a simple, usual consequence
of the virial theorem (see Theorem B.4) combined with the Mourre estimate of
Proposition 5.4. O

We introduce the notation (4) = (1 4+ A*A4)"/2 = (1 + |4|*)!/2 for any closed
operator A. As mentioned before, Theorem 3.9 is a consequence of the following
stronger result, which itself follows from Propositions 5.1, 5.2, 5.4, and the abstract
results of Appendix B.

Theorem 5.5 (limiting absorption principle). Assume that Hypothesis 3.6 holds
with ¢ > 0 in Hypothesis 3.6(ii). For all § > 0, there exists gs > 0 such that, for
all |g| < gsand 1/2 < s <1,

sup [[(4) ™ (H —2)71{A4)™*|| < o,
zel
with A := [infspec(H) + me, infspec(H) + myo — ] and A= {z € C,
Rez € A,0 < |Imz| < 1},. Moreover, the map z +— (A)™S(H — z)"1(A)™ €
B(H) is uniformly Holder continuous of order s — 1/2 on A and the limits
(AVS(H =2 —i05)"HA) ™ := lim (A)S(H — A —ie) 1(4)7",

s—0T

exist in the norm topology of B(H), uniformly in A € A. Finally, the map
A (A)S(H — A —i0%)"Y(A)™S € B(H) is uniformly Holder continuous of
orders—1/2 on A and, for any 1/2 < s < 1, H satisfies the local decay property

I1(A) e H A (H)(A)™S|| S (1)™F3, (5.32)
forallt € R.

Proof. By Propositions 5.1, 5.2, and 5.4, we see that Hypotheses B.1, B.5, and B.6
of Appendix B are satisfied, the open interval / of Hypothesis B.6 being chosen,
for instance, as / = (inf spec(H ) + m. — &, inf spec(H ) + myo — &/2). Therefore
we can apply Theorem B.7 with J/ = A, which proves Theorem 5.5. O
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A. Generalized eigenfunctions of the free Dirac operator

In this section we describe the properties of the generalized eigenfunctions of the
Dirac operator Hp introduced in Subsection 2.1.1. More details can be found in
[19, Section 9.9, (44), (45), (63)].

Recall that the generalized eigenfunctions of Hp are labeled by the angular
momentum quantum numbers

) 1 35 .. . .
]6{555} mje{—j—j+1,....7—1,j},

and by the quantum numbers

We define, for y; := |«;],

CE @pr) 1 T(y)
lo(p)|z T 2T T2y +1)
{7 PTeMiy; F(y; + 1, 2y; + 1, 2ipr)
+ePreT My Fy; + 1, 2y + 1, —2ipr)}

ng,:l:(p’r) =
(A.1)

with C1+ = /w(p) + m. when we consider a positive energy w(p) > me and
C; = /w(p) —me when we consider a negative energy —w(p) < —me.

We also define

iCF 1 @pr)Vi  T(y)
Syt (por) = —2— :
lw(p)|22¥/7 r TQy+1
{7 Py F(y; + 1, 2y; + 1, 2ipr)
—ePTeT My Fy; + 1, 2y; + 1, —2ipr)}

with C2+ = Jo(p) —me, for energies w(p) > me and C; = —,/w(p) + me for

energies —w(p) < —Mme.

(A.2)

The functions F that occurin (A.1) and (A.2) are the confluent hypergeometric
functions. Their integral representations for y; > 1/2 are

. I'Qy; +1) gy ; ;
F(y; +1,2y; +1, :I:ler)z—/ e T PTUYYI (1 — u)Y/ du.
’ ’ T(y; + DT() Jo

(A.3)
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The generalized eigenfunctions

w:l:,(j,mj,/cj)(p,x) = wi,y(P’x) = 1,01(5’36),

where + refers to positive energies w(p) > m. and — refers to negative energies
—w(p) < —me, fulfill

Hp y+((p.y).x) = £ (p) ¥=((p.y). x).
and are defined by

ige;,+(p. 1)) (0.9)

Vi (Gom; i) (DsX) 1=
" —fis (P 1)PG . (6.9)

where the spinors CDS,}j) X and @f,f},xj are orthogonal and defined by

| — 1
_ %Y ! _1(9 )
) 2j +2
4109 = : ’
" J+mj+1
5 Virdm,-10.9)
2j +2 "
J+m
@ 2j Vit m;-1(0-9)
LY s i1 (0.9)
2j J=%mj+3
and
(1) )
@l (+ﬁ¢)¢ RNCYY)
)
<I>mj,_(].+ 1 (0. 9) = (+ 1,0, 9).

It follows from (2.19) that

: (eY)
~ I8, —(p, )P, —«. (0, 9)
1p—,(./',mj,Kj)(P’x) = ( ! Y .

~ o —(p. )P (6, 9)
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For positive energies w(p) > me, we have the following estimates for the
functions g; + and fi, +,

844 (por)| < (w(’f(:)me)%%(zpr)% o (A 4a)
ey 4 (por)] < (‘”(fo)( )me)“—\/”;( P (A 4b)
184 (o1 = (‘”(’Z(Z)me)”—\/”;(zpr)w oy Ao
1 gipa el = (2 (i)(p) S L s, (A 4d)
and for negative energies —w(p) < —m, , we have
g0y -(por)] = (DT )1%( et (A50)
|f,-+%,_(p,r)|§( (p)+me)l% pr)”f_lr(yj), (A.5b)
8-y (1) = (Fos (”) )% S (A.50)
ey ()] < (%f%( YIS (A.5d)

We also can bound the first and second derivatives. Below, we give such
bounds for |p| < 1. For p larger than one, the functions are locally in L4 for
any value of g.

There exists a constant C such that for |p| < 1, and for positive energies
o(p) > me we have

9
gt
(A.62)

[pr)Y + pr(y; = D)@pr)~" + pr2pr) 1],

<
— T'(yy)

3
‘% fj+%,+(17, r)
(A.6b)
[p@pr)Y ="+ p*r(y; — D@2pr)Y =2 + p*r(2pr)¥/].

=T
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ad
ap g G+b4(@:7)
(A.6¢)
- L'(y) [@pr) 7=+ pr(y; = D@pr) =2 + pr2pr)¥i],
J
ad
ap J-G+p.+27)
- (A.6d)
= F(V) [P(2Pr)71 + pzr()/j — 1)(2pr)yj—1 + pzr(2pr)7’j—l]’
J
and for | p| < 1 and negative energies —w(p) < —me, we have
d
‘55’”;,_(17, r)
(A.7a)
) F(V')[p(zpr)yj + p2r(y; — D@pr) T+ p2r@2pr)iT,
J
ad
‘@ Jivs —(p.1)
(A.7b)
< F()’) [(2]77)7’1'—1 + pr(yj — 1)(2pr)1’j—2 + pr(2pr)7’j]’
J
ad
‘5 8 G+b-(p:1)
(A.7¢)
) 1“()/')[])(2pr)yj_1 + p2r(y; — D@pr)Y 2 + p*r2pr)’7],
J
ad
ap S+ h (1)
(A.74d)

=

L'(yj) [2pr)" + pr(y; = D@pr)" =" + pr2pr)’ 7.

The estimates (A.6) and (A.7) yield, for a being the operator defined by (5.1),
and for positive energies w(p) > me,

lagiy 1 +(p.7)l

C
) [#((2”)” +pr(y; = D@pr)" =+ pr2pr)’ T (A 8a)

o) (14 5) pCpr)|
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|a f/'_;_%,_;_(p’ r)|

= F(():/]) [M(P@Pr)w—l + p2r(yj — 1)(2pr)yj—2 + pzr(2pr)7’j)

+o(p)(1+ %)pz(br)”)],

(A.8b)

|a g_(j+%),+(l7, }")|

C [w(p)

<To) (2pr)" =t + pr(y; = D@pr)Y =2 + pr2pr)") (A 8c)
/

o)1+ 5)pCpr )

|a f_(j+%),+(p7r)|

C [w(p)
~ T'(yj)

(p@2pr)"7 + p*(y; = DQ2pr) =1+ p?r2pr) ™) (A 8d)

1 .
top)(1+-3)Pepry]
And for negatives energies —w(p) < —me, we get the same estimates for
lag;y1 _(p.1)], la fi 41 (P71,

|a g_(j+%),_(17, r)l, la f—(j-}-%),—(p’ rl,
respectively for

|a f_(‘j+%),+(p7r)|7 |ag_(j+%)’+(p,r)|

|af;+%’+(p’r)|’ |agj+%,+(p7r)|
Estimates for the second derivatives are given for (p, r) near (0, 0) by
2 2
-1
‘apz &g (p0)| = TP (A.9)
2 Cy.2
J i—1.y;—2
‘@ Jiv4por)| = F(y}_)p” riTe, (A.10)
9 Ci—=DYi y.—2 y—1 Cy, 1
g (p. >‘ S —Ton P T o (AdD
‘3172 Ut T(y)) T(y))
92 v?
‘ > ogeb T )‘ o pYirtitl, (A.12)

_F(J)
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and the same estimates for negatives energies hold respectively for

82 32
‘Wf—(j-}-%),—(p’r) 9 ‘@g_(J-}-%),—(p’r) 5

32
g geaeeon)

32
\@ vy (por)

B. Mourre theory: abstract framework

In this section, we recall some abstract results from Mourre’s theory that were
used in Section 5. We work with an extension of the original Mourre theory
[26] that allows, in particular, the so-called conjugate operator to be maximal
symmetric (not necessarily self-adjoint). Such an extension was considered in
[22] and further refined in [15, 16] (see also [12, 18]). Here we mainly follow the
presentation of [12].

Let H be a complex separable Hilbert space. Consider a self-adjoint operator
H on H and a symmetric operator H’ on H such that O(H) C D(H’). Let

G:=D(H|?),
equipped with the norm
lol3 == I1HI2¢]? + llo]>.
We set
lelZe == I(H| + 1) ~2g].

The dual space §* of G identifies with the completion of H with respect to the
norm || - ||g+, and the operators H, H’ identify with elements of B(G; §*), the set
of bounded operators from G to G*.

Let A be a closed and maximal symmetric operator on J{. In particular, the
deficiency indices n+ = dim Ker(A4* £ i) of A obey either ny = 0 or n_ = 0.
We suppose that ny = 0, so that A generates a Cy-semigroup of isometries
{Wi}iso (see e.g. [10, Theorem 10.4.4]). Recall that a Cy-semigroup on [0, co)
is, by definition, a map t — W; € B(H) such that Wy = 1, W, W, = W,y
for t,s > 0, and w-lim,_,,+ W; = 1, where B(J{) denotes the set of bounded
operators on H and w- lim stands for weak limit. The fact that A is the generator
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of the Cy-semigroup {W;};>¢ means that

D(A) ={ueH, lim+(it)_1(W,u — u) exists},
t—0

iAu = lim t~'(Wyu —u).
t—0t

We make the following hypotheses.

Hypothesis B.1. For allt > 0, W; and W,* preserve G and, for all ¢ € G,

sup [Wipllg < oo, sup [[W/ ¢llg < oo.
1 0o<r<l1

o<t<

In particular, t — W;|g € B(9) is a Co-semigroup, and the extension of W; to
G* (which will be denoted by the same symbol) defines a Co-semigroup on B(G*)
(see [12, Remark 1.4.1)]. Their generators are denoted by Ag and A+, respectively.

Hypothesis B.2. The operator H € B(G; G*) is of class C!(Ag; Ag+), meaning
that there exists a positive constant C such that, forall 0 <t <1,

Wi H — HW; | p(g;5+) < Ct.

Moreover, for all p € ©(H),

lim %((gp, W Ho) — (Hp, Wip)) = (¢, H' ).

t—0+

Proposition B.3. Suppose that Hypothesis B.1 holds and that the sesquilinear
form [H,iA] defined on D(A) NG by

(u,[H,iAv) :=i({u, HAv) —i{A*u, Hv),

extends to a bounded quadratic form on G. Then H is of class C'(Ag; Ag+) in
the sense of Hypothesis B.2, and the operator H' € B(G; S*) is the operator
associated with the quadratic form [H, i A].

Under Hypotheses B.1 and B.2, we have the following version of the virial
theorem.

Theorem B.4 (virial theorem). Assume Hypotheses B.1 and B.2. For any eigen-
state ¢ of H, we have that

(p. H'g) = 0.
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The limiting absorption principle stated in Theorem B.7 below requires some
more regularity of H with respect to A:

Hypothesis B.5. The operator H € B(G; G*) is of class C1:!(Ag; Ag+), i.e.
! dt
|10 00 Y sisn 35 < .

We recall that (4) = (1 4+ A*4)"/2 = (1 +|A|?)!/? for any closed operator A.
Our last hypothesis is a version of a strict Mourre estimate.

Hypothesis B.6. There exist an open interval / C R and constantscg > 0,C € R,
such that, in the sense of quadratic forms on D(H),

H' > col —Cl7 (H)(H), (B.1)

where ]lj-(H) =1-1;(H).

The following theorem shows that a limiting absorption principle holds for
H in any compact interval where a Mourre estimate is satisfied in the sense of
Hypothesis B.6. The proof of Theorem B.7 can be found in [15] (see also [22] for
a similar result under slightly stronger assumptions).

Theorem B.7 (limiting absorption principle). Assume that Hypotheses B.1, B.5,
and B.6 hold. Let J C I be a compact interval, where I is given by Hypothe-
sis B.6, and let

J={zeC,RezeJ 0<|Imz| <1}

Forany 1/2 <s <1, we have that

sup [[{4) ™ (H —2)71{4)™*|| < o0,

zeJ

and the map z — (A)™(H —z) Y (A)™5 € B(H) is uniformly Holder continuous
of order s — 1/2 on J. In particular, the limits

(AVS(H =2 —i05) Y A) ™ := lim (A)S(H — A —ie) (4)7%,
e—>0
exist in the norm topology of B(H), uniformly in A € J. This implies that
the spectrum of H in J is purely absolutely continuous. Moreover, the map
A (A)S(H — A —i0%)"Y(A)™S € B(H) is uniformly Holder continuous of
orders —1/2on J.



548 J.-M. Barbaroux, J. Faupin, and J.-C. Guillot

Remark B.8. 1) Theorem B.7 is established in [15] in the more general context
of singular Mourre theory. More precisely, as shown in [15], the assumption
that the commutator H' is relatively bounded with respect to H can be relaxed.
This is of fundamental importance for the application to massless quantized fields
considered in [16], but is not needed for the model studied in the present paper.
Therefore, we content ourselves with the simpler setting of regular Mourre theory
(i.e. we suppose that H' is H-bounded).

2) The results in [15] are formulated under a stronger assumption than Hypoth-
esis B.5, namely that H € C?(Ag; Ag+). Nevertheless, as mentioned in [15], one
can verify that Hypothesis B.5 is sufficient for Theorem B.7 to hold.

3) By Fourier transform, Theorem B.7 implies the local decay property
[{A) ST H y (H)(A) ™|l = 0((1)~**2),

forany y e C3°(/;R)and 1/2 < s < 1.

C. Creation and annihilation operators in Fermi-Fock space

Let & be any separable Hilbert space. Let R & denotes the antisymmetric n-th
tensor power of &, appropriate to Fermi—Dirac statistics. We define the Fermi—
Fock space over &, denoted by §,(®), to be the direct sum

Sa(ﬁ) = @ ®®7
n=0 a

where, by definition, we have set ®2 ® := C. We shall denote by 2, the vacuum
vector in §,(®), i.e., the vector (1,0,0,...).
Let §, be the Fermi—Fock space over £,

Sa = Sa(f)c) .

The Fermi—Fock space for electrons and positrons, denoted by §p, is the following
Hilbert space

$D = 8a ® Sa- (C.1H
We denote by Qp := Q, ® 2, the vacuum of electrons and positrons. One has

o0

3= P33

r,s=0
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where
509 = (@ 9e) ® (R ).

For every ¢ € $) we define in §,($) the annihilation operator, denoted by b(¢)
as

b(p)©2 =0,

and, for any n € IN,

b(@) (An-f—l((pl Q- (pn-i-l))

_ v
(+1)'

ngn(ﬁ) (@, 05(1)) Po2) @+ ® Po(n+1)>

where ¢; € $). Note that the operator b(¢) maps "H $ to @, 9. It extends by
linearity to a bounded operator on F, ().
The creation operator, denoted by b*(¢), is the adjoint of »(¢). The operators

b*(¢) and b(g) satisfy [[b(e)|| = [[b* ()]l = ]

We now define the annihilation and creation operators in the Fermi—Fock space
$p for electrons and positrons.

We first define the creation and annihilation operators for the electrons. For
any g € 9., we define in §p = §, ® §, the annihilation operator, denoted by

b+(g)’ as
by (g) :==b(g) ® 1.

Observe that b, (g) maps §7 T into 7 as follows:

by (@) (Ar+1(81® -+ ® gr+1) ® As(h1 ® -+- ® hy))
=[b(g)Ar+1(g1® - ® gr+1)] ® As(h1 ® - -+ ® hy).

The creation operator b} (g) = b*(g) ® 1 is the adjoint of b4 (g). The operators
b% (g) and by (g) are bounded operators in §p.
We set, for every g € $,

by,+(g) = b+(Pyg),
b;’+(g) = bi(Pyg),

where P, is the projection of §). onto the y-th component.
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We next define the creation and annihilation operators for the positrons.
For every h € §., we define in §p the annihilation operator, denoted by b_(#), as

b_(h) := (=) @ b(h),
where (—1)Ne denotes the bounded operator on §, defined by its restriction to

Q" be as (=1)Neu = (=1)"u for any u € @, be.

In other words, b_ (i) maps &1 into ) as follows:

b_(h)(Ar(g1 @ ® gr) @ Ast1(h1 ® -+~ ® hst1))
=A4(g1® - ®g)R[(=D'b(M)As+1(h1 ® -+ ® hs11)].
The creation operator b* (h) = (—1)Ne ® b*(h) is the adjoint of b_(h); b* (h) and
b_(h) are bounded operators in §p.
As above, we set, for every h € $,
by—(h) = b_(Pyh),
b;"_(h) = bX(Pyh).

A simple computation shows that the following anti-commutation relations
hold

{by,+(g1), b;,i(gz)} = 8,.8(Pyg1, Pyg2)L2(]R+)’

and

(BE (g1). b2 _(g2)) = 0.

where g1, g2 € 9., and §; (i = 1,2) stand either for * or for no symbol.

As in [27, chapter X], we introduce operator-valued distributions b, 4+ (p) and
b;" 4 (p) that fulfills

bys(g) = /R b () B P,

st = [ b4 (Pr) (),

where g € $,.



Spectral theory near thresholds 551
We also define for £ = (p, y),
bL(§) :=bE L (p).
Note that with the notation of (2.7), we have
b = [l @@ds.

We now give a representation of b, +(p) and b;j, 4 (p). Recall that D p denote
the set of smooth vectors ® € Fp for which &%) has a compact support and
®%) = 0 for all but finitely many (r, 5).

For every £, = (p.y), b4 (£1) maps 3¢ N Dp into 7 N Dp and we
have

by EDP) ) (P1oyie .o PrVri PV Pl Ve

= Vr+ 10T (p oy, pryis . D Ve DY P YD)
b% (§1) is then given by

BEEDR) T (D1 Y1 e Prats Vet P Ve ey Pas VL)

1 r+1 .
m (_1)l+18yiy8(p_l7i),
i=1

®(r’S)(p11 yli'-'ymy-'-spr-f-ly Vr+1;p/17 V{y-'-spés V;)

where * denotes that the i-th variable has to be omitted.
Similarly, for £& = (p’,y"), b—(£>) maps &P N Dp into T N Dp such
that

(b—(E)Q) "D (P1,Y1s s Pro Vi PV Do V)
= (D" @ b(E)DP) ™ (P1.V1s -\ Pro Ve DL VY D YY)
= s+ L=D)" O D (pryi, o pr v PV DL VL Do V)
b* (&;) is then given by

(X (ED D) STV (D1, Y1y ooy Pra Ve PYsVis e os Phsts Vist)

1 s+1 _
= (=) Y (=1)*18, 0 8(p" = pi)
Vs +1 i=1

¢(r,S)(p17 yly""pry )’r;

—

/ !/ / !/ !/ !/
P1»V1s---5 Pis )/i,~-~aps+17 )’s+1)-
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Let us recall that ®*) is antisymmetric in the electron and the positron variables
separately. We have

{by,+ (). by 1 (P} = {by—(p). by _(P")} = 8y, 8(p — 1) . (C2)

Any other anti-commutators equal zero.
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