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Abstract. We consider a random Schrödinger operator on the binary tree with a ran-

dom potential which is the sum of a random radially symmetric potential, Qr , and a ran-

dom transversally periodic potential, �Qt , with coupling constant �. Using a new one-

dimensional dynamical systems approach combined with Jensen’s inequality in hyperbolic

space (our key estimate) we obtain a fractional moment estimate proving localization for

small and large �. Together with a previous result we therefore obtain a model with two

Anderson transitions, from localization to delocalization and back to localization, when

increasing �. As a by-product we also have a partially new proof of one-dimensional

Anderson localization at any disorder.
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1. Introduction and statement of results

In this work we consider discrete Schrödinger operators of the form

H D ��CQ

acting in `2.B/, where B is a rooted regular tree (or Bethe Lattice), � is the adja-

cency operator and Q is a bounded random potential.

For the Anderson model, where the values ofQ are independent and identically

distributed, the spectrum of H may have an absolutely continuous component.

In fact, if the tree has connectivity kC1 and the single site distribution has support

Œ��; ��, then �.H/ D Œ�2
p
k � �; 2

p
k C �� almost surely, and if k � 2 it is

known from the work of Klein [20] and Aizenman–Warzel [4, 5] that for small �

and suitable single site distribution, the spectrum is purely absolutely continuous

almost surely inside Œ�2
p
k; 2

p
k� and near the endpoints ˙.2

p
k C �/.

In fact, for the Anderson model on graphs (adjacency operator plus random

i.i.d. potential) the existence of absolutely continuous spectrum at low disorder

has only been shown for trees and tree-like graphs1 of in�nite dimension with

exponentially growing boundary. A lot of work has been done in extending Klein’s

original result, also in recent years, [3, 4, 5, 10, 11, 12, 9, 16, 19, 22, 27, 30]. At large

disorder and on the edge of the spectrum one typically �nds Anderson localization

(pure point spectrum) in any dimension [1, 2, 6, 8, 7, 13, 14, 23, 34]. Pure point

spectrum for small disorder typically appears in one and quasi one-dimensional

models [6, 15, 21, 25], unless localization is prevented by some symmetry2 [28].

Now, if Q is a radial potential, where the common potential values for each

level are independent and identically distributed, then H can be decomposed as

a direct sum of one-dimensional Anderson Hamiltonians. So in this case there is

localization at all non-zero values of �, and

�.H/ D �pp.H/ D Œ�2
p
k � �; 2

p
k C ��

almost surely.

In this paper, we consider the class of transversally periodic potentials. �ese

potentials were introduced in [10] and [12] to illustrate how fast transversal oscilla-

tions can generate absolutely continuous spectrum in a strongly correlated model.

However, as this class includes radial potentials as a special case, absolutely con-

tinuous spectrum need not be present. We show that the pure point spectrum of a

1 e.g. adding some loops to trees or taking cross products of trees with �nite graphs

2 such symmetries appear in e�ective models for topological insulators
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radial potential is stable under small transversally periodic perturbations that de-

stroy the radial symmetry. For simpler reasons, we can also show that the spectrum

is pure point for large transversally periodic perturbations. Using results of [12]

we can therefore construct an example where there are two Anderson transitions

when increasing the disorder of an added, independent non-radial, transversally

periodic potential.

Now let us consider the geometry of the problem more precisely. �e graph

distance on B will be denoted by d.x; y/ for vertices x; y 2 B. �e root will be

denoted by 0. Although we believe our methods can handle any k, we set k D 2

in this paper for the sake of simplicity. �us the root has two neighbors and any

other vertex has three neighbors. �e nth sphere for n 2 N0 is denoted by

Sn WD ¹x 2 B W d.0; x/ D nº:

For � � 0, we de�ne the operator H� on `2.B/ by

H� D ��CQr C �Qt

i.e.

.H� /.x/ D �
X

yWd.x;y/D1
 .y/CQr .x/ .x/C �Qt .x/ .x/ :

Here, Qr W B ! R is a radial potential, i.e., for any x 2 Sn one has Qr .x/ D qn.

�e qn are chosen independently, according to a distribution �0 for n D 0 and

identically according to � for n � 1. �e transversally periodic random potential

Qt W B ! R, coupled with the coupling constant �, is independent of Qr and

de�ned as follows. We choose Qt .0/ D 0 and for each level or sphere in the tree

except the �rst, there are two potential values chosen at random. �ese values are

then repeated periodically across the level. �us on the diagram, for each level,
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all the black vertices have a common value, as do all the white ones. Each pair of

potentials is chosen independently from a common joint distribution � .

�e purpose of this work is to show localization for small and large transver-

sally periodic disorder � for any disorder in the radial potential. Our main results

are for small �. For these we will need the following assumptions.

Assumptions 1. �e radial measures �0 and � have bounded densities (denoted

also by �0 and �) with support in Œ�K;K� � R for some K < 1. �e transversal

measure � has support in Œ�1; 1�2 � R
2.

�eorem 1.1. Let H� D ��CQr C �Qt where the distributions for the radial

potential Qr and the transversally periodic potential Qt satisfy Assumptions 1.

�en there exists a �0 > 0 such that for 0 � � � �0, H� has pure point spectrum

at all energies almost surely.

We will prove localization via the fractional moment estimate of Aizenman

and Molchanov [1, 2, 18, 32] and the Simon–Wol� criterion [31]. �e required

version of the fractional moment estimate, contained in the following theorem, is

our main technical result. Its proof introduces a new dynamical systems approach.

Remark 1.2. Note that �eorem 1.1 speci�cally includes the case � D 0, this

means that we also give an alternative proof for localization for random radial

potentials. �is part works for any connectivity k C 1, even for the case k D 1,

giving an alternative proof for Anderson localization in one dimension (see also

Remark 4.2 stating the 1D proof ).

We use the notation jxihyj for the rank one operator ıx ˝ ı�
y , and de�ne the

projections

PB WD
X

x2B
jxihxj

for B � B and Pn WD PSn .

�eorem 1.3. Let H� D ��CQr C �Qt where the distributions for the radial

potential Qr and the transversally periodic potential Qt satisfy Assumptions 1.

Given any energy E0 2 R, there exist an open interval I � R containing E0,

constants s 2 .0; 1/, �0 > 0, �0 > 0, C < 1 and ` > 1 such that for all � 2 Œ0; �0�
and n � 0,

sup
E2I

sup
0<�<�0

EŒkP0.H� �E � i�/�1Pnks� � C`�n:
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For the large � result we need the following assumptions:

Assumptions 2. In addition to Assumptions 1, assume that the marginal measures

�0 and �1 of � each have bounded densities.

�eorem 1.4. Let H� D ��CQr C �Qt where the distributions for the radial

potential Qr and the transversally periodic potential Qt satisfy Assumptions 2.

�en there exists a �1 < 1 such that for � � �1, H� has pure point spectrum at

all energies almost surely.

It follows from the results of [12] that there are potentials of the formQr CQt

with an interval of absolutely continuous spectrum. Starting with such a potential

and introducing a coupling constant �, we obtain the following corollary.

Corollary 1.5. �ere exist a random radial potentialQr and a random transver-

sally periodic potential Qt such that H� D �� C Qr C �Qt has pure point

spectrum for large and small � and an interval of purely absolutely continuous

spectrum for some intermediate values of �.

Here is an outline of our paper. In Section 2 we show how �eorem 1.1 follows

from the fractional moment estimate in �eorem 1.3. In Section 3 we express the

fractional moment estimate in terms of a dynamical system. We prove continuity

at � D 0 and reduce considerations to a one-dimensional system (cf. Remark 1.2).

Section 4 contains the proof for this one-dimensional system, modulo a key es-

timate. As will be explained in a remark, this also provides an alternative proof

of one-dimensional (dynamical) localization, �rst established by Kunz and Soul-

liard under the assumptions used here ([24], see also [29]). �e key estimate is

proved in Section 5. Finally, Section 6 contains the proofs of �eorem 1.3 and

�eorem 1.4.

In the one-dimensional setting, our dynamical systems approach is based on

the analysis of the operator

TE;s W C.xR/ �! C.xR/

de�ned by

.TE;sf /.w/ D EqŒf .�1=.w CE � q// jw CE � qj�s �: (1.1)

�e fractional moment estimate for energies near E, which implies localization,

follows from the estimate kTmE;s1k1< 1 for somem 2 N. �e observation that this

is true form D 1 if the distribution for the random potential q is su�ciently spread
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out is essentially the Aizenman–Molchanov proof of large disorder localization.

In order to obtain this estimate for more general distributions, we show that there

exist special bounding functions which decrease point-wise under an application

of T . Any positive function lying below such a bounding function is then forced

to zero under repeated applications of T . �is forms the basis of our proof.

We conclude the introduction with some open problems.

(i) It would be interesting to know the spectral properties of ��C Qr C �QA

for small �, where QA is an Anderson (independent, identically distributed)

potential on B. More generally, one might ask if �eorem 1.1 can be general-

ized to say that ��CQrCQ has pure point spectrum for every deterministic

perturbationQ of ��CQr with su�ciently smallL1-norm. �e dynamical

systems approach which we apply below to the case of transversally periodic

potentials does not work for any of these settings.

(ii) �e Simon–Wol� argument we use implies spectral localization. Dynamical

localization in the form EŒsupt2R kPme�itHPnk� � C`�jm�nj would follow

from an estimateEŒkPm.H�z/�1Pnks� � C`�jm�nj (by modifying the proof

in [32]). However, we are not able to prove this unless m D 0 or n D 0.

(iii) For the intermediate values of �, where the potentials in Corollary 1.5 exhibit

an interval of absolutely continuous spectrum, it would be interesting to know

whether there is band edge localization.

2. Proof of �eorem 1.1

Recall that the random potential Q D Qr C �Qt is de�ned by choosing a value

at the root according to �0 and a pair of values for each sphere Sn with n � 1.

�e radial component of the pair is chosen according to the push-forward D��,

where

D W R �! R
2

de�ned as

D.x/ WD .x; x/

is the diagonal map and � is the radial measure for spheres Sn with n � 1.

�e perturbation is chosen according to the scaled distribution �� de�ned by

��.A/ WD �.A=�/

for measurable sets A � R
2. �e distribution for the sum is the convolution

� WD .D��/ ? �� ;
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so that integration on R
2 with respect to � is characterized as

Z

R2

g.q/ d�.q/ D
Z

Œ�1;1�2

Z

R

g.r C �p0; r C �p1/ �.r/ dr d�.p0; p1/

for suitable functions g.

Our measure space is

� WD R ˝
O

n�1
R
2

with the product measure

P WD �0 ˝
O

n�1
�:

We de�ne Q by repeating the pair of values for each n � 1 periodically across

Sn. �e distribution of the resulting random variable � 3 ! 7! Q.!/ de�nes a

measure on B
R. When restricting to forward trees, we introduce the measures

P0 WD �0 ˝
O

n�1
� and P1 WD �1 ˝

O

n�1
�

on R˝
N

n�1R
2, where �0 and�1 denote the two marginal probability measures

of � on R, given for suitable f by

Z

R

f .qi/ d�i .qi/ D
Z

R2

f .qi/ d�.q0; q1/; i D 0; 1; (2.1)

and which take on the role of the measure �0 at the new root. One easily sees that

�i , i D 0; 1, are absolutely continuous with densities

Z

R

�.qi � �pi / d�i .pi /; (2.2)

as functions of qi , i D 0; 1. Here �i denote the marginal measures of � . �us the

densities (2.2) are bounded by k�k1 and have compact support in Œ�K��;KC��.
For x 2 B, let

�x W � �! �

denote the map

�x.q0I .q10; q11/I : : : I .qd.x/0; qd.x/1/I : : :/

WD .qd.x/c.x/I .q.d.x/C1/0; q.d.x/C1/1/I : : :/;
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where d.x/ WD d.x; 0/ and c.x/ D 0 (respectively 1) if x is a black (respectively

white) vertex. �en .�x/�P D Pc.x/ by the de�nition of marginals. Notice that if

A corresponds to a set of potentials on a subtree Bx with c.x/ D i and Pi .A/ D 1,

then ��1
x .A/ corresponds to potentials on the original tree whose restrictions to

Bx lie in A, and PŒ��1
x .A/� D ..�x/�/.A/ D 1.

We prove �eorem 1.1 in two steps. Firstly, using �eorem 1.3 and the Simon–

Wol� criterion we show that H� has pure point spectrum at the root 0 of the full

tree B. �is can be applied to the restriction of the HamiltonianH� to the forward

tree Bx de�ned as

H�;x WD PxH�Px:

Here

Px WD PBx D
X

y2Bx

jyihyj

is the projection onto the forward tree and therefore H�;x acts in `2.Bx/. �en for

any x we see that also H�;x has pure point spectrum at the root x of the forward

tree Bx . Secondly, assuming that we already know that these restrictions have

pure point spectrum at their respective roots x we prove pure point spectrum for

H� on the full Hilbert space `2.B/.

Before we state the lemmas, let us introduce the spectral measures of the re-

stricted Hamiltonian of an operatorH acting in `2.B/. �at is, suppose 2 `2.B/.
�en setting

 x WD Px 2 `2.Bx/

we de�ne the measure

d� x .E/ WD w-lim
�#0

1

�
Imh x ; .Hx �E � i�/�1 xi dE; (2.3)

where

� D w-lim
�#0

��

is understood in the weak (or rather weak�) sense, that is,

Z

f .E/ d�.E/ D lim
�#0

Z

f .E/ d��.E/

for all continuous, bounded functions f on R.

We identify ıx 2 `2.B/ with ıx 2 `2.Bx/, and we say that an operator H has

pure point spectrum at x if �ıx
is a pure point measure.
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Our �rst step is contained in the following lemma:

Lemma 2.1. Under Assumptions 1 there exists a �0 > 0 such that for � 2 Œ0; �0�

the operatorH� D ��CQr C �Qt has almost surely pure point spectrum at the

root 0 of the full tree B.

Proof. We begin by proving locally (in the energy) that H� has pure point spec-

trum. To this end, let

E0 2 S WD Œ�2
p
2�K � 1; 2

p
2CK C 1�;

where S is chosen to contain the spectrum of H� for all � � 1. Let

I 3 E0; s; �0; �0; C;

and ` be given as in �eorem 1.3. Let

G�;!.0; xIE C i�/ WD hı0; .H�;! � E � i�/�1ıxi

denote the Green function of H�;! . �en, using Fatou’s Lemma in the �rst step

we arrive at the following estimate for E 2 I ,

E

h�

lim
�#0

X

x2B
jG�;!.0; xIE C i�/j2

�s=2i

� lim inf
�#0

E

h

X

x2B
jG�;!.0; xIE C i�/j2

�s=2i

D lim inf
�#0

E

h�

1
X

nD0

X

x2Sn

jG�;!.0; xIE C i�/j2
�s=2i

D lim inf
�#0

E

h�

1
X

nD0
kP0.H�;! � E � i�/�1/Pnk2

�s=2i

� lim inf
�#0

1
X

nD0
EŒkP0.H�;! �E � i�/�1/Pnks�

� lim inf
�#0

1
X

nD0
C`�n

D C
�

1� 1

`

��1
;
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uniformly on the interval I . In the last inequality we have used our main technical

result, �eorem 1.3, as well as the standard bound .
P

n janj/s �
P

n janjs for

s 2 .0; 1/ (which will be used many more times below). �is implies

E

� Z

I

�

lim
�#0

X

x2B
jG�;!.0; xIE C i�/j2

�s=2

dE

�

D
Z

I

E

h�

lim
�#0

X

x2B
jG�;!.0; xIE C i�/j2

�s=2

dE
i

� CI

for some constant C . �is shows that for P�almost all ! 2 �
Z

I

�

lim
�#0

X

x2B
jG�;!.0; xIE C i�/j2

�s=2

dE < 1:

So for P-almost all ! 2 �, there is a set of full Lebesgue measure in I such that

for E in this set,

lim
�#0

X

x2B
jG�;!.0; xIE C i�/j2 < 1: (2.4)

�is is the Simon–Wol� criterion [31, �eorem 8] which implies that

H�;!.˛/ WD H�;! C ˛P0

has pure point spectrum in I at the root for Lebesgue-almost all ˛ 2 R. From this

it is standard to show that H� has almost surely pure point spectrum in I at the

root since the probability measure, �0, at the root is purely absolutely continuous.

�e local result gives an open interval I containing E0 for every E0 2 S with

corresponding coupling constant �0.I /. �e intervals cover the set S and by com-

pactness we can choose a �nite sub-cover. We �nish the proof by taking �0 to be

the minimum of the corresponding values of �0.I /.

�e next lemma allows to determine the spectral type of H by �nding the

spectral type of Hx at the root x on arbitrary forward trees Bx .

Lemma 2.2. Let V W B ! R be a potential such that the operatorH D ��CV is

self-adjoint on `2.B/. Furthermore, let Hx be the restriction of H to the forward

tree Bx with root x.

(i) If for all x 2 B the spectral measures �ıx
of Hx are pure point then the

spectrum of H is pure point.
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(ii) More generally, if for all x 2 B the spectral measures �ıx
of Hx are of the

same measure type (i.e. all pure point, purely singular, purely continuous,

purely a.c., purely s.c., have no s.c. component), then the whole spectrum of

H is of this type.

Proof. We will prove (i), the proof of (ii) is completely analogous. By the spectral

theorem we have an orthogonal sum decomposition `2.Bx/ D Hc
x˚H

pp
x such that

Hx leaves these spaces invariant and such thatHx restricted to H
pp
x has pure point

spectrum andHx restricted to Hc
x has purely continuous (absolutely and singular)

spectrum.

�e assumption that �ıx
is a pure point measure can be rewritten as ıx 2 H

pp
x

for all x 2 B. Now, let  2 Hc
0. We will prove by induction over the level d.x; 0/

that:

Px D  x 2 H
c
x: (2.5)

Once this is proved, it follows that

 .x/ D hıx;  i D hıx ;  xi D 0

as ıx 2 H
pp
x which is orthogonal to Hc

x. �erefore,  D
P

x2B  .x/ıx D 0 for

any  2 Hc
0. Hence, Hc

0 is trivial which implies that the spectrum of H is pure

point.

For d.x; 0/ D 0, i.e. x D 0, (2.5) is trivially true,  0 D  2 Hc
0 by de�nition.

For the induction step let d.0; x/ D n C 1 � 1. �en x has a parent y de�ned

by d.0; y/ D n; d.y; x/ D 1. Besides x, y has another child, x0 ¤ x such that

By D ¹yº [ Bx [ Bx0 . Accordingly, with �y de�ned as

�y WD jyihxj C jyihx0j C jxihyj C jx0ihyj (2.6)

we have the decomposition

Hy D V.y/˚Hx ˚Hx0 � �y :

By the induction hypothesis,  y 2 Hc
y . As ıy 2 H

pp
y this means that for any

measurable function f one has

hıy; f .Hy/ yi D 0 ; (2.7)

in particular  .y/ D 0. Using

Hyıy D �ıx � ıx0 C V.y/ıy

and (2.7) one also has

0 D �hıy; Hyf .Hy/ yi D hıx C ıx0 ; f .Hy/ yi : (2.8)
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Combining (2.6), (2.7), and (2.8) we �nd

�yf .Hy/ y D 0 : (2.9)

A standard application of the resolvent identity gives

.Hy � z/�1 D ŒV .y/˚Hx ˚Hx0 � z��1Œ1 � �y.Hy � z/�1�;

which using (2.9) and (2.7) leads to

h y; .Hy � z/�1 yi D h y; .V .y/˚Hx ˚Hx0 � z/�1 yi

D h x ; .Hx � z/�1 xi C h x0 ; .Hx0 � z/�1 x0i :

We have employed the direct sum structure

 y D  .y/˚  x ˚  x0

with

 .y/ D 0

in the last equation. Using (2.3) this implies for the corresponding (positive) mea-

sures that

� y D � x C � x0 :

�erefore, by the induction hypothesis, � x must be a continuous measure, thus

 x 2 Hc
x and the induction step is done.

Before concluding with the proof of �eorem 1.1 let us give two remarks.

(i) It is obvious that the proof immediately extends to any rooted tree Twith root

0 2 T. �ere Hx would be the restriction of H to Tx which is the forward

tree with root x (the branch from x through 0 is cut) and x would denote the

corresponding projection of . �e only di�erence is that the last equation in

the proof generalizes to � y D
P

x2N.y/ � x whereN.y/ denotes all forward

neighbors (or children) of y, i.e.

N.y/ D ¹x 2 T W d.0; x/ D d.0; y/C 1 ^ d.x; y/ D 1º:

(ii) Note that this lemma also holds if the ‘measure type’ (such as pure point)

only refers to a speci�c (�xed) interval I . In this case one would choose to

lie inside the spectral projection PI`
2.T/ and be of complementary measure

type. As before one would inductively obtain the same for  x and any x,

which would again imply  D 0.
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Proof of �eorem 1.1. By our assumptions on the measures, in particular the ex-

istence of bounded densities of compact support for the marginal measures �0

and �1, Lemma 2.1 shows that for every x in the tree there exist a �0.x/ and a set
z�x � � with Pc.x/Œ z�x � D 1 such that for ! 2 z�x the corresponding restricted

HamiltonianH�;x.!/ has pure point spectrum at the root x of the forward tree Bx.

Let �x WD ��1
x . z�x/ be the potentials on the whole tree whose restrictions to Bx

lie in z�x. As noted above, PŒ�x� D 1 as well. Since there are only three di�erent

measures at the roots, namely �0 at 0 and the marginals �0 or �1 at x 6D 0 there

are only three values of �0 and we take the minimum of them.

For a common set of events we choose �1 WD
T

x2B�x. �is is a set of full

P-measure for which we can apply Lemma 2.2. �is shows that H�;! has pure

point spectrum at x for all ! 2 �1 meaning that the spectral measure of H� in

the states ıx , and hence in any state, is pure point.

3. Reduction of �eorem 1.3 to a dynamical system

�e idea is to rewrite the (fractional) moment EŒkP0.H��E�i�/�1Pnks� in terms

of a dynamical system, resulting in the expression (3.8). To this end, we introduce

for z 2 C
C, � � 0 and for any x in the nth sphere Sn the forward Green function

at x de�ned as

gx WD gx.z/ WD hıx; .H�;x � z/�1ıxi:
Note that g0.z/ D G�.0; 0I z/ is the full diagonal Green function at 0.

Let Œ0 D x0; x1; : : : ; xn D x� be the unique path of (connected) vertices from

0 to x. �en, by an application of a resolvent identity it is well-known that these

forward Green functions satisfy the recursion relation

gx.z/ D � 1

gx0.z/C gx00.z/C z �Q.x/
; (3.1)

where x0 and x00 are the two forward neighbors of x. Moreover, the full Green

function

G�.0; xI z/ D hı0; .H� � z/�1ıxi
can be expressed in the product form

G�.0; xI z/ D
n

Y

jD0
gxj

.z/: (3.2)

For �xed z 2 C
C, ! 2 �, � � 0 and n � 1, the map Sn 3 x 7! gx.z/ 2 C

C

takes on two possible values, and we denote these two values by

gn0 WD gn0.z/ and gn1 WD gn1.z/:
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�erefore,

kP0.H� � z/�1Pnk2 D kP0.H� � z/�1Pn.H� � Nz/�1P0k

D
X

x2Sn

jhı0; .H� � z/�1ıxij2

D
X

x2Sn

jG�.0; xI z/j2

D
X

y2Sn�1

ŒjG�.0; y0I z/j2 C jG�.0; y00I z/j2�

D
X

y2Sn�1

jG�.0; yI z/j2.jgn0.z/j2 C jgn1.z/j2/

D jg0.z/j2
n

Y

jD1
.jgj0.z/j2 C jgj1.z/j2/;

(3.3)

by induction. �e sequence of pairs .gn0; gn1/n�1 is a sequence of identically

distributed (two-dimensional) random variables. In order to obtain a dynamical

system in one variable we introduce for n � 1 the random variables (for �xed

z 2 C
C)

gn˙ WD gn˙.z/ WD 1p
2
.gn0.z/˙ gn1.z// (3.4)

and the maps �˙
z;q on CC WD C

C [ xR, with xR WD R [ ¹i1º being the one-point

compacti�cation of R (in particular, CC is compact), de�ned as

CC 3 w 7�! �˙
z;q.w/ WD 1

2

� �1
w C z�q0p

2

˙ �1
w C z�q1p

2

�

; q D .q0; q1/: (3.5)

We set

�˙
z;q.i1/ D 0:

�en

jgn0j2 C jgn1j2 D jgnCj2 C jgn�j2

and, due to (3.1),

gn˙ D �˙
z;qn

.g.nC1/C/

with qn D .qn0; qn1/. For 1 � k � n and

q WD ..q10; q11/I .q20; q21/I : : : I .qn0; qn1//
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collecting all pairs of potentials from the �rst to the nth sphere, let us furthermore

introduce the maps ˆ
˙;k
z;q de�ned on CC as

ˆ˙;n
z;q WD �˙

z;qn
;

ˆ˙;n�1
z;q WD �˙

z;qn�1
ı �C

z;qn
;

:::

ˆ˙;1
z;q WD �˙

z;q1
ı �C

z;q2
ı � � � ı �C

z;qn
:

�en, with w WD g.nC1/C and 1 � k � n,

gk˙ D ˆ˙;k
z;q .w/: (3.6)

Using the representation (3.3), the expectation of kP0.H��z/�1Pnks can be taken

iteratively starting with the expectation Eq0
with respect to the potential q0 at the

root, then the expectation Eq1
with respect to the potentials q10 and q11 at the �rst

sphere, and so forth until we �nally take the expectation Eqn with respect to the

potentials qn0 and qn1 at the nth sphere. In the simplest case, every time taking

such an expectationEqk
, we lower the previous expectation value by a factor ı < 1.

In order to claim that the whole product is exponentially decaying in nwe need the

initial step that the starting point is �nite. �e latter follows by standard arguments

which will be used repeatedly. Here, it is important that s 2 .0; 1/. For any a 2 R,

let as WD sgn.a/jajs. We do not have any a-priori information on g0 or the forward

Green functions but we may use the recursion relation (3.1) and take as an upper

bound the supremum over all of CC. �en, using that Im.g00.z/C g000.z// � 0,

Eq0

�

jg0js
�

� sup
w2CC

Z K

�K

�0.q/ dq

jw C z � qjs

� k�0k1 sup
w2CC

Z K

�K

dq

Œ.Re.w/C Re.z/ � q/2 C .Im.w/C Im.z//2�s=2

� k�0k1 sup
w2R

Z K

�K

dq

Œ.w � q/2�s=2

D k�k1

Z K

�K

dq

jqjs

D 2k�k1
1 � s K

1�s:

Before we �nally introduce the formulation in terms of a dynamical system

let us put down the bound on the fractional moment that we have obtained so far.
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We will use again w WD g.nC1/C. �en,

EŒkP0.H� � z/�1Pnks�

D E

h

jg0js
n

Y

jD1
.jgjCj2 C jgj�j2/s=2

i

� EŒ.
ˇ

ˇˆC;n
z;q .w/js C jˆ�;n

z;q .w/
ˇ

ˇ

s
/ � � � .jˆC;1

z;q .w/js C
ˇ

ˇˆ�;1
z;q .w/js/ jg0js �

� C sup
w2CC

Eqn
ŒjˆC;n

z;q .w/js C jˆ�;n
z;q .w/js� � � �Eq1

ŒjˆC;1
z;q .w/js C jˆ�;1

z;q .w/js�;

where q D .q1; q2/ D .r C �p1; r C �p2/ and we have used in the last step that

the �rst expectation with respect to the potential at the root is bounded according

to (3.7). As mentioned above, the iterated expectation Eqn � � �Eq1
can be inter-

preted as a dynamical system run backwards, starting with n down to 1 and using

that ˆ
˙;k
z;q D �˙

z;qk
ı ˆC;kC1

z;q . To this end, let C.CC/; CC.CC/ and C.xR/ be the

Banach space of complex-valued, continuous functions on CC (i.e. the continu-

ous functions on C
C [R which have a �nite limit at 1), the cone of non-negative

functions in C.CC/, and the Banach space of real-valued, continuous functions

on xR, respectively, all equipped with the sup-norm, referred to in the following

by k � k1. On these spaces, we introduce the operator T�;z;s. We will show in

Lemma 3.3 below that this operator is well-de�ned.

De�nition 3.1 (Dynamical system). For z 2 C
C [ R, � � 0 and s 2 .0; 1/, the

linear operator T�;z;s maps a function f 2 C.CC/ to a function T�;z;sf de�ned

also on CC in the following way (see (3.5) for the de�nition of the maps �˙
z;q):

CC 3 w 7�!.T�;z;sf /.w/

WD Eq Œf .�
C
z;q.w// .j�C

z;q.w/js C j��
z;q.w/js/�

D
“

Œf .�C
z;q.w// .j�C

z;q.w/js C j��
z;q.w/js/� d�.q/

D
•

Œf .�C
z;.rC�p0;rC�p1/

.w//

.j�C
z;.rC�p0;rC�p1/

.w/js

C j��
z;.rC�p0;rC�p1/

.w/js/� �.r/dr d�.p0; p1/:
(3.7)

Since we have set �˙
z;q.i1/ D 0 we de�ne .T�;z;sf /.i1/ WD 0 and T�;i1;s WD 0.

For E 2 R, we use the same operator symbol, T�;E;s, to denote the operator that

maps C.xR/ into itself.
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�en, with 1 denoting the constant function equal to 1 (and assuming that T�;z;s

and powers of T�;z;s are well-de�ned, see Lemma 3.3) we have

Eqn ŒjˆC;n
z;q .w/js C jˆ�;n

z;q .w/js� � � �Eq1
ŒjˆC;1

z;q .w/js C jˆ�;1
z;q .w/js� D .T n�;z;s1/.w/:

We summarize this reduction in the following proposition.

Proposition 3.2. Let z 2 C
C; s 2 .0; 1/ and let Pn denote the projection onto

the nth sphere. Furthermore, assume Assumptions 1 on the measures �0; � and � .

�en, the fractional moment of the Green function of H� D �� CQr C �Qt is

bounded in terms of the dynamical system de�ned through the operator T�;z;s as

in (3.7) by

EŒkP0.H� � z/�1Pnks� � C sup
w2CC

.T n�;z;s1/.w/ D CkT n�;z;s1k1: (3.8)

�e constant satis�es C � 2K1�sk�0k1=.1� s/.

�us the proof of �eorem 1.3 is reduced to showing exponential decay of

kT n�;z;s1k1 for su�ciently small positive s. Accordingly, the remainder of this

work is a careful study of the dynamical system de�ned by T�;z;s on C.CC/.
We start by collecting some important technical properties of the operator T�;z;s.

Lemma 3.3. We assume that the probability measures � and � satisfy Assump-

tions 1. Let s 2 .0; 1=2/. �en the following holds.

(i) For z 2 C
C [ R and � � 0, T�;z;s W C.CC/ ! C.CC/ is a bounded linear

operator with uniformly (in z and �) bounded operator norm,

kT�;z;sk1 � 4 � 21�s=2k�k1K1�s

1� s
: (3.9)

(ii) For every f 2 C.CC/, the map z 7! T�;z;sf is continuous from C
C \R into

C.CC/ equipped with the sup-norm.

(iii) Let ¹f˛ W ˛ 2 Jº be equi-continuous and bounded in C.CC/ and m � 1

integer. �en

sup
��0

sup
E2R

k.Tm�;ECi�;s � Tm�;E;s/f˛k1 ! 0 (3.10)

as � # 0 uniformly in ˛ 2 J.
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(iv) For every z 2 C
C [ R, the map T�;z;s preserves the cone CC.CC/ of non-

negative functions. Hence, for two real-valued functions f and g with f � g

(point-wise) we have T�;z;sf � T�;z;sg (point-wise).

(v) For any positive integer m and any z 2 C
C [ R we have

sup
w2CC

.Tm�;z;s1/.w/ D sup
w2xR

.Tm�;z;s1/.w/: (3.11)

We defer the proof of these properties to Section 7 at the end of this paper, but

include a few comments here.

As will be seen in the proofs, the assumption s < 1=2 is used in the proofs of

parts (ii) and (iii), while the other parts hold more generally for s < 1.

Part (iii) is a strengthening of the strong continuity property of T�;z;s proved in

part (ii) (at least at real energy E), showing that this continuity is uniform in the

parametersE and � and also holds for powers of the T -operators. We will use part

(iii) in the proof of �eorem 1.3 with the trivial one-element family ¹f˛º D ¹1º.
�at we state part (iii) for general equi-continuous families ¹f˛º here is prompted

by the technique used in its inductive proof in Section 7.

In Proposition 3.2 we have introduced the upper bound on the fractional mo-

ment in terms of a dynamical system on C.CC/. Lemma 3.3(v) tells us that we

may reduce to a dynamical system on C.xR/. �is was important for numerical

computations and will also be used in the proof of �eorem 1.3 in Section 6 be-

low.

For real E and any positive integer m, we will also need the strong continuity

of .T�;E;s/
m on C.xR/ as a function of �, the coupling constant at the transversally

periodic potential Qt . �is is the content of the next result. In this context, k � k1
refers to the sup-norm on C.xR/.

Lemma 3.4. Under Assumptions 1 on the measures �0, � and � , s 2 .0; 1=2/ and

for any m 2 N we have strong continuity of � 7! .T�;E;s/
m at 0, uniformly in E.

�at is, for f 2 C.xR/,

lim
�#0

sup
E2R

k.T�;E;s/mf � .T0;E;s/
mf k1 D 0:

Again, we defer the proof to Section 7.

4. Estimate for zero coupling

In this section we set � D 0 and consider the operator

TE;s W C.xR/ �! C.xR/
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de�ned by

.TE;sf /.w/ D Er Œf .�
C
E;r.w// j�C

E;r.w/j
s�

D
Z

f
� �1
w C .E � r/=

p
2

�

ˇ

ˇ

ˇ

ˇ

�1
w C .E � r/=

p
2

ˇ

ˇ

ˇ

ˇ

s

�.r/dr

D
Z

f
� �1
w C zE � q

�

ˇ

ˇ

ˇ

ˇ

�1
w C zE � q

ˇ

ˇ

ˇ

ˇ

s

Q�.q/dq;

where zE D E=
p
2 and Q�.q/ D

p
2 �.

p
2q/. For the remainder of this section,

we drop the tildes and let E denote the expectation with respect to the rescaled

measure. Our goal in this section is to prove the following lemma up to a key

estimate, (5.1), whose proof is the topic of the next section.

Lemma 4.1. For every E0 2 R there exist an open interval I containing E0,

s 2 .0; 1=2/ and m 2 N such that

sup
E2I

kTmE;s1k1 < 1: (4.1)

Remark 4.2. Before proceeding, let us brie�y explain how the methods of this

paper yield a new proof of localization for the one-dimensional Anderson model,

as was �rst proved under the assumptions used here in [24] by a di�erent method.

�us let H D ��C q in `2.Z/ with i.i.d. random potential q whose distribution

has a bounded and compactly supported density. For m < n the resolvent of H

satis�es an analogue of (3.2),

hım; .H � z/�1ıni D hım; .H � z/�1ımi
n

Y

jDmC1
hıj ; .Hj � z/�1ıj i;

whereHj is the restriction ofH to Z\ Œj;1/. As in Proposition 3.2 this leads to

the bound E.jhım; .H � z/�1ınijs/ � CkT n�m
z;s 1k1, where, in this context, Tz;s is

the simpli�ed dynamical system given by (1.1). By an analogue of Lemma 4.1 this

leads to the fractional moments bound

sup
E2I;�>0

E.jhım; .H �E � i�/�1ınijs/ � C`�.n�m/

for some ` > 1, using also the arguments in Section 6 below. For the one-

dimensional case this is known to imply spectral as well as dynamical localization,

e.g. [32].
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To motivate the following proof of Lemma 4.1, let us start by discussing some

previous work. Consider the sequence of positive functions .TmE;s1/.w/ for

m D 0; 1; 2; : : :. We want to show that the sup norm is eventually below 1. For

large disorder, corresponding to the operator �� C �Qr with j�j large, the in-

tegration over Q achieves this after one step. �is is essentially the Aizenman–

Molchanov proof of high disorder localization in one dimension. For arbitrary

disorder, the sup norms of the sequence may initially grow, but numerical experi-

ments [26] suggested that they always eventually decay to zero. In order to prove

this, we �rst observe that the monotonicity property, Lemma 3.3(iii), implies that

if iterates of a positive bounding function decrease to zero, then iterates of any

positive function lying below the bounding function decrease to zero as well. We

look for such a bounding function in the class of functions

'� .w/
s WD jw � �j�s (4.2)

indexed by � 2 C
C. �en TE;s decreases '� .w/

s after one step if F� .w; s; E/ < 1

where

F� .w; s; E/ WD '� .w/
�s.TE;s'� .�/s/.w/

D E

hˇ

ˇ

ˇ

w � �

�.w C 1=� CE � q/

ˇ

ˇ

ˇ

si

:

In the limit of zero disorder � converges to a delta function at q D 0. In this case

we can choose �0 to be one of the �xed points of � 7! �1=��E. For jEj � 2 these

lie on the unit circle and we �nd F�0
.w; s; E/ D 1, for jEj > 2 we can choose a

�xed point on the real line with absolute value > 1 so that F�0
.w; s; E/ < 1.

For the critical energies jE0j � 2 we can construct a proof for low disorder by

computing a perturbation series in a disorder parameter. �is was done in [26]. In

this paper, the key estimate (5.1), which will be shown in the next section, allows

us to bound F�.w; s; E/ for small s and E near E0 for any disorder.

We now begin the proof of Lemma 4.1. We start with some estimates on the

bounding function.

Lemma 4.3. Let '� .w/
s be the bounding function de�ned by (4.2). �en

(i) for every bounded interval I � R, � 2 C
C and s 2 .0; 1/, there exists an

A < 1 such that

.TE;s1/.w/ � A'�.w/
s

for all E 2 I and all w 2 R;

(ii) '�.w/
s � Im.�/�s for all w 2 R.
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Proof. We have

'� .w/
�s.TE;s1/.w/ D E

h
ˇ

ˇ

ˇ

w � �
w CE � q

ˇ

ˇ

ˇ

si

� 1C E

hˇ

ˇ

ˇ

q �E � �
w CE � q

ˇ

ˇ

ˇ

si

� A.�;K; I; s/:

uniformly in E 2 I and w 2 R (which uses boundedness of I and supp �).

�is proves (i). Part (ii) is immediate.

Lemma 4.4. For every E0 2 R there exist a �0 2 C
C with j�0j > 1, an open

interval I containing E0 and ı < 1 such that

sup
E2I

k'�s
�0
.TE;s'

s
�0
/k1 � ı: (4.3)

for small non-zero s.

Proof. �e inequality (4.3) can be written as

sup
E2I

sup
w2R

F�0
.w; s; E/ � ı; (4.4)

where F� is de�ned by (4). �e choice � 2 C
C avoids singularities. �us it is easy

to see that F� .w; s; E/ is jointly continuous in .w; s; E/ 2 R � Œ0; 1/� R and

F� .w; 0; E/ D 1

for all � 2 CC, w 2 R and E 2 R. Furthermore, F� .w; s; E/ is di�erentiable in s,

�@F�

@s

�

.w; 0; E/ D E

hˇ

ˇ

ˇ

w � �
�.w C 1=� CE � q/

ˇ

ˇ

ˇ

s

log
ˇ

ˇ

ˇ

w � �
�.w C 1=� CE � q/

ˇ

ˇ

ˇ

i

is jointly continuous on the same domain and

�@F�

@s

�

.w; 0; E/ D E

h

log
ˇ

ˇ

ˇ

w � �
�.w C 1=� CE � q/

ˇ

ˇ

ˇ

i

D �1
2
E

h

log
j�j2jw C 1=� CE � qj2

jw � �j2
i

:

(4.5)

�e key estimate (5.1) applied to Q D q � E0 implies that there exist a �0 2 C
C

with j�0j > 1 and an �1 > 0 such that for all w 2 R,

�@F�0

@s

�

.w; 0; E0/ < ��1: (4.6)
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For this choice of �0 we now control F�0
for large w using equation (4). In order

to do this, notice that

ˇ

ˇ

ˇ

ˇ

w � �0
�0.w C 1=�0 C E � q/

ˇ

ˇ

ˇ

ˇ

� 1

j�0j

�

1C j1=�0 CE � q C �0j
jw C 1=�0 CE � qj

�

:

�erefore, since the support of � is bounded and because j�0j > 1, there exist a

ı1 < 1 and a constantW such that

sup
jE�E0j�1

sup
jwj�W

ˇ

ˇ

ˇ

ˇ

w � �0
�0.w C 1=�0 CE � q/

ˇ

ˇ

ˇ

ˇ

� ı1

for all q 2 supp �, so that

sup
jE�E0j�1

sup
jwj�W

F�0
.w; s; E/ � ıs1: (4.7)

We now control F�0
for smallw. �e set

®

.w; s; E/ W @F�0

@s
.w; s; E/ < ��1

¯

is open

and contains Œ�W;W ��¹0º�¹E0º. It therefore contains a set Œ�W;W �� Œ0; s0/�I ,

for some open interval I containing E0. For jwj � W , s < s0 and E 2 I we then

obtain

F�0
.w; s; E/ D 1C

Z s

0

�@F�0

@s

�

.w; s0; E/ds0 � 1� �1s: (4.8)

Shrinking I if needed so that jE � E0j � 1 for E 2 I , we can combine (4.8)

with (4.7) to obtain (4.4) for small non-zero s.

Remark. �e expression (4.5) can be viewed as a logarithmic moment of the

random variable q, which appears in our method as a limiting case of fractional

moments for s ! 0. �is is not surprising, as it has been observed previously

that applying the fractional moment method in 1D requires choosing s close to 0,

e.g. [17].

We can now prove the main result of this section.

Proof of Lemma 4.1. Given E0 2 R we choose �0, I , s and ı < 1 according to

Lemma 4.4 and let A be the corresponding bound from Lemma 4.3. �en, using

the monotonicity property, Lemma 3.3(iii), of TE;s we �nd that for E 2 I ,

kTmE;s1k1 � AkTm�1
E;s '

s
�0

k1 � Aım�1k's�0
k1 � Aım�1.Im �0/

�s:

Choosing m su�ciently large completes the proof.
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5. Proof of the key estimate

�e only part missing in the proof of Lemma 4.1 (and Lemma 4.4) is a justi�cation

for the inequality (4.6). In fact, this inequality follows from the following theorem

which is the main goal of this section.

�eorem 5.1. LetQ be a bounded real valued random variable whose distribution

is supported on at least 3 points (i.e. the distribution of Q is not a single or the

sum of two delta measures). �en there exists a � 2 C
C with j�j > 1 such that

inf
w2xR

E

h

log
j�j2jw C 1=� �Qj2

jw � �j2
i

> 0: (5.1)

In order to prove this, we �rst de�ne for b > 0

˛ WD ˛.aC bi;Q/ WD 1

b

�

aC a

a2 C b2
�Q

�

C i

a2 C b2
: (5.2)

�en one �nds

inf
w2xR

E

h

log
j�j2jw C 1=z �Qj2

jw � �j2
i

D inf
u2xR

E

h

log
.Im ˛.�;Q//�1juC ˛.�;Q/j2

juC i j2
i

;

(5.3)

where u and w are related by w D buC a with � D aC ib.

De�ne

f W CC �! R

by

f .z/ WD � log
�

Im
��1
z

��

D log
� jzj2

Im.z/

�

(5.4)

then by (5.3) the inequality (5.1) is equivalent to

inf
u2xR

EŒf .uC ˛.�;Q//�� f .uC i/ > 0 : (5.5)

�e main argument will be based on convexity in the hyperbolic upper half plane.

However, there is a much simpler argument for the special caseQ D q�E where

E 2 R and q is distributed symmetrically about zero, with possibly unbounded q.

We present a sketch of this argument �rst.
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Lemma 5.2. LetQ D q � E where E 2 R, q is distributed symmetrically about

zero, EŒlog.1Cq2/� < 1 and E.q2/ > 0. �en, there exists a � 2 C
C with j�j > 1

such that

Re.� C 1=� CE/ D 0 (5.6)

and

EŒlog j˛.�; q �E/j2� D 0: (5.7)

Proof. Let d 2 .0;1/ and take �.d/ to be the root of � C 1=� C E D id of

largest imaginary part. We obtain a continuous curve .0;1/ 3 d 7! �.d/ 2 C
C

of solutions to (5.6) with lim
d"1

Im �.d/ D 1.

We have

˛.�.d/; q � E/ D �q
Im �.d/

C i

j�.d/j2 (5.8)

so that

E
�

log j˛.�.d/; q �E/j2
�

D E

h

log
� q2

.Im �.d//2
C 1

j�.d/j4
�i

; (5.9)

which goes to �1 as d ! 1.

If jEj � 2, then limd!0 Im �.d/ D 0, so that (5.9) goes to 1 as d ! 0.

If, on the other hand, jEj < 2, then

lim
d!0

�.d/ D .�E C i
p
4�E2/=2

lies on the unit circle. �us, as d ! 0, (5.9) approaches

E

h

log
� q2

1� E2=4
C 1

�i

� EŒlog.q2 C 1/� > 0;

which uses that q2 is positive with positive probability as E.q2/ > 0.

By continuity, in each case there is a value of d for which the expectation is

zero. Again, since q2 is not supported at 0, equation (5.9) also implies that the

corresponding value of �.d/ has j�.d/j > 1.

Given this lemma we can now prove the special case of the theorem.

Proposition 5.3. Under the hypotheses of Lemma 5.2, let � be the value given by

the lemma. We further assume that the distribution of q2 is supported on at least

two points (i.e. the variance of q2 is positive). �en the key inequality (5.1) holds.
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Proof. We will show that (5.5) holds. Let � be the value given by Lemma 5.2 so

that ˛ D ˛.�; q �E/ is given by (5.8). From (5.6) we �nd

˛.�;�q �E/ D � N̨ .�; q � E/:

�is and symmetry of the distribution of q give

E

h

log
juC ˛j2

Im˛

i

D E

h

log
ju � N̨ j2
Im.� N̨/

i

D E

h

log
ju � N̨ j2

Im˛

i

:

Hence

EŒf .uC ˛/� D E

h

log
juC ˛j2

Im˛

i

D 1

2
E

h

log
juC ˛j2ju � N̨ j2

.Im ˛/2

i

D 1

2
E

h

log
ju2 � j˛j2 C 2iu Im˛j2

.Im˛/2

i

D 1

2
E

h

log
.u2 � j˛j2/2 C 4u2.Im ˛/2

.Im˛/2

i

D 1

2
E

h

log
.u2 � j˛j2/2
.Im˛/2

C 4u2
i

� 1

2
E

h

log
.u2 � j˛j2/2 C 4j˛j2u2

j˛j2
i

D 1

2
E

h

log
.u2 C j˛j2/2

j˛j2
i

D �1
2
EŒlog j˛j2�C EŒlog.u2 C j˛j2/�

D EŒlog.u2 C j˛j2/�:

In the last step we used that EŒlog j˛j2� D 0. �e function s 7! log.u2 C es/ is

strictly convex for u ¤ 0. So for u ¤ 0, since j˛j2 D q2=.Im �/2 C 1=j�j4 is

supported on at least two points we have a strict inequality in Jensen’s inequality:

EŒlog.u2 C j˛j2/� D EŒlog.u2 C elog j˛j2/�

> log.u2 C eEŒlog j˛j2�/

D log.u2 C 1/

D f .uC i/:
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�us we have proved the strict inequality EŒf .u C ˛/� > f .u C i/ for u2 ¤ 0.

In order to obtain the uniform statement (5.5) it remains to check the strict in-

equality at u D 0 and in the limit juj ! 1. At both these endpoints the strict

inequality follows from (5.2), (5.3) and the fact that 1=.Im˛/ D j�j2 > 1. For

u D 0, this insures that

EŒf .˛/� D EŒlog.j˛j2=.Im˛//� > EŒlog.j˛j2/� D 0:

For large juj we have

lim
juj!1

EŒf .uC ˛/�� f .uC i/ D log.j�j2/ > 0:

We now return to the main argument. �e upper half plane CC with the hyper-

bolic Riemannian metric will be denoted by H. �is metric on

H D ¹z D x C iy W y > 0º

is given by

ds2 D dx2 C dy2

y2

and the unit speed geodesics are

.t/ D
�

a b

c d

�

� iet D aiet C b

ciet C d
;

where a; b; c; d 2 R and ad � bc D 1. �e induced length metric of negative

curvature on H is given by

dH.z1; z2/ D arcosh
�

1C jz1 � z2j2
2 Im.z1/ Im.z2/

�

:

A function f W H ! R is called geodesically convex if f ı  is convex for

every geodesic  .

Lemma 5.4. �e function f de�ned by (5.4) is geodesically convex on H. It is

strictly convex on geodesics which do not have 0 as a limit point.

Proof. Let ad � bc D 1 and .t/ D .aiet C b/=.ciet C d/ be a unit speed geo-

desic in H. �en

f ı .t/ D �
�

Im
.ad � bc/iet � bd � ace2t

a2e2t C b2

�

D log.a2e2t C b2/ � t
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giving the second derivative

.f ı /00.t / D 4a2b2e2t

.a2e2t C b2/2
� 0;

which is strictly positive if a ¤ 0 and b ¤ 0. �us, f ı  is convex and strictly

convex if a ¤ 0; b ¤ 0. If a D 0 or b D 0 then the geodesic .t/ approaches

0 2 C for one of the limits t ! ˙1.

Next we need to introduce the concept of barycenter and we also introduce

some notation for the hyperbolic midpoint. We refer to the paper by Sturm [33]

for details and proofs.

De�nition 5.5.

(i) Let dH be the distance induced by the hyperbolic Riemannian metric on H

and let X be a random variable on the probability space .�;A;P/ with val-

ues in H such that EŒ dH.X; ˇ/� exists for some ˇ 2 H. �e set of such ran-

dom variables is denoted by L1.�;H/. �en there exists a unique minimizer

b.X/ 2 H which minimizes, for any ˇ 2 H,

H 3 z 7�!
Z

.dH.X.!/; z/
2 � dH.X.!/; ˇ/2/ dP.!/

D E
�

dH.X; z/
2 � dH.X; ˇ/2

�

:

�e point b.X/ is called the barycenter (or more precisely d2-barycenter)

of X . We will also call it the hyperbolic expectation value and denote it by

EH.X/, thus

EH.X/ D minimizer
z2H

EŒdH.X; z/
2 � dH.X; ˇ/

2�:

(ii) For two points z0; z1 2 H, let  W Œ0; 1� ! H with .0/ D z0 and .1/ D z1

be the connecting geodesic. For any � 2 Œ0; 1�we de�ne the hyperbolic a�ne

combination by

�z0 ˚ .1� �/z1 WD .�/ :

In particular, .z0 ˚ z1/=2 is the midpoint of the joining geodesic, i.e., the

unique point z 2 H such that dH.z; z0/ D dH.z; z1/ D 1
2
dH.z0; z1/.

(iii) For a random variable X 2 L1.�;H/ we construct an independent, identi-

cally distributed copy X 0 and de�ne the double-average barycenter by

E
.2/
H
ŒX� WD EH

h1

2
X ˚ 1

2
X 0

i

:
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Since we are assuming Q is bounded, for any z we �nd ˛.z;Q/ 2 L1.�;H/.
�e following properties will be important.

(i) If the distribution ofX is supported within a geodesically convex setA � H,

then the barycenter EH.X/ lies inside A [33, Proposition 6.1]. Using this

twice one also �nds that E
.2/
H
.X/ lies in A.

(ii) For any geodesically convex function h on H one has Jensen’s inequalities

[33, �eorem 6.2]

h.EHŒX�/ � E Œh.X/�

and

h.E
.2/
H
ŒX�/ � E Œh.X/�:

�e second inequality follows from the �rst one applied twice.

(iii) Spaces of nonpositive curvature are doubly convex, i.e. the distance function

on H � H is convex and one �nds (cf. [33, Corollary 2.5; �eorem 6.3]),

dH.EHŒX�;EHŒY �/ � EŒ dH.X; Y /�

and

dH.E
.2/
H
ŒX�;E

.2/
H
ŒY �/ � EŒ dH.X; Y /� :

In particular, this implies that the map z 7! E
.2/
H
Œ ˛.z;Q/� is continuous in z,

because if zn ! z in H, then one �nds by continuity of ˛.�; �/ and Dominated

Convergence that

lim
n!1

dH.E
.2/
H
Œ˛.zn; Q/�;E

.2/
H
Œ˛.z;Q/�/

� lim
n!1

EŒdH.˛.zn; Q/; ˛.z;Q//�

D 0

Now we can show the crucial step.

Lemma 5.6. If the variance of Q is positive and Q is bounded, then there exists

a � 2 H, j�j > 1 such that

E
.2/
H
Œ˛.�;Q/� D i:
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Proof. Let us de�ne the continuous function

g.a; b/ WD E
.2/
H
Œ˛.aC ib;Q/� D 1

b
E
.2/
H

h

aC a

a2 C b2
�QC i

b

a2 C b2

i

:

Here we used that z 7! z=b is an isometry on H. We need to �nd .a; b/ such that

g.a; b/ D i with a2 C b2 > 1. By using that z 7! z C c for c 2 R is an isometry,

one has

b g.a; b/ D a C a

a2 C b2
C E

.2/
H

h

�QC i
b

a2 C b2

i

:

We are assuming that Q is almost surely bounded, so almost surely jQj < a0 for

some a0. �e set ¹z 2 H W j Re zj < a0º is geodesically convex in H, therefore
ˇ

ˇ ReE
.2/
H

�

�QC i b
a2Cb2

�ˇ

ˇ < a0 and we �nd

Re g.�a0; b/ < 0 and Re g.a0; b/ > 0 : (5.10)

Also, the set

At WD
®

z 2 H W Im.z/ � t; jzj <
q

a20 C t2
¯

(where the jzj is the usual Euclidean norm) is geodesically convex in H. We have

Im bg.a; b/ D ImE
.2/
H

h

�QC i
b

a2 C b2

i

and the values of �Q C i b
a2Cb2 lie in the set At with t WD b=.a2 C b2/. Hence

E
.2/
H

�

�QC i b
a2Cb2

�

also lies in At which implies

Im bg.a; b/ <

s

a20 C b2

.a2 C b2/2
:

�e right hand side is uniformly bounded for say jbj > 1. Hence there exists b0

such that for all a

Im g.a; b0/ < 1

Now similarly to Lemma 5.4 one �nds that z 7! log.Im.z// is geodesically

concave. By Jensen’s inequality we have

log.Im g.a; b// D log
�

ImEH

h1

2
˛.aC ib;Q/˚ 1

2
˛.aC ib;Q0/

i �

� E

h1

2
log

� .Q �Q0/2

4b2
C 1

.a2 C b2/2

�i

;
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since

1

2
˛.aC ib;Q/˚ 1

2
˛.aC ib;Q0/

D a

b
C a

b.a2 C b2/
� Q CQ0

2
C i

s

.Q �Q0/2

4b2
C 1

.a2 C b2/2
:

As the variance of Q is positive,

EŒ.Q �Q0/2� > 0:

Hence there exists � > 0 and 1 � p > 0 such that

PŒ.Q �Q0/2 � �2� D p:

�is implies

log.Im g.a; b// � .1� p/

2
log

� 1

.a2 C b2/2

�

C p

2
log

� �2

4b2
C 1

.a2 C b2/2

�

:

If a2 C b2 � 1, the right hand side is clearly bigger than 0. Hence the region

where the right hand side is > 0 includes an open neighborhood of the unit circle.

Moreover, for any a, letting b ! 0, the right hand side approaches in�nity. In

case a ¤ 0 one can choose b < min
®

jaj; 1
2
�.a2/

p�1
p

¯

to get log.Im g.a; b// > 0.

Hence, there is a continuous function b1 de�ned on Œ�a0; a0� such that

Im.g.a; b1.a/// > 1; a2 C b1.a/
2 � 1:

One clearly may assume b1.a/ < b0.

Let � be the closed path in H given by .a; b1.a//; �a0 � a � a0, followed

by .a0; b/; b1.a0/ � b � b0 followed by .a; b0/; a0 � a � �a0 and followed by

.�a0; b/; b0 � b � b1.�a0/. �en, using (5.10), g.�/ is a path enclosing i . As �

is null-homotopic, its image is null-homotopic in g.H/, hence there exists .a; b/

inside � such that g.a; b/ D i . As .a; b/ lies inside �, we have a2 C b2 > 1.

Setting � D a C ib, this �nishes the proof.
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Proof of �eorem 5.1. We need to establish (5.5). Let X and X 0 be independent

and identically distributed as uC˛.�;Q/, where u 2 R and � is chosen according

to Lemma 5.6. Clearly, E
.2/
H
ŒX� D uC i since z 7! uC z is an isometry on H for

u 2 R. By convexity of f and Lemma 5.4

f .uC i/ D f
�

EH

h1

2
X ˚ 1

2
X 0

i�

� Ef
�1

2
X ˚ 1

2
X 0

�

< E

h1

2
f .X/C 1

2
f .X 0/

i

D Ef .uC ˛.�;Q//;

which is the desired inequality. As the essential support of Q contains more than

two points, one has with positive probability that X and X 0 are not on a geodesic

with 0 as a limit point giving the strict inequality. In order to obtain the uniform

statement in (5.5) we compute

lim
juj!1

EŒf .uC ˛/�� f .uC i/ D log.j�j2/ > 0

as before.

6. Proof of �eorem 1.3 and �eorem 1.4

Proof of �eorem 1.3: We will use the notation T�;z;s to indicate the dependence

of the operator T on its parameters. Given E0 2 R we use Lemma 4.1 to �nd a

bounded open interval I containing E0, s 2 .0; 1=2/,m 2 N and ı < 1 so that

sup
E2I

kTm0;E;s1k1;xR < 1:

Here the second subscript on the sup norm indicates the set over which the sup is

taken. Using the continuity in � given by Lemma 3.4 we can �nd �0 such that for

0 � � � �0,

sup
E2I

kTm�;E;s1k1;xR < 1:

Next we invoke Lemma 3.3(v) to replace the sup over xR with a sup over CC.

�is gives, for 0 � � � �0,

sup
E2I

kTm�;E;s1k1;CC < 1:
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Lemma 3.3(iii) (applied to the one-element family ¹f˛º D ¹1º) now implies the

existence of an �0 > 0 such that

sup
0��<�0

sup
E2I

kTm�;ECi�;s1k1;CC DW ı < 1 (6.1)

for 0 � � � �0.

Given n 2 N we write n D amC b for non-negative integers a; b with b < m

and a > n=m� 1. �e linearity of T�;E;s together with the monotonicity property

Lemma 3.3(iv) and (6.1) imply

sup
0��<�0

sup
E2I

kT am�;ECi�;s1k1;CC � ıa � ın=m�1:

So

sup
0��<�0

sup
E2I

kT n�;ECi�;s1k1;CC � sup
0��<�0

sup
E2I

kT�;ECi�;skbın=m�1

� Cın=m;

where we used the uniform bound on kT�;ECi�;sk given by Lemma 3.3(i).

�e theorem now follows from (3.8) with ` D ı�1=m.

We now turn to the proof of �eorem 1.4. Let �0 and �1 be the densities of the

marginal measures of � .

Lemma 6.1 (large coupling). Under Assumptions 2, for every s 2 .0; 1/ there

exists a �0 < 1, depending on k�k1, k�0k1, k�1k1 and s, such that for � � �0,

sup
E2R

kT�;E;sk1 < 1: (6.2)

Proof. Following the proof of Lemma 3.3(i) (see Section 7 below), we need

bounds for EŒjw � qi j�s j� for i D 0; 1, uniform in w. By the de�nition of the

marginals of � , such bounds are

“

�.r/�i .p/ drdpi

jw � r � �pi js
� k�k1 k�ik1 ��s

Z K

�K
dr

Z 1

�1

dpi

j.w � r/=� � pi js

� k�k1 k�ik1 ��s 2

1 � s

Z K

�K
dr

� 4K
k�k1 k�ik1
.1� s/ ��s :

By choosing � large enough this leads to (6.2).
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Given this result we can follow the steps above, except with m D 1, to ob-

tain the required fractional moment estimate as in �eorem 1.3, now in the large

coupling regime, and thus, as before, conclude pure point spectrum to prove �e-

orem 1.4.

7. Proof of Lemma 3.3 and Lemma 3.4

In this �nal section we provide the proofs of the technical Lemmas 3.3 and 3.4,

which have been used in the proof of �eorem 1.3 above.

Proof of Lemma 3.3: (i) �e argument that lead to the bound (3.7) of EŒjg0js � can

be employed again to show well-posedness and boundedness of the operator T�;z;s,

uniformly in � and z. We have

sup
w2CC

j.T�;z;sf /.w/j

� 2kf k1 sup
w2CC

E

hˇ

ˇ

ˇ

�1
2w C

p
2.z � q0/

ˇ

ˇ

ˇ

s

C
ˇ

ˇ

ˇ

�1
2w C

p
2.z � q1/

ˇ

ˇ

ˇ

si

� 21�s=2kf k1 sup
w2CC

E

h 1

j
p
2Re.w/C Re.z/ � q0js

C 1

j
p
2Re.w/C Re.z/ � q1js

i

� 21�s=2kf k1 sup
w2R

E

h 1

jw � q0js
C 1

jw � q1js
i

:

(7.1)

In order to bound this we use

E

h 1

jw � q0js
i

D
Z

R2

Z K

�K

1

jw � r � �p0js
�.r/ dr d�.p0; p1/

� 2k�k1K1�s

1 � s ;

where, after bounding the r-integral similar to (3.7), the �-integral becomes triv-

ial. �e same bound holds for the other term in (7.1), leading to (3.9).

�us we have proved that kT�;z;sf k1 is �nite and that kT�;z;sk is bounded as

in (3.9). �at T�;z;sf is also a continuous function on CC is equivalent to the map

z 7! T�;z;sf being continuous since z and w always appear in the combination

w C z=
p
2. �is continuity is shown next. Also

lim
jwj!1

.T�;z;sf /.w/ D 0;

proving that T�;z;sf 2 C.CC/.
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(ii) Fix f 2 C.CC/. We prove the continuity of the map z 7! T�;z;sf .

For �xed z 2 C
C [R and a sequence zn in C

C [R with jz � znj ! 0 as n ! 1,

we have (we abbreviate E WD Eq and �˙
z WD �˙

z;q)

sup
w2CC

j.T�;zn;sf � T�;z;sf /.w/j

D sup
w2CC

jEŒf .�C
zn
.w//.j�C

zn
.w/js

C j��
zn
.w/js/ � f .�C

z .w//.j�C
z .w/js C j��

z .w/js/�j

� sup
w2CC

jEŒf .�C
zn
.w//.j�C

zn
.w/js� j�C

z .w/jsC j��
zn
.w/js� j��

z .w/js/�j

C sup
w2CC

jEŒ.f .�C
zn
.w// � f .�C

z .w///.j�C
z .w/js C j��

z .w/js/�j

� kf k1 sup
w2CC

EŒjj�C
zn
.w/js � j�C

z .w/jsj C jj��
zn
.w/js � j��

z .w/jsj�

C sup
w2CC

EŒjf .�C
zn
.w//� f .�C

z .w//j.j�C
z .w/js C j��

z .w/js/�:

(7.2)

Writing

�˙
zn
.w/ � �˙

z .w/ D zn � zp
2

� 1

.
p
2w C zn � q0/.

p
2w C z � q0/

˙ 1

.
p
2w C zn � q1/.

p
2w C z � q1/

�

we arrive at the estimate

EŒjj�˙
zn
.w/js � j�˙

z .w/jsj�

� 2�s=2jzn � zjs E
h 1

j
p
2w C zn � q0js j

p
2w C z � q0js

C 1

j
p
2w C zn � q1js j

p
2w C z � q1js

i

� 2�s=2jzn � zjs E
h 1

j Re.
p
2w C zn/ � q0js j Re.

p
2w C z/ � q0js

C 1

j Re.
p
2w C zn/ � q1js j Re.

p
2w C z/ � q1js

i

� 2�s=2jzn � zjs E
h 1

j Re.
p
2w C zn/ � q0j2s

C 1

j Re.
p
2w C z/ � q0j2s

i

C 2�s=2jzn � zjs E
h 1

j Re.
p
2w C zn/ � q1j2s

C 1

j Re.
p
2w C z/ � q1j2s

i

:

(7.3)
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When taking the supremum over w we can set zn D 0 and z D 0, respectively.

By using the bound that led to (3.7) we see that

sup
w2CC

EŒjj�˙
zn
.w/js � j�˙

z .w/jsj� � 8 � 2�s=2K1�2sk�k1
1 � 2s jzn � zjs (7.4)

which vanishes as n ! 1.

Now, we come to the second term,

EŒjf .�C
zn;q

.w// � f .�C
z;q.w//j j�˙

z;q.w/js�:

We have reintroduced q in the notation and we use

j�˙
z;q.w/js � 2�s=2

� 1

j Re.
p
2w C z/ � q0js

C 1

j Re.
p
2w C z/ � q1js

�

:

�e expectation of q 7! f .�C
zn;q

.w// j�˙
z;q.w/js is bounded uniformly in n by

the previous arguments, and f .�C
zn;q

.w// converges point-wise to f .�C
z;q.w// as

n ! 1, almost surely with respect to the measure�. An application of dominated

convergence �nishes the proof of (ii).

(iii) We proceed inductively inm. Form D 1we split k.T�;ECi�;s�T�;E;s/f˛k1
into two terms analogous to (7.2). �e �rst term can be treated as the the proof

of part (ii), using uniform boundedness of kf˛k1 and that the analogue of the

bound (7.4) has the required uniformity properties.

�e second term consists of two contributions (one for each sign in �˙),

Eq Œjf˛.�C
ECi�;q.w//� f˛.�C

E;q.w//jj�
˙
E;q.w/js�: (7.5)

It is here where one has to go beyond the ‘soft’ dominated convergence argument

used in the proof of part (ii). With 0 < ˇ < 1=2 we split the r-integration within

Eq into the regions

A D ¹r W j
p
2w CE � r � �pi j � �ˇ for i D 0 and i D 1º;

B D R n A:

In region A we have

j�C
ECi�;q.w/ � �C

E;q.w/j �
p
2�1�2ˇ :
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Using the equi-continuity of ¹f˛º we �nd that for every ı > 0 there exists

�0 > 0 such that

jf˛.�C
ECi�;q.w/ � f˛.�C

E;q.w//j < ı

for r 2 A and 0 � � � �0. �us the corresponding contribution to (7.5) satis�es

Z

R2

Z

A

: : : � C.K; s/ı

uniformly in �, E and w. Moreover, boundedness of ¹f˛º and that B consists of

two intervals of length 2�ˇ gives the bound

Z

R2

Z

B

: : : � C.s/k�k1�
ˇ.1�s/;

also uniformly in �, E and w. �ese bounds combine to prove (3.10) for m D 1.

To carry out the inductive step we assume that (3.10) has been proved for all

integers up to m � 1 and write

k.Tm�;ECi�;s � Tm�;E;s/f˛k1

� kTm�1
�;ECi�;s.T�;ECi�;s � T�;E;s/f˛k1 C k.Tm�1

�;ECi�;s � Tm�1
�;E;s/T�;E;sf˛k1

� Cm�1k.T�;ECi�;s � T�;E;s/f˛k1 C k.Tm�1
�;ECi�;s � Tm�1

�;E;s/T�;E;sf˛k1;

(7.6)

where Lemma 3.3(i) was used. �at the �rst term in (7.6) goes to zero uniformly

in �, E and ˛ is the casem D 1. �e family ¹T�;E;sf˛º�;E;˛ is equi-continuous by

Lemma 7.1 below. �us the second term goes to zero uniformly in �, E and ˛ by

the inductive assumption.

(iv) is clearly true.

(v) We use the fact that for any holomorphic function �, the function

w 7! j�.w/js (for any power s � 0) is a subharmonic function on C
C. Recall

that a function f W CC ! R [ ¹�1º is called submean if the average of f on

any circle (inside C
C) is larger than (or equal to) the value of f at the center of

this circle. A function f is called upper-semicontinuous if for any sequence zn

converging to z we have lim supf .zn/ � f .z/. A function is called subharmonic

if it is both submean and upper-semicontinuous. Subharmonicity is preserved if

we add or integrate subharmonic functions. �e maps w 7! �˙
z;q are both holo-

morphic. Hence, the integrand of T�;z;s1 is a subharmonic function of w, and so

is w 7! .T�;z;s1/.w/. �e same applies to the map w 7! .Tm�;z;s1/.w/ if we expand

the mth power as a multiple integral.
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An important property of subharmonic functions is that the supremum of a

subharmonic function on a domain with compact closure is taken at the boundary

of the domain, which in our case is R [ ¹i1º. �is implies (3.11).

In the proof of Lemma 3.3(iii) above we have used the following

Lemma 7.1. Let ¹f˛ W ˛ 2 Jº be an equi-continuous and bounded subset ofC.CC/

and s 2 .0; 1=2/. �en

¹T�;E;sf˛ W � � 0; E 2 R; ˛ 2 Jº (7.7)

is equi-continuous and bounded in C.CC/.

Proof. We have

.T�;E;sf˛/.w/� .T�;E;sf˛/.w
0/

D EqŒf˛.�
C
E;q.w//.j�

C
E;q.w/j

s � j�C
E;q.w

0/js/� (7.8)

C Eq Œ.f˛.�
C
E;q.w//� f˛.�C

E;q.w
0///j�C

E;q.w
0/js� (7.9)

C similar terms with j�Cjs replaced by j��js :

We focus on the terms involving j�Cjs, with the j��js-terms giving the same

bounds. �e absolute value of (7.8) is bounded by

kf˛k1jEq.j�C
E;q.w/j

s � j�C
E;q.w

0/js/j:

By assumption, kf˛k1 � C . Moreover,

jEq.j�C
E;q.w/j

s � j�C
E;q.w

0/js/j

� C.s/

Z

R2

Z K

�K

ˇ

ˇ

ˇ

1p
2w CE � r � �p0

� 1p
2w0 CE � r � �p0

ˇ

ˇ

ˇ

s

�.r/ dr d�.p0; p1/

C a similar term with p0 replaced by p1:

�e appearing r-integral, using s < 1=2 and the elementary bound
ˇ

ˇ

ˇ

ˇ

1

a
� 1

b

ˇ

ˇ

ˇ

ˇ

s

� jb � ajs
� 1

jaj2s C 1

jbj2s
�

(similar to what was done in (7.3) above), can be seen to satisfy a bound of the form

C.K; s/jw � w0js, thus making the �-integration trivial. �is shows the required

equi-continuity of the set (7.7) for the contribution by the term (7.8).
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�e term (7.9) is treated in a way similar to how we bounded (7.5) above.

Choose 0 < ˇ < 1=2 and, for �xed q D �.p0; p1/, split the r-integral within Eq

into two regions,

A0 D ¹r W j
p
2w CE � r � �pi j � jw �w0jˇ and

j
p
2w0 CE � r � �pi j � jw �w0jˇ

for i D 0and i D 1º;

B 0 D R n A0:

Correspondingly, we write

EqŒ.f˛.�
C
E;q.w//� f˛.�C

E;q.w
0///j�C

E;q.w
0/js � D

Z

R2

Z

A0

: : :C
Z

R2

Z

B0

: : : :

For r 2 A0 one checks

j�C
E;q.w/ � �C

E;q.w
0/j � 2jw0 �wj1�2ˇ :

Combined with the equi-continuity of ¹f˛º this means that for every ı > 0 there

is ı0 > 0 such that

jw0 �wj < ı0 H) jf˛.�C
E;q.w//� f˛.�C

E;q.w
0//j < ı;

which in turn gives
Z

R2

Z

A0

: : : � C.K; s/k�k1 ı (7.10)

for all E, � and ˛.

Note that B 0 is the union of four intervals of length 2jw0 �wjˇ . From this one

gets the bound

Z

R2

Z

B0

: : : � C.s/kf˛k1k�k1jw � w0jˇ.1�s/

� C 0.s/k�k1jw � w0jˇ.1�s/;

(7.11)

for all E, � and ˛, having used boundedness of ¹f˛º.
Combining (7.10) and (7.11) gives the required equi-continuity property for the

contribution by the term (7.9) and thus completes the proof of Lemma 7.1.
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We �nally turn to the

Proof of Lemma 3.4: We proceed inductively and �rst show the claim for m D 1,

i.e. that

lim
�#0

sup
E2R

kT�;E;sf � T0;E;sf k1 D 0: (7.12)

Towards this, let us abbreviate

�˙
E;rC�p WD �˙

E;.rC�p0;rC�p1/
; �˙

E;r WD �˙
E;.r;r/; �˙

rC�p WD �˙
0;rC�p:

�en, using the triangle inequality we get,

sup
E2R



T�;E;sf � T0;E;sf




1

D sup
E2R

sup
w2xR

ˇ

ˇ

ˇ

ˇ

•

h

f .�C
E;rC�p.w//

�

j�C
E;rC�p.w/j

s C j��
E;rC�p.w/js

�

� f .�C
E;r.w//j�

C
E;r.w/j

s
i

�.r/dr d�.p/

ˇ

ˇ

ˇ

ˇ

� sup
w2xR

•

jf .�C
rC�p.w//� f .�C

r .w//j j�C
r .w/js �.r/dr d�.p/ (7.13)

C sup
w2xR

•

jf .�C
rC�p.w//j Œj�C

rC�p.w/js � j�C
r .w/js� �.r/dr d�.p/ (7.14)

C sup
w2xR

•

jf .�C
rC�p.w//j j��

rC�p.w/js �.r/dr d�.p/: (7.15)

Since the sup over E is gone once we have taken the sup over w we have set E to

0. We show now that each of the three terms goes to 0 as � # 0.
�e �rst term (7.13) is the most complicated one. We have the bound

j�C
rC�p.w/ � �C

r .w/j � �p
2j

p
2w � r j

� 1

j
p
2w � r � �p0j

C 1

j
p
2w � r � �p1j

�

:

(7.16)

We consider �rst the region where j
p
2w � r j > �a with 0 < a < 1=2. Since

jpi j � 1 by Assumption 1 we have

j
p
2w � r � �pi j � j

p
2w � r j � � � �a � � � 1

2
�a

for small �. �erefore,

sup
w W j

p
2w�r j>�a

j�C
rC�p.w/ � �C

r .w/j � 2
p
2�1�2a:
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Applying this to the (uniformly) continuous function f we get

sup
w W j

p
2w�r j>�a

jf .�C
rC�p.w// � f .�C

r .w//j

� sup
x;y W jx�yj�2

p
2�1�2a

jf .x/ � f .y/j

D o�.1/;

where o�.1/ means that the term goes to 0 as � ! 0. In the region

j
p
2w � r j � �a we use the integrability of r 7! j�C

r .w/js�.r/. Altogether,

we have the bound

•

jf .�C
rC�p.w//� f .�C

r .w//j j�C
r .w/jsj �.r/dr d�.p/

� o�.1/

Z

j
p
2w�r j>�a

j�C
r .w/js �.r/dr

C 2kf k1

Z

j
p
2w�r j��a

j�C
r .w/js �.r/dr

� o�.1/ k�k1

Z K

�K

dr

jr js C 2kf k1k�k1

Z

jr j��a

dr

jr js

D o�.1/
2k�k1
1� s K1�s C �a.1�s/ 4kf k1k�k1

1� s :

In the second term (7.14), we get from (7.16),

j j�C
rC�p.w/js � j�C

r .w/jsj � j�C
rC�p.w/ � �C

r .w/js

� 2�s=2�s
1

j
p
2w � r js

� 1

j
p
2w � r � �p0js

C 1

j
p
2w � r � �p1js

�

� 2�s=2�s
� 1

j
p
2w � r j2s

C 1p
2jw � r � �p0j2s

C 1

j
p
2w � r � �p1j2s

�

:

With this estimate we perform the r-integral in (7.14) to obtain the upper bound

6 � 2�s=2

1 � 2s �
sK1�2sk�k1kf k1: (7.17)
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�e third term (7.15) is analogous to the previous one, so that

j��
rC�p.w/js

D 2�s=2
ˇ

ˇ

ˇ

1p
2w � r � �p0

� 1p
2w � r � �p1

ˇ

ˇ

ˇ

s

� 2�s=2�s jp0 � p1js
� 1

j
p
2w � r � �p0j2s

C 1

j
p
2w � r � �p1j2s

�

:

�en integrate this using jp0 � p1j � 2 and get a bound similar to (7.17). �is

�nishes the proof of (7.12).

For m � 2 we write, leaving out the indices E and s,

Tm� � Tm0 D Tm�1
� .T� � T0/C .Tm�1

� � Tm�1
0 /T0

Since kTm�1
� k1 � kT�km�1

1 is bounded uniformly in � by (3.9),

kTm� f � Tm0 f k1 � kTm�1
� k1 kT�f � T0f k1 C k.Tm�1

� � Tm�1
0 /.T0f /k1

goes to 0 as � ! 0 by assuming the induction hypothesis for the functions f

and T0f .
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