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On anomalous Lieb–Robinson bounds

for the Fibonacci XY chain
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Abstract. We rigorously prove a new kind of anomalous (or sub-ballistic) Lieb–Robinson

bound for the isotropic XY chain with Fibonacci external magnetic �eld at arbitrary cou-

pling. It is anomalous in that the usual exponential decay in jxj � vjt j is replaced

by exponential decay in jxj � vjt j˛ with 0 < ˛ < 1. In fact, we can characterize the values

of ˛ for which such a bound holds as those exceeding ˛C
u , the upper transport exponent

of the one-body Fibonacci Hamiltonian. Following the approach of [14], we relate Lieb–

Robinson bounds to dynamical bounds for the one-body Hamiltonian corresponding to the

XY chain via the Jordan–Wigner transformation; in our case the one-body Hamiltonian

with Fibonacci potential. We can bound its dynamics by adapting techniques developed

in [8, 9, 2, 3] to our purposes. To our knowledge, this is the �rst rigorous derivation of

anomalous quantum many-body transport.

Along the way, we prove a new result about the one-body Fibonacci Hamiltonian:

the upper transport exponent agrees with the time-averaged upper transport exponent,

see Corollary 2.9. We also explain why our method does not extend to yield anomalous

Lieb–Robinson bounds of power-law type for the random dimer model.
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1. Introduction

Lieb–Robinson (LR) bounds were �rst introduced by Lieb and Robinson in

1972 [24]. �ese bounds and their generalizations [15, 26, 27, 28] concern quan-

tum spin systems on a lattice governed by local Hamiltonians. �ey establish that,

approximately, quantum correlations (as expressed by commutators of local ob-

servables) propagate at most ballistically under the Heisenberg dynamics. �at

is, commutators of observables, which are initially supported a distance jxj apart,

are exponentially small in jxj � vjt j, where v � 0 is the so-called Lieb–Robinson

velocity. �erefore, in similarity to relativistic systems, LR bounds establish the

existence of a “light cone” jxj � vjt j outside of which correlations are suppressed.

Lieb–Robinson bounds greatly increased in popularity about 10 years ago,

when Hastings and co-workers realized that they can be used to prove exponen-

tial clustering, a higher-dimensional analogue of the Lieb-Schultz-Mattis theorem

and the famous area law for the entanglement entropy in one-dimensional quantum

systems with a spectral gap [17, 28, 15, 16]. Since then, LR bounds have become

an important tool in condensed-matter physics and quantum information theory,

e.g. for understanding the structure of ground states in gapped systems.

Here, we take the perspective that LR bounds characterize the dynamics of

many-body quantum systems as at most ballistic. We consider a model, the

Fibonacci XY spin chain, for which this bound on the dynamics can be improved to

an anomalous (or sub-ballistic) LR bound, see De�nition 2.1, establishing anoma-

lous many-body transport in this case. We refer to [6] for an exposition of our

results that is geared towards a physics audience.

A preprint version of this paper discussed the extension of our results to Stur-

mian models. �e proof was based on methods from [25], which were since found

to be �awed [4]. We believe that the extension can be proved by combining our

methods with the ones in [4], but we leave this task to future work.
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2. Main results

2.1. �e Fibonacci XY chain. Given an integer n, we take as our Hilbert space

Hn D
n

O

j D1

hj :

where hj D C
2 for all j . On Hn, we consider the isotropic XY chain given by the

Hamiltonian

H XY
n D �

n�1
X

j D1

.�x
j �x

j C1 C �
y
j �

y
j C1/ C

n
X

j D1

Vj �z
j

where ¹Vj º is the Fibonacci external magnetic �eld de�ned by

Vj D ��Œ1���1;1/.j��1 C ! mod 1/

with � > 0 a coupling constant, ! 2 Œ0; 1/ the “phase” and

� D 1 C
p

5

2

the golden mean. �e Fibonacci external �eld is the primary model of one-dimen-

sional quasi-periodicity. As usual, the Pauli matrices are

�x D
�

0 1

1 0

�

; �y D
�

0 �i

i 0

�

; �z D
�

1 0

0 �1

�

;

and �
x;y;z
j denotes 11 ˝ : : :1j �1 ˝�x;y;z ˝1j C1 : : :˝1n. For a �nite set S � ZC,

we de�ne the algebra of observables on J by

AJ D
O

j 2J

B.hj /;

where B.hj / is the set of bounded linear operators on hj D C
2, which is of course

just the set of all complex 2 � 2 matrices. We will often make use of the fact that

for J � J 0, there is a natural embedding of AJ into AJ 0 by tensoring with the

identity on J 0 n J . Also, we denote Aj � A¹j º.

Finally, we recall that the Heisenberg dynamics of an observable A 2 AJ are

de�ned by

�n
t .A/ D eitH XY

n Ae�itH XY
n :
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Disclaimer. We usually do not keep track of constants that depend on model

parameters, one exception is the dependence on the parameter ! as discussed later.

We write C; C 0; : : : for constants that may have di�erent numerical values from

line to line and C0; C1; : : : for constants that appear in the statement of a result.

2.2. Anomalous Lieb–Robinson bounds. To phrase our results, it will be con-

venient to adopt the following convention for stating anomalous LR bounds (we

will soon discuss what we mean by “anomalous”):

De�nition 2.1. We say that “LR.˛/” holds if there exist constants C0; � > 0 and

v � 0 such that for all integers 1 � j < j 0 � n and all t > 0, we have

kŒ�n
t .A/; B�k � C0kAkkBke��.jj 0�j j�vt˛/ (1)

for all A 2 Aj and all B 2 A¹j 0;:::;nº.

Remark 2.2. (1) �e ordinary LR bound is LR.1/ and by the very general anal-

ysis of [28], LR.1/ holds in our case.1 �e bound LR.˛/ with ˛ < 1 is quali-

tatively stronger than LR.1/. Indeed, it already becomes e�ective when v1=˛t <

jj 0 �j j1=˛: Since space is discrete, we have jj 0 �j j1=˛ � jj 0 �j j and so LR.˛/ be-

comes e�ective at smaller distances than LR.1/. See also the discussion following

�eorem 1 in [5].

(2) �e assumption that A 2 Aj can be generalized to A 2 AJ with max J � j

using the Leibniz rule for commutators (7), but at the price of having C0 depend

on jJ j. For a detailed proof of this, we refer to [7]. In a di�erent approach, follow-

ing the proof of Corollary 3.4 in [14], one can derive from LR.˛/ a Lieb–Robinson

bound which holds for all A 2 AJ with max J � j and C independent of jJ j, but

at the price of increasing the growth in t to
R t

0 e�vs˛

ds.

We will phrase our results in terms of the upper transport exponent ˛C
u for the

Fibonacci Hamiltonian H . It is just one of several exponents characterizing the

dynamics associated to H and we will introduce these later, in Section 7, mainly

as tools.

De�nition 2.3. Let H be the operator on `2.ZC/ de�ned in (18) and let ¹ılºl�1

be the canonical basis of `2.ZC/. For t > 0 and any integer N , we de�ne

P.N; t/ D
X

n>N

jhı1; e�itHınij2; SC.˛/ D � lim sup
t!1

log P.t˛ � 1; t/

log t
(2)

1 In fact even the slightly stronger version of LR.1/ with A 2 AJ and C independent of the

cardinality jJ j holds.
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as well as the upper transport exponent

˛C
u D sup

˛�0

¹SC.˛/ < 1º (3)

which, roughly speaking, characterizes the propagation rate of the fastest part of

the wavepacket initially localized at ı1.

�eorem 2.4 (First main result). Let � > 0. If ˛ > ˛C
u .�/, then LR.˛/.

Remark 2.5. �e proof also yields the explicit formulae (38) for � and for the

“Lieb–Robinson velocity” v. �e formula for v does not yield quantitative in-

formation however, because it involves the quantity C 0
ı
, which is not determined

in [3].

Our second main result says that the upper transport exponent is truly the “cor-

rect” one for the LR bound (modulo the di�erence between � and >).

�eorem 2.6 (Second main result). Let � > 0. If LR.˛/, then ˛ � ˛C
u .�/.

Remark 2.7. �e proof of �eorem 2.6 works in complete generality and has

nothing to do with the Fibonacci case. �at is, the implication LR.˛/ ) ˛ � ˛C
u

holds for general choices of the ¹Vj º in the isotropic XY chain (e.g. periodic ¹Vj º
for which ˛C

u D 1).

2.3. Discussion. Let us explain why we call these Lieb–Robinson bounds

“anomalous.” �e usual LR bound is LR.1/ and it implies that commutators are

small, up to an exponential error, outside of the “light cone” given by jj �j 0j � vt .

For v > 0, this behavior corresponds to ballistic transport and for v D 0 to

dynamical localization.

By contrast, �eorems 2.4 and 2.6 say that the “light-cone” for the Fibonacci

XY chain is changed to the set jj � j 0j � vt˛
C
u with 0 < ˛C

u < 1 (see Propo-

sition 2.8 below). In other words, quantum-mechanical correlations spread sub-

ballistically for this model and whenever ˛C
u ¤ 1

2
such behavior is commonly

referred to as anomalous transport. To our knowledge, this is the �rst rigorous

proof of anomalous quantum many-body transport. It is physically appealing that

the upper bound on transport at the one-body level ˛C
u is precisely what governs

transport at the many-body level, but in light of the fact that the XY chain can be

mapped to non-interacting particles, this is not so surprising (compare however

with the situation for the random dimer model discussed in the �nal section).
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Roughly speaking, the anomalous behavior of the Fibonacci XY chain is a

consequence of the quasi-periodicity of the Vi , which is situated in between the

two extreme cases of

(a) periodic external �elds of Vi : these correspond to ballistic transport, which

is obvious e.g. for the free case Vi � 0. �is case is discussed in an upcoming

paper of three of the authors [7];

(b) disordered, that is i.i.d. random, external �elds of Vi : these were shown to

lead to exponential decay of correlations [21] and zero-velocity LR bounds

(i.e. dynamical localization) [14].

To close the discussion of anomalous transport, we record some known upper

and lower bounds on ˛C
u . For further remarks on the anomalous LR bound, we

refer the interested reader to [6].

Proposition 2.8. (i) For all � > 0, we have ˛C
u .�/ > 0.

(ii) For all � >
p

24, we have

˛C
u .�/ � 2 log �

log.2� C 22/

with � D 1C
p

5
2

.

(iii) For all � � 8, we have

˛C
u � 2 log �

log �.�/
;

for � � 8 and �.�/ D 1
2
.� � 4 C

p

.� � 4/2 � 12/.

Numerically, we can use these to see, e.g., that

0:1 < ˛C
u < 0:5

for 12 � � � 7; 000. Hence, the transport exponent is truly anomalous for such

� (we note the upper bound by 0:5 because that particular exponent is sometimes

referred to as “di�usive” transport and not assigned the “anomalous” label).

Proof. For (i), see [5] and note that Q̨ C
u � ˛C

u according to Lemma 7.2. For (ii),

see �eorem 3 of [9] and use Q̨ C
u � ˛C

u . For (iii), see �eorem 3 of [8].
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2.4. Equality of transport exponents. We explicitly note the following corol-

lary of the proof of Proposition 5.1, because we believe it to be of independent

interest. �e averaged transport exponents Q̨ ˙
u are de�ned in Section 7.

Corollary 2.9. Let � > 0. �en, ˛C
u D Q̨ C

u D Q̨ �
u

�e second equality was already observed in [3], the �rst one is new.

3. �e relation to one-body dynamics

3.1. Diagonalizing the XY chain. We will use the standard procedure, going

back to [23], of diagonalizing the XY chain via the Jordan–Wigner transformation

to free fermions, followed by a Bogoliubov transformation.

We only recall what we need to establish notation for the relevant objects.

For the details of the diagonalization procedure, we refer to Section 3.1 in [14].

�e �rst step is to introduce the lowering operator

aj D 1

2
.�x

j � i�
y
j /

and its adjoint the raising operator a�
j for all 1 � j � n. �e Jordan–Wigner

transformation maps these to the fermion operators2

c1 D a1; cj D �z
1 : : : �z

j �1aj ; for 2 � j � n: (4)

In terms of these operators, the Hamiltonian reads

H XY
n D

n�1
X

j D1

n
X

kD1

c�
j .Hn/j;kck

where we introduced the n � n matrix

Hn D

0

B

B

B

B

@

V1 1

1
: : :

: : :

: : :
: : : 1

1 Vn

1

C

C

C

C

A

: (5)

We will refer to Hn as the one-body Fibonacci Hamiltonian. To emphasize that it

depends on the phase ! 2 Œ0; 1/ we sometimes write Hn.!/.

We will heavily use that the Heisenberg dynamics of the cj operators is given

in the following simple fashion.

2 �is means that they satisfy the canonical anticommutation relations.
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Proposition 3.1 ([14]). For all 1 � j; k � n and all ! 2 Œ0; 1/, we have

�n
t .cj / D

n
X

kD0

.e�2iHn.!/t /j;kck : (6)

Proof. �is is a consequence of formula (3.15) in [14] for �n
t .cj /, which is proved

via Bogoliubov transformation.

3.2. Relating LR bounds for the XY chain to fermionic LR bounds. �e fol-

lowing lemma is instrumental in relating the LR bounds for the cj back to LR

bounds for local observables in the XY chain. �e di�culty is that the Jordan–

Wigner transformation (4) is non-local. �is was overcome in [14] at the relatively

small price of the extra sum over k in (8).

De�nition 3.2. We say that LRfermi.˛/ holds if there exist constants C1; � > 0

and v � 0 such that for all integers 1 � j < j 0 � n and all t > 0, we have

kŒ�n
t .cj /; B�k C kŒ�n

t .c�
j /; B�k � C1kBke��.jj 0�j j�vt˛/

for all B 2 A¹j 0;:::;nº.

For obvious reasons, we will make heavy use of

Lemma 3.3 ([14]). LR.˛/ holds if and only if LRfermi.˛/ holds.

We use the strategy of the proof of �eorem 3.2 in [14], but we allow for a

t -dependence of the form appearing on the right-hand side of the anomalous LR

bound and we note that the argument can also be run in reverse.

Proof. We �rst prove the “if” part. Let A D aj . Since .�z
i /2 D 1 and Œ�z

i ; �z
j � D 0

when i ¤ j , we can easily invert the Jordan–Wigner transformation (4) to get

a1 D c1; aj D �z
1 : : : �z

j �1cj ; for all j � 2:

By the automorphism property of �n
t and the “Leibniz rule” for commutators

ŒAB; C � D AŒB; C � C ŒA; C �B; (7)

we have

Œ�n
t .aj /; B� D �n

t .�z
1 / : : : �n

t .�z
j �1/Œ�n

t .cj /; B� C Œ�n
t .�z

1 /; : : : ; �n
t .�z

j �1/; B��n
t .cj /:
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By unitarity of �n
t , this implies

kŒ�n
t .aj /; B�k � kŒ�n

t .cj /; B�k C C.j � 1; B/;

where we introduced

C.l; B/ D kŒ�n
t .�z

1 /; : : : ; �n
t .�z

l /; B�k:

Applying (7) again, we �nd

C.l; B/ � C.l � 1; B/ C kŒ�n
t .�z

l /; B�k:

Since �z
l

D 2c�
l
cl � 1C2 , we get

C.l; B/ � C.l � 1; B/ C 2kŒ�n
t .cl /; B�k C 2kŒ�n

t .c�
l /; B�k;

which we can iterate to obtain

kŒ�n
t .aj /; B�k � 2

j
X

lD1

.kŒ�n
t .cl /; B�k C kŒ�n

t .c�
l /; B�k/: (8)

By performing a geometric series, it is now obvious that LRfermi.˛/ implies LR.˛/

in the special case when A D aj . Extending this to all of Aj , which is spanned by

¹aj ; a�
j ; a�

j aj ; aj a�
j º, is not hard; we refer to [14] for the details.

�e “only if” part follows by the exact same reasoning, since the Jordan–

Wigner transform and its inverse are of the same form.

4. Proof of the second main result

We begin with the proof of the second main result, �eorem 2.6.

Lemma 4.1. For any l 2 Œ1; n/ and any r 2 .l; n�, for any t 2 R,

kŒ�n
t .cl /; a�

r �k � j.e�2iHn.!/t /l;r j:

Proof. From (6) we have

kŒ�n
t .cl /; a�

r �k D









h

n
X

j D1

.e�2iHn.!/t /l;j cj ; a�
r

i







:

Observe that for all j < r , a�
r commutes with cj . �us we can write

kŒ�n
t .cl /; a�

r �k D









h

n
X

j �r

.e�2iHn.!/t /l;j cj ; a�
r

i







:
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Notice that for each j > r , cj D �
.z/
1 � � � � .z/

j �1aj , and a�
r commutes with aj and

every �
.z/
i with i ¤ r . On the other hand, notice that for every i , �

.z/
i v D v with

v D
Nn

1

�

1
0

�

. �us, since a�
r

�

1
0

�

D 0, we have

�h

n
X

j �rC1

.e�2iHn.!/t /l;j cj ; a�
r

i�

v D 0;

and

Œ.e�2iHn.!/t /l;rcr ; a�
r �v D .e�2iHn.!/t /l;rv:

�us we have

kŒ�n
t .cl /; a�

r �k � kŒ.e�2iHn.!/t /l;rcr ; a�
r �vk

D k.e�2iHn.!/t /l;rvk

D j.e�2iHn.!/t /l;r j:

Proof of �eorem 2.6. By the previous lemma and the assumption of �eorem 2.6,

we have

jhıl ; e�2itHn.!/ırij � kŒ�n
t .cl /; a�

r �k � Ce��.r�l�vjt j˛/:

Let us shift everything so that we get

jhıl ; e�2itHn.!/ırij D jhır�lC1; e�2itHn. Q!/ı1ij

(notice the change in the phase from ! to Q! as a result of the shift, compare (23)).

Since we initially put no restrictions on l and r , we get, for each m,

jhım; e�2itHn. Q!/ı0ij2 � Ce�2�.m�vjt j˛/: (9)

Now if we de�ne, for all N � n,

P
.n/
out .N; t/ WD

X

n�m�N

jhım; e�itHn. Q!/ı1ij2;

and set P
.n/
out .N; t/ D 0 for all N > n, we obtain

P
.n/
out .N; 2t/ �

X

n�m�N

Ce�2�.m�vjt j˛/ . e�2�.N �vjt j˛/:

By the dominated convergence theorem we get

lim
n!1

P
.n/
out .N; 2t/ D P.N � 1; 2t/ for all t:
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In particular,

P.t
 � 1; t/ . e�2�.t
 �vjt=2j˛/:

�us for all 
 > ˛, we have P.t
 � 1; t/ . e��t

for t � 1. By (2) and (3), this

implies 
 � ˛C
u , so that ˛ � ˛C

u .

5. Proof of the �rst main result

5.1. �e transport exponent in a new guise. We begin the proof of the �rst

main result, �eorem 2.4. It will be convenient for us to use the following quantity,

which we will soon see agrees with ˛C
u , introduced in the recent paper [3] to study

transport exponents from a dynamical systems perspective.

We de�ne the following quantity

˛0 � ˛0.�/ D
log

�

1C
p

5
2

�

lim
k!1

1
k

log minj D1;:::Fk
jx0

k
.E

j

k
/j

; (10)

where Fk the k-th Fibonacci number, the Fibonacci trace map xk is de�ned in (28)

and E
.j /

k
is de�ned in [3]. �e precise de�nitions of these quantities are of limited

relevance here, because we will use results of [3] tailor-made for the analysis of

˛0 as a “black box”. �e limit in (10) exists, by Proposition 3.7 in [3].

Another reason why the quantities appearing in the de�nition of ˛0 are of lim-

ited relevance here, is that we will prove

Proposition 5.1. It holds that ˛0 D ˛C
u .

5.2. Key result: fermionic LR bounds from one-body dynamics. According

to Lemma 3.3, it su�ces to prove LR bounds for the fermion operators cj . �ey

are established by the following key result:

�eorem 5.2 (key result). Let � > 0. If ˛ > ˛0.�/, then LRfermi.˛
0/.

�e �rst main result now follows easily:

Proof of �eorem 2.4. �e theorem is a direct consequence of �eorem 5.2,

Proposition 5.1 and Lemma 3.3.

It thus remains for us to prove �eorem 5.2 (Section 6) and Proposition 5.1

(Section 7).
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6. Proof of the key result

6.1. Strategy of proof. �e proof of �eorem 5.2 is based on two main ingredi-

ents.

(a) Proposition 3.1, which gives a simple expression for the Heisenberg dynamics

of cj in terms of the one-body Fibonacci Hamiltonian Hn. We recall that the

reason why this useful formula holds is that the fermions described by the cj

are non-interacting.

(b) Dynamical upper bounds for Hn, established by Damanik and Tcherem-

chantsev [8, 9, 2] and Damanik, Gorodetski, and Yessen [3]. Some of their

tools, like the Dunford functional calculus approach, work for rather general

one-dimensional quantum systems. However, the crucial exponential lower

bound on transfer matrix norms, which is a result of [3] quoted here as Propo-

sition 6.5 is special to the Fibonacci case. Since the methods of [3] apply to

arbitrary coupling strength � > 0, so do our results.

Applying (a) is trivial. Regarding (b), we need to modify the existing argu-

ments somewhat. �e main di�culty for us is that bounds on transport exponents

involve probabilities (see the de�nition of ˛C
u ), which according to quantum the-

ory are given as appropriate `2-norms. In proving LR bounds however, we are

naturally led to consider `1-norms instead. Since this means we do not have or-

thogonality at our disposal, we need to develop an alternative approach3 and we

�nd that combining a resolution of the identity with Combes–�omas estimates

works. �ough we do not state them explicitly, our approach yields pointwise (i.e.

non-summed) bounds on the matrix elements of the resolvent and therefore also

of the propagator. (�is is in contrast to [8], which does not produce pointwise

bounds for the resolvent because Lemma 1 in [8] involves the full k � k2-norm.)

Some more minor obstructions are listed below.

(i) Our Hn is initially only de�ned on Hn, whereas one usually works with full-

line or half-line operators. �us, we �rst need to extend Hn to an appropriate

half-line operator H on `2.ZC/.

(ii) To analyze transport exponents, one is only interested in large-time behavior

and hence assumes t � 1 throughout for technical reasons, while we need

results for all t > 0.

(iii) To simplify our analysis, we reduce to the initial state ı1 D .1; 0; : : :/ with

an arbitrary phase ! 2 Œ0; 1/ via the covariance under shifts of the half-line

3 We remark that using the Cauchy-Schwarz inequality to go from `1-norms to `2-norms,

one picks up a factor
p

n and hence loses the required uniformity in n.
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Fibonacci Hamiltonian, see (23). While it is often assumed that ! D 0, it is

well known, see [8], [3], that one can extend to arbitrary phases ! 2 Œ0; 1/

via the methods of [2] and this is precisely what we do.

6.2. �e Dunford functional calculus approach to quantum dynamics. It suf-

�ces to bound Œ�n
t .cj /; B�, since one obtains the same bound for Œ�n

t .c�
j /; B� by

taking adjoints. By (6) and the fact that Œck ; B� D 0 when k < j 0, we get

Œ�n
t .cj /; B� D

n
X

kDj 0

..e�2iHn.!/t /j;kŒck ; B�/;

which implies

kŒ�n
t .cj /; B�k � 2kBk

n
X

kDj 0

j.e�2iHn.!/t /j;kj: (11)

From now on, we will work on the half-line Hilbert space

H D `2.ZC/;

to which we trivially extend Hn by setting Hnıl D 0 for l > n. In the canonical

basis ¹ılºl�1 ofH, we can write the matrix elements of the time-evolution operator

as

hıj ; e�2iHn.!/tıki D .e�2iHn.!/t /j;k:

We follow the approach of [9] and establish dynamical upper bounds without time-

averaging via the Dunford functional calculus [11]: for all 1 � j; k � n, we have

hıj ; e�2iHnt ıki D � 1

2�i

Z

�

e�itz
D

ıj ;
1

�2Hn � z
ık

E

dz; (12)

where z stands for z1ZC
and � is any positively oriented contour inC that encloses

the spectrum �.�2Hn/. Note the slightly unconventional appearance of �2Hn

instead of Hn on the right-hand side. We will choose the same rectangular � as

was used in the proof of Lemma 2 in [9]. We choose

K D min¹4; 2� C 5º (13)

and observe

�.�2Hn/ � Œ�K C 1; K � 1�:

We recall the well-known
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Proposition 6.1 (Combes–�omas estimate [1]). �ere is a universal constant CT

such that for all 1 � l; m � n,

ˇ

ˇ

ˇ

D

ıl ;
1

�2Hn � z
ım

Eˇ

ˇ

ˇ � 2d �1e�CT d jl�mj; (14)

where

d D min¹dist.z; �.�2Hn//; 1º:

Proof. See the appendix in [13] for a few-line proof, which also directly extends

to the case considered here where the discrete Laplacian is restricted to a box (this

extension was already explicitly observed in [22] for real z).

When t � 1, we follow the proof of Lemma 2 in [9] word-for-word until the

last step, where we do not use the Cauchy-Schwarz inequality. When t < 1,

we replace t�1 by 1 everywhere in the proof, in particular in the de�nition of the

contour �. Note that je�itzj � e is still uniformly bounded for all z 2 �. �e

upshot is that (12) yields the estimate

ˇ

ˇhıj ; e�2iHntıki
ˇ

ˇ � Ce�CT .k�j / C C 0
Z K

�K

ˇ

ˇ

ˇ

D

ıj ;
1

�2Hn � E � i"
ık

Eˇ

ˇ

ˇdE; (15)

for all 1 � j < j 0 � k � n. Here, we introduced the quantity

" D min¹t�1; 1º; (16)

which of course satis�es " � 1 for all t > 0. Using (15) on (11) and performing a

geometric series in the �rst term, we obtain

kŒ�n
t .cj /; B�k � Ce�CT .j 0�j / C C 0

Z K

�K

n
X

kDj 0

ˇ

ˇ

ˇ

D

ıj ;
1

�2Hn � E � i"
ık

Eˇ

ˇ

ˇdE: (17)

Clearly, we can ignore the �rst term in the following.

6.3. Extension to the half-line Fibonacci Hamiltonian. By expressing the time

evolution in terms of resolvents, we can start modifying Hn via the resolvent iden-

tity. �e e�ect of these changes will be controlled by combining a resolution of

the identity and Combes–�omas estimates.

We de�ne the half-line operator H on `2.ZC/ as the tri-diagonal half-in�nite

matrix

H D

0

B

B

@

V1 1

1 V2
: : :

: : :
: : :

1

C

C

A

: (18)
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We denote R.z/ D .�2H � z/�1 and Rn.z/ D .�2Hn � z/�1 with z D E C i".

We recall the resolvent identity,

Rn.z/ D R.z/ C R.z/2.Hn � H/Rn.z/:

Introducing a resolution of the identity
P1

lD1 jılihıl j, we can bound the sum in (17)

by

n
X

kDj 0

ˇ

ˇhıj ; Rn.z/ıki
ˇ

ˇ

�
n

X

kDj 0

ˇ

ˇhıj ; R.z/ıki
ˇ

ˇ C
1

X

lD1

ˇ

ˇhıj ; R.z/ıli
ˇ

ˇ

n
X

kDj 0

jhıl ; 2.Hn � H/Rn.z/ıkij :

(19)

An important observation is that, on the one hand

H � Hn D �nH�n C jınihınC1j C jınC1ihınj;

where we used Dirac notation and wrote �n for the indicator function

of ZC n ¹1; : : : ; nº. On the other hand, for j 0 � k � n, Rn.z/ık is supported

in Hn due to the block diagonal structure of Hn � z1ZC
. Together, these imply

that the only contribution to the l-sum in (19) comes from the l D n C 1 term.

Hence,

n
X

kDj 0

ˇ

ˇhıj ; Rn.z/ıki
ˇ

ˇ

�
n

X

kDj 0

ˇ

ˇhıj ; R.z/ıki
ˇ

ˇ C 2
ˇ

ˇhıj ; R.z/ınC1i
ˇ

ˇ

n
X

kDj 0

jhın; Rn.z/ıkij :

(20)

We apply the Combes–�omas estimate (14) to (20) and get

n
X

kDj 0

ˇ

ˇhıj ; Rn.z/ıki
ˇ

ˇ � 2

nC1
X

kDj 0

ˇ

ˇhıj ; R.z/ıki
ˇ

ˇ

�

1 C 2"�1

n
X

kDj 0

e�CT "jk�nj
�

� C
1

".1 � e�CT "/

1
X

kDj 0

ˇ

ˇhıj ; R.z/ıki
ˇ

ˇ :

(21)

Note that n has disappeared from the last expression. Since we are aiming for

uniformity in n, this is un-problematic. Using (21) to estimate (17) and recalling

z D E C i", we see that it remains to control

C
1

".1 � e�C1"/

Z K

�K

1
X

kDj 0

jhıj ; R.E C i"/ıkijdE: (22)
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6.4. Covariance of H.!/ under shifts. For l � 0, let Tl be the right-shift oper-

ator de�ned by

Tlım D ımCl

with adjoint operator given by the left-shift T �
l

D T�l . We observe the following

covariance property of H.!/:

T �
l H.!/Tl D H.!l/; (23)

where

!l D ! C l��1mod 1:

Hence, for all 1 � j < j 0, functional calculus implies

1
X

kDj 0

jhıj ; R.E C i�; !/ıkij D
1

X

kDj 0

jhı1; T �
j �1R.E C i�; !/Tj �1ı1Ck�j ij

�
1

X

kD0

sup
!2Œ0;1/

jhı1; R.E C i�; !/ıkCN ij;
(24)

where we wrote R.z; !/ D .�2H.!/ � z/�1 for emphasis and introduced the

integer

N � 1 C j 0 � j

for notational convenience.

6.5. Bounding resolvent matrix elements by transfer matrix norms. �e next

step is to bound matrix elements of the resolvent in terms of transfer matrix norms,

following the strategy of �eorem 7 in [8] of comparing with solutions u to the

equation Hu D zu.

Lemma 6.2 ([8]). �ere exists a constant C2 > 0 such that for all E 2 Œ�K; K�

and all N � 3, we have

1
X

kD0

sup
!2Œ0;1/

jhı1; R.E C i"; !/ıN Ckij

� C2

1

".1 � e�CT "/
min

3�N1�N
sup

!2Œ0;1/

kˆN1
.E C i"; !/k�1:

(25)

Here, CT is the Combes–�omas constant and ˆm.z; !/ is the usual transfer

matrix uniquely de�ned by the requirement that
�

u.m C 1/

u.m/

�

D ˆm.z; !/

�

u.1/

u.0/

�

; for all m � 0

holds for every half-in�nite vector u satisfying H.!/u D zu.
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Remark 6.3. (i) In [8], the left-hand side of (25) featured an appropriate `2-

norm instead.

(ii) As is emphasized in [8], the proof there only requires that V is real and

bounded. �us, uniformity in ! comes for free.

(iii) �e restriction that N � 3 is un-problematic for eventually concluding the

LR bound, because order one terms can always be absorbed in the constant

appearing on its right-hand side. As we will see later, the same idea will allow

us to dispose of the potentially large "-dependent pre-factor introduced by

the Combes–�omas estimates, at the expense of increasing the exponential

growth in t on the right-hand side of the LR bound.

Before the proof, we introduce some notation, which is similar to that in [8].

For N � 3 and l � 1, let

V ˙;N
m .!/ D

8

<

:

Vm.!/; if m � N;

˙2K; if m � N C 1;

and let H ˙
N .!/ be the half-in�nite matrix obtained from H.!/ by replacing Vm.!/

with V
˙;N

m .!/ for all m � 1. Moreover, denote R˙
N .z/ D .�2H ˙

N � z/�1.

�e crucial step is to establish the following analogue to Lemma 1 in [8].

Lemma 6.4 ([8]). We have

1
X

kD0

sup
!2Œ0;1/

jhı1; R.E C i"; !/ıN Ckij

� C
1

".1 � e�CT "/

1
X

kD0

sup
!2Œ0;1/

jhı1; R˙
N .E C i"; !/ıN Ckij:

(26)

Proof. We use the same combination of resolvent identity, resolution of the iden-

tity and Combes–�omas estimate as in the extension from Hn to H before. Let

z D E C i". By the resolvent identity,

R.z; !/ D R˙
N .z; !/ C R˙

N .z; !/�N .V .!/ � 2K/R.z; !/;

where �N is the indicator function of the set ZC n ¹1; : : : ; N º and

V.!/ D
X

m�1

Vm.!/jımihımj:
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We use this on the left-hand side of (26) and introduce a resolution of the identity

to get

1
X

kD0

sup
!2Œ0;1/

jhı1; R.z; !/ıN Ckij

� C

1
X

kD0

sup
!2Œ0;1/

�

jhı1; R˙
N .z; !/ıN Ckij

C
1

X

lD0

jhı1; R˙
N .z; !/ıN ClihıN Cl ; R.z/ıN Ckij

�

;

(27)

where we also used that V.!/ � 2K is bounded, uniformly in !. By the ordinary

Combes–�omas estimate on the half-line, see (A.11) in [13], we have

jhıN Cl ; R.z/ıN Ckij � C

"
e�CT "jk�l j

with constants that are uniform in E; k; l , and !. Using this on (27) and performing

a geometric series, we get

1
X

kD0

sup
!2Œ0;1/

jhı1; R.z; !/ıN Ckij

� C
1

".1 � e�CT "/

1
X

kD0

sup
!2Œ0;1/

jhı1; R˙
N .z; !/ıN Ckij

and we are done.

Proof of Lemma 6.2. Note that K de�ned by (13) satis�es K � 4. We follow

word-for-word the proofs of Lemmas 2 and 3 in [8] and use monotonicity of
p�

where appropriate. We stress that

(a) these arguments only assume that V is real and bounded and so none of the

constants that appear depend on !;

(b) while the proof of Lemma 2 may appear to be for the whole-line case, due

to the m�.z/-term in formulae (35) and (36), it also applies to the half-line

case with Dirichlet boundary condition (in which case the m�.z/ disappears).

In fact, [8] note in the introduction that they consider both, the full-line and

the half-line case, simultaneously. See also [20], where this method was

originally developed.
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Together with Lemma 6.4, these arguments imply that for all N � 3 and all

E 2 Œ�K; K�, we have

1
X

kD0

sup
!

ˇ

ˇ

ˇ

D

ı1;
1

.R.z; !//
ıN Ck

E
ˇ

ˇ

ˇ � C
1

".1 � e�C 0"/
sup

!
kˆN .z; !/k�1;

for all N � 3. Since the left-hand side is monotone decreasing in N , we can take

the minimum over 3 � N1 � N and we are done.

6.6. Lower bounds on transfer matrix norms and conclusion. Lower bounds

on transfer matrix norms kˆN .z; !/k for the Fibonacci Hamiltonian can be ob-

tained by studying the “trace map”, a second-order di�erence equation for the

sequence

xM � xM .z; 0/ � tr
1

2
ˆFM

.z; 0/; (28)

where FM denotes the M -th Fibonacci number and the transfer matrix ˆ was

de�ned in Lemma 6.2. Bounds on jxM j lead to bounds on kˆFM
.z; 0/k via the

trivial estimate

kAk � 1

2
jtr Aj; (29)

which holds for any 2 � 2 matrix A. For a detailed exposition of the trace map, we

refer to Section 4 of [8]. Here, we use an improved version of the results of [8]

established by [3] to prove their Proposition 3.8.

Proposition 6.5 ([3]). Let ! D 0. �ere exists ı > 0 such that for all " 2 .0; 1�

and all E 2 Œ�K; K�, we have

jxM .E C i"; 0/j � .1 C ı/FM �M0

for all M � M0 C 1, where M0 � K is chosen such that

C 0
ıF �s0

M0
< "; (30)

where s0 > ˛0 and C 0
ı

> 0 is an appropriate constant.

Proof. See the proof of Proposition 3.8 (b) in [3].
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Proof of �eorem 5.2. Recall that N � 1 C j 0 � j and recall the de�nition of "

in (16). We start from (17), apply (21) to extend to the half-line, (24) to reduce to

the case j D 1 at the price of a sup! and �nally we apply Lemma 6.2 to conclude

kŒ�n
t .cj /; B�k
� C kBke�CT .j 0�j /

C C 0kBk
� 1

"2.1 � e�CT "/

�2
Z K

�K

min
3�N1�N

sup
!2Œ0;1/

kˆN1
.E C i"; !/k�1dE:

(31)

As remarked before, we can safely ignore the �rst term, since it gives an LR bound

with v D 0. Moreover, since kŒ�n
t .cj /; B�k � 2kBk and the claimed LR bound

allows for a constant on the right-hand side, we may ignore order-one quantities

in the following.

Step 1 . We would like to apply Proposition 6.5 together with (29) to bound the

transfer matrix norms from below by an exponentially increasing quantity. How-

ever, it is assumed in Proposition 6.5 that ! D 0, while we require uniformity in

!. In order to extend to general ! 2 Œ0; 1/, we use results of [2] (this possibility

was already noted in passing in [8]): according to Proposition 3.4 in [2], we have

xM .E; !/ D xM .E; 0/

for all E 2 R, all ! 2 Œ0; 1/ and either (a) all odd M or (b) all even M . Both

sides of this equation are complex analytic in E, which is obvious from the usual

de�nition of the transfer matrices of positive index, see (12) in [8]. �us, we can

extend the relation to

xM .z; !/ D xM .z; 0/; (32)

with z complex and M as before.

Step 2. We choose M 0
1 to be the largest integer such that FM 0

1
� N , i.e. we have

FM 0
1

� N < FM 0
1

C1:

If it so happens that (32) holds for all even (odd) integers M , but M 0
1 is odd (even),

we set M1 � M 0
1 � 1. Otherwise, we set M1 � M 0

1. We can assume M1 � 3,

because M1 < 3 yields an order-one bound on N D 1 C j 0 � j and such terms

can be ignored as we explained before.

�en, we estimate the minimum in (31) by the M1-th term and we use (29), (32),

and Proposition 6.5 to �nd, for some ı > 0,

kŒ�n
t .cj /; B�k � C kBke�CT .j 0�j / C C 0kBk

� 1

".1 � e�CT "/

�2

.1 C ı/�FM1�M0

(33)
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if we have M1 � M0 C 1 with M0 chosen minimally, i.e.

C 0
ıF �s0

M0
< " � C 0

ıF �s0

M0�1:

Next, we will investigate this condition further.

Step 3. �e �rst inequality right above is equivalent to

FM0
>

�C 0
ı

"

�1=s0

: (34)

We will use the well-known fact that

�l

p
5

� 1

2
� Fl � �l

p
5

C 1

2
(35)

for all l � 0. It implies that, up to order-one constants, one can replace Fl by

�l=
p

5. Using this and convexity of the exponential function, we conclude that

the second term in (33) is bounded by

C
� 1

".1 � e�CT "/

�2

e��0.FM1
�FM0

/; (36)

where we introduced the positive quantity

�0 D 2 log.1 C ı/p
5

:

We use (35) and recall the de�nitions of M0; M 0
1 as certain minimal/maximal in-

tegers to get

FM0
� �FM0�1 C 2 � �

�C 0
ı

"

�1=s0

C 2;

FM1
� ��1FM 0

1
� 1 � ��2.FM 0

1
C1 � C / � ��2N � C:

We use these to bound (36) by

C
� 1

".1 � e�CT "/

�2

e��.N �v"�1=s0
/; (37)

with

� D ��2�0; v D �3.C 0
ı/1=s0

(38)

and this bound holds for N � v"�1=s0 C C 0 for some universal constant C 0.
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Step 4. We come to the conclusion, which mainly involves making order-one

changes to accommodate some exceptional cases. Suppose that t � 1, i.e. " D t�1

according to the de�nition of " in (16). It is crucial that the pre-factor in (37),

which quanti�es the cost of our two Combes–�omas estimates, can be bounded

via
� t

1 � e�CT t�1

�2

� C 0
T t4

for all t � 1, where C 0
T is a universal constant. Moreover, C 0

T t4 can be bounded in

terms of the exponential increase in t in (37), by an order-one constant in front and

a change of 1=s0 > ˛0 to a slightly larger value, but since 1=s0 may be arbitrarily

close to ˛0 this change is irrelevant. We have shown that

kŒ�n
t .cj /; B�k � C exp.��.jj 0 � j j � vt1=s0

//kBk (39)

for all t � 1, all 1=s0 > ˛0, whenever jj 0 � j j � vt1=s0 � C 0. In the case t < 1, we

have " D 1 according to (16) and all occurrences of t in the previous argument can

be replaced by order-one quantities. Since the exponential is bounded in t < 1,

we can then re-instate the t -dependence by yet another order-one change of the

constants. Hence, (39) extends to all t > 0.

Finally, when jj 0 � j j � vt1=s0

< C 0, the value of the exponential in the LR

bound is bounded from below and hence the entire right-hand side is at least order-

one. �is �nishes the proof.

7. Proof that ˛0
D ˛C

u

In this section, we prove Proposition 5.1, which we recall states that

˛0.�/ D ˛C
u .�/

for all � > 0 (we will suppress � from the notation from now on). �e proof will

proceed via the following two lemmas. �e �rst one features some other transport

exponents and we recall their de�nitions.

De�nition 7.1. We write

jX jp.t / D
X

n>0

jnjp jhe�itH ı1; ınij2

for the p-th moment of the position operator. For any function f .t/, de�ne its

time-average by

hf i.T / D 2

T

Z 1

0

e�2t=T f .t/ dt
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for all T > 0. We de�ne the transport exponents

ˇC.p/ D lim sup
t!1

log jX jp.t /

p log t
; Q̌C.p/ D lim sup

t!1

loghjX jp.t /i
p log t

: (40)

�e time-averaged upper transport exponent can be de�ned by analogy with (2)

and (3), or by

Q̨ C
u D lim

p!1
Q̌C.p/: (41)

�e two de�nitions are equivalent; see �eorems 2.18, 2.22 of [10], where it is

also shown that

˛C
u D lim

p!1
ˇC.p/: (42)

Lemma 7.2. We have Q̨ C
u � ˛C

u .

Proof. Fix p 2 .0; 1/ and take an arbitrary 
 > ˇC.p/. �en

jX jp.t / � C tp


for some C independent of t , so the time-averaged p-th moment obeys

hjX jpi.T / D 2

T

Z 1

0

e�2t=T jX jp.t /dt � 2CC1T p
 ;

where

C1 D
Z 1

0

e�2xxp
 dx:

�is in turn implies Q̌C.p/ � 
 , which implies

Q̌C.p/ � ˇC.p/

for any p 2 .0; 1/. �e claim now follows from (41) and (42).

Lemma 7.3. We have ˛C
u � ˛0.

Proof. �is is just a minor modi�cation of arguments in [3], in which one replaces

Parseval’s identity with Dunford functional calculus formula (12) to obtain the

analogue of formula (26) in [3] with Q̨ C
u replaced by ˛C

u . More precisely, instead

of invoking [8] to bound averaged probabilities, as done on p. 27 of [3], one uses

the same formula without averaging derived in �eorem 1 of [9].

�en, part (b) of Proposition 3.8 in [3] directly yields the same bound on

˛C
u as the one on Q̨ C

u in part (c) and the existence of the limit is established

by [3, Proposition 3.7].
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Remark 7.4. �e reason why the averaging in [3] can be removed is that one is

dealing with upper bounds and thus the triangle inequality for integrals is available

to control the possible oscillation in the Dunford functional calculus formula (12).

Proof of Proposition 5.1 and Corollary 2.9. From Lemmas 7.2 and 7.3, we have,

for all � > 0,

Q̨ C
u � ˛C

u � ˛0:

By Proposition 3.8 (c) and Proposition 3.7 in [3], we also have

˛0 � Q̨ C
u

and we are done.

8. Remark on the random dimer model

We conclude with a brief discussion as to why the method of this paper will not

yield anomalous LR bounds of power-law type for the XY chain with “random

dimer” external magnetic �eld. �is section is mostly intended for experts and we

refer to [18, 19] for details, in particular for the precise de�nition of the random

dimer model. �e main message is as follows: consider the sum over fermionic

commutators in (8), which comes from the non-locality of the Jordan–Wigner

transformation. In the Fibonacci case, the summands were decaying exponen-

tially, so the sum decays also exponentially and we could conclude that LRfermi.˛/

implies LR.˛/, with the same ˛! On the other hand, if the fermionic commuta-

tors only decay like a power law, as we will see is the case for the random dimer

model, the sum in (8) decreases the power-law decay by one and so, as far as our

bounds go, the many-body transport is truly faster than the one-body transport on

the power-law scale.

�e random dimer model, introduced by Dunlap, Wu and Philips [12], is given

by a one-dimensional discrete Laplacian together with a random potential which

may take only two values ˙� with � < 1, but these values always appear in pairs.

A characteristic feature of this model is that the dimer-to-dimer transfer matri-

ces commute at the so-called “critical energies” Ec D ˙� and that in this (non-

generic) case the system exhibits non-trivial transport, in contrast to the usual

Anderson localization of a one-dimensional disordered quantum system.

More precisely, it follows from [9, 18, 19] that for the random dimer model, the

transport exponent ˇC.p/ de�ned in (40) satis�es

ˇC.p/ D max
°

0; 1 � 1

2p

±

; for all p > 0: (43)
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According to (42), we have

˛C
u D 1:

We now consider an XY chain with external magnetic �eld given by pairs of ran-

dom dimers ˙�. As pointed out in Remark 2.7, the argument that proved �e-

orem 2.6 generalizes to this case and so the best LR.˛/, in the sense of De�ni-

tion 2.1, that can hold for this model, is LR.1/, but LR.1/ holds for much more

general models anyway [28].

Roughly speaking, ˛C
u D 1 means that the one-dimensional quantum particle

has exponentially small probability to be observed a distance of order t away from

its initial location after time t has passed. While the probability of observation is

not exponentially small for distances of order tˇ with 0 < ˇ < 1, it is polynomially

small for ˇ su�ciently close to 1, since ˇC.p/ < 1. With this more re�ned per-

spective in mind, one could hope to prove an anomalous LR bound of power-law

type such as

EkŒ�n
t .A/; B�k � C1

� tˇ

jj � j 0j

��

; (44)

for the random dimer model. Here, the objects A; B; n; j; j 0; C; � are chosen as

in �eorem 2.4, now of course for the random dimer model, E denotes the expec-

tation over the randomness and ˇ > 0 should be related to ˇC.p/ in some way.

Let us now argue why the Jordan–Wigner method will not give such a bound with

ˇ < 1.

Following our argument for the Fibonacci case, one �rst proves a fermionic

LR bound of power-law type. Adapting the arguments of [18] to our purposes (the

main challenge again being to go from `2-norms to `1-norms), one �nds

EkŒ� t
n.cj /; B�k C EkŒ� t

n.c�
j /; B�k � C1

� tˇC.p/C1=pC�

jj � j 0j

�p

(45)

for any � > 0. While it is conceivable that the extra 1=p term in the exponent is

technical and can be removed, one still has the following problem: To obtain the

LR bound for the corresponding XY chain, one has to take a sum over fermionic

LR bounds, see (8). �is yields, even without the 1=p term,

C1tpˇC.p/C�0

j
X

lD1

� 1

l C jj 0 � j j

�p

� C 0
1

tpˇC.p/C�0

jj 0 � j jp�1

for any �0 > 0 and any p > 1 (for p � 1, the sum diverges). Recalling (43), we

see that pˇC.p/ D p � 1=2 for p > 1. Hence, the right-hand side above reads

C 0
1

� t
p�1=2

p�1
C�00

jj 0 � j j

�p�1
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for any �00 > 0. Of course,
p � 1=2

p � 1
> 1

and so this does not yield an anomalous LR bound (44) with ˇ < 1.4 In summary,

we have seen that the anomalous one-body transport of the random dimer model

is still too fast to “survive” the summation (8) that arises from the non-locality of

the Jordan–Wigner transformation and hence too fast to yield an anomalous LR

bound of power-law type on the many-body level.
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