J. Spectr. Theory 6 (2016), 643-683 Journal of Spectral Theory
DOI 10.4171/JST/135 © European Mathematical Society

The exponent in the orthogonality catastrophe
for Fermi gases

Martin Gebert, Heinrich Kiittler, Peter Miiller, and Peter Otte!

Dedicated to Hajo Leschke on the occasion of his 70™ birthday.
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of a repulsive point-like perturbation.

Mathematics Subject Classification (2010). 35J10, 81QI10, 35P25.

Keywords. Schrodinger operators, Anderson orthogonality, spectral correlations, scatter-

ing theory.
Contents

1 Introduction . . . . . . . .. .. 644
2 Setupandmainresult . . . . . ... . Lo 646
3 Series expansionoftheoverlap. . . . . . ... ... ... 650
4 Proofof Theorem3.4 . . . . ... ... ... ... ... . ... ... 654
A Positivity of theexponent . . . . . . . ... 678
References. . . . . . . . . . 681

! Work supported by SFB/TR 12 of the German Research Council (DFG)



644 M. Gebert, H. Kiittler, P. Miiller, and P. Otte

1. Introduction

We consider two quantum systems, each consisting of N non-interacting Fermions
in a box of side length L in d-dimensional Euclidean space R?, with d € IN.
The single-particle Hamiltonians of the two systems differ by a local perturbation
potential V. As a signature of inequivalent representations of the canonical
commutation relations, the overlap (<I>1LV , \IJ,{V ) of the N-Fermion ground states
@Y and WY must vanish in the thermodynamic limit L — oco, N — oo,
N/ L9 — const. > 0, see [8, Chapter IV] and [13, Chapter I.1.1]. A quantitative
version of this behaviour in terms of a power law

(@Y W) ~ L7 (1

was predicted by P. W. Anderson in 1967. In [1] he presented a brief computation
for the case of a point-like perturbation V' in d = 3 dimensions and arrived at the
upper bound

(@] W) < L7 )

with
y1 = 2(sing)>. 3)

Here, § is the (single-particle) scattering phase shift caused by the point interaction
at the Fermi energy. Nowadays, this behaviour is often referred to as Anderson’s
orthogonality catastrophe in the physics literature. A mathematical proof for a
generalisation of (2) and (3) was given recently in [11]. Allowing for a bounded,
compactly supported, non-negative perturbation V in R?, it is shown there that (2)
holds with

1
Y1 = ; ||TE/2||12{s’ 4)

where Tr denotes the transition matrix of scattering theory and || - ||zs the Hilbert-
Schmidt norm for operators on the Hilbert space of the energy shell corresponding
to the Fermi energy E. In the special case considered in [1], (4) reduces to (3).
The principal strategy of the argument in [11] is to rewrite the overlap determinant
as |(<I>1LV , \IJ,{V }|? = det A = exp(trln A) and to expand the logarithm in a series of
non-negative terms

2 1
(@Y W) =exp{ = Y = — 4"}, 5)
nelN
see Lemma 3.1 below. A similar idea was used by M. Kac [16] in his proof of
the Szegd limit theorem for Toeplitz determinants which is, in a way, an analogue
to (1).
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By dropping all but the first term tr(/ — A) of the series, which is called An-
derson integral in the physics literature, one arrives at an upper bound. The main
work of [11] consists in deriving a lower bound of the form tr(/ — A)=y;InL
for the Anderson integral with y; given by (4). There are only few other mathe-
matically rigorous works on Anderson’s orthogonality catastrophe [20, 9, 18, 10].
It is shown in [20] that (4) in fact provides the exact coefficient in the asymp-
totics tr(/ — A) ~ y1 In L of the Anderson integral in the thermodynamic limit for
one-dimensional systems. We refer to [20, 11] and references therein for a brief
description of the relevance of the orthogonality catastrophe in physics and for a
discussion of the theoretical approaches in the physics literature.

In a second paper [2] in 1967, P. W. Anderson notes as an aside that the true
asymptotics (1) of the overlap involves an exponent y for which “... the main
difference from the previous result [i.e. (3)] is to replace (sin §)? by §2.” After some
controversies about the correctness of interchanging limits [26, 14], Anderson’s
result (1) was confirmed in the case of a point interaction V' with the decay
exponent

y =282
by theoretical-physics methods [14]. A mathematical proof was given recently
in [10]. For reasons of comparison, we remark that the particle number N in [14]
refers to the number of s-orbital states below the Fermi energy and thus N ~ L.
Related results in the context of the Kondo problem in the physics literature can
be found in [23, 34].

The purpose of the present paper is a mathematical contribution towards the
exact asymptotics (1). We will prove in Theorem 2.2 that, in the presence of a
rather general background potential 1§, a bounded, compactly supported, non-
negative perturbation potential ¥ in R? causes the power-law decay

(DN, W) 2 < L7 +od?)

of the overlap for almost every Fermi energy £ € R along subsequences L — oco.
The decay exponent is given by

1 .
y = P||al’CSln|TE/2|”12'IS' ©

We refer to Theorem 2.2 for the precise statement. In proving (6), we obtain a
result on the trace of a product of spectral projections of two Schrédinger operators
which may be interesting by itself, see Theorem 3.4.
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Clearly, when comparing (6) to (4), we infer y; < y, and the two exponents
are related in the spirit of Anderson’s rule quoted above. In view of [10] and
of the physicists’ results, we conjecture that the exponent y governs the true
asymptotics (1) of the overlap whenever the modulus of the (appropriately defined)
scattering phases does not exceed 7 /2.

The proof of Theorem 2.2 relies on the representation (5) of the overlap.
We determine the dominant behaviour of each term in the n-sum in (5), because
each term contributes to the asymptotics. In order to treat the terms with n > 1
we have to deal with additional issues. One is the non-positivity of certain trace
expressions, another one is to compute the multi-dimensional integral

/ e~ W1+Fu2p)
du1 . dM2 s
(0,00)27 " (1 +uz) ... (Uan—1 + Uzp)

(N

which contributes to the asymptotics of the nth term in (5). Subsequently,
the values of these integrals show up in the Taylor expansion of the function
x > (arcsin x)2. We compute the integral (7) in Section 4.5 by identifying it with
the first diagonal matrix element of the (2n — 1)th power of the Hilbert matrix.

Since V causes scattering, the exponent y is typically expected to be strictly
positive. In the appendix, we prove this in the case without a background potential.

After we completed this paper, Frank and Pushnitski [7] established results
on the asymptotics for traces of regularised projections of infinite-volume opera-
tors. Their work is partly a generalisation of our analysis in Sections 4.3 to 4.5.
In particular, their consequent use of Hankel operators is conceptually valuable
and leads to a simplification of proofs. From this point of view it is also less sur-
prising that (a unitary equivalent operator to) the Hilbert matrix appears in our
Section 4.5 when we compute the multi-dimensional integral (7).

2. Setup and main result

Letd € N, A; € R? be open and bounded with 0 € A; and for L > 1, define
Ap :=L-A;y.

Let the negative Laplacian —Ay be supplied with Dirichlet boundary condi-
tions on Az. We define two multiplication operators Vg and V acting on L2(AL),
corresponding to real-valued functions on R? with the properties

max{Vp,0} € Kioe(R?), max{—Vp,0} € K(R?),

V)
Ve L®®R?, V=0, suppV C A, compact.
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Here, we have written K (le ) and Kloc(le) for the Kato class and the local Kato
class, respectively, see [29]. The finite-volume one-particle Schrodinger operators
H; ;= —Ap + Vyand H i := Hj + V are self-adjoint and densely defined in
the Hilbert space L2(Ay). The infinite-volume operators H := —A + Vj and
H' := H + V are self-adjoint and densely defined in the Hilbert space L?(R%).
Birman’s theorem, see [4, Theorem 2] or [25, Theorem XI.10], is applicable by
virtue of [29, Theorem B.9.1] and guarantees the existence and completeness of
the wave operators for the pair H, H’'. In particular, their absolutely continuous
spectra are the same, i.e.

Oac(H) = 0ac(H').

The assumptions (V) on Vy and V, together with [5, Theorem 6.1], imply that
the semigroup operators e *#Z and etHL generated by the finite-volume one-
particle operators Hy and H; are trace class for every + > 0, and, a fortiori,
compact. In particular, H; and H; are bounded from below and have purely
discrete spectra. We write AL < AL < ... and uf < pf < --- for their non-
decreasing sequences of eigenvalues, counting multiplicities, and (gojL) jen and
(1/rkL)k€]N for the corresponding sequences of normalised eigenfunctions with an
arbitrary choice of basis vectors in any eigenspace of dimension greater than one.

Given N € N, the induced (non-interacting) finite-volume N -particle Schro-
dinger operators Hy and H ; act on the totally antisymmetric subspace
/\;-V=1 L?(Ayp) of the N-fold tensor product space and are given by

N
AP =31"9u 1"
Jj=1
The corresponding ground states are given by the totally antisymmetrised products

1 1
of =t nonvh W= vt aavd

VN1

In order to avoid ambiguities from possibly degenerate eigenspaces and to
realise a given Fermi energy E € R in the thermodynamic limit, we choose the
number of particles as

NL(E) :=#{j € N:AF < E} € N, (®)

which is the eigenvalue counting function of Hy at E.
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The quantity of interest is the ground-state overlap

SL(E) := (@p B wNeEhy gy = det((¢f . VN k=1, N (B (9)

in particular its asymptotic behaviour as L — oco. In (9), (-, - )n stands for the
scalar product on the N -fermion space /\]I-V=1 L?*(AL), and (-, -) for the one on
the single-particle space L?(Ar). If NL.(E) = 0, we set 8. (E) := 1.

Remark 2.1. The particular choice (8) of Np(E) as an eigenvalue counting
function turns out to be technically useful when conducting the thermodynamic
limit, see Lemma 3.3 below. The particle density p(E) of the two non-interacting
fermion systems in the thermodynamic limit coincides with the integrated density
of states

p(E) = lim NL(E)

10
L—oo Ld|A1| (19)

of the single-particle Schrodinger operator H (which is the same as the inte-
grated density of states of H'), provided the limit exists. Here, |A;| denotes the
Lebesgue measure of A; € R¢. Situations where the limit (10) is known to
exist include periodic Vp, or V, vanishing at infinity. If the limit (10) does not
exist, then this is due to the occurrence of more than one accumulation point,
because the assumptions on Vj in (V), together with [29, Theorem C.7.3], imply
limsup; o, NL(E)/L? < oo for every E € R. We will study the asymptotic
behaviour of the overlap 87 (F) as L — oo regardless of the existence of the
limit (10).

The main result of this paper is an upper bound on the ground-state overlap
81 (E) for large L. Throughout we use the convention In 0 := —oco. The terms null
set and almost-every (a.e.) refer to Lebesgue measure if not specified otherwise.

Theorem 2.2 (orthogonality catastrophe). Assume conditions (V). Let (Ly)men
be a sequencein (0, co) with L, — oc. Then there exist a subsequence (L, )ken,
a null set N C R of exceptional Fermi energies and a function y: R\ N — [0, 00)
such that for every E € R\ N the ground-state overlap (9) obeys

1 _
8L, (E)| < exp(—iy(E) InL,,, +o(ln Lmk)) = LmZ(E)/2+o(1) (11)

as k — oo. Equivalently,

|8z, (E) _ y(E)

< > 12)

lim su
k—)oop In Lmk




The exponent in the orthogonality catastrophe 649

The decay exponent y is given by
1 ) >
y(E) = — [larcsin| T /2] . (13)

Here, Tg := Sg — Ig is the transition matrix, Sg is the scattering matrix for the
pair (H, H') and energy E, and | - ||us denotes the Hilbert—Schmidt norm on the
fibre Hilbert space Hg, on which Tg and Sg are defined.

Remarks 2.3. (i) We refer to Subsection 4.6 for a more precise definition of the
scattering-theoretic quantities 7r and Sg.

(ii) In proving Theorem 2.2, we obtain a result on the asymptotics of the trace
tr{(1(—o0,£1(HL) 1(£,00)(H[))"} as L — oo, which may be interesting by itself;
see Theorem 3.4.

(iii) The reason for passing to a subsequence (L, )ken in Theorem 2.2
originates from Lemma 3.3 below. What stands behind it is the lack of known
a.e.-bounds on the finite-volume spectral shift function for the pair of operators
Hp H i, which hold uniformly in the limit L — oo. This unfortunate fact has been
noticed many times in the literature, see e.g. [15], and the pathological behaviour
of the spectral shift function found in [17] illustrates that this is a delicate issue.
However, in certain special situations such a.e.-bounds are known, and our result
can be strengthened. More precisely, we have

Theorem 2.2’. Assume the situation of Theorem 2.2 with d = 1, or replace
the perturbation potential V in Theorem 2.2 by a finite-rank operator V. =
> (v, +) pv with compactly supported ¢, € L2>(R4) forv = 1,...,n, or
consider the lattice problem on 7% corresponding to the situation in Theorem 2.2.
Then the ground-state overlap (9) obeys

1
SL(E)| < exp(—ay(E) InL +o(nL)) = L77EN2+o®

fora.e. E € Ras L — oo. Equivalently,

[ MISLEE)] _ y(E)
im sup S
L—o00 InL 2

Jora.e. E € R.
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Remarks 2.4. (i) In [11], similar statements to Theorem 2.2 and Theorem 2.2’
were proved, in particular, the bound

jSL(E) _ pi(E)

li < , 14
SPTT 2 (19
with the exponent
1
n(E) = =T/ 2. (15)

Note that y; (E), which is called y(E) in [11], is strictly smaller than y(E) when-
ever both are non-zero. The bigger exponent y(E) is due to treating all terms
in a series expansion of In|S;, (E)| (see equation (17) below) instead of only the
Anderson integral, which is the first term of the series and gives rise to y; (E).

(ii) Another mathematical work dealing with AOC is [20]. That paper proves
the exact asymptotics of the Anderson integral in the special case d = 1 and
Vo = 0. In particular, this yields a bound on the overlap as in (14) with the same
non-optimal y; (E) given by (15). The paper also provides a lower bound on 87 (E)
with a smaller decay exponent [20, Corollary 5.6].

3. Series expansion of the overlap
In order to expand the ground-state overlap as a series, we introduce the orthogonal
projections

N

N
PN = "(of def and Y = (vl )y (16)
j=1 k=1

for N € Ny, i.e. the projections on the eigenspaces of the first N eigenvalues.
Using those, we can prove the following lemma.

Lemma 3.1. Let L > 1, E € R and assume that Sp (E) # 0. Then

o0

SLEP =exp(= Y - u((B P - Eym), A

n=1

where we take the trace of operators on the Hilbert space L*(Ap).
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Proof. For brevity, set N := Np(E). If N = 0, the assertion is true by

.....

SL(E) = detM and |SL(E)|?> = det(MM™). For 1 < j, £ < N, the (j, {)-thentry
of MM*™ is
N

(MM*);0 = (o VU of) = (of TY o) = (o . P T} P o).
k=1

Since 8z(E) # 0 by assumption and therefore MM™* > 0, we have 0 <
PN —TIV)PN < 1. Moreover, being of finite rank, PN (1 — TIV)PN is a
trace class operator. Thus, we compute
SL(E)|? = det(I — P (I —T17) P{Y)
= exp(tr{ln(f — P{' (I =} PL)})

:exp(—tr{i%(PLN(l_HiV)PZV)n})

n=1
1
—exp(~ 3 5 w1 - ),
n=1 n
where we used the expansion In(1 —x) = — > >° | x"/n for the logarithm, which
converges absolutely for |x| < 1. O

Remark 3.2. Lemma 3.1 will be the starting point of our estimates for |Sy,(E)|.
Equation (17) can be written as
Ry NL(E) NL(E)yyn
—InjSp(E)| = 5 ) —te{(P, (1 = IE))™y. (18)
n=1
The trace expressions in (18) are non-negative, so any truncation of the series
yields a lower bound on — In|Sz (E)|, and therefore an upper bound on the overlap.
Keeping only the term for n = 1, one recovers the so-called Anderson integral,
which was estimated in [11].
In the sequel, we will find an upper bound on |S; ()| by bounding each
individual term of (18) from below.

We begin by recasting the orthogonal projections (16) as functions of Hy, and
Hj inthe sense of the spectral calculus. The projections in (16) are not necessarily
functions of Hy, and H;, since the N th eigenvalues might be of multiplicity higher
than one. The choice of Ny (F) in (8), together with a convergence result of
the spectral shift function, allows us to rewrite them, at the cost of passing to
a subsequence of lengths.
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Lemma 3.3. Forn e N, L > 1 and E € R, define
FL(E) = tr{(1(—c0,E)(HL) 1 (E,00) (H[))"} (19)

and
2(E) = tw{(P) B (1 — By
Then

(1) Assume (V) and let (Ly)men C (0,00) be a sequence of increasing
lengths with L,, 1 oo. Then there exists a subsequence (L, )ren such that for
a.e. Fermi energy E € R

|3"nmk (E) — imk (E)] =o(nL,,;,) (20)

as k — oo.
(ii) Assume the situation of Theorem 2.2'. Then

sup sup |F7 (E) —I7(E)| < oo.
L>1FEeR

Proof. For fixed L > 1 and E € R, the definition of Nz (E) in (8) implies

L L L
Av ey S E <AR, (By41 S BN, (BE)+1

if we set A5 := —oo. This allows us to write
PR = 1o (HL) @1
and
N (E NL(E)
=T = Voo (H) = Y o) (W )E
k=1

=: 1(g,00)(H) — 0.
The operator Q is an orthogonal projection with trace
trQ =#kel{l,...,NL(E): uk > E}

= NL(E) —#{k e N:pk < E}

=:£1L(E)
equal to the finite-volume spectral-shift function at the Fermi energy.

Using A" — B" = Y "7_, B¥"1(4 — B)A"* for bounded operators 4 and B,
we write the difference of operator powers on the left-hand side of (20) as
(PLNL(E) l(E,oo)(Hi))n _ (PLNL(E)(I _ HILVL(E)))n

n
(22)
— Z(PLNL(E)(I _ HJLVL(E)))k—lPLNL(E)Q(PLI‘VL(E)I(E’OO)(HL/‘))n—k’
k=1
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where we also use (21). We estimate the traces of the operators on the right-
hand side of (22) by bounding the operator norms of all projections, except for Q,
by 1. We then arrive at néy (E) as a upper bound for (22). The claim follows
by exploiting the weak convergence of &, as L — oo [15, Theorem 1.4] in the
situation of (i), or using the uniform boundedness of &7 in the situation of (ii).
We refer to [11, Lemma 3.9] for a detailed argument. O

Having established (20), we will prove a diverging lower bound for
tr{(1(—o0,£1(HL) 1 (E,00)(H))"} as L — oo. There will be no restriction to par-
ticular sequences of lengths from now on. The following theorem is the main
ingredient of the proof.

Theorem 3.4. Assume the situation of Theorem 2.2 or Theorem 2.2'. Then there
exists a null set N C R of exceptional Fermi energies such that

tr{(1(=c0, £E1(HL) 1(£,00) (H[))"} Z nJ2n tr(|TE/(270) ") In L + o(In L) (23)

forevery E € R\Nandeveryn € N as L — oo. The error term o(In L) depends
on n and E, and we introduced the constant

2
Ty 1= m2=Dp2n=1 [(”(znl))!!] _ 24)

Remarks 3.5. (i) In the next section, we will spell out explicitly the proof of
Theorem 3.4 for the situation of Theorem 2.2 only. It follows from Corollary 4.25,
Theorem 4.26 and Theorem 4.32. The proof is fully analogous (and even simpler)
in the remaining situations of Theorem 2.2/, where V is a finite-rank operator.

(ii) The constant J,, will emerge as the value of a 2n-dimensional integral
which we calculate using the spectral representation of the Hilbert matrix, see
Subsection 4.5 below.

Given Theorem 3.4, we are now in a position to prove Theorem 2.2.

Proof of Theorem 2.2. Let M € IN. Let N be the null set from Theorem 3.4. Let
E € R\ N. We start from Lemma 3.1 and Lemma 3.3, which imply

M

1 1 NLpy, (E) Niy (E).
—InfSp,,, (E)] 2 5 ) —te{(Py, " (1 =11, " )"}

n=1

M
1 1
=3 ) ;tr{(l(—oo,E](HLmk)l(E,oo)(Himk))"} +o(nLy,)
n=1



654 M. Gebert, H. Kiittler, P. Miiller, and P. Otte

for a subsequence (L, )ken, as k — oo, with an M-dependent error term
o(In L,,, ). By Theorem 3.4, this gives

M
1 n
~InlSg,, (E)| = Etr{;:l: Jon|TE ) 2r0) 2 }1nL,,,k +o(nLy,) (25

as k — oo, with an M -dependent error term o(In L,,, ). The constants J,, show
up in the series expansion [12, eq. 1.6452]

o0
> Janx® = n 2 (arcsin(rx))*  for |x| <

n=1

1
-
Therefore, monotone convergence and the functional calculus yield

M
Jim Zl Jnl T @)} = 772 avesin| T /2] .
n=

Since (25) is valid for every M € IN, we infer

In[S_,, (E)| _

1 _ . E
S5 2| arcsin|Tg /2|||fs = _YE)

2 b
which proves (12). For (11), note that by the definition of the limit superior for
every ¢ > 0 there is ko € IN such that

In|8 E

n| Lmk( )l < _y(f) +e

for all k > ko, which implies the claim. O

lim su
k—>00 In Lmk

InL,,,

It remains to prove Theorem 3.4.

4. Proof of Theorem 3.4

4.1. Anintegral representation for tr{(f(HL)g(H;))"}. Throughout this sub-
section,n € N, L > 1 and E € R are all fixed. Using the eigenvalue equations of
H; and H;, we rewrite trace expressions like (19).

Lemmad.1. Let f, g: R — [0, 1] be measureable functions with compact supports
supp f C (—oo, E] and supp g C (E, 00). Then

n (0a, VUEWVE VoY)
H H/ )Y — AL L U J J J+1 )’
el (HLg(H)Y') Q,Ziwﬂ(“ A e T

(26)
Jor multi-indices a = (a1, ...,0,) € IN" with the convention o, 41 1= .
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Proof. We begin noting that
SHL) =" fOD (of . Vef. gHD) =) g (. )W @7
JEN kelN

To ease notation, we employ the bra-ket notation in the next formula, writing
(@, Yo =: |@){p| for p € L*>(AL). Then (27) implies

(f(HLgHDY = Y (H 108 1E)) 1‘[|<pa, ok vE WE @8

a,BeN" j=1
and
tre{(f(HL)g(HL)"}
(29)
= > (]_[ fOE)ewg,) ) ]_[ o, VNS, 0a, )
a,BeN" j=1 i=1
where we used the convention o4+ := o for @ € IN”. Now, we note that the
eigenvalue equations imply
MAoF by = (Hoop W) = uglof v — (of Vi)
for j, k € IN, and therefore
(k. Vyk)
(oF v = —~L—F —7 (30)
J

whenever )LJ.L #* p,,]; Since f and g have disjoint supports, (30) and (29) yield the
claim. |

Remark 4.2. In analogy to [11], one might be tempted to define a spectral corre-
lation “measure” by
i”(Al X e+ X Ay X By X +-- X By)
=tr{(14,(HL)V1p,(H)V ... 14,(HL)V1p,(H)V)}

forn € N, L > 1 and bounded A44,..., A,, B1,..., B, € Borel(R), which was
done for the case n = 1 in [11]. Lemma 4.1 would then read

wl(Fep)) = [ aden ]l fO)g0y)
xR =1

= x) (V= Xj41)

(€29)

However, (31) is not necessarily non-negative for n = 2, and therefore we cannot
mimick the proof of [11].
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Next, we rewrite the right-hand side of (26) using a variation of an integral
formula that goes back to Feynman and Schwinger.

Lemma 4.3 (Feynman—Schwinger parametrization). Let x1,...,x, € (0,00).
Then
1 oo
= / dtz”“/ du |u|pe Mhe=wx, (32)
X1...Xp 0 (0,00)"
where u - x = Y 7_,u;x; denotes the Euclidean scalar product and |u|, :=

> iiluj| the 1-norm on R".

Proof. For any measurable function f:(0,00)"” — (0,00) the coarea formula
implies
o0 ds
[ awsw= e [ SR, (33)
(0,00)" 0 \/_

where dS stands for integration with respect to the surface measure on M := {£ €
(0,00)": |€]1 = 1}. Let r > 0. Starting from xj_l = f0°° du; e™/%/, we compute
using (33)

! :/ dye ™~
X1+ Xn (0,00)7
= /Oodt/ dS(g_)t"_le_’S’x
/ / dS(%') e 1 e —rt“;‘x

which is r-independent. Given any measurable function g: (0, co) — (0, co) with
[ dr @ = 1, we therefore get

/ drg(r)/ dt/ ASE) ot it yrees
- / dr ! / du gl )e™,
0 (0,00)

where we used the Fubini—Tonelli theorem and (33) with f(u) = g(|u|1)e
Choosing g(r) := re™" finishes the proof. O

—tu-x
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We use (32) to rewrite the right-hand side of (26).

Lemma 4.4. Let f, g: R — [0, 1] be measurable functions with compact supports
supp f C (—oo, E]l and supp g C (E, 00). Then,

t{(f(HL)g(HL))"}

o0
= / dr t2”_1/ d(u,v) (Ju|; + |v|1)e—|u|1—|v|1
0 (0,00)"" x(0,00)"

n
tr{ []VV f(HL)e =0t =B g (] )e=0 oD HL=E) [y }
Jj=1

(34)
with the convention vy := v, for v € R".
Proof. Let x € (—o0,0]", y € (0,00)" and define x,+; := x;. Then, by (32),

1
1= ;= x) i — xj+1)

o0
- / dr 2! / d(u, v) (fuly + [o]y)e ol
0 (0,00)" x(0,00)"

exp ( — 1) (i (yj = x;) + v (yj — xj+1)))

Jj=1

and
D iy —x) + v = x40) = Y () + )y — @ + vj-1)x;)
j=1 j=1

for u, v € (0,00)". Now, let o, p € N". Setting x; = A5, — E and y; = ,ugj - E,
we can write the denominator in (26) as

1
n L L
l_[j=1(l/vﬂj _A'é‘j)(/‘l'ﬂj - A£j+l)
o0
:/ dr 2" / d(ue, v) (July + [v])e = (35)
0 (0,00)""x(0,00)"

n
1—[ e—(uj +vj)t(u,§j —E)e(uj +oj -t ~E)

Jj=1
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The sums over ¢ and § in (26) contain only finitely many terms, due to the compact
supports of f and g. Therefore these sums can be interchanged with the integrals
from (35). This results in

t{(f(HL)g(HL))"}

o
= / de 1?21 / d(u,v) (Jul; + |v|1)e_|“|1_|”|‘
0 (0,00)" x(0,00)"

E |”| (f(AL )e(uj-f-vj_l)t(/lé‘j —E)g(ﬂg )e—(uj+vj)t(uéj —E)
aj; !
a,BelN” j=1 ) ., i ;
(0o VU ) VE Voo, )

from which the assertion follows. O

4.2. Smoothing and infinite-volume operators. Throughout this subsection,
a € (0,1) and n € IN are fixed. We also fix a cut-off energy Eo = 1 and a Fermi
energy £ € [—Eo + 1, Eg — 1].

The goal is to apply Lemma 4.4 using suitable functions f and g and to rewrite
the right-hand side of (34) as a trace involving the infinite-volume operators H
and H’'. Switching from finite-volume to infinite-volume operators constitutes
the core of the argument. The technical tool to implement this switch to infinite-
volume objects is the Helffer—Sjostrand formula, which supplies the proof of
Lemma 4.8 below. Since it is applicable to sufficiently smooth functions only,
we define appropriately smoothed versions of indicator functions.

Definition 4.5. Given alength L > 1, we say that )(fLE € C°(R) are smooth cut-off
functions at energy E, if they obey

lE4ar-a,Eg) < XL < WE+L—,Eg+1):
l—Ey,E—20-4] < X < l(=Eo—1,E-L4),
and if there exist L-independent constants ¢, > 0 for k € INg, such that
AE(E+£ L7+ x) <colx
for all x € [0, L™%) and

ko, kL% ifo<x< LA,
—kXL(E:l:L_aZIZX) <
dx Ck otherwise,

for every k € IN and x € R. We choose the smooth decay of )(Z in [Eg, Eo + 1]
independently of L, and analogously for y; . Clearly such functions exist. Figure 1
illustrates the behaviour of y7.
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Xr X
—Ey—1 —Eyp E-2L"% E-L ¢ E E+L™% E+2L™% Eq Eo+1

Figure 1. Sketch of the smooth cut-off functions )(2:.

We are interested in a lower bound for the left-hand side of (23) which is
proportional to In L up to subdominant corrections.

Lemma 4.6. Let L > 1. Then
tr{(1(=o0,£](HL)1(E,00)(H1))"}
o0
z/j aum)mqr+Why4MPW1/ dr 21
(0,00) x(0,00)" 0

n
tr { 1_[ «/sz(HL)e(“f“f—l)’(HL_E)V)(zr(Hi)e_(“fo)’(Hi_E) \/7}

j=1
(36)
Proof. The inequalities
l oo = x7 and 1500 = 17 (37)
together with the cyclicity of the trace, imply
tr{(1(—o0,£1(HL) 1 (£,00) (HL )"} = tr{(xp. (HL) X (HL)"}.
Together with Lemma 4.4, this yields the claim. |

Remark 4.7. In the sequel, we determine the exact asymptotics of the right-
hand side of (36). Thus it is only the smoothing introduced in Lemma 4.6 which
prevents us from determining the exact asymptotics in Theorem 3.4.

The following technical lemma constitutes the core of the arguments in the
present subsection.
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Lemma 4.8. For L > 1,t = 0 and x € R we define

fL(x) —XL(X)et(x E) " and gL(x) =X (x)e F—E),

and h';, will stand for either f} or g}. Let M € N\ {1}. Then there are constants
¢ > 0, Lo > 1 and a polynomial Qp of degree M + 1 with non-negative
coefficients, such that for everyt = 0, every L = Ly and every ¢ € (0,1 — a)
the estimate

|V (i (D) — e (HO) T
< QM([/L“)(La—M(I—a—S) + Ld+a(M+1)e_cLs)

holds.

Proof. The proof essentially follows the ideas of a part of the proof in [,
Lemma 3.14]. The idea is to apply the Helffer—Sjostrand formula to estimate the
difference of resolvents, cf. formulae (4.13) and (4.16) in [11]. For a detailed expo-
sition, see [19]. O

Before we prove the main assertion of this subsection, we need a spectral-gap
estimate.

Lemma 4.9. There is a constant C > 0 such that for every L > 1 and everyt = 0
we have

w{ VR (HQWV) < Ce™t7,

where hl, € C°(R) is as in Lemma 4.8.

Proof. For the first assertion, note that there is a bounded interval / € R such
that 7} < lre L™ forallt = 0 and L > 1. Thus,

w{VVh (HO)VV Y < e ™ a{VV1(HD)VV)

(L) (€5)
<e LT el Ve H(l) vV}
< et esup! w{VVe HO vV}

for7 = 0and L > 1. The last inequality and the finiteness of tr{~/Ve #" V)
follow from [5, Theorem 6.1].
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The next lemma accomplishes the transition from finite-volume to infinite-
volume operators.

Lemma 4.10. For L > landt = 0, let f}, g} € C2(R) as in Lemma 4.8. Let
u,v € (0,00)". Then

/ dz t2n l {

1_[‘/_ (uj+v] l)t(H )Vg(u]-i-vj)t(Hi)ﬁ

j=1

_l_[\/_ (uj+vj— l)t(H)nguijvj)t(H/)ﬁ‘} (38)

S G+ oz 00

as L — oo, where the o(1)-term does not depend on u or v. We also used the
convention vg 1= Uy.

Proof. To shorten formulas, we introduce a vector a € (0, 00)?” via
021 = Uj +Vj—1 and ) = Uj +V; 39)
for 1 < j < n and operators

4D . VYV (Hy) V'V fork odd,
. Vet (H (L))\/_ for k even,

for 1 < k < 2n. The difference of operator products in (38) is then

2 2n 2n
[T1A4F-T]4 =D 41 A1 (Af — A AL, -+ AT, (40)

The trace norm of this difference can be estimated using Lemma 4.9: There is a
constant C > 0 such that

2n k—1 2n
of 4% - 1‘[A b< S0t = acl(TTwtan)( TT wiarn)
=1 ; k=1 j=1 j=k+1

2n
< C2n—1 Z”Alé _ Ak”e—(ltxll—txk)tL—a’
k=1

where |a|; = a; + -+ + a2, denotes the I-norm of o € (0, 00)?". We estimate
the kth term in this sum. Let ¢ € (0,1 —a) and M € IN. For L sufficiently large,
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Lemma 4.8 implies
||A,I; _ Ak”e—(lwll—wk)tL_”

< O (apt /LAY(LOMU=a=0) 4 [ d+a(M+1) p=eL®) ~(ali—a)tL ™" (4D

where Qp(x) = Zé‘fgl gext is the polynomial in Lemma 4.8 with non-negative
coeflicients g,. Integrating (41) yields

00
/ dr 121 ||A,€ _ Ak”e—(ldll—ﬂlk)tL_a
0
< (La—M(l—a—s) + Ld+a(M+1)e—cL5)
M+1

a1 —(leh—ag)L— aprt
- - 1~k
ZZO qg/o dr ¢ e 7 al (42)

— (La—M(l—a—s) + Ld—l—a(M—l—l)e—ch)

]\g:l c]gF(Zn + K)aﬁLa(2n+()
Lt(jaly — ag )2t

{=0

’

where I' denotes Euler’s Gamma Function. The definition of & € (0, 00)?" in (39)
yields |e|; = 2(Ju|1 + |v|1), and thus |a|; — ax = |u|1 + |v|1 = ak. This makes
the right-hand side of (42) smaller than

L2na

a—M(1—a—s) d+a(M+1) ,—cL®
Qul + oz tr )

Cu

with some constant Cyps > 0 depending on Qps and n. For given ¢ < 1 —a, we
can choose M large enough for the L-terms to vanish as L — oo. |

Using Lemma 4.10, we can rewrite the right-hand side of (36).

Corollary 4.11. The estimate

tr{(1 (=00, £1(HL) 1 (£,00) (H7 )"}

o0
= / d(u, U) (|M|1 + |v|1)e_|u|1_|vll / dr t2n—1
(0,00)" x(0,00)" 0

n
tr { [ [ YV )i E=B yy b ()= o) =E) ﬁ} +o(1)
j=1

(43)

holds as L — oc.
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Proof. The claim follows from Lemma 4.6 and Lemma 4.10, which imply that the
integral

o0
/ d(u, U) (|M|1 + |v|1)e_|u|1_|vll / dz t2n_1
(0,00)" x(0,00)" 0

(tr{l_[ ﬁfL(uj+vj_1)t(HL)Vgéuj—l—vj)t(HI,J)ﬁ}
Jj=1 n
—tr{l_[ \/VfL(uj—l—vj_l)t(H)nguj—l—vj)t(H/)ﬁ})
j=1

vanishes in the limit L — oo, because

/ d(u.v) e luli—Ivh 1
u,v = < 00,
(0,00) x(0,00)" (July + |v[)?* 1 @2n—1)!
as can be seen from the coarea formula. O

Remark 4.12. Comparing the smooth cut-off functions )(fLE with the ones in [11,
Def. 3.13], the difference is that the cut-off functions there have E as the boundary
of their support, while the ones here have distance L™ between E and their
support. To compensate for this, the z-integral has been cut off at t = L™ in
[11, Lemma 3.11], which yields a lower bound for » = 1. For n = 2, it is not
immediately clear if the integrand in (43) is positive, so cutting off the integration
might not result in a lower bound; this is the reason for choosing the cut-off
functions differently from those in [11].

4.3. Infinite-volume trace expressions. Throughout this subsection, we fix a €
(0,1), n € IN and a cut-off energy Ey = 1.

In Corollary 4.11, we gave a lower bound on the nth term of (18) in which
only infinite-volume operators occur. In order to control the errors in that step,
it was necessary to introduce smoothed versions of indicator functions in (37).
In the present subsection, our aim is to replace these smoothed functions with
discontinuous ones, which will allow us to determine the asymptotics of the
resulting expression.

We introduce measures u!, vl: Borel(R) — [0, oo] defined by

pl(A) = ae{VVIg(H)VV), vY(B) = ta{VIig(H)VV)} (44)

for A, B € Borel(R). The expressions in (44) are finite for bounded Borel sets as
a consequence of [29, Theorem B.9.2].
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The absolutely continuous parts of the measures j! and v! will turn out to be
important. To define their densities in an applicable manner, we use a limiting
absorption principle due to Birman and Entina.

Proposition 4.13 ([4, Lemma 4.3]). There exists a null set Ng C R such that the
limits

1
A(E) = lim =NV —e.p o (H)VV . (45)

1
B(E) := lim—«/Vl(E_s,EH)(H/)«/V
el0 2¢

exist in trace class for all E € R\ Ny and define non-negative trace class operators
A(E) and B(E).

In the next lemma we identify the densities of the absolutely continuous parts
of u! and v!. The proof of this lemma follows directly from the definitions.

Lemma 4.14. The functions E +— tr A(E), respectively E +— tr B(E), are
locally integrable Lebesgue densities of the absolutely continuous parts of i,
respectively v!.

We will need an auxiliary statement for the main result of this subsection.

Lemma 4.15. Let 1 be a locally finite Borel measure on R. Let ¢ > 0 and
0 <& <8 < cq. Then for a.e. xg € R there is a constant C, depending on xy, co
and ., such that for all t > 0

1— e—tS

/ dp(x) e &) < C
[x0.x0+8] 4

and

—t8/2 e—ts/2

e
<C :
t/2

t/2

/ d,bL(X) e—t(x—X()) < Ce—t8/21 —
[xo+¢,x0+8]

The exceptional set of values of xo for which the assertion does not hold depends
neither on cy, € nor 6.

Proof. The constant

1
C:= sup —u([xo,x0 + 7))
n€(0,co) n
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is finite for a.e. xo € R. We compute using Tonelli’s theorem

/ dp(x) e~ (x—x0)
[x0,x0+46]

x0+6
= / du(x)(e—“‘ +1 / dg e—f@—xo))
[x0,x0+46]

X

sl *o+h —t(E—x0)
= e " =u([xo,x0 + 8]) + ¢ d¢ du(x)e 0
§ X0 [x0,€]
xo+6 _
<C8e™ 41 / dge—’@—st—“u([xo, £])
X0 E — X0

§
< Cse™ 4 Ct / dg ge ¢
0
1— e—tS
—

=C

The second assertion follows from the first one and the bound e~*&*—%0) <
e718/2e71(x=%0)/2 for ¢ < x — xg < 8. O

Definition 4.16. (i) For k € IN, we define
Jufye~1h

Ik Z=/ d A s
O [Tj—;(uj +ujt1)

where uy4 1 := u; foru € RF.
(ii) We define discontinuous L-independent functions y*: R — [0, 1] by
X r=max{yr, l-go.py)} and T :=max{y}. l(£ £}
Remarks 4.17. (i) The integral /; will be discussed further in Subsection 4.5; in
particular, Iy is finite for every k € IN.

(ii) The functions X]ﬂf converge pointwise to y* as L — oo. They are obtained
from replacing the smooth L-dependent part by a discontinuous step at E£. Figure 2
illustrates the behaviour of y*.

/ N

—Eo—1 —Eo E Eo Eo+1

Figure 2. Sketch of the discontinuous cut-off functions Xi.
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The following lemma is the main result of the current section.

Lemma 4.18. There is a null set N C R which does not depend on a, n and E,
such that for every E € [—Eq, Eo] \ N,

o0
/ dtt2n—1/ d(u,v) (July + |v]p)e”#h=vh
° (0,00)" x(0,00)"
n
[tr{ HWXZ(H)e(“f"‘”j—l)t(H—E)ﬁ
j=1
\/VXZ(H’)e_(“jﬂj)t(H’—E)ﬁ}
n
—e tr{ 1_[ NV~ (H)eWi+vi-DtH=E) [y
j=1
\/VXJF(H/)e_(“j+Uj)t(H’—E)ﬁ}] o)

(46)

as L — oo, where the O(1)-term depends on a, n, E and Ej.

Proof. First, notice that if f;, g; are bounded measurable functions of compact
support for 1 < j < n, then

w{ [TIV7 Ve (WP} < [T (VY DT (Vg (H)YT)
j=1 i

_ /R () [R n dvn(y),-ljl £G)210),
@)

where we wrote u”* and v” for the n-fold product measure of ! and v!, respec-
tively.
For brevity, let § := L™*. We introduce a vector o € (0, 00)?" via

021 = Uj +Vj—1 and Oaj ‘= Uj +V;
for 1 < j < n and operators

4D VV gy H)e =BV for k odd,
ko \/an)(H/)e_akt(H/_E)ﬁ for k even
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for 1 < k < 2n. The difference of operator products in (46) then equals

2n 2n 2n 2n 2n
[T4af-e [ = ([TaF - [T4) + =[] ab @s)
j=1 j=1 j=1 j=1

Jj=1

where as in (40),
2n 2n 2n
HAJL_HAj :ZAl...Ak_l(A/Ig—Ak)A]€+1-'-Aén' (49)
j=1 j=1 k=1

We will treat the two terms on the right-hand side of (48) individually. For the
first term, we estimate the kth term in (49). We will carry out the argument in the
case where k is even. The argument is similar for odd k. Since 0 < y* — )(2' <

lig,E+2681s X(1) S li-Eo-1,£]1 and XEFL) < l[g,Eg+1]> (47) implies
twf|Ar ... Ao (Af — AR Af L, .. A%, |}

< / du™(x) dv" () 1, E+281(Vk)
[~Eo—1,E]" (E.Eo+1]"

exp(—t Y () +v) (v = B) = + v;-1)(x; — E)))
j=1

1— e—2(uk+vk)t5 1 1

1 2= T g+ v) (uy 4+ vj-1)

<C

where C is some finite constant and the last inequality follows for a.e. £ €
[—Eo, Eo] from applying Lemma 4.15 to every integral and the estimate 1 —e~"* <1
to all but the kth term. Using the bound 1 — e 2® V)8 < (3 4 i )6,
we conclude

e 10 tr{

2n 2n
[T47 =114
j=1 j=1

§ —t8
}s4C 2€n_1 _ luli + [v]1 ’
! [Tj=1(tj +v)(j +vj-1)

and therefore

o0
/ dzz2”‘1/ d(u, v) (Ju|; + |v])e M=
0 (0,00)" x(0,00)"

2n 2n
e_“gtr{ [T4F-T]4 }
j=1 j=1
00 2 ,—|uli—vy
s4c/ dt8e_’5/ d(u, v) —JlLt Pl .
0 (0,00)" x (0,00)" [Ti=1 () + )y +vj—1)
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Here, the ¢-integral yields 1 for every § > 0, and the (u, v)-integral is finite since

/ du.v) (July + |v|1)ze_|“|1_|“|1
o0y x©00)t [ j=1 () +vj)(uj + vj-1)

(Julr + |v|1)e_|”|1/2—|U|1/2
s / d(u,v) =7
0,00y x(0,00)" [Ti=1 () + )y +vj—1)

= 212,, < 00,

with I, as in Definition 4.16. This shows that the integral of the trace norm of

the first term on the right-hand side of (48) yields an error that remains finite as
L — oco.

The trace norm of the second term on the right-hand side of (48) is
2n
¢! —e—“*)tr{ []Af }
=1
<= [ au" (x) av'(y)
[-Eo—1,E—§]" [E+8,Eq+1]"

exp (=1 Y ((; + )0y = E) =y + vi-1)(x; = E)))

Jj=1

—t8)1_[e —(uj+v;_ l)tS/Ze (uj+v;)té/2
(uj + vj—1)(; +v;)(t/2)?
(1 _ e—tz?)e—(lu|1+|v|1)t8[—2n
[Tj=i Gy + )y +vj—1)
where the first inequality is a consequence of y(;) < 1j—g,—1,£] and )(?'L) <
1{£,Eo+1]> and the second inequality follows for a.e. £ € [—Eg, Eo] from
Lemma 4.15. Now, we perform the ¢- and (u, v)-integration

o0
/ d(u,v) (|u|1 + |v|1)e_|“|1_|vll / dr t2n—1
(0,00)"" x(0,00)" 0

(1 _ e—t&)e—(|u|1+|v|1)t8[—2n
[T7=1 (uj +vj) ;i + vj—1)

1 — e~ D) e~ A+ uli+lvl1)
=/ du. v)/ dt( e )ne (Julr + |v[1)
(0,00)"" (0, oo)” t 1_[]'=1(uj + vj)(uj + vj—l)
= 12,,/ dl

where we performed the successive changes of variables r§ ~> ¢ and (1 +
D (u,v) » (u,v). O

<Cc(1-

— 22)’1
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Corollary 4.19. For a.e. E € [—Ey, Ey], we have
tr{(1 (o051 (HL) 1 (£.00)(H1))"}

o0
> / du, v) (uly + [l )e ol / dr (211l
(0,00)"" x(0,00)" 0

n
tr{ [1 \/VX_(H)B(""HJ"I)’(H‘E)VX+(H/)3—(uj+v,-)z(H’—E)ﬁ}
Jj=1

+0(1)
(50)

as L — oo. The null set of exceptional energies does not depend on a, n and Ej.

Proof. We combine Corollary 4.11 and Lemma 4.18. |

4.4. Thelogarithmic divergence. Throughout this subsection, we fixa € (0, 1),
nelNand Eg > 1.
The goal is to determine the asymptotics of the right-hand side of (50).

Lemma 4.20. Fora.e. E € [—Ey, Ey],

A(E) = VVie' =B y=(H)JV — A(E),

B:(E) := VVie "B+ (H\V — B(E) (51)
ast — oo, where the convergences are in trace class. Moreover,

sup||A;(E)| < suptrA;(E) < oo,

=0 120
sup||B:(E)| < suptr B;(E) < oo. (52)
=0 120

Proof. We follow [11, Lemma 3.16] and treat the operator B;(FE); the assertions
for A;(E) can be proved using analogous arguments. Recall that B;(FE) is non-
negative. To prove (51), we show (1) convergence of the trace norms and (2) weak
convergence of the operators. Together, this implies convergence in trace class via
[30, Addendum H].

For the trace norms, we compute

tr B;(E) = tr{/Vie "' =By T (H" V)

— [ e B [ ) e 0P
[E.Eo] [Eo,Eo+1]
53
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where the second term converges to zero as t — oo for £ < Ey. The first term
can be written as

/ dv! (y) 1e OB = (v} % 0,)(E), (54)
[E,Eop]

where we introduced the restricted (finite) measure vy, (M) := v! (M N[~Eo, Eo])
for M € Borel(R) and the approximation of the identity x +— g;(x) :=
te"™1(—00,0)(x). Ast — oo, the convolution in (54) converges for a.e. E €
[—Ey, Eo] to %VEJC = tr B(E), see e.g. [21, Subsection 2.4.1]. Thus, the trace norm
of B;(E) converges to that of B(E) as t — oo. This, together with the continuity
of [0, 00) > t > tr B;(E), which can be seen from (53), implies (52).

For the weak convergence, take some dense countable set D € L2(R?). Then
by a similar delta-argument as above,

for all p,vv € D and all E € [—Ey, Eo] outside a null set depending on D.

Together with (52), this proves weak convergence to B(E) for a.e. E € [—Ey, Eo,
see [31, Theorem 4.26]. O

The following quantity will enter the asymptotics we set out to prove.

Definition 4.21. For £ € R\ Ny, let

nan(E) := tt{(A(E)B(E))"} (55)

and extend it trivially to a function 7,,: R — [0, 0c0). The non-negativity of (55)
can be seen from the cyclicity of the trace.

The next corollary will show that the trace expression on the right-hand side
of (50), times an appropriate power of ¢, converges to 12, (E) in the t — oo limit.

Corollary 4.22. Letoy,...,0n, B1,...,Bn > 0. Then for a.e. E € [—Ey, Ey]

n
(2n tr{ l_[ ﬁx—(H)ajeajt(H—E)VX-}—(H/)ﬁje—ﬂjt(H/_E)ﬁ} s nan(E)
j=1

ast — oo.
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Proof. Using the notation of Lemma 4.20, we have to show

tr{ I1 Aaj,(E)Bﬁj,(E)} — w{(A(E)B(E))"}| — 0 (56)
j=1

ast — oo. By Lemma 4.20, tr|Ag;((E) — A(E)| — Oand tr|Bg,;(E)— B(E)| — 0
as t — oo, while sup,.,||4;(E)| and sup,-,||B;(E)| are finite. Writing the
difference of operator products in (56) as in (40), this proves the corollary. |

Lemma 4.23. Let f € L} (R) and suppose lim; o, f(t) exists. Then

loc

hm f@) = —hm—/ dr t7te™S £ (1).

540 Ins

Proof. Take a compact interval [sg, c] € (0, c0). Then
d o0 [e.¢]
—/ drt7te™ f(1) = —/ dr e ! f(1) (57)
ds J; 1

for s € [so.c], because |s171e™5 f(1)| < €| f(¢)|, which is integrable on
[1,00). Therefore (57) holds for all s > 0. If lim, g floo drt e 5 f(¢) exists,
then lim;_, o, f(¢) = 0 and the assertion holds. Otherwise,

—hm—/ dr t7te™ £(1) _hm—/ dr e " £(1)

s40 Ins
= lims/ dre ™ (1)
510 0
= Jim £ (0.

where the last equality is the statement of the classical final-value theorem,
see [6, Theorem 34.3]. O

We are now ready to compute the asymptotics of the right-hand side of (50).

Theorem 4.24. Fora.e. E € [-Ey, Ey),

lim / dr 12 1emtE™ / d(u,v) (July + |v|1)e” [uli—lvli
L—oo a 11’1 (0,00)" x(0,00)"

tr{ 1_[ VV T (H)e™ +vj—1)’(H_E)VX+(H/)9_(uj+vj)t(H/_E)ﬁ}
j=1

= 12n772n(E)~

(58)
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Proof. Letu,v € (0,00)" and define

Z(,v):= [ [ +vj-0) @) +v)).
j=1

Using the notation of Lemma 4.20, we see that

n
Z(u,v)t*" tr{ l_[ VV y~ (H)eWi -t H=E) [
Jj=1
NVt (H e~ Wi topHH =E) «/7}

n
= tr{ l_[ A(uj+vj_1)t(E)B(uj+vj)t(E)}y
j=1

where

n
t{ T Aaus+,0 (E) By o, (B}
j=1

< (suptr{di (E)}ysuptr(B.(E))" oo

< Q.

By Corollary 4.22,

n
Jim o { T Ady v CE) By oy (E)| = 120 (E)
j=1

for all u, v € (0, 00)”. By Remark 4.17 (i),

—luli—lvly
Ion :/ d(u, vy Pt e < . (60)
(0,00)" x(0,00)" Z(u,v)

Equations (59) and (60) supply the assumptions of the dominated convergence
theorem. It yields the convergence

tll)rgo J(t) = Innan(E)

for
f@) = / d(u, v) (Ju|y + |v|y)e Il ¢2n
(0,00)""x(0,00)"
n
tr{ 1_[ ‘/VX_(H)e(“/ﬂj—l)t(H—E)ﬁ
Jj=1

Vi (H e o =B )
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—luli—lvh
=/ d(u. v) (Jul1 + |v]1)e
(0,00)"" x(0,00)"" Z(u,v)
n
{ [T Aty o106 () By 10, (E) .
j=1

where ¢ > 0. The assertion (58) follows from

, 1
L0 In(L-%)

/oo det~'e ™7 f(r) = lim f (1),
0 —>00

which is a consequence of Lemma 4.23 and of

1
sup/ drt ™7 (1) < o0 O
L>1J0

Corollary 4.25. Fora.e. E € R, the estimate
tr{(L(—00,E1(HL) 1 (E,00)(H1))"} Z In L Irp020(E) + o(In L)

holds, where the o(In L)-term depends on n and E.

Proof. We deduce from Theorem 4.24, Corollary 4.19 and from the arbitrariness
of Ey that

tr{(1— Hp)l H))"
liminf 1‘{( ( oo,E]( L) (E,oo)( L)) }
L—>00 InL

= a Ipnnan(E) (61)

for arbitrary @ € (0, 1) and a.e. E € R. Thus (61) holds fora = 1 and a.e. E € R.
By definition of the limit inferior, this implies the claim. O

4.5. A multi-dimensional integral related to the Hilbert matrix. In this sub-
section, we compute the coefficient of 7,, (E) in the asymptotics in Corollary 4.25,
i.e., we compute the integral

—|uly
In :/ du 7 |u|le
ooyt [lj=1(uj +uj41)

in Definition 4.16 (i). Here, we use the convention u,+; = u; for u € R".
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We prove
Theorem 4.26. Let n € Nx,. Then

(r(3))

n—2
This implies
2
Iy, = (2 )2n 2% =nJay,

forn € IN, where J», was defined in (24).
We begin with an elementary lemma.

Lemma 4.27. Letn € Nx,. Then

n e_lull

I, = —/ du —— .
2 Jooor T2 (uj + uj41)

Proof. Using the symmetry of /, in the components of u, we compute

1 _ 2|u|1
I, = —/ du e~
"2 (0,00)" n7=1(uj + ujt1)

n

_1 / du e~ nuk + Uk+1
2 = Jo.cor [li=i(uj +ujs1)

—luli

n

= —/ du —— .
2 Jooor T2 (uj + ujt1)

(62)

O

In the sequel, we will work with the Rosenblum—Rovnyak integral operator

T:L?((0,00)) — L?((0,00)), see [27] and [28], defined by

e~ x+y»)/2

(Tf)(x) = / ()

(63)

for f € L?((0,00)) and x € (0, o). This operator can be explicitly diagonalised.
Following [33, Section 4.2], we define the Kontorovich—Lebedev transform, i.e.

the unitary operator U: L2((0, 00)) — L?((0, 00)),

(UF)(k) := 7~ /k sinhrk) [T (1/2 — k)| / et Woir(x) f(x)  (64)
0
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for £ € L?((0,00)) and k € (0, 00), where W, ;; denotes the Whittaker function,
see [22, Section 13.14] or [12, Section 9.22-9.23]. Then, the spectral representa-
tion due to Rosenblum reads

WOTNHE) = i TN (65)

for f € L%((0,00)) and k € (0, 00), see [33, Proposition 4.1].
Proof of Theorem 4.26. Letn € INx,. From (62) and (63), we see that
2
—In = (@0, T" " $0) 12((0,00)) (66)

with ¢o(x) := e */2. From (65) and (66), we obtain

2l = Ugo, UT" o120 = [ 1000 ()" - 6
n'" ’ L2©00) = ) cosh(kn)/
In order to compute Ugy, we employ the classical formula
T
r(/2—ik)? = ———— 68
P2k = s (68)

for k € R, which is a consequence of the reflection formula for the Gamma
function, and

OO —1y . —x/2 _ 4
/0 dx x™ Wik (x)e cosh(kn) (k > 0), (69)

which follows from the special case z = 1/2 and v = x = 0 in [22, eq. 13.23.4].
From (64), (68) and (69), we deduce

sinh(k )
Udo) (k)|* = 2wk ———
for k > 0. Inserting this into (67) yields
2 o0 sinh k 2p""2 [ 1
I, =272 dk k = dk ————,
n i /0 (cosh k) +1 n /0 (cosh k)"

where we applied the substitution k ~> k /7 and integrated by parts. This integral
can be evaluated using the substitution x = (coshk)™2:

2 nn—z n

Z1, =
n

C B(1/2.1/2).

1
/ dx x”/z_l(l —)c)_l/2 g
0 n

n

where B denotes Euler’s Beta function. The claim follows from [12, eq. 8.384 4
and eq. 8.3841]. |
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Remark 4.28. The Rosenblum—Rovnyak operator is the special case T = H in
[27, eq. (2.3)] and is unitarily equivalent to the Hilbert matrix

H: £2(INg) —> £2(Ny),

given by

o0

Ck
(Ho)j =y ———
iy tk+l
for j € Np and ¢ € £2(INp). In analogy to (66), the representation

n _
In = 5(6(0), H" 16(0)>42(]NO)
holds with @ := (1,0,...) € £2(INy).

4.6. Relations to scattering theory. In order to complete the proof of Theo-
rem 3.4 we need to relate the coefficient 55, (E) in Definition 4.21 to the transition
matrix from scattering theory. We begin with a definition.

Definition 4.29. Let H,.(H) be the absolutely continuous subspace of the self-
adjoint operator H. Then H,.(H) can be decomposed into a direct integral

(5]
/ dE Hg
oac(H)

where Hg is a Hilbert space for every E € o0,.(H). The operator H acts on
H g by multiplication with the identity, see [32, §1.5]. This means that a vector
f € Hac(H) corresponds to a vector-valued function £ +— fr € Hg, and Hf
corresponds to E — EfEg.

The transition matrix 7g acts as a bounded operator on Hg. Moreover, we
have the following representation.

Lemma 4.30. The limit
O4(E) = lifn(l +VV(E xie— H)'WV)
g0
exists in the sense of convergence in operator norm for a.e. E € R. Moreover,

there exists an operator U(E): Haoo(H) — Hpg such that U(E)* U(E) is the
identity on ran / A(E) and the transition matrix Tg: Hg — Hg satisfies

Tg = U(E)T(E)U(E)*,

where

T(E):= —27i/JA(E)®4(E)/A(E).
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Proof. This is a result in abstract scattering theory, see e.g. [4, §7], [32, §5.5],
or [3, p. 394]. A detailed proof is given in [19]. O

Corollary 4.31. The identity

T(E)'T(E) = 2m)* VA(E) B(E) v A(E) (70)
holds for a.e. E € R. In particular,
1Tl = @n)*" te{(A(E)B(E))"} = 27)*" an (E) (71
for everyn € N, where | Tg ||l 2n := 2’\’/W is the 2n-Schatten norm of Tg.

Proof. The operators A(E) and B(E) can be expressed as the operator limits

—TA(E) = 1i£1m(ﬁ(E +ie— H)T'WV)
—nB(E) = hﬁ} Im(VV(E +ie— H) 'VV)

which exist for a.e. E € R, see [4, Lemma 4.5]. From this and the second resolvent
identity (z — H) ' - (z— H)™' = z—-H)"'W(z—-H) ' forz € C\R,
the statement

D (E) A(E)P4(E)
= —% 181&1{(1 + VV(E—ie— H) '"WV)YImGWV(E +ie — H)"'VV))
(I +VV(E +ie—H)'VV)}
2—1le{«/_(1 +(E—ie—H)'V)
(E—ie—H) ' —(E+4+ie—H)™)
(I +V(E+ic—H) HJV)

—hm{«/—((E—zs H) ' —(E+ie— H) )WV}

27l ¢

= B(E)

follows and yields (70). The unitary equivalence on ran,/A(E) in Lemma 4.30
then implies (71). O
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Corollary 4.31 yields the following theorem.
Theorem 4.32. Letn € N. Fora.e. E € R

nan(E) = tw(|Te/(2m)[*"),

where Tg : Hg — HE is the transition matrix for the energy E.

A. Positivity of the exponent

Here we consider the special case Vy = 0 and show that the decay exponent y(E)
in (13) is strictly positive for a.e. E > 0. Throughout this appendix, we assume
that V' # 0 satisfies (V).

Theorem A.l. Let Vo = 0. Let E > 0. Then the operator A(E) from (45) has the
integral kernel

d/2 1

A(E;x,y) = 2007

VG W(y/ d5() e VEEE) (1)

for a.e. x,y € R%. Here, dS stands for integration with respect to the surface
measure on the unit sphere 341 C R4,

Proof. Let ¢ > 0 and f e L2?(R?). Then, using the Fourier transform and
spherical coordinates, we compute for a.e. x € R?

(V151 (~AOVT )0)
L [k [y e (kP VTG £

T en?
VV(x) ) e
z(zﬁ)d/ y VvV f(y) /E—s dr ré/2 I/Sd_l dS(€) e JTE( y)’

(73)

and therefore

tim SVl (AT )0

ot [ T 0E [ st el e,

2(271)"

because the integrand in (73) is continuous in r. This implies (72). O
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Corollary A.2. Letd = 2. Let Vo = 0and V # 0. Then for any E > 0 the
operator A(E) from (45) has infinite rank.

Proof. We first show that the set of functions
(RY 5 x > /V(x)e'¥*: £ € RY) (74)

is linearly independent. For this, notice that {C > z > e'$?:s € R} is linearly
independent, since for z = —ix, these functions have different asymptotic be-
haviour for x — oo. Given a finite non-empty set M € Rand ¢; # O fors € M,
the analytic function C > z > Y, cse’*7 is therefore not identically zero, and
thus R 3 x = Y, cse's¥ is zero only on a discrete subset of R.

Given another finite non-empty set M € R¢ and ¢ # 0 for £ € M, define
F:R? — Cvia F(x) 1= Y gcpy cee’™™. We show that F~'({0}) € R? is a null
set. Since F is continuous, this preimage is measurable with measure

o0
/ dx 1F—1({0})(X) = / dS(n)/ drrd! Lioy(F(rn)) =0,
R4 gd—1 0

where the r-integral is zero since for 7 € $¢~! fixed the function r +— F(rn) =
> teM cee'"8 is zero only on a discrete subset of R, as shown above. To show
that the set (74) is linearly independent, it suffices to show that

[x e R VV(x)F(x) # 0} = {x e R V(x) # 0} N {x e RY: F(x) # 0}

has positive measure. This is the case, since the first set in the intersection has
positive measure and the second set is the complement of the null set £~ ({0}).
Now, let f € ker A(E). Then

_ 2
2 | ] e
1 R4

0=(fAE)f) = 2000 Jsa

and therefore

/ dx v/ V(x)e VEEX f(x) = 0 (75)
]Rd

for a.e. £ € $¢~!. Since the left-hand side of (75) is continuous in &, (75) holds in
fact for all £ € $9~!. Since f € ker A(E) was arbitrary, we conclude that

(R 5 x — /V(x)e! VEEX £ € §9-11 C (ker A(E))*.

Since $9! is an infinite set for d > 2, the set of functions on the left-hand
side is infinite and linearly independent, and thus dim(ker A(E))* = oo. Since
the coimage (ker A(E))* of the linear map A(E) is isomorphic to ran A(E)
(the restriction A(E)|er ()L : (ker A(E )+ — ran A(E) being bijective), this
shows dimran A(E) = oo. |
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Remark A.3. We expect Corollary A.2 to generalise to the situation of non-zero
background potentials V,, with suitable decay by using generalised eigenfunctions

due to Ikebe and Povzner (see [29, §CS5] and references therein) in place of
eiﬁé"x.

The infinite rank of A(E) implies positivity of y(E).

Theorem A4. Let d = 2 and Vy = 0. Then the transition matrix Tg correspond-
ing to the pair H = —A and H' = —A + V has infinite rank for a.e. E > 0. In
particular, Tg is non-zero and therefore

y(E) = n72| aresin|Tg /2] [fis > 0
fora.e. E > 0.

Proof. By Lemma 4.30, it suffices to show that T(E) = —2ri/A(E)®4(E)
VA(E) has infinite rank, where @ (E) = lim, (7 + «/_(E +ie— H)'JV).
We show that its imaginary part Im T(E) =4 (T(E ) — T(E)*) has infinite rank.
For brevity, set R := lim, g VV(E +ie— H ) 1./V . Recall that by the limiting
absorption principle, this limit exists in operator norm for a.e. £ > 0; in particular,
R is compact. We fix such an £ > 0 from now on. Then

ImT(E) = %(—Zni,/A(E)dbr(E)\/A(E) —27i JA(E)®_(E)JA(E))
= —27\JA(E)(I + Re R)\/A(E).

Since Re R is compact, we can write it as Re R = R; + R, where |[R;|| < 1/2
and R, has finite rank. Thus

—i ImT(E) = VA(E)I 4+ R1)VA(E) + A

where A is a finite rank operator. Now, since I + R, = I —

VAE)I + R)VA(E) = LA(E).

By Corollary A.2, this operator has infinite rank. O

1 1
51 =31, we get
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