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Abstract. We quantify the asymptotic vanishing of the ground-state overlap of two non-

interacting Fermi gases in d -dimensional Euclidean space in the thermodynamic limit.

Given two one-particle Schrödinger operators in �nite-volume which di�er by a compactly

supported bounded potential, we prove a power-law upper bound on the ground-state

overlap of the corresponding non-interacting N -Fermion systems. We interpret the decay

exponent  in terms of scattering theory and �nd  D ��2k arcsin jTE=2jk2
HS, where TE

is the transition matrix at the Fermi energy E. This exponent reduces to the one predicted

by Anderson [Phys. Rev. 164, 352–359 (1967)] for the exact asymptotics in the special case

of a repulsive point-like perturbation.
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1. Introduction

We consider two quantum systems, each consisting ofN non-interacting Fermions
in a box of side length L in d -dimensional Euclidean space Rd , with d 2 N.
The single-particle Hamiltonians of the two systems di�er by a local perturbation
potential V . As a signature of inequivalent representations of the canonical
commutation relations, the overlap hˆN

L ; ‰
N
L i of the N -Fermion ground states

ˆN
L and ‰N

L must vanish in the thermodynamic limit L ! 1, N ! 1,
N=Ld ! const. > 0, see [8, Chapter IV] and [13, Chapter II.1.1]. A quantitative
version of this behaviour in terms of a power law

jhˆN
L ; ‰

N
L ij2 � L� (1)

was predicted by P. W. Anderson in 1967. In [1] he presented a brief computation
for the case of a point-like perturbation V in d D 3 dimensions and arrived at the
upper bound

jhˆN
L ; ‰

N
L ij2 6 L�1 (2)

with
1 D ��2.sin ı/2: (3)

Here, ı is the (single-particle) scattering phase shift caused by the point interaction
at the Fermi energy. Nowadays, this behaviour is often referred to as Anderson’s
orthogonality catastrophe in the physics literature. A mathematical proof for a
generalisation of (2) and (3) was given recently in [11]. Allowing for a bounded,
compactly supported, non-negative perturbation V inRd , it is shown there that (2)

holds with

1 D 1

�2
kTE=2k2

HS; (4)

where TE denotes the transition matrix of scattering theory and k � kHS the Hilbert-
Schmidt norm for operators on the Hilbert space of the energy shell corresponding
to the Fermi energy E. In the special case considered in [1], (4) reduces to (3).
The principal strategy of the argument in [11] is to rewrite the overlap determinant
as jhˆN

L ; ‰
N
L ij2 D detA D exp.tr lnA/ and to expand the logarithm in a series of

non-negative terms

ˇ

ˇhˆN
L ; ‰

N
L i

ˇ

ˇ

2 D exp
°

�
X

n2N

1

n
tr..I � A/n/

±

; (5)

see Lemma 3.1 below. A similar idea was used by M. Kac [16] in his proof of
the Szegő limit theorem for Toeplitz determinants which is, in a way, an analogue
to (1).



The exponent in the orthogonality catastrophe 645

By dropping all but the �rst term tr.I � A/ of the series, which is called An-

derson integral in the physics literature, one arrives at an upper bound. The main
work of [11] consists in deriving a lower bound of the form tr.I � A/> 1 lnL
for the Anderson integral with 1 given by (4). There are only few other mathe-
matically rigorous works on Anderson’s orthogonality catastrophe [20, 9, 18, 10].
It is shown in [20] that (4) in fact provides the exact coe�cient in the asymp-
totics tr.I �A/ � 1 lnL of the Anderson integral in the thermodynamic limit for
one-dimensional systems. We refer to [20, 11] and references therein for a brief
description of the relevance of the orthogonality catastrophe in physics and for a
discussion of the theoretical approaches in the physics literature.

In a second paper [2] in 1967, P. W. Anderson notes as an aside that the true
asymptotics (1) of the overlap involves an exponent  for which “. . . the main
di�erence from the previous result [i.e. (3)] is to replace .sin ı/2 by ı2.” After some
controversies about the correctness of interchanging limits [26, 14], Anderson’s
result (1) was con�rmed in the case of a point interaction V with the decay
exponent

 D ��2ı2

by theoretical-physics methods [14]. A mathematical proof was given recently
in [10]. For reasons of comparison, we remark that the particle number N in [14]
refers to the number of s-orbital states below the Fermi energy and thus N � L.
Related results in the context of the Kondo problem in the physics literature can
be found in [23, 34].

The purpose of the present paper is a mathematical contribution towards the
exact asymptotics (1). We will prove in Theorem 2.2 that, in the presence of a
rather general background potential V0, a bounded, compactly supported, non-
negative perturbation potential V in Rd causes the power-law decay

jhˆN
L ; ‰

N
L ij2 6 L�Co.L0/

of the overlap for almost every Fermi energyE 2 R along subsequencesL ! 1.
The decay exponent is given by

 D 1

�2
karcsinjTE=2jk2

HS: (6)

We refer to Theorem 2.2 for the precise statement. In proving (6), we obtain a
result on the trace of a product of spectral projections of two Schrödinger operators
which may be interesting by itself, see Theorem 3.4.
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Clearly, when comparing (6) to (4), we infer 1 6  , and the two exponents
are related in the spirit of Anderson’s rule quoted above. In view of [10] and
of the physicists’ results, we conjecture that the exponent  governs the true
asymptotics (1) of the overlap whenever the modulus of the (appropriately de�ned)
scattering phases does not exceed �=2.

The proof of Theorem 2.2 relies on the representation (5) of the overlap.
We determine the dominant behaviour of each term in the n-sum in (5), because
each term contributes to the asymptotics. In order to treat the terms with n > 1

we have to deal with additional issues. One is the non-positivity of certain trace
expressions, another one is to compute the multi-dimensional integral

Z

.0;1/2n

du1 : : :du2n

e�.u1C���Cu2n/

.u1 C u2/ : : : .u2n�1 C u2n/
; (7)

which contributes to the asymptotics of the nth term in (5). Subsequently,
the values of these integrals show up in the Taylor expansion of the function
x 7! .arcsinx/2. We compute the integral (7) in Section 4.5 by identifying it with
the �rst diagonal matrix element of the .2n � 1/th power of the Hilbert matrix.

Since V causes scattering, the exponent  is typically expected to be strictly
positive. In the appendix, we prove this in the case without a background potential.

After we completed this paper, Frank and Pushnitski [7] established results
on the asymptotics for traces of regularised projections of in�nite-volume opera-
tors. Their work is partly a generalisation of our analysis in Sections 4.3 to 4.5.
In particular, their consequent use of Hankel operators is conceptually valuable
and leads to a simpli�cation of proofs. From this point of view it is also less sur-
prising that (a unitary equivalent operator to) the Hilbert matrix appears in our
Section 4.5 when we compute the multi-dimensional integral (7).

2. Setup and main result

Let d 2 N, ƒ1 � Rd be open and bounded with 0 2 ƒ1 and for L > 1, de�ne
ƒL WD L �ƒ1.

Let the negative Laplacian ��L be supplied with Dirichlet boundary condi-
tions on ƒL. We de�ne two multiplication operators V0 and V acting on L2.ƒL/,
corresponding to real-valued functions on Rd with the properties

max¹V0; 0º 2 Kloc.R
d /; max¹�V0; 0º 2 K.Rd /;

V 2 L1.Rd /; V > 0; suppV � ƒ1 compact.
(V)
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Here, we have written K.Rd / and Kloc.R
d / for the Kato class and the local Kato

class, respectively, see [29]. The �nite-volume one-particle Schrödinger operators

HL WD ��L C V0 and H 0
L WD HL C V are self-adjoint and densely de�ned in

the Hilbert space L2.ƒL/. The in�nite-volume operators H WD �� C V0 and
H 0 WD H C V are self-adjoint and densely de�ned in the Hilbert space L2.Rd /.
Birman’s theorem, see [4, Theorem 2] or [25, Theorem XI.10], is applicable by
virtue of [29, Theorem B.9.1] and guarantees the existence and completeness of
the wave operators for the pair H;H 0. In particular, their absolutely continuous
spectra are the same, i.e.

�ac.H/ D �ac.H
0/:

The assumptions (V) on V0 and V , together with [5, Theorem 6.1], imply that
the semigroup operators e�tHL and e�tH 0

L generated by the �nite-volume one-
particle operators HL and H 0

L are trace class for every t > 0, and, a fortiori,
compact. In particular, HL and H 0

L are bounded from below and have purely
discrete spectra. We write �L

1 6 �L
2 6 � � � and �L

1 6 �L
2 6 � � � for their non-

decreasing sequences of eigenvalues, counting multiplicities, and .'L
j /j 2N and

. L
k
/k2N for the corresponding sequences of normalised eigenfunctions with an

arbitrary choice of basis vectors in any eigenspace of dimension greater than one.

Given N 2 N, the induced (non-interacting) �nite-volume N -particle Schrö-

dinger operators yHL and yH 0
L act on the totally antisymmetric subspace

VN
j D1 L

2.ƒL/ of the N -fold tensor product space and are given by

yH .0/
L WD

N
X

j D1

I ˝j �1 ˝H
.0/
L ˝ I ˝N�j

:

The corresponding ground states are given by the totally antisymmetrised products

ˆN
L WD 1p

NŠ
'L

1 ^ � � � ^ 'L
N ; ‰N

L WD 1p
NŠ

 L
1 ^ � � � ^  L

N :

In order to avoid ambiguities from possibly degenerate eigenspaces and to
realise a given Fermi energy E 2 R in the thermodynamic limit, we choose the
number of particles as

NL.E/ WD #¹j 2 NW�L
j 6 Eº 2 N0; (8)

which is the eigenvalue counting function of HL at E.
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The quantity of interest is the ground-state overlap

SL.E/ WD hˆNL.E/
L ; ‰

NL.E/
L iNL.E/ D det.h'L

j ;  
L
k i/j;kD1;:::;NL.E/; (9)

in particular its asymptotic behaviour as L ! 1. In (9), h � ; � iN stands for the
scalar product on the N -fermion space

VN
j D1L

2.ƒL/, and h � ; � i for the one on
the single-particle space L2.ƒL/. If NL.E/ D 0, we set SL.E/ WD 1.

Remark 2.1. The particular choice (8) of NL.E/ as an eigenvalue counting
function turns out to be technically useful when conducting the thermodynamic
limit, see Lemma 3.3 below. The particle density �.E/ of the two non-interacting
fermion systems in the thermodynamic limit coincides with the integrated density
of states

�.E/ D lim
L!1

NL.E/

Ld jƒ1j (10)

of the single-particle Schrödinger operator H (which is the same as the inte-
grated density of states of H 0), provided the limit exists. Here, jƒ1j denotes the
Lebesgue measure of ƒ1 � Rd . Situations where the limit (10) is known to
exist include periodic V0, or V0 vanishing at in�nity. If the limit (10) does not
exist, then this is due to the occurrence of more than one accumulation point,
because the assumptions on V0 in (V), together with [29, Theorem C.7.3], imply
lim supL!1NL.E/=L

d < 1 for every E 2 R. We will study the asymptotic
behaviour of the overlap SL.E/ as L ! 1 regardless of the existence of the
limit (10).

The main result of this paper is an upper bound on the ground-state overlap
SL.E/ for largeL. Throughout we use the convention ln 0 WD �1. The terms null
set and almost-every (a.e.) refer to Lebesgue measure if not speci�ed otherwise.

Theorem 2.2 (orthogonality catastrophe). Assume conditions (V). Let .Lm/m2N
be a sequence in .0;1/withLm ! 1. Then there exist a subsequence .Lmk

/k2N,

a null set N � R of exceptional Fermi energies and a function  WR nN ! Œ0;1/

such that for every E 2 R n N the ground-state overlap (9) obeys

jSLmk
.E/j 6 exp

�

�1
2
.E/ lnLmk

C o.lnLmk
/
�

D L�.E/=2Co.1/
mk

(11)

as k ! 1. Equivalently,

lim sup
k!1

lnjSLmk
.E/j

lnLmk

6 �.E/
2

: (12)
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The decay exponent  is given by

.E/ WD 1

�2
karcsinjTE=2jk2

HS: (13)

Here, TE WD SE � IE is the transition matrix, SE is the scattering matrix for the

pair .H;H 0/ and energy E, and k � kHS denotes the Hilbert–Schmidt norm on the

�bre Hilbert space HE , on which TE and SE are de�ned.

Remarks 2.3. (i) We refer to Subsection 4.6 for a more precise de�nition of the
scattering-theoretic quantities TE and SE .

(ii) In proving Theorem 2.2, we obtain a result on the asymptotics of the trace
tr¹.1.�1;E�.HL/1.E;1/.H

0
L//

nº as L ! 1, which may be interesting by itself;
see Theorem 3.4.

(iii) The reason for passing to a subsequence .Lmk
/k2N in Theorem 2.2

originates from Lemma 3.3 below. What stands behind it is the lack of known
a.e.-bounds on the �nite-volume spectral shift function for the pair of operators
HL; H

0
L, which hold uniformly in the limitL ! 1. This unfortunate fact has been

noticed many times in the literature, see e.g. [15], and the pathological behaviour
of the spectral shift function found in [17] illustrates that this is a delicate issue.
However, in certain special situations such a.e.-bounds are known, and our result
can be strengthened. More precisely, we have

Theorem 2.20. Assume the situation of Theorem 2.2 with d D 1, or replace

the perturbation potential V in Theorem 2.2 by a �nite-rank operator V D
Pn

�D1h�� ; � i�� with compactly supported �� 2 L2.Rd / for � D 1; : : : ; n, or

consider the lattice problem on Zd corresponding to the situation in Theorem 2.2.

Then the ground-state overlap (9) obeys

jSL.E/j 6 exp
�

�1
2
.E/ lnLC o.lnL/

�

D L�.E/=2Co.1/

for a.e. E 2 R as L ! 1. Equivalently,

lim sup
L!1

lnjSL.E/j
lnL

6 �.E/
2

for a.e. E 2 R.
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Remarks 2.4. (i) In [11], similar statements to Theorem 2.2 and Theorem 2.20

were proved, in particular, the bound

lim sup
L!1

lnjSL.E/j
lnL

6 �1.E/

2
; (14)

with the exponent

1.E/ D 1

�2
kTE=2k2

HS: (15)

Note that 1.E/, which is called .E/ in [11], is strictly smaller than .E/ when-
ever both are non-zero. The bigger exponent .E/ is due to treating all terms
in a series expansion of lnjSL.E/j (see equation (17) below) instead of only the
Anderson integral, which is the �rst term of the series and gives rise to 1.E/.

(ii) Another mathematical work dealing with AOC is [20]. That paper proves
the exact asymptotics of the Anderson integral in the special case d D 1 and
V0 D 0. In particular, this yields a bound on the overlap as in (14) with the same
non-optimal 1.E/ given by (15). The paper also provides a lower bound on SL.E/

with a smaller decay exponent [20, Corollary 5.6].

3. Series expansion of the overlap

In order to expand the ground-state overlap as a series, we introduce the orthogonal
projections

PN
L WD

N
X

j D1

h'L
j ; � i'L

j and …N
L WD

N
X

kD1

h L
k ; � i L

k (16)

for N 2 N0, i.e. the projections on the eigenspaces of the �rst N eigenvalues.
Using those, we can prove the following lemma.

Lemma 3.1. Let L > 1, E 2 R and assume that SL.E/ ¤ 0. Then

jSL.E/j2 D exp
�

�
1

X

nD1

1

n
tr¹.PNL.E/

L .I �…NL.E/
L //nº

�

; (17)

where we take the trace of operators on the Hilbert space L2.ƒL/.
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Proof. For brevity, set N WD NL.E/. If N D 0, the assertion is true by
de�nition. Otherwise, de�ne theN �N -matrixM WD .h'L

j ;  
L
k

i/j;kD1;:::;N . Then
SL.E/ D detM and jSL.E/j2 D det.MM �/. For 1 6 j; ` 6 N , the .j; `/-th entry
of MM � is

.MM�/j;` D
N

X

kD1

h'L
j ;  

L
k ih L

k ; '
L
` i D h'L

j ;…
N
L '

L
` i D h'L

j ; P
N
L …N

L P
N
L 'L

` i:

Since SL.E/ ¤ 0 by assumption and therefore MM � > 0, we have 0 �
PN

L .I � …N
L /P

N
L < 1. Moreover, being of �nite rank, PN

L .I � …N
L /P

N
L is a

trace class operator. Thus, we compute

jSL.E/j2 D det.I � PN
L .I �…N

L /P
N
L /

D exp.tr¹ln.I � PN
L .I �…N

L /P
N
L /º/

D exp
�

� tr
°

1
X

nD1

1

n
.PN

L .I �…N
L /P

N
L /n

±�

D exp

�

�
1

X

nD1

1

n
tr¹.PN

L .I �…N
L //

nº
�

;

where we used the expansion ln.1� x/ D �
P1

nD1 x
n=n for the logarithm, which

converges absolutely for jxj < 1. �

Remark 3.2. Lemma 3.1 will be the starting point of our estimates for jSL.E/j.
Equation (17) can be written as

� lnjSL.E/j D 1

2

1
X

nD1

1

n
tr¹.PNL.E/

L .I �…
NL.E/
L //nº: (18)

The trace expressions in (18) are non-negative, so any truncation of the series
yields a lower bound on � lnjSL.E/j, and therefore an upper bound on the overlap.
Keeping only the term for n D 1, one recovers the so-called Anderson integral,
which was estimated in [11].

In the sequel, we will �nd an upper bound on jSL.E/j by bounding each
individual term of (18) from below.

We begin by recasting the orthogonal projections (16) as functions of HL and
H 0

L in the sense of the spectral calculus. The projections in (16) are not necessarily
functions ofHL andH 0

L, since theN th eigenvalues might be of multiplicity higher
than one. The choice of NL.E/ in (8), together with a convergence result of
the spectral shift function, allows us to rewrite them, at the cost of passing to
a subsequence of lengths.
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Lemma 3.3. For n 2 N, L > 1 and E 2 R, de�ne

F
n
L.E/ WD tr¹.1.�1;E�.HL/1.E;1/.H

0
L//

nº (19)

and

I
n
L.E/ WD tr¹.PNL.E/

L .I �…NL.E/
L //nº:

Then

(i) Assume (V) and let .Lm/m2N � .0;1/ be a sequence of increasing

lengths with Lm " 1. Then there exists a subsequence .Lmk
/k2N such that for

a.e. Fermi energy E 2 R

jFn
Lmk

.E/ � I
n
Lmk

.E/j D o.lnLmk
/ (20)

as k ! 1.

(ii) Assume the situation of Theorem 2.20. Then

sup
L>1

sup
E2R

jFn
L.E/ � I

n
L.E/j < 1:

Proof. For �xed L > 1 and E 2 R, the de�nition of NL.E/ in (8) implies

�L
NL.E/ 6 E < �L

NL.E/C1 6 �
L
NL.E/C1

if we set �L
0 WD �1. This allows us to write

P
NL.E/
L D 1.�1;E�.HL/ (21)

and

I �…NL.E/
L D 1.E;1/.H

0
L/ �

NL.E/
X

kD1

1.E;1/.�
L
k / h L

k ; � i L
k

DW 1.E;1/.H
0
L/ �Q:

The operator Q is an orthogonal projection with trace

trQ D #¹k 2 ¹1; : : : ; NL.E/ºW�L
k > Eº

D NL.E/ � #¹k 2 NW�L
k 6 Eº

DW �L.E/

equal to the �nite-volume spectral-shift function at the Fermi energy.
Using An � Bn D

Pn
kD1 B

k�1.A � B/An�k for bounded operators A and B ,
we write the di�erence of operator powers on the left-hand side of (20) as

.P
NL.E/
L 1.E;1/.H

0
L//

n � .P
NL.E/
L .I �…NL.E/

L //n

D
n

X

kD1

.P
NL.E/
L .I �…NL.E/

L //k�1P
NL.E/
L Q.P

NL.E/
L 1.E;1/.H

0
L//

n�k;
(22)
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where we also use (21). We estimate the traces of the operators on the right-
hand side of (22) by bounding the operator norms of all projections, except forQ,
by 1. We then arrive at n�L.E/ as a upper bound for (22). The claim follows
by exploiting the weak convergence of �L as L ! 1 [15, Theorem 1.4] in the
situation of (i), or using the uniform boundedness of �L in the situation of (ii).
We refer to [11, Lemma 3.9] for a detailed argument. �

Having established (20), we will prove a diverging lower bound for
tr¹.1.�1;E�.HL/1.E;1/.H

0
L//

nº as L ! 1. There will be no restriction to par-
ticular sequences of lengths from now on. The following theorem is the main
ingredient of the proof.

Theorem 3.4. Assume the situation of Theorem 2.2 or Theorem 2.20. Then there

exists a null set N � R of exceptional Fermi energies such that

tr¹.1.�1;E�.HL/1.E;1/.H
0
L//

nº > nJ2n tr.jTE=.2�/j2n/ lnLC o.lnL/ (23)

for everyE 2 R nN and every n 2 N as L ! 1. The error term o.lnL/ depends

on n and E, and we introduced the constant

J2n WD �2.n�1/22n�1 Œ.n � 1/Š�2
.2n/Š

: (24)

Remarks 3.5. (i) In the next section, we will spell out explicitly the proof of
Theorem 3.4 for the situation of Theorem 2.2 only. It follows from Corollary 4.25,
Theorem 4.26 and Theorem 4.32. The proof is fully analogous (and even simpler)
in the remaining situations of Theorem 2.20, where V is a �nite-rank operator.

(ii) The constant J2n will emerge as the value of a 2n-dimensional integral
which we calculate using the spectral representation of the Hilbert matrix, see
Subsection 4.5 below.

Given Theorem 3.4, we are now in a position to prove Theorem 2.2.

Proof of Theorem 2.2. Let M 2 N. Let N be the null set from Theorem 3.4. Let
E 2 R n N. We start from Lemma 3.1 and Lemma 3.3, which imply

� lnjSLmk
.E/j > 1

2

M
X

nD1

1

n
tr¹.P

NLmk
.E/

Lmk
.I �…

NLmk
.E/

Lmk
//nº

D 1

2

M
X

nD1

1

n
tr¹.1.�1;E�.HLmk

/1.E;1/.H
0
Lmk

//nº C o.lnLmk
/
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for a subsequence .Lmk
/k2N, as k ! 1, with an M -dependent error term

o.lnLmk
/. By Theorem 3.4, this gives

� lnjSLmk
.E/j > 1

2
tr

°

M
X

nD1

J2n jTE=.2�/j2n
±

lnLmk
C o.lnLmk

/ (25)

as k ! 1, with an M -dependent error term o.lnLmk
/. The constants J2n show

up in the series expansion [12, eq. 1.645 2]
1

X

nD1

J2nx
2n D ��2.arcsin.�x//2 for jxj 6 1

�
:

Therefore, monotone convergence and the functional calculus yield

lim
M !1

tr
°

M
X

nD1

J2njTE=.2�/j2n
±

D ��2k arcsinjTE=2jk2
HS:

Since (25) is valid for everyM 2 N, we infer

lim sup
k!1

lnjSLmk
.E/j

lnLmk

6 �1
2
��2k arcsinjTE=2jk2

HS D �.E/
2

;

which proves (12). For (11), note that by the de�nition of the limit superior for
every " > 0 there is k0 2 N such that

lnjSLmk
.E/j

lnLmk

6 �.E/
2

C "

for all k � k0, which implies the claim. �

It remains to prove Theorem 3.4.

4. Proof of Theorem 3.4

4.1. An integral representation for tr¹.f .HL/g.H 0

L
//nº. Throughout this sub-

section, n 2 N, L > 1 and E 2 R are all �xed. Using the eigenvalue equations of
HL and H 0

L, we rewrite trace expressions like (19).

Lemma 4.1. Let f; gWR ! Œ0; 1� be measureable functions with compact supports

suppf � .�1; E� and suppg � .E;1/. Then

tr¹.f .HL/g.H
0
L//

nº D
X

˛;ˇ2Nn

n
Y

j D1

�

f .�L
j̨
/g.�L

ˇj
/
h'L

j̨
; V  L

ˇj
ih L

ˇj
; V'L

j̨ C1
i

.�L
ˇj

� �L
j̨
/.�L

ˇj
� �L

j̨ C1
/

�

;

(26)

for multi-indices ˛ D .˛1; : : : ; ˛n/ 2 Nn with the convention ˛nC1 WD ˛1.
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Proof. We begin noting that

f .HL/ D
X

j 2N
f .�L

j / h'L
j ; � i'L

j ; g.H 0
L/ D

X

k2N
g.�L

k / h L
k ; � i L

k : (27)

To ease notation, we employ the bra-ket notation in the next formula, writing
h'; � i' DW j'ih' j for ' 2 L2.ƒL/. Then (27) implies

.f .HL/g.H
0
L//

n D
X

˛;ˇ2Nn

�

n
Y

j D1

f .�L
j̨
/g.�L

ˇj
/
�

n
Y

j D1

j'L
j̨
ih'L

j̨
;  L

ˇj
ih L

ˇj
j (28)

and

tr¹.f .HL/g.H
0
L//

nº

D
X

˛;ˇ2Nn

�

n
Y

j D1

f .�L
j̨
/g.�L

ˇj
/
�

n
Y

j D1

h'L
j̨
;  L

ˇj
ih L

ˇj
; 'L

j̨ C1
i;

(29)

where we used the convention ˛nC1 WD ˛1 for ˛ 2 Nn. Now, we note that the
eigenvalue equations imply

�L
j h'L

j ;  
L
k i D hHL'

L
j ;  

L
k i D �L

k h'L
j ;  

L
k i � h'L

j ; V  
L
k i

for j; k 2 N, and therefore

h'L
j ;  

L
k i D

h'L
j ; V 

L
k

i
�L

k
� �L

j

(30)

whenever �L
j ¤ �L

k
. Since f and g have disjoint supports, (30) and (29) yield the

claim. �

Remark 4.2. In analogy to [11], one might be tempted to de�ne a spectral corre-
lation “measure” by

�2n
L .A1 � � � � � An � B1 � � � � � Bn/

WD tr¹.1A1
.HL/V 1B1

.H 0
L/V : : : 1An

.HL/V 1Bn
.H 0

L/V /º
(31)

for n 2 N, L > 1 and bounded A1; : : : ; An; B1; : : : ; Bn 2 Borel.R/, which was
done for the case n D 1 in [11]. Lemma 4.1 would then read

tr
®�

f .HL/g.H
0
L/

�n¯

D
Z

Rn�Rn

d�2n
L .x; y/

n
Y

j D1

f .xj /g.yj /

.yj � xj /.yj � xj C1/
:

However, (31) is not necessarily non-negative for n > 2, and therefore we cannot
mimick the proof of [11].
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Next, we rewrite the right-hand side of (26) using a variation of an integral
formula that goes back to Feynman and Schwinger.

Lemma 4.3 (Feynman–Schwinger parametrization). Let x1; : : : ; xn 2 .0;1/.

Then

1

x1 : : : xn

D
Z 1

0

dt tn�1

Z

.0;1/n

du juj1e�juj1e�tu�x; (32)

where u � x D
Pn

j D1 ujxj denotes the Euclidean scalar product and juj1 WD
Pn

j D1juj j the 1-norm on Rn.

Proof. For any measurable function f W .0;1/n ! .0;1/ the coarea formula
implies

Z

.0;1/n

duf .u/ D
Z 1

0

dt
Z

M

dS.�/p
n
tn�1f .t�/; (33)

where dS stands for integration with respect to the surface measure on M WD ¹� 2
.0;1/nW j�j1 D 1º. Let r > 0. Starting from x�1

j D
R 1

0 duj e
�uj xj , we compute

using (33)

1

x1 � � �xn

D
Z

.0;1/n

du e�u�x

D
Z 1

0

dt
Z

M

dS.�/p
n
tn�1e�t� �x

D
Z 1

0

dt
Z

M

dS.�/p
n
tn�1rne�rt� �x;

which is r-independent. Given any measurable function gW .0;1/ ! .0;1/ with
R 1

0
dr g.r/

r
D 1, we therefore get

1

x1 � � �xn

D
Z 1

0

dr g.r/
Z 1

0

dt
Z

M

dS.�/p
n
tn�1rn�1e�rt� �x

D
Z 1

0

dt tn�1

Z

.0;1/n

dug.juj1/e�tu�x;

where we used the Fubini–Tonelli theorem and (33) with f .u/ D g.juj1/e�tu�x.
Choosing g.r/ WD re�r �nishes the proof. �
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We use (32) to rewrite the right-hand side of (26).

Lemma 4.4. Let f; gWR ! Œ0; 1� be measurable functions with compact supports

suppf � .�1; E� and suppg � .E;1/. Then,

tr¹.f .HL/g.H
0
L//

nº

D
Z 1

0

dt t2n�1

Z

.0;1/n�.0;1/n

d.u; v/ .juj1 C jvj1/e�juj1�jvj1

tr
°

n
Y

j D1

p
V f .HL/e

.uj Cvj �1/t.HL�E/Vg.H 0
L/e

�.uj Cvj /t.H 0
L

�E/
p
V

±

(34)

with the convention v0 WD vn for v 2 Rn.

Proof. Let x 2 .�1; 0�n, y 2 .0;1/n and de�ne xnC1 WD x1. Then, by (32),

1
Qn

j D1.yj � xj /.yj � xj C1/

D
Z 1

0

dt t2n�1

Z

.0;1/n�.0;1/n

d.u; v/ .juj1 C jvj1/e�juj1�jvj1

exp
�

� t
n

X

j D1

.uj .yj � xj /C vj .yj � xj C1//
�

and

n
X

j D1

.uj .yj � xj /C vj .yj � xj C1// D
n

X

j D1

..uj C vj /yj � .uj C vj �1/xj /

for u; v 2 .0;1/n. Now, let ˛; ˇ 2 Nn. Setting xj D �L
j̨

�E and yj D �L
ˇj

�E,
we can write the denominator in (26) as

1
Qn

j D1.�
L
ˇj

� �L
j̨
/.�L

ˇj
� �L

j̨ C1
/

D
Z 1

0

dt t2n�1

Z

.0;1/n�.0;1/n

d.u; v/ .juj1 C jvj1/e�juj1�jvj1

n
Y

j D1

e
�.uj Cvj /t.�L

ǰ
�E/

e
.uj Cvj �1/t.�L

j̨
�E/

:

(35)
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The sums over˛ and ˇ in (26) contain only �nitely many terms, due to the compact
supports of f and g. Therefore these sums can be interchanged with the integrals
from (35). This results in

tr¹.f .HL/g.H
0
L//

nº

D
Z 1

0

dt t2n�1

Z

.0;1/n�.0;1/n

d.u; v/ .juj1 C jvj1/e�juj1�jvj1

X

˛;ˇ2Nn

n
Y

j D1

.f .�L
j̨
/e

.uj Cvj �1/t.�L

j̨
�E/

g.�L
ˇj
/e

�.uj Cvj /t.�L

ǰ
�E/

h'L
j̨
; V  L

ˇj
ih L

ˇj
; V'L

j̨ C1
i/;

from which the assertion follows. �

4.2. Smoothing and in�nite-volume operators. Throughout this subsection,
a 2 .0; 1/ and n 2 N are �xed. We also �x a cut-o� energy E0 > 1 and a Fermi
energy E 2 Œ�E0 C 1; E0 � 1�.

The goal is to apply Lemma 4.4 using suitable functions f and g and to rewrite
the right-hand side of (34) as a trace involving the in�nite-volume operators H
and H 0. Switching from �nite-volume to in�nite-volume operators constitutes
the core of the argument. The technical tool to implement this switch to in�nite-
volume objects is the Hel�er–Sjöstrand formula, which supplies the proof of
Lemma 4.8 below. Since it is applicable to su�ciently smooth functions only,
we de�ne appropriately smoothed versions of indicator functions.

De�nition 4.5. Given a lengthL > 1, we say that �˙
L 2 C1

c .R/ are smooth cut-o�

functions at energy E, if they obey

1ŒEC2L�a;E0� 6 �
C
L 6 1.ECL�a;E0C1/;

1Œ�E0;E�2L�a� 6 �
�
L 6 1.�E0�1;E�L�a/;

and if there exist L-independent constants ck > 0 for k 2 N0, such that

�˙
L .E ˙ L�a ˙ x/ 6 c0L

a x

for all x 2 Œ0; L�a/ and

ˇ

ˇ

ˇ

dk

dxk
�˙

L .E ˙ L�a ˙ x/
ˇ

ˇ

ˇ 6

8

<

:

ckL
ak if 0 6 x < L�a;

ck otherwise,

for every k 2 N and x 2 R. We choose the smooth decay of �C
L in ŒE0; E0 C 1�

independently ofL, and analogously for ��
L. Clearly such functions exist. Figure 1

illustrates the behaviour of �˙
L .



The exponent in the orthogonality catastrophe 659

Figure 1. Sketch of the smooth cut-o� functions �˙
L

.

We are interested in a lower bound for the left-hand side of (23) which is
proportional to lnL up to subdominant corrections.

Lemma 4.6. Let L > 1. Then

tr¹.1.�1;E�.HL/1.E;1/.H
0
L//

nº

>

Z

.0;1/n�.0;1/n

d.u; v/ .juj1 C jvj1/e�juj1�jvj1
Z 1

0

dt t2n�1

tr
°

n
Y

j D1

p
V ��

L.HL/e
.uj Cvj �1/t.HL�E/V�C

L .H
0
L/e

�.uj Cvj /t.H 0
L

�E/
p
V

±

:

(36)

Proof. The inequalities

1.�1;E� > �
�
L and 1.E;1/ > �

C
L ; (37)

together with the cyclicity of the trace, imply

tr¹.1.�1;E�.HL/1.E;1/.H
0
L//

nº > tr¹.��
L.HL/�

C
L .H

0
L//

nº:

Together with Lemma 4.4, this yields the claim. �

Remark 4.7. In the sequel, we determine the exact asymptotics of the right-
hand side of (36). Thus it is only the smoothing introduced in Lemma 4.6 which
prevents us from determining the exact asymptotics in Theorem 3.4.

The following technical lemma constitutes the core of the arguments in the
present subsection.
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Lemma 4.8. For L > 1, t > 0 and x 2 R we de�ne

f t
L.x/ WD ��

L.x/e
t.x�E/ and gt

L.x/ WD �C
L .x/e

�t.x�E/;

and ht
L will stand for either f t

L or gt
L. LetM 2 N n ¹1º. Then there are constants

c > 0, L0 > 1 and a polynomial QM of degree M C 1 with non-negative

coe�cients, such that for every t > 0, every L > L0 and every " 2 .0; 1 � a/

the estimate





p
V .ht

L.H
.0/
L / � ht

L.H
.0///

p
V





6 QM .t=L
a/.La�M.1�a�"/ C LdCa.M C1/e�cL"

/

holds.

Proof. The proof essentially follows the ideas of a part of the proof in [11,
Lemma 3.14]. The idea is to apply the Hel�er–Sjöstrand formula to estimate the
di�erence of resolvents, cf. formulae (4.13) and (4.16) in [11]. For a detailed expo-
sition, see [19]. �

Before we prove the main assertion of this subsection, we need a spectral-gap
estimate.

Lemma 4.9. There is a constant C > 0 such that for everyL > 1 and every t > 0

we have

tr
®
p
V ht

L.H
.0/
.L/
/
p
V

¯

6 Ce�tL�a

;

where ht
L 2 C1

c .R/ is as in Lemma 4.8.

Proof. For the �rst assertion, note that there is a bounded interval I � R such
that ht

L 6 1Ie
�tL�a

for all t > 0 and L > 1. Thus,

tr
®
p
V ht

L.H
.0/
.L/
/
p
V

¯

6 e�tL�a

tr
®
p
V 1I .H

.0/
.L/
/
p
V

¯

6 e�tL�a

esup I tr
®
p
V e

�H
.0/
.L/

p
V

¯

6 e�tL�a

esup I tr
®
p
V e�H .0/p

V
¯

for t > 0 and L > 1. The last inequality and the �niteness of tr
®p
V e�H .0/p

V
¯

follow from [5, Theorem 6.1]. �
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The next lemma accomplishes the transition from �nite-volume to in�nite-
volume operators.

Lemma 4.10. For L > 1 and t > 0, let f t
L; g

t
L 2 C1

c .R/ as in Lemma 4.8. Let

u; v 2 .0;1/n. Then

Z 1

0

dt t2n�1 tr

²
ˇ

ˇ

ˇ

ˇ

n
Y

j D1

p
V f

.uj Cvj �1/t

L .HL/Vg
.uj Cvj /t

L .H 0
L/

p
V

�
n

Y

j D1

p
V f

.uj Cvj �1/t

L .H/Vg
.uj Cvj /t

L .H 0/
p
V

ˇ

ˇ

ˇ

ˇ

³

6
1

.juj1 C jvj1/2n
o.1/

(38)

as L ! 1, where the o.1/-term does not depend on u or v. We also used the

convention v0 WD vn.

Proof. To shorten formulas, we introduce a vector ˛ 2 .0;1/2n via

˛2j �1 WD uj C vj �1 and ˛2j WD uj C vj (39)

for 1 6 j 6 n and operators

A
.L/

k
WD

8

<

:

p
V f

˛k t

L .H.L//
p
V for k odd,

p
V g

˛k t
L .H 0

.L/
/
p
V for k even,

for 1 6 k 6 2n. The di�erence of operator products in (38) is then

2n
Y

j D1

AL
j �

2n
Y

j D1

Aj D
2n
X

kD1

A1 : : : Ak�1.A
L
k � Ak/A

L
kC1 � � �AL

2n: (40)

The trace norm of this di�erence can be estimated using Lemma 4.9: There is a
constant C > 0 such that

tr

²
ˇ

ˇ

ˇ

ˇ

2n
Y

j D1

AL
j �

2n
Y

j D1

Aj

ˇ

ˇ

ˇ

ˇ

³

6

2n
X

kD1

kAL
k � Akk

�k�1
Y

j D1

tr¹jAj jº
�� 2n

Y

j DkC1

tr¹jAL
j jº

�

6 C 2n�1

2n
X

kD1

kAL
k � Akke�.j˛j1�˛k/tL�a

;

where j˛j1 D ˛1 C � � � C ˛2n denotes the 1-norm of ˛ 2 .0;1/2n. We estimate
the kth term in this sum. Let " 2 .0; 1 � a/ and M 2 N. For L su�ciently large,
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Lemma 4.8 implies

kAL
k � Akke�.j˛j1�˛k/tL�a

6 QM .˛kt=L
a/.La�M.1�a�"/ C LdCa.M C1/e�cL"

/e�.j˛j1�˛k/tL�a

;
(41)

where QM .x/ D
PM C1

`D0 q`x
` is the polynomial in Lemma 4.8 with non-negative

coe�cients q`. Integrating (41) yields
Z 1

0

dt t2n�1kAL
k � Akke�.j˛j1�˛k/tL�a

6
�

La�M.1�a�"/ C LdCa.M C1/e�cL"�

M C1
X

`D0

q`

Z 1

0

dt t2n�1e�.j˛j1�˛k/tL�a ˛
`
k
t`

La`

D .La�M.1�a�"/ C LdCa.M C1/e�cL"

/

M C1
X

`D0

q`�.2nC `/˛`
k
La.2nC`/

La`.j˛j1 � ˛k/
2nC`

;

(42)

where � denotes Euler’s Gamma Function. The de�nition of ˛ 2 .0;1/2n in (39)

yields j˛j1 D 2.juj1 C jvj1/, and thus j˛j1 � ˛k > juj1 C jvj1 > ˛k . This makes
the right-hand side of (42) smaller than

CM

L2na

.juj1 C jvj1/2n
.La�M.1�a�"/ C LdCa.M C1/e�cL"

/

with some constant CM > 0 depending on QM and n. For given " < 1 � a, we
can chooseM large enough for the L-terms to vanish as L ! 1. �

Using Lemma 4.10, we can rewrite the right-hand side of (36).

Corollary 4.11. The estimate

tr¹.1.�1;E�.HL/1.E;1/.H
0
L//

nº

>

Z

.0;1/n�.0;1/n

d.u; v/ .juj1 C jvj1/e�juj1�jvj1
Z 1

0

dt t2n�1

tr
°

n
Y

j D1

p
V ��

L.H/e
.uj Cvj �1/t.H�E/V�C

L .H
0/e�.uj Cvj /t.H 0�E/

p
V

±

Co.1/

(43)

holds as L ! 1.
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Proof. The claim follows from Lemma 4.6 and Lemma 4.10, which imply that the
integral

Z

.0;1/n�.0;1/n

d.u; v/ .juj1 C jvj1/e�juj1�jvj1
Z 1

0

dt t2n�1

�

tr
°

n
Y

j D1

p
V f

.uj Cvj �1/t

L .HL/Vg
.uj Cvj /t

L .H 0
L/

p
V

±

� tr
°

n
Y

j D1

p
V f

.uj Cvj �1/t

L .H/Vg
.uj Cvj /t

L .H 0/
p
V

±�

vanishes in the limit L ! 1, because

Z

.0;1/n�.0;1/n

d.u; v/
e�juj1�jvj1

.juj1 C jvj1/2n�1
D 1

.2n� 1/Š < 1;

as can be seen from the coarea formula. �

Remark 4.12. Comparing the smooth cut-o� functions �˙
L with the ones in [11,

Def. 3.13], the di�erence is that the cut-o� functions there haveE as the boundary
of their support, while the ones here have distance L�a between E and their
support. To compensate for this, the t -integral has been cut o� at t D L�a in
[11, Lemma 3.11], which yields a lower bound for n D 1. For n > 2, it is not
immediately clear if the integrand in (43) is positive, so cutting o� the integration
might not result in a lower bound; this is the reason for choosing the cut-o�
functions di�erently from those in [11].

4.3. In�nite-volume trace expressions. Throughout this subsection, we �x a 2
.0; 1/, n 2 N and a cut-o� energy E0 > 1.

In Corollary 4.11, we gave a lower bound on the nth term of (18) in which
only in�nite-volume operators occur. In order to control the errors in that step,
it was necessary to introduce smoothed versions of indicator functions in (37).
In the present subsection, our aim is to replace these smoothed functions with
discontinuous ones, which will allow us to determine the asymptotics of the
resulting expression.

We introduce measures �1; �1W Borel.R/ ! Œ0;1� de�ned by

�1.A/ WD tr¹
p
V 1A.H/

p
V º; �1.B/ WD tr¹

p
V 1B.H

0/
p
V º (44)

for A;B 2 Borel.R/. The expressions in (44) are �nite for bounded Borel sets as
a consequence of [29, Theorem B.9.2].
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The absolutely continuous parts of the measures �1 and �1 will turn out to be
important. To de�ne their densities in an applicable manner, we use a limiting
absorption principle due to Birman and Èntina.

Proposition 4.13 ([4, Lemma 4.3]). There exists a null set N0 � R such that the

limits

A.E/ WD lim
"#0

1

2"

p
V 1.E�";EC"/.H/

p
V ; (45)

B.E/ WD lim
"#0

1

2"

p
V 1.E�";EC"/.H

0/
p
V

exist in trace class for allE 2 RnN0 and de�ne non-negative trace class operators

A.E/ and B.E/.

In the next lemma we identify the densities of the absolutely continuous parts
of �1 and �1. The proof of this lemma follows directly from the de�nitions.

Lemma 4.14. The functions E 7! trA.E/, respectively E 7! trB.E/, are

locally integrable Lebesgue densities of the absolutely continuous parts of �1,

respectively �1.

We will need an auxiliary statement for the main result of this subsection.

Lemma 4.15. Let � be a locally �nite Borel measure on R. Let c0 > 0 and

0 < " < ı < c0. Then for a.e. x0 2 R there is a constant C , depending on x0, c0

and �, such that for all t > 0

Z

Œx0;x0Cı�

d�.x/ e�t.x�x0/
6 C

1� e�tı

t

and

Z

Œx0C";x0Cı�

d�.x/ e�t.x�x0/
6 Ce�t"=2 1 � e�tı=2

t=2
6 C

e�t"=2

t=2
:

The exceptional set of values of x0 for which the assertion does not hold depends

neither on c0, " nor ı.

Proof. The constant

C WD sup
�2.0;c0/

1

�
�.Œx0; x0 C ��/
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is �nite for a.e. x0 2 R. We compute using Tonelli’s theorem
Z

Œx0;x0Cı�

d�.x/ e�t.x�x0/

D
Z

Œx0;x0Cı�

d�.x/
�

e�tı C t

Z x0Cı

x

d� e�t.��x0/
�

D ıe�tı 1

ı
�.Œx0; x0 C ı�/C t

Z x0Cı

x0

d�
Z

Œx0;��

d�.x/ e�t.��x0/

6 Cıe�tı C t

Z x0Cı

x0

d� e�t.��x0/ � � x0

� � x0

�.Œx0; ��/

6 Cıe�tı C C t

Z ı

0

d� �e�t�

D C
1 � e�tı

t
:

The second assertion follows from the �rst one and the bound e�t.x�x0/ 6

e�t"=2e�t.x�x0/=2 for " 6 x � x0 6 ı. �

De�nition 4.16. (i) For k 2 N, we de�ne

Ik WD
Z

.0;1/k

du
juj1e�juj1

Qk
j D1.uj C uj C1/

;

where ukC1 WD u1 for u 2 Rk .

(ii) We de�ne discontinuous L-independent functions �˙WR ! Œ0; 1� by

�� WD max¹��
L; 1Œ�E0;E/º and �C WD max¹�C

L ; 1.E;E0�º:

Remarks 4.17. (i) The integral Ik will be discussed further in Subsection 4.5; in
particular, Ik is �nite for every k 2 N.

(ii) The functions �˙
L converge pointwise to �˙ as L ! 1. They are obtained

from replacing the smoothL-dependent part by a discontinuous step atE. Figure 2
illustrates the behaviour of �˙.

Figure 2. Sketch of the discontinuous cut-o� functions �˙.
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The following lemma is the main result of the current section.

Lemma 4.18. There is a null set N � R which does not depend on a, n and E0,

such that for every E 2 Œ�E0; E0� n N,

Z 1

0

dt t2n�1

Z

.0;1/n�.0;1/n

d.u; v/ .juj1 C jvj1/e�juj1�jvj1

h

tr
°

n
Y

j D1

p
V ��

L.H/e
.uj Cvj �1/t.H�E/

p
V

p
V �C

L .H
0/e�.uj Cvj /t.H 0�E/

p
V

±

� e�tL�a

tr
°

n
Y

j D1

p
V ��.H/e.uj Cvj �1/t.H�E/

p
V

p
V �C.H 0/e�.uj Cvj /t.H 0�E/

p
V

±i

D O.1/

(46)

as L ! 1, where the O.1/-term depends on a, n, E and E0.

Proof. First, notice that if fj ; gj are bounded measurable functions of compact
support for 1 6 j 6 n, then

tr
°

n
Y

j D1

ˇ

ˇ

p
V fj .H/Vgj .H

0/
p
V

ˇ

ˇ

±

6

n
Y

j D1

tr
®
p
V fj .H/

p
V

¯

tr
®
p
V gj .H

0/
p
V

¯

D
Z

Rn

d�n.x/

Z

Rn

d�n.y/

n
Y

j D1

fj .xj /gj .yj /;

(47)

where we wrote �n and �n for the n-fold product measure of �1 and �1, respec-
tively.

For brevity, let ı WD L�a. We introduce a vector ˛ 2 .0;1/2n via

˛2j �1 WD uj C vj �1 and ˛2j WD uj C vj

for 1 6 j 6 n and operators

A
.L/

k
WD

8

<

:

p
V ��

.L/
.H/e˛kt.H�E/

p
V for k odd,

p
V �C

.L/
.H 0/e�˛kt.H 0�E/

p
V for k even
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for 1 6 k 6 2n. The di�erence of operator products in (46) then equals

2n
Y

j D1

AL
j � e�tı

2n
Y

j D1

Aj D e�tı
�

2n
Y

j D1

AL
j �

2n
Y

j D1

Aj

�

C .1 � e�tı/

2n
Y

j D1

AL
j ; (48)

where as in (40),

2n
Y

j D1

AL
j �

2n
Y

j D1

Aj D
2n
X

kD1

A1 : : : Ak�1.A
L
k � Ak/A

L
kC1 : : : A

L
2n: (49)

We will treat the two terms on the right-hand side of (48) individually. For the
�rst term, we estimate the kth term in (49). We will carry out the argument in the
case where k is even. The argument is similar for odd k. Since 0 6 �C � �C

L 6

1ŒE;EC2ı�, ��
.L/
6 1Œ�E0�1;E� and �C

.L/
6 1ŒE;E0C1�, (47) implies

tr¹jA1 : : : Ak�1.A
L
k � Ak/A

L
kC1 : : : A

L
2njº

6

Z

Œ�E0�1;E�n
d�n.x/

Z

ŒE;E0C1�n
d�n.y/ 1ŒE;EC2ı�.yk/

exp
�

�t
n

X

j D1

..uj C vj /.yj �E/ � .uj C vj �1/.xj �E//
�

6 C
1� e�2.ukCvk/tı

t

1

t2n�1

1
Qn

j D1.uj C vj /.uj C vj �1/
;

where C is some �nite constant and the last inequality follows for a.e. E 2
Œ�E0; E0� from applying Lemma 4.15 to every integral and the estimate 1�e�tx61

to all but the kth term. Using the bound 1 � e�2.ukCvk/tı 6 2.uk C vk/tı,
we conclude

e�tı tr

²
ˇ

ˇ

ˇ

ˇ

2n
Y

j D1

AL
j �

2n
Y

j D1

Aj

ˇ

ˇ

ˇ

ˇ

³

6 4C
ıe�tı

t2n�1

juj1 C jvj1
Qn

j D1.uj C vj /.uj C vj �1/
;

and therefore
Z 1

0

dt t2n�1

Z

.0;1/n�.0;1/n

d.u; v/ .juj1 C jvj1/e�juj1�jvj1

e�tı tr

²
ˇ

ˇ

ˇ

ˇ

2n
Y

j D1

AL
j �

2n
Y

j D1

Aj

ˇ

ˇ

ˇ

ˇ

³

6 4C

Z 1

0

dt ıe�tı

Z

.0;1/n�.0;1/n

d.u; v/
.juj1 C jvj1/2e�juj1�jvj1

Qn
j D1.uj C vj /.uj C vj �1/

:
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Here, the t -integral yields 1 for every ı > 0, and the .u; v/-integral is �nite since
Z

.0;1/n�.0;1/n

d.u; v/
.juj1 C jvj1/2e�juj1�jvj1

Qn
j D1.uj C vj /.uj C vj �1/

6

Z

.0;1/n�.0;1/n

d.u; v/
.juj1 C jvj1/e�juj1=2�jvj1=2

Qn
j D1.uj C vj /.uj C vj �1/

D 2I2n < 1;

with I2n as in De�nition 4.16. This shows that the integral of the trace norm of
the �rst term on the right-hand side of (48) yields an error that remains �nite as
L ! 1.

The trace norm of the second term on the right-hand side of (48) is

.1� e�tı/ tr

²ˇ

ˇ

ˇ

ˇ

2n
Y

j D1

AL
j

ˇ

ˇ

ˇ

ˇ

³

6 .1� e�tı/

Z

Œ�E0�1;E�ı�n
d�n.x/

Z

ŒECı;E0C1�n
d�n.y/

exp
�

� t
n

X

j D1

�

.uj C vj /.yj � E/ � .uj C vj �1/.xj �E/
�

�

6 C.1� e�tı/

n
Y

j D1

e�.uj Cvj �1/tı=2e�.uj Cvj /tı=2

.uj C vj �1/.uj C vj /.t=2/2

D 22nC
.1 � e�tı/e�.juj1Cjvj1/tı t�2n

Qn
j D1.uj C vj /.uj C vj �1/

;

where the �rst inequality is a consequence of ��
.L/
6 1Œ�E0�1;E� and �C

.L/
6

1ŒE;E0C1�, and the second inequality follows for a.e. E 2 Œ�E0; E0� from
Lemma 4.15. Now, we perform the t - and .u; v/-integration

Z

.0;1/n�.0;1/n

d.u; v/ .juj1 C jvj1/e�juj1�jvj1
Z 1

0

dt t2n�1

.1 � e�tı/e�.juj1Cjvj1/tı t�2n

Qn
j D1.uj C vj /.uj C vj �1/

D
Z

.0;1/n�.0;1/n

d.u; v/
Z 1

0

dt
.1 � e�t /e�.1Ct/.juj1Cjvj1/.juj1 C jvj1/

t
Qn

j D1.uj C vj /.uj C vj �1/

D I2n

Z 1

0

dt
1� e�t

t2 C t
< 1;

where we performed the successive changes of variables tı  t and .1 C
t /.u; v/ .u; v/. �
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Corollary 4.19. For a.e. E 2 Œ�E0; E0�, we have

tr
®�

1.�1;E�.HL/1.E;1/.H
0
L/

�n¯

>

Z

.0;1/n�.0;1/n

d.u; v/ .juj1 C jvj1/e�juj1�jvj1
Z 1

0

dt t2n�1e�tL�a

tr
°

n
Y

j D1

p
V ��.H/e.uj Cvj �1/t.H�E/V�C.H 0/e�.uj Cvj /t.H 0�E/

p
V

±

C O.1/

(50)

as L ! 1. The null set of exceptional energies does not depend on a, n and E0.

Proof. We combine Corollary 4.11 and Lemma 4.18. �

4.4. The logarithmic divergence. Throughout this subsection, we �x a 2 .0; 1/,
n 2 N and E0 > 1.

The goal is to determine the asymptotics of the right-hand side of (50).

Lemma 4.20. For a.e. E 2 Œ�E0; E0�,

At .E/ WD
p
V tet.H�E/��.H/

p
V �! A.E/;

Bt .E/ WD
p
V te�t.H 0�E/�C.H 0/

p
V �! B.E/ (51)

as t ! 1, where the convergences are in trace class. Moreover,

sup
t>0

kAt .E/k 6 sup
t>0

trAt .E/ < 1;

sup
t>0

kBt .E/k 6 sup
t>0

trBt .E/ < 1: (52)

Proof. We follow [11, Lemma 3.16] and treat the operator Bt .E/; the assertions
for At .E/ can be proved using analogous arguments. Recall that Bt .E/ is non-
negative. To prove (51), we show (1) convergence of the trace norms and (2) weak
convergence of the operators. Together, this implies convergence in trace class via
[30, Addendum H].

For the trace norms, we compute

trBt .E/ D tr
®
p
V te�t.H 0�E/�C.H 0/

p
V

¯

D
Z

ŒE;E0�

d�1.y/ te�t.y�E/ C
Z

ŒE0;E0C1�

d�1.y/ �C.y/te�t.y�E/;

(53)
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where the second term converges to zero as t ! 1 for E < E0. The �rst term
can be written as

Z

ŒE;E0�

d�1.y/ te�t.y�E/ D .�1
E0

� %t /.E/; (54)

where we introduced the restricted (�nite) measure �1
E0
.M/ WD �1.M\Œ�E0; E0�/

for M 2 Borel.R/ and the approximation of the identity x 7! %t .x/ WD
tetx1.�1;0/.x/. As t ! 1, the convolution in (54) converges for a.e. E 2
Œ�E0; E0� to d�1

ac
dE

D trB.E/, see e.g. [21, Subsection 2.4.1]. Thus, the trace norm
of Bt .E/ converges to that of B.E/ as t ! 1. This, together with the continuity
of Œ0;1/ 3 t 7! trBt .E/, which can be seen from (53), implies (52).

For the weak convergence, take some dense countable set D � L2.Rd /. Then
by a similar delta-argument as above,

lim
t!1

h'; Bt .E/ i D h'; B.E/ i

for all ';  2 D and all E 2 Œ�E0; E0� outside a null set depending on D.
Together with (52), this proves weak convergence to B.E/ for a.e.E 2 Œ�E0; E0�,
see [31, Theorem 4.26]. �

The following quantity will enter the asymptotics we set out to prove.

De�nition 4.21. For E 2 R n N0, let

�2n.E/ WD tr
®�

A.E/B.E/
�n¯

(55)

and extend it trivially to a function �2nWR ! Œ0;1/. The non-negativity of (55)

can be seen from the cyclicity of the trace.

The next corollary will show that the trace expression on the right-hand side
of (50), times an appropriate power of t , converges to �2n.E/ in the t ! 1 limit.

Corollary 4.22. Let ˛1; : : : ; ˛n; ˇ1; : : : ; ˇn > 0. Then for a.e. E 2 Œ�E0; E0�

t2n tr
°

n
Y

j D1

p
V ��.H/ j̨ e j̨ t.H�E/V�C.H 0/ ǰ e

�ˇj t.H 0�E/
p
V

±

�! �2n.E/

as t ! 1.
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Proof. Using the notation of Lemma 4.20, we have to show

ˇ

ˇ

ˇ

ˇ

tr
°

n
Y

j D1

A
j̨ t .E/Bˇj t .E/

±

� tr
®�

A.E/B.E/
�n¯

ˇ

ˇ

ˇ

ˇ

�! 0 (56)

as t ! 1. By Lemma 4.20, trjA
j̨ t .E/�A.E/j ! 0 and trjBˇj t .E/�B.E/j ! 0

as t ! 1, while supt>0kAt .E/k and supt>0kBt .E/k are �nite. Writing the
di�erence of operator products in (56) as in (40), this proves the corollary. �

Lemma 4.23. Let f 2 L1
loc.R/ and suppose limt!1 f .t/ exists. Then

lim
t!1

f .t/ D � lim
s#0

1

ln s

Z 1

1

dt t�1e�stf .t/:

Proof. Take a compact interval Œs0; c� � .0;1/. Then

d

ds

Z 1

1

dt t�1e�stf .t/ D �
Z 1

1

dt e�stf .t/ (57)

for s 2 Œs0; c�, because
ˇ

ˇ

d
ds
t�1e�stf .t/

ˇ

ˇ 6 e�s0t jf .t/j, which is integrable on
Œ1;1/. Therefore (57) holds for all s > 0. If lims#0

R 1
1 dt t�1e�stf .t/ exists,

then limt!1 f .t/ D 0 and the assertion holds. Otherwise,

� lim
s#0

1

ln s

Z 1

1

dt t�1e�stf .t/ D lim
s#0

1

1=s

Z 1

1

dt e�stf .t/

D lim
s#0

s

Z 1

0

dt e�stf .t/

D lim
t!1

f .t/;

where the last equality is the statement of the classical �nal-value theorem,
see [6, Theorem 34.3]. �

We are now ready to compute the asymptotics of the right-hand side of (50).

Theorem 4.24. For a.e. E 2 Œ�E0; E0�,

lim
L!1

1

a lnL

Z 1

0

dt t2n�1e�tL�a

Z

.0;1/n�.0;1/n

d.u; v/ .juj1 C jvj1/e�juj1�jvj1

tr
°

n
Y

j D1

p
V ��.H/e.uj Cvj �1/t.H�E/V�C.H 0/e�.uj Cvj /t.H 0�E/

p
V

±

D I2n�2n.E/:

(58)
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Proof. Let u; v 2 .0;1/n and de�ne

Z.u; v/ WD
n

Y

j D1

.uj C vj �1/.uj C vj /:

Using the notation of Lemma 4.20, we see that

Z.u; v/t2n tr
°

n
Y

j D1

p
V ��.H/e.uj Cvj �1/t.H�E/

p
V

p
V �C.H 0/e�.uj Cvj /t.H 0�E/

p
V

±

D tr
°

n
Y

j D1

A.uj Cvj �1/t .E/B.uj Cvj /t .E/
±

;

where
ˇ

ˇ

ˇ

ˇ

tr
°

n
Y

j D1

A.uj Cvj �1/t .E/B.uj Cvj /t .E/
±

ˇ

ˇ

ˇ

ˇ

6
�

sup
t>0

tr¹At .E/º sup
t>0

tr¹Bt .E/º
�n

< 1:

(59)

By Corollary 4.22,

lim
t!1

tr
°

n
Y

j D1

A.uj Cvj �1/t .E/B.uj Cvj /t .E/
±

D �2n.E/

for all u; v 2 .0;1/n. By Remark 4.17 (i),

I2n D
Z

.0;1/n�.0;1/n

d.u; v/
.juj1 C jvj1/e�juj1�jvj1

Z.u; v/
< 1: (60)

Equations (59) and (60) supply the assumptions of the dominated convergence
theorem. It yields the convergence

lim
t!1

f .t/ D I2n�2n.E/

for

f .t/ WD
Z

.0;1/n�.0;1/n

d.u; v/ .juj1 C jvj1/e�juj1�jvj1 t2n

tr
°

n
Y

j D1

p
V ��.H/e.uj Cvj �1/t.H�E/

p
V

p
V �C.H 0/e�.uj Cvj /t.H 0�E/

p
V

±
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D
Z

.0;1/n�.0;1/n

d.u; v/
.juj1 C jvj1/e�juj1�jvj1

Z.u; v/

tr
°

n
Y

j D1

A.uj Cvj �1/t .E/B.uj Cvj /t .E/
±

;

where t > 0. The assertion (58) follows from

� lim
L!1

1

ln.L�a/

Z 1

0

dt t�1e�tL�a

f .t/ D lim
t!1

f .t/;

which is a consequence of Lemma 4.23 and of

sup
L>1

Z 1

0

dt t�1e�tL�a

f .t/ < 1: �

Corollary 4.25. For a.e. E 2 R, the estimate

tr¹.1.�1;E�.HL/1.E;1/.H
0
L//

nº > lnL I2n�2n.E/C o.lnL/

holds, where the o.lnL/-term depends on n and E.

Proof. We deduce from Theorem 4.24, Corollary 4.19 and from the arbitrariness
of E0 that

lim inf
L!1

tr¹.1.�1;E�.HL/1.E;1/.H
0
L//

nº
lnL

> a I2n�2n.E/ (61)

for arbitrary a 2 .0; 1/ and a.e. E 2 R. Thus (61) holds for a D 1 and a.e. E 2 R.
By de�nition of the limit inferior, this implies the claim. �

4.5. A multi-dimensional integral related to the Hilbert matrix. In this sub-
section, we compute the coe�cient of �2n.E/ in the asymptotics in Corollary 4.25,
i.e., we compute the integral

In D
Z

.0;1/n

du
juj1e�juj1

Qn
j D1.uj C uj C1/

in De�nition 4.16 (i). Here, we use the convention unC1 D u1 for u 2 Rn.
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We prove

Theorem 4.26. Let n 2 N>2. Then

In D .2�/n�2

�

�
�

n
2

��2

�.n/
:

This implies

I2n D .2�/2n�2 Œ.n � 1/Š�2
.2n� 1/Š D nJ2n

for n 2 N, where J2n was de�ned in (24).

We begin with an elementary lemma.

Lemma 4.27. Let n 2 N>2. Then

In D n

2

Z

.0;1/n

du
e�juj1

Qn�1
j D1.uj C uj C1/

: (62)

Proof. Using the symmetry of In in the components of u, we compute

In D 1

2

Z

.0;1/n

du e�juj1 2juj1
Qn

j D1.uj C uj C1/

D 1

2

n
X

kD1

Z

.0;1/n

du e�juj1 uk C ukC1
Qn

j D1.uj C uj C1/

D n

2

Z

.0;1/n

du
e�juj1

Qn�1
j D1.uj C uj C1/

: �

In the sequel, we will work with the Rosenblum–Rovnyak integral operator
T WL2..0;1// ! L2..0;1//, see [27] and [28], de�ned by

.Tf /.x/ WD
Z 1

0

dy
e�.xCy/=2

x C y
f .y/ (63)

for f 2 L2..0;1// and x 2 .0;1/. This operator can be explicitly diagonalised.
Following [33, Section 4.2], we de�ne the Kontorovich–Lebedev transform, i.e.
the unitary operator U WL2..0;1// ! L2..0;1//,

.Uf /.k/ WD ��1
p

k sinh.2�k/ j�.1=2� ik/j
Z 1

0

dx x�1W0;ik.x/f .x/ (64)
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for f 2 L2..0;1// and k 2 .0;1/, where W0;ik denotes the Whittaker function,
see [22, Section 13.14] or [12, Section 9.22–9.23]. Then, the spectral representa-
tion due to Rosenblum reads

.UTf /.k/ D �

cosh.k�/
.Uf /.k/ (65)

for f 2 L2..0;1// and k 2 .0;1/, see [33, Proposition 4.1].

Proof of Theorem 4.26. Let n 2 N>2. From (62) and (63), we see that

2

n
In D h�0; T

n�1�0iL2..0;1// (66)

with �0.x/ WD e�x=2. From (65) and (66), we obtain

2

n
In D hU�0; UT

n�1�0iL2..0;1// D
Z 1

0

dk j.U�0/.k/j2
� �

cosh.k�/

�n�1

: (67)

In order to compute U�0, we employ the classical formula

j�.1=2 � ik/j2 D �

cosh.k�/
(68)

for k 2 R, which is a consequence of the re�ection formula for the Gamma
function, and

Z 1

0

dx x�1W0;ik.x/e
�x=2 D �

cosh.k�/
.k > 0/; (69)

which follows from the special case z D 1=2 and � D � D 0 in [22, eq. 13.23.4].
From (64), (68) and (69), we deduce

j.U�0/.k/j2 D 2�k
sinh.k�/

.cosh.k�//2

for k > 0. Inserting this into (67) yields

2

n
In D 2�n�2

Z 1

0

dk k
sinh k

.cosh k/nC1
D 2�n�2

n

Z 1

0

dk
1

.coshk/n
;

where we applied the substitution k k=� and integrated by parts. This integral
can be evaluated using the substitution x D .cosh k/�2:

2

n
In D �n�2

n

Z 1

0

dx xn=2�1.1 � x/�1=2 D �n�2

n
B.n=2; 1=2/;

where B denotes Euler’s Beta function. The claim follows from [12, eq. 8.384 4
and eq. 8.384 1]. �
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Remark 4.28. The Rosenblum–Rovnyak operator is the special case T D H0 in
[27, eq. (2.3)] and is unitarily equivalent to the Hilbert matrix

HW `2.N0/ �! `2.N0/;

given by

.Hc/j D
1

X

kD0

ck

j C k C 1

for j 2 N0 and c 2 `2.N0/. In analogy to (66), the representation

In D n

2
he.0/;Hn�1e.0/i`2.N0/

holds with e.0/ WD .1; 0; : : : / 2 `2.N0/.

4.6. Relations to scattering theory. In order to complete the proof of Theo-
rem 3.4 we need to relate the coe�cient �2n.E/ in De�nition 4.21 to the transition
matrix from scattering theory. We begin with a de�nition.

De�nition 4.29. Let Hac.H/ be the absolutely continuous subspace of the self-
adjoint operatorH . Then Hac.H/ can be decomposed into a direct integral

Z ˚

�ac.H/

dEHE

where HE is a Hilbert space for every E 2 �ac.H/. The operator H acts on
HE by multiplication with the identity, see [32, §1.5]. This means that a vector
f 2 Hac.H/ corresponds to a vector-valued function E 7! fE 2 HE , and Hf
corresponds to E 7! EfE .

The transition matrix TE acts as a bounded operator on HE . Moreover, we
have the following representation.

Lemma 4.30. The limit

ˆ˙.E/ WD lim
"#0
.I C

p
V .E ˙ i" �H 0/�1

p
V /

exists in the sense of convergence in operator norm for a.e. E 2 R. Moreover,

there exists an operator U.E/WHac.H/ ! HE such that U.E/� U.E/ is the

identity on ran
p

A.E/ and the transition matrix TE WHE ! HE satis�es

TE D U.E/ zT .E/U.E/�;

where
zT .E/ WD �2�i

p

A.E/ˆC.E/
p

A.E/:
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Proof. This is a result in abstract scattering theory, see e.g. [4, §7], [32, §5.5],
or [3, p. 394]. A detailed proof is given in [19]. �

Corollary 4.31. The identity

zT .E/� zT .E/ D .2�/2
p

A.E/B.E/
p

A.E/ (70)

holds for a.e. E 2 R. In particular,

kTE k2n
2n D .2�/2n tr¹.A.E/B.E//nº D .2�/2n�2n.E/ (71)

for every n 2 N, where kTEk2n WD 2n
p

trjTE j2n is the 2n-Schatten norm of TE .

Proof. The operators A.E/ and B.E/ can be expressed as the operator limits

��A.E/ D lim
"#0

Im.
p
V .E C i" �H/�1

p
V /

��B.E/ D lim
"#0

Im.
p
V .E C i" �H 0/�1

p
V /

which exist for a.e.E 2 R, see [4, Lemma 4.5]. From this and the second resolvent
identity .z � H 0/�1 � .z � H/�1 D .z � H 0/�1V.z � H/�1 for z 2 C n R,
the statement

ˆC.E/
�A.E/ˆC.E/

D � 1
�

lim
"#0

¹.I C
p
V .E � i" �H 0/�1

p
V /.Im.

p
V .E C i" �H/�1

p
V //

.I C
p
V .E C i" �H 0/�1

p
V /º

D 1

2�i
lim
"#0

¹
p
V .I C .E � i" �H 0/�1V /

..E � i" �H/�1 � .E C i" �H/�1/

.I C V.E C i" �H 0/�1/
p
V º

D 1

2�i
lim
"#0

¹
p
V

�

.E � i" �H 0/�1 � .E C i" �H 0/�1
�
p
V º

D B.E/

follows and yields (70). The unitary equivalence on ran
p

A.E/ in Lemma 4.30
then implies (71). �
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Corollary 4.31 yields the following theorem.

Theorem 4.32. Let n 2 N. For a.e. E 2 R

�2n.E/ D tr.jTE=.2�/j2n/;

where TE W HE ! HE is the transition matrix for the energy E.

A. Positivity of the exponent

Here we consider the special case V0 D 0 and show that the decay exponent .E/
in (13) is strictly positive for a.e. E > 0. Throughout this appendix, we assume
that V ¤ 0 satis�es (V).

Theorem A.1. Let V0 D 0. Let E > 0. Then the operator A.E/ from (45) has the

integral kernel

A.EI x; y/ D Ed=2�1

2.2�/d

p

V.x/
p

V.y/

Z

Sd�1

dS.�/ ei
p

E� �.x�y/ (72)

for a.e. x; y 2 Rd . Here, dS stands for integration with respect to the surface

measure on the unit sphere Sd�1 � Rd .

Proof. Let " > 0 and f 2 L2.Rd /. Then, using the Fourier transform and
spherical coordinates, we compute for a.e. x 2 Rd

.
p
V 1.E�";EC"/.��/

p
V f /.x/

D
p

V.x/

.2�/d

Z

Rd

dk
Z

Rd

dy 1.E�";EC"/.jkj2/eik�.x�y/
p

V.y/f .y/

D
p

V.x/

2.2�/d

Z

Rd

dy
p

V.y/f .y/

Z EC"

E�"

dr rd=2�1

Z

Sd�1

dS.�/ ei
p

r� �.x�y/;

(73)

and therefore

lim
"#0

1

2"
.
p
V 1.E�";EC"/.��/

p
V f /.x/

D
p

V.x/

2.2�/d

Z

Rd

dy
p

V.y/f .y/Ed=2�1

Z

Sd�1

dS.�/ ei
p

E� �.x�y/;

because the integrand in (73) is continuous in r . This implies (72). �
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Corollary A.2. Let d > 2. Let V0 D 0 and V ¤ 0. Then for any E > 0 the

operator A.E/ from (45) has in�nite rank.

Proof. We �rst show that the set of functions

¹Rd 3 x 7!
p

V.x/ei� �xW � 2 R
dº (74)

is linearly independent. For this, notice that ¹C 3 z 7! eiszW s 2 Rº is linearly
independent, since for z D �ix, these functions have di�erent asymptotic be-
haviour for x ! 1. Given a �nite non-empty set M � R and cs ¤ 0 for s 2 M ,
the analytic function C 3 z 7!

P

s2M cse
isz is therefore not identically zero, and

thus R 3 x 7!
P

s2M cse
isx is zero only on a discrete subset of R.

Given another �nite non-empty set M � Rd and c� ¤ 0 for � 2 M , de�ne
F WRd ! C via F.x/ WD

P

�2M c�e
i� �x. We show that F�1.¹0º/ � Rd is a null

set. Since F is continuous, this preimage is measurable with measure
Z

Rd

dx 1F �1.¹0º/.x/ D
Z

Sd�1

dS.�/
Z 1

0

dr rd�1 1¹0º.F.r�// D 0;

where the r-integral is zero since for � 2 Sd�1 �xed the function r 7! F.r�/ D
P

�2M c�e
ir� �� is zero only on a discrete subset of R, as shown above. To show

that the set (74) is linearly independent, it su�ces to show that
®

x 2 R
d W

p

V.x/F.x/ ¤ 0
¯

D
®

x 2 R
d WV.x/ ¤ 0

¯

\
®

x 2 R
d WF.x/ ¤ 0

¯

has positive measure. This is the case, since the �rst set in the intersection has
positive measure and the second set is the complement of the null set F�1.¹0º/.

Now, let f 2 kerA.E/. Then

0 D hf; A.E/f i D Ed=2�1

2.2�/d

Z

Sd�1

dS.�/

ˇ

ˇ

ˇ

ˇ

Z

Rd

dx
p

V.x/ei
p

E� �xf .x/

ˇ

ˇ

ˇ

ˇ

2

;

and therefore
Z

Rd

dx
p

V.x/ei
p

E� �xf .x/ D 0 (75)

for a.e. � 2 Sd�1. Since the left-hand side of (75) is continuous in �, (75) holds in
fact for all � 2 Sd�1. Since f 2 kerA.E/ was arbitrary, we conclude that

¹Rd 3 x 7�!
p

V.x/ei
p

E� �xW � 2 S
d�1º � .kerA.E//?:

Since Sd�1 is an in�nite set for d > 2, the set of functions on the left-hand
side is in�nite and linearly independent, and thus dim.kerA.E//? D 1. Since
the coimage .kerA.E//? of the linear map A.E/ is isomorphic to ranA.E/
(the restriction A.E/j.ker A.E//? W .kerA.E//? ! ranA.E/ being bijective), this
shows dim ranA.E/ D 1. �
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Remark A.3. We expect Corollary A.2 to generalise to the situation of non-zero
background potentials V0 with suitable decay by using generalised eigenfunctions
due to Ikebe and Povzner (see [29, §C5] and references therein) in place of
ei

p
E� �x.

The in�nite rank of A.E/ implies positivity of .E/.

Theorem A.4. Let d > 2 and V0 D 0. Then the transition matrix TE correspond-

ing to the pair H D �� and H 0 D ��C V has in�nite rank for a.e. E > 0. In

particular, TE is non-zero and therefore

.E/ D ��2k arcsinjTE=2jk2
HS > 0

for a.e. E > 0.

Proof. By Lemma 4.30, it su�ces to show that zT .E/ D �2�i
p

A.E/ˆC.E/
p

A.E/ has in�nite rank, whereˆ˙.E/ D lim"#0.I C
p
V .E˙ i"�H 0/�1

p
V /.

We show that its imaginary part Im zT .E/ D 1
2i
. zT .E/� zT .E/�/ has in�nite rank.

For brevity, set R WD lim"#0

p
V .E C i" �H 0/�1

p
V . Recall that by the limiting

absorption principle, this limit exists in operator norm for a.e.E > 0; in particular,
R is compact. We �x such an E > 0 from now on. Then

Im zT .E/ D 1

2i
.�2�i

p

A.E/ˆC.E/
p

A.E/ � 2�i
p

A.E/ˆ�.E/
p

A.E//

D �2�
p

A.E/.I C ReR/
p

A.E/:

Since ReR is compact, we can write it as ReR D R1 C R2 where kR1k < 1=2

and R2 has �nite rank. Thus

� 1

2�
Im zT .E/ D

p

A.E/.I CR1/
p

A.E/C zA

where zA is a �nite rank operator. Now, since I CR1 > I � 1
2
I D 1

2
I , we get

p

A.E/.I CR1/
p

A.E/ > 1
2
A.E/:

By Corollary A.2, this operator has in�nite rank. �
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