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on compact manifolds of non-positive curvature
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Abstract. Let .M; g/ be a compact, d -dimensional Riemannian manifold without bound-

ary. Suppose further that .M; g/ is either two dimensional and has no conjugate points or

.M; g/ has non-positive sectional curvature. The goal of this note is to show that the long

time parametrix obtained for such manifolds by Bérard can be used to prove a logarithmic

improvement for the remainder term of the Riesz means of the counting function of the

Laplace operator.
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Let .M; g/ be a closed Riemannian manifold. Denote by � the (geometric)

Laplace operator on functions, given in local coordinates by

� D �
dX

i;kD1

1p
jgj

@

@xi

�p
jgjgik @

@xk

�
;

where jgj is the determinant of the metric g, gik are entries of the inverse metric.

As usual we de�ne the space of square integrable functions, L2.M/, as the

completion of the space of smooth functions, C1.M/, with respect to the norm

induced by the inner product

hf; gi D
Z

M

f .x/ g.x/ d�.x/:

Here d� denotes the Riemannian volume element of M , which is given in local

coordinates by
p

jgjdx1dx2 : : :dxd . The Laplace operator is self-adjoint, non-

negative and has compact resolvent. Therefore there is an orthonormal basis
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¹'i 2 L2.M/W i 2 N0º consisting of eigenfunctions

�'i D �2
i 'i ; 'i 2 C1.M/

which is ordered such that 0 D �0 � �1 � : : :. Let e�.x; y/ be de�ned as the

�nite sum
P

�i <� 'i .x/'i .y/. The restriction of e� to the diagonal is called the

local counting function and we will denote it by Nx.�/ D e�.x; x/. Integration of

Nx.�/ overM gives the counting function of the Laplace operator

N.�/ D #¹i j �i < �º:

The local Weyl law states that

Nx.�/ D !d

.2�/d
�d CO.�d�1/;

where !d is the volume of the unit ball in R
d . This result was proved by

Levitan in the case of closed Riemannian manifolds. His work was based on

the study of the cosine transform of the spectral function of the Laplace opera-

tor. In 1968 Hörmander [9] generalised it to the case of pseudo-di�erential op-

erators of order m. The term O.�d�1/ can not be improved in general as the

example of Sd shows. Obtaining better estimates of this error term under addi-

tional geometric assumptions is still an active area of research. Various improve-

ments are known in the case of compact manifolds with negative sectional cur-

vature or under assumptions on the nature of the dynamics of the geodesic �ow.

For example, it was shown by Duistermaat and Guillemin [3] that the assumption

of the set of periodic trajectories in the cosphere bundle having Liouville measure

zero implies that the O.�d�1/ may be replaced by o.�d�1/. The most signi�cant

for the purposes of this paper is the result of Bérard [1], who in 1977 obtained a

logarithmic improvement for manifolds with non-positive sectional curvature

Nx.�/ D Vol.B�
x /

.2�/d
�d CO

��d�1

log�

�
;

where B�
x is the unit ball in T �

x M , i.e. Vol.B�
x / D Vol.Bd /.

It is well known that regularized versions of the counting function have better

asymptotic expansions. An example of a regularized counting function is the k-th

Riesz means

RkNx.�/ D k��1

Z �

0

.1� ���1/k�1Nx.�/ d�; k D 1; 2; : : : :

It shown by Hörmander in [8] and [9] that the k-th Riesz means admits an

asymptotic expansion with an error term of order O
�
�d�k�1

�
. Safarov showed
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in [13] that the assumption that the set of periodic trajectories in the cosphere

bundle under the geodesic �ow has Liouville measure zero implies that this error

term may be replaced by o.�d�k�1/.

Another well known asymptotic expansion is that of the molli�ed counting

function (see e.g. Duistermaat and Guillemin [3]). Namely, let � 2 S.R/,

O� 2 C1
0 .R/, O�.�/ D 1 for all � in a neighbourhood of zero, then

� �Nx.�/ �
1X

iD0

ai .x/�
d�i : (1)

whenever the support of O� is su�ciently small. Here the coe�cients are local

densities and are related directly to the local heat kernel coe�cients of the Laplace

operator. Weyl’s asymptotic formula is equivalent to the fact that

a0.x/ D Vol.Bd /

.2�/d
:

It is known (see for example [13]) that the existence of such a full asymptotic

expansion of the molli�ed counting function (1), independent of the geometric

context, is enough to conclude that for k < d we have

RkNx.�/ D
kX

iD0

kŠ.d � i/Š
.d � i C k/Š

ai .x/�
d�i CO.�d�k�1/; as � ! C1: (2)

(see also [5] for the relation of these coe�cients to the heat kernel coe�cients).

For surfaces (d D 2) of constant negative curvature the Selberg trace formula can

be used to prove a logarithmic improvement of this formula (see [6]):

R1N.�/ D Vol.M/

12�
�2 C a2 CO..log�/�2/: (3)

A direct combination of Bérard’s asymptotic formula, the expansion (3), and

the method described in [13] yields in case k < d :

RkNx.�/ D
kC1X

iD0

kŠ.d � i/Š
.d � i C k/Š

ai .x/�
d�i CO

��d�k�1

log�

�
; as � ! C1:

In the case k D 1 and d D 2 this does however not reduce to Hejhal’s estimate (3)

but is weaker by a factor of log�. The purpose of this paper is to improve the

above error estimate to cover (3) and thus to generalize this estimate to the case of

possibly non-constant curvature, higher dimension, and higher Riesz means. Our

main result is the following.
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Theorem 0.1. Let .M; g/ be a compact d -dimensional smooth Riemannian man-

ifold. Assume that either d D 2 and M has no conjugate points or that M has

non-positive sectional curvature. Then for k 2 ¹0; 1; 2; : : : ; d � 1º

RkNx.�/ D
kC1X

iD0

kŠ.d � i/Š
.d � i C k/Š

ai .x/�
d�i CO

� �d�k�1

.log�/kC1

�
; as � ! C1;

where the densities ai .x/ are the same as in (1) and may be calculated explicitly.

For k � d one has

RkNx.�/ D
dX

iD0

kŠ.d � i/Š
.d � i C k/Š

ai .x/�
d�i CO.��1C"/; as � ! C1;

for " > 0.

Of course integration with respect to x overM yields corresponding estimates

for the counting function.

Apart from the theoretical signi�cance estimates of the form given in The-

orem 0.1 have practical applications in numerical computations of eigenvalues.

Some algorithms, such as the method of particular solutions ([4, 2], or [14] on

manifolds) produce a list of eigenvalues of the Laplace operator and one would

then like to have a method to check whether or not eigenvalues are missing in

this list. Whereas the error estimate in Weyl’s law is too large to detect a missing

eigenvalue, the error estimates in some of the higher Riesz means will be sensitive

to a change in the counting function by a positive integer. Averaged versions of

the Weyl law are being used in numerical computations of large sets of eigenval-

ues, for example of Maass eigenvalues (see e.g. [11] where such Weyl laws are

derived from the Selberg trace formula for certain congruence groups and sub-

sequently being used in this context). This method is sometimes referred to as

Turing’s method.

Acknowledgements. We would like to thank Andreas Strömbergsson and An-

drew Booker for pointing out reference [6] to us. We are also grateful to Yuri

Safarov for comments on earlier versions of this paper and for pointing out sim-

pli�cations of the argument.
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1. Proof and main estimates

Throughout the text � 2 S.R/ will be a real valued Schwartz function such that

(i) supp. O�/ � Œ�1; 1�,
(ii) O�.�/ D 1 for all j�j < 1=2, and

(iii) � is even.

Here O� denotes the Fourier transform of � de�ned by

O�.�/ D
Z

R

�.t/e�it� dt:

For T > 0 we denote by �T the rescaled function �T .t / D T�.T t/, so that

O�T .t / D O�.t=T /. We therefore have supp. O�T / 2 Œ�T; T �.
Then

Nx.�/ D Nx � ��.�/C ŒNx � .�T � ��/�.�/C ŒNx � .ı � �T /�.�/; (4)

where � > 0 is a small parameter, which is smaller than the injectivity radius at

x. Under the stated assumptions the �rst term has a full asymptotic expansion i.e

Nx � ��.�/ �
1X

iD0

ai .x/�
d�i (5)

for � ! 1 as it was proved in [3] and [10]. Because Nx is supported on the

positive semi-axes and �� is the Schwartz functionNx ���.�/ is rapidly decreasing

as � ! �1.

The k-th Riesz means of the local counting function is then given by

RkNx.�/ D
Z �

�1
.1 � ���1/k dNx.�/

D ��k

Z �

�1
.� � �/k dN.�/

D ��kkŠ �k
C �N 0

x.�/

D ��kkŠ �k�1
C �Nx.�/:

(6)

Here �˛
C.r/ is the analytic continuation of r˛

C=�.˛ C 1/ in the parameter ˛, as

described for example in [7]. Let us apply the Riesz means operator to (4):

.RkNx/.�/ D ��kkŠŒ.�k�1
C �Nx � ��/.�/C .�k�1

C �Nx � .�T � ��//.�/

C .�k�1
C �Nx � .ı � �T //.�/�:

(7)
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Convolution with the distribution �k
C may be understood as a repeated integral

from �1 to �, therefore

Œ�k�1
C � .Nx � ��/�.�/ D

Z �

�1

Z �1

�1
: : :

Z �k�1

�1
.Nx � ��/.�k/ d�k : : : d�2d�1;

for k � 1. Together with the full asymptotic expansion (5) we obtain

��kkŠŒ�k�1
C � .Nx � ��/�.�/ D

dX

iD0

.d � i/Šai.x/

.d � i C k/Š
�d�i CO.��1C"/ (8)

for any " > 0 as � ! 1.

Our main result is derived from the following estimates of the various terms

appearing in (4) and (7). For convenience we use the notation

h�i D .1C j�j/:

Proposition 1.1. For �xed � > 0 and k � 0 there exists a constant c > 0 such that

for all T � 1 we have

j.Nx � �k�1
C � .�T � ��//.�/j � ecT h�i

d�1
2 :

Proposition 1.2. For �xed � > 0 there exists c > 0 such that for all T � 1 we

have

jNx � .ı � �T /.�/j � c

T
h�id�1 C ecT h�i

d�1
2 :

We postpone the proof of these two propositions for the moment and show

how they imply the result. The splitting (4), the expansion (5), Proposition 1.1 in

the case k D 0 together with Proposition 1.2 immediately imply that there exists

a c > 0 such that, for T � 1,

ˇ̌
ˇNx.�/ �H.�/

d�1X

iD0

ai .x/�
d�i

ˇ̌
ˇ � c

T
h�id�1 C ecT h�i

d�1
2 : (9)

Here H.�/ is the Heaviside step function de�ned by H.�/ D 1 for � � 0 and

H.�/ D 0 for � < 0. Now we use a proposition derived by Safarov in [13], which

we slightly adapt to our situation.

Proposition 1.3. Suppose that �1; �2 2 R and suppose a0; a1; : : : ; ad 2 R. Then

there exists a constant C > 0 depending only on �; �1, �2, and .ai /iD1;:::;d such

that the following statement holds. Suppose N is a function of locally bounded

variation that is supported in Œ0;1/, and assume that

ˇ̌
ˇN.�/ �H.�/

dX

iD0

ai�
d�i

ˇ̌
ˇ � C1h�i�1 C C2h�i�2 :
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Then, for all T � 1 and � � 0,

ˇ̌
ˇ̌
Z �

�1
N.�/ �N � �T .�/ d�

ˇ̌
ˇ̌ � C

T
.C1h�i�1 C C2h�i�2 C 1/:

Proof. Our assumptions on � imply that
R
�.t/dt D 1 and

R
�.t/tkdt D 0 for all

k 2 N. We have

Z �

�1
.N.�/ �N � �T .�// d� D

Z
�.t/

Z �

��T �1t

N.�/d�dt

D
Z
�.t/

Z �

��T �1t

�
N.�/ �

dX

iD0

ai�
d�i

�
d�dt

D
Z
�.t/

Z �

��T �1t

�
N.�/ �H.�/

dX

iD0

ai�
d�i

�
d�dt

�
Z
�.t/

Z �

��T �1t

H.��/
� dX

iD0

ai�
d�i

�
d�dt:

Since � is rapidly decreasing the modulus of the last term is bounded by C3

T
for

some C3 > 0 depending only on � and the ai . Therefore,

ˇ̌
ˇ̌
Z �

�1
.N.�/ �N � �T .�//d�

ˇ̌
ˇ̌

�
Z ˇ̌

ˇ̌�.t/
Z �

��T �1t

.C1h�i�1 C C2h�i�2/d�

ˇ̌
ˇ̌dt C C3

T
:

Using the triangle inequality and the fact that h� C �i� � h�ij�jh�i� one obtains

Z ˇ̌
ˇ̌�.t/

Z �

��T �1t

h�i�d�

ˇ̌
ˇ̌dt �

Z ˇ̌
ˇ̌�.t/

Z T �1t

0

h� � �i�d�

ˇ̌
ˇ̌dt

� T �1

� Z
j�.t/t jhtij�jdt

�
h�i�

:

This shows the proposition with for all � � 0 with constant

C D
Z

j�.t/t j htimax¹�1;�2ºdt C C3: �
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Repeated application of Proposition 1.3 to the estimate (9), using Proposition 1.1

and (5), shows that for any integer k � 0 there exists a c > 0 such that for T � 1:

jŒ�k�1
C � .Nx � .ı � �T //�.�/j � c

T kC1
h�id�1 C ecT h�i

d�1
2 :

When we substitute this estimate into (7), use the expansion (8), and Proposition 1.1

we get that

ˇ̌
ˇRkNx.�/ �

d�1X

iD0

kŠ.d � i/Š
.d � i C k/Š

ai�
d�i

ˇ̌
ˇ � c

T kC1
h�id�1�k C ecT h�i

d�1
2

This estimate is valid for T � 1. If we take T D ˛ log� for some small ˛ > 0 of

obtain Theorem 0.1 for large �.

The Laplace operator is non-negative and thus the local counting function is

supported on the positive half line � � 0. Let us de�ne

N odd
x .�/ WD Nx.�/ �Nx.��/; N

neg
x .�/ WD Nx.��/:

The functions just de�ned sum up toNx. The convolution, Œ.N odd
x /�.�T ���/�.�/,

admits the same asymptotics as Œ.Nx/ � .�T � ��/�.�/ as � ! 1. Moreover,

Œ.N odd
x / � .�T � ��/�.�/ is the restriction to the diagonal of the integral kernel of

the operator

.2�/�1

Z

R

. O�T .t / � O��.t //t
�1 sin.t�/ cos.t

p
�/ dt: (10)

We have

�k�1
C � .Nx � .�T � ��//.�/ D .Nx � .�k�1

C � .�T � ��///.�/: (11)

Let as usual p˛;ˇ be the Schwartz space semi-norms de�ned by

p˛;ˇ .f / D sup
x

jx˛@ˇ
xf j:

Then it easy to check that for all T > 1 we have

p˛;ˇ . O�T � O��/ � C˛;ˇT
˛:
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Thus, since Nx is supported in the half line,

Nx � .�k�1
C � .�T � ��//.�/ D O.ecT ��1/ as � ! �1

for any c > 0. Hence,Nx � .�k�1
C � .�T ���//.�/ andN odd

x � .�k�1
C � .�T ���//.�/

di�er by a function of order O.ecT ��1/ as � ! 1 for any c > 0. We use the

identity

1
�k�1

C .�/ D .�i/kp
2�

.� � i0/�k;

to express the functionN odd
x �.�k�1

C �.�T ���//.�/ as the restriction to the diagonal

of the integral kernel of

.2�/�1Re

Z

R

O�T .t / � O��.t /

.i t /kC1
eit� cos.t

p
�/ dt:

To estimate this integral we will as usual be exploiting the properties of a

suitable parametrix for the operator e�it
p

�. In our case we will use the parametrix

for cos.t
p
�/ that was constructed by Bérard in [1] and which we describe in the

following. Let � W zM ! M be the universal cover of M and let � be its group of

automorphisms, so that M Š zM=�. Denote by zC.t; x; y/ the integral kernel

of cos.t
p

z�/, where z� is the Laplace operator on the non-compact complete

manifold zM , then

zC.t; x; y/ D C0

NX

lD0

.�1/l4�lul .x; y/jt j
�
d.x; y/2 � t2

�l�˛

�
�.l C 1 � ˛/

ˇ̌
ˇ̌
ˇ
˛D dC1

2

C Q�N .t; x; y/;

where d.x; y/ denotes the distance between x and y on zM . The regularizations

of the distributions x˛=�.˛C1
2
/, x˛=�.˛/, x�˛ are described for example in [7].

Moreover the functions ul and �m
y ul all have at most exponential growth as

d.x; y/ tends to in�nity, i.e. for all l , m exists a c > 0 such that

j�m
y ul .x; y/j � c ec d.x;y/; (12)

Moreover, forN � bd=2cC3, the error term is continuous and bounded uniformly

in x and y as follows:

jQ�N .t; x; y/j � cN ecN jt j: (13)

The distributional kernel of cos.t
p
�/ on M is given by

C.t; x; y/ D
X


2�

zC.t; x; 
y/: (14)
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The integral kernel of cos.t
p

z�/ has the �nite propagation speed property, i.e.

it is supported where d.x; y/ � t . This property implies that for �xed x and y

the number of terms in (14) is �nite for every t . In fact, the assumptions on the

curvature for d > 2 and on the absence of conjugate points for d D 2 imply

that the number of terms in (14) is O.ecjt j/ for some c > 0 which depends on the

geometry of the manifold. The integral kernels of cos.t
p
�/, .�T � ��/.t / and

Re..i t /�k�1eit�/ are even functions with respect to the independent variable t .

Therefore we may restrict our integration to the positive semi-axes and in order to

get a bound on (10) we need to estimate terms of the following form:

Re

Z 1

0

O�T .t / � O��.t /

.i t /k

�
d.x; 
x/2 � t2

�l�˛

�
�.l C 1� ˛/

ˇ̌
ˇ̌
ˇ
˛D dC1

2

eit� dt (15)

Note that in the case of 
 D id and odd dimension d D 2m � 1 the distribution

t lC˛=�.l C ˛ C 1/
ˇ̌
˛D�m

is supported at the origin for l < m, therefore in this

case the pairing above is 0, since O�T � O�� is supported for jt j > �=2. In the

following we use the notation OT .g.x// for O.g.x// in case the implied constant

can be chosen independent of T, i.e. f .x; T / D OT .g.x// if jf .x; T /j � C jg.x/j
with C not dependent on T . The estimates will be based on the following two

lemmata. Assume that � is an even real valued Schwartz function such that

O� 2 C1
0 .Œ�1; 1�/ is an even Schwartz function and let O�T be the rescaled function

O�T .t / D O�.t=T /.

Lemma 1.4. Let � > 0 and k � 0. If k > 0 we suppose furthermore that O� � 1

vanishes of order k at zero. Then,

Z 1

0

. O�T .t / � O��.t // t
�keit�dt D OT .�

�1/

as � ! 1 for T � 1.

Proof. For any integer m > 0 the L1-norm of dm

dtm . O�T .t /� O��.t //t
�k/ is bounded

in T for T � 1. The Lemma then follows by integration by parts. �

Lemma 1.5. For any �xed � > 0, k � 0, and m 2 R there exists an L > 0 such

that

T �L

Z 1

0

O�T .t / t
�k .R

2 � t2/m�
�.mC 1/

ei�t dt D OT;R.1C j�j�m�1/

as j�j ! 1 for all T � 1 and R with T � R > �.
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Proof. For m � 0 the estimate follows for L D 2mC 1� k immediately from the

support properties of O�T and the fact that O�T is bounded. It remains to show the

estimate in case m < 0. Therefore, assume m < 0. Let �T 2 C1
0 .RC/ such that

�T D 0 in a neighborhood of zero, �T D 1 on ŒR; T � and �T D 0 on Œ2T;1/,

such that �
.ˇ/
T � Cˇ uniformly in T and d for T � 1 and T � R > �. Then one

shows easily that the Schwartz semi-norms of �T O�T t
�k.t CR/m satisfy

p˛;ˇ .�T O�T t
�k.t CR/m/ � C˛;ˇT

˛

for T � 1 and T � R > �, where C˛;ˇ is independent of T and R. If  T is the

Fourier transform of the function �T O�T t
�k.t CR/m we therefore have

p˛;ˇ . T / � zC˛;ˇT
ˇC2

On the other hand the Fourier transform of

O�T t
�k .R

2 � t2/m�
�.mC 1/

is the convolution of  T with the Fourier transform of
.R�t/m

�

�.mC1/
. The Fourier

transform of the distribution
.R�t/m

�

�.mC1/
can be computed explicitly and is a locally

integrable function of order OR.�
�m�1/ as � ! 1. To estimate this convolution

we use the well known inequality

.1C j� � �j/�m�1 � .1C j�j/jmC1j.1C j�j/�m�1; (16)

and the fact that Z
 T .�/.1C j�j/jmC1jd�

can be bounded by a multiple of sup�h�iq j T .�/j for all q > .jm C 1j C 1/.

It follows that the convolution is of order OT;R.T
2��m�1/ and we may therefore

choose L D 2. �

Proof of Proposition 1.1. For each T � 1 the number of non-zero terms in the

sum (14) in �nite, the number of terms grows at most exponentially fast with T .

Moreover, the estimate (12) implies that there is a constant cl independent on x

such that

jul .x; 
x/j � cl exp.clT / (17)

on the support of c�T . The above Lemmata, applied with �.�/ D O�.�/, together

with these growth estimates show that for some c > 0

N odd
x � .�k�1

C � .�T � ��//.�/ � ecT h�i
d�1

2 ; (18)

for T � 1. This implies the statement of the Proposition. �
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Proof of Proposition 1.2. We would now like to estimate Nx � .ı � �T /. This can

be done as follows using a Fourier Tauberian theorem. Let Q� 2 S.R/ be a non-

negative even Schwartz function such that the Fourier transform OQ� is supported in

the interval Œ�1=2; 1=2� and such that OQ�.0/ D 1. Let Q�T be the rescaled function

de�ned by Q�.t/ D T Q�.T t/. Following Safarov ([12]) we de�ne Q�1;0 2 S.R/ by

Q�1;0.t / D
Z 1

t

� Q�.�/d�;

so that

OQ�1;0.�/ D �1
�

d

d�
OQ�.�/:

De�ne Q�T;0 by Q�T;0.t / D T Q�1;0.T t/. Lemma 1.4 and Lemma 1.5 applied with

�.�/ D OQ�1;0 and k D 0, together with the above growth estimates then imply the

bound

N 0
x � Q�T;0.�/ � ec1T h�i

d�1
2 C c1h�id�1 (19)

for all T � 1. The term c1h�id�1 appears here because of the contribution of the

identity element in �.

Under these conditions the Fourier Tauberian Theorem 1.3 in [12] states that

jNx � .ı � Q�T /.�/j � C

T
N 0

x � Q�T;0.�/;

for all T � 1 with a constant C > 0 that does not depend on T . Therefore, there

exists c > 0 such that for all T � 1:

jNx � .ı � Q�T /.�/j � c

T
h�id�1 C ecT h�i

d�1
2 :

The support properties of the Fourier transforms of �T and Q�T imply that

�T � Q�T D Q�T . Hence, we have

jNx � .ı � �T /.�/j � jNx � .ı � Q�T /.�/j C j.Nx � .ı � Q�T / � �T /.�/j:

Using h� � �i˛ � h�ij˛jh�i˛ one derives the bound
Z

j�T .�/jh� � �i˛d� D OT .h�i˛
/:

Therefore,

jNx � .ı � Q�T / � �T .�/j � C

T
.c3h�id�1 C c2e

c1T h�i
d�1

2 /;

Summarizing, there exists a c > 0 such that for all T � 1 we have

ŒNx � .ı � �T /� � c

T
h�id�1 C ecT h�i

d�1
2 : (20)

This implies the proposition. �
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