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Double operator integral methods

applied to continuity of spectral shift functions
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Dedicated to the memory of Yuri G. Safarov (1958–2015)

Abstract. We derive two principal results in this note. To describe the �rst, assume that A,

B , An, Bn, n 2 N, are self-adjoint operators in a complex, separable Hilbert space H, and

suppose that

s-lim
n!1

.An � z0IH/
�1 D .A� z0IH/

�1

and

s-lim
n!1

.Bn � z0IH/
�1 D .B � z0IH/

�1

for some z0 2 CnR. Fix m 2 N, m odd, p 2 Œ1;1/, and assume that for all a 2 Rn¹0º,
T .a/ WD Œ.A � aiIH/�m � .B � aiIH/�m� 2 Bp.H/;

Tn.a/ WD Œ.An � aiIH/�m � .Bn � aiIH/�m� 2 Bp.H/;

lim
n!1

kTn.a/ � T .a/kBp.H/ D 0:

Then for any function f in the class Fm.R/ � C1
0
.R/ (cf. (1.1) for details),

lim
n!1

kŒf .An/ � f .Bn/�� Œf .A/ � f .B/�kBp.H/ D 0:

Moreover, for each f 2 Fm.R/, p 2 Œ1;1/, we prove the existence of constants a1; a2 2
Rn¹0º and C D C.f;m; a1; a2/ 2 .0;1/ such that

kf .A/ � f .B/kBp.H/ 6 C.k.A � a1iIH/
�m � .B � a1iIH/

�mkBp.H/

C k.A � a2iIH/
�m � .B � a2iIH/

�mkBp.H//;

which permits the use of di�erences of higher powers m 2 N of resolvents to control the

k � kBp.H/-norm of the left-hand side Œf .A/ � f .B/� for f 2 Fm.R/.

1 Alan Carey, Galina Levitina, and Fedor Sukochev gratefully acknowledge �nancial support

from the Australian Research Council.

2 Roger Nichols gratefully acknowledges support from a UTC College of Arts and Sciences

RCA Grant.



748 A. Carey, F. Gesztesy, G. Levitina, R. Nichols, D. Potapov, and F. Sukochev

Our second result is concerned with the continuity of spectral shift functions �. � IB;B0/

associated with a pair of self-adjoint operators .B;B0/ in H with respect to the operator

parameter B . For brevity, we only describe one of the consequences of our continuity re-

sults. Assume thatA0 andB0 are �xed self-adjoint operators in H, and there existsm 2 N,

m odd, such that, Œ.B0 � zIH/
�m � .A0 � zIH/

�m� 2 B1.H/, z 2 CnR. For T self-

adjoint in H we denote by �m.T / the set of all self-adjoint operators S in H for which

the containment Œ.S � zIH/
�m � .T � zIH/

�m� 2 B1.H/, z 2 CnR, holds. Suppose

that B1 2 �m.B0/ and let ¹B�º�2Œ0;1� � �m.B0/ denote a continuous path (in a suitable

topology on �m.B0/, cf. (1.3)) from B0 to B1 in �m.B0/. If f 2 L1.R/, then

lim
�!0C

k�. � IB� ; A0/f � �. � IB0; A0/f kL1.RI.j�jmC1C1/�1d�/ D 0:

The fact that higher powersm 2 N,m > 2, of resolvents are involved, permits applications

of this circle of ideas to elliptic partial di�erential operators in R
n, n 2 N. The methods

employed in this note rest on double operator integral (DOI) techniques.
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1. Introduction

We dedicate this note to the memory of Yuri Safarov (1958–2015), a gentle giant

in the area of spectral theory, whose contribution to the �eld (see, for instance, the

highly in�uential monograph [19]) left an indelible impression on our community.

His presence is sorely missed.
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We derive two principal results in this note. To describe the �rst, we introduce

the class of functions Fm.R/, m 2 N, see [22], by

Fm.R/ WD ¹f 2 C 2.R/ j
f .`/ 2 L1.R/I there exists " > 0 and f0 D f0.f / 2 C

such that .d `=d�`/Œf .�/ � f0�
�m� D

j�j!1
O.j�j�`�m�"/;

` D 0; 1; 2º:

(1.1)

(It is implied that f0 D f0.f / is the same as � ! ˙1.) One observes that

Fm.R/ � C1
0 .R/,m 2 N.

Assuming that A, B , An, Bn, n 2 N, are self-adjoint operators in a complex,

separable Hilbert space H, suppose in addition that

s-lim
n!1

.An � z0IH/
�1 D .A � z0IH/

�1

and

s-lim
n!1

.Bn � z0IH/
�1 D .B � z0IH/

�1;

for some z0 2 CnR. Fix m 2 N, m odd, p 2 Œ1;1/, and assume that for each

a 2 Rn¹0º,

T .a/ WD Œ.A� aiIH/
�m � .B � aiIH/

�m� 2 Bp.H/;

Tn.a/ WD Œ.An � aiIH/�m � .Bn � aiIH/�m� 2 Bp.H/;

and

lim
n!1

kTn.a/ � T .a/kBp.H/ D 0:

Then for any f 2 Fm.R/,

lim
n!1

kŒf .An/ � f .Bn/�� Œf .A/ � f .B/�kBp.H/ D 0:

Moreover, for each f 2 Fm.R/, p 2 Œ1;1/, we prove the existence of

constants a1; a2 2 Rn¹0º and C D C.f;m; a1; a2/ 2 .0;1/ such that

kf .A/� f .B/kBp.H/ 6 C.k.A� a1iIH/
�m � .B � a1iIH/

�mkBp.H/

C k.A � a2iIH/
�m � .B � a2iIH/

�mkBp.H//:

(1.2)

The estimate (1.2) is of interest as it permits to control the k � kBp.H/-norm

of Œf .A/ � f .B/�, f 2 Fm.R/, in terms of di�erences of higher powers m 2 N

of resolvents of A and B . This is signi�cant in applications to elliptic partial
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di�erential operators for which di�erences of su�ciently high integer powers of

resolvents, but not necessarily the di�erence of resolvents itself, typically lie in

the trace class (cf. also our brief comments following (1.4)).

This circle of ideas is treated in detail in Sections 2 and 3, employing the

method of double operator integrals (DOI) (cf. [3], [4], and [22]).

The second main result of this note concerns the continuity of spectral shift

functions �. � IB;B0/ associated with a pair of of self-adjoint operators .B; B0/

in H (cf. [5] and [21, Chapter 8] for details on �) with respect to the operator

parameter B . To keep the following su�ciently short, we only describe one

of the consequences of our continuity results. We note, however, that it was

precisely this consequence that was employed in recent applications to Witten

index computations for certain classes of non-Fredholm Dirac-type operators

without a mass gap in [7]–[9] (see also [10] and [14]). To set this up, assume

that A0 and B0 are �xed self-adjoint operators in the Hilbert space H, and there

exists m 2 N, m odd, such that

Œ.B0 � zIH/�m � .A0 � zIH/�m� 2 B1.H/; z 2 CnR:

Next, for T self-adjoint in H, we introduce �m.T / as the set of all self-adjoint

operators S in H for which the containment

Œ.S � zIH/
�m � .T � zIH/

�m� 2 B1.H/; z 2 CnR;

holds. The family of pseudometrics

dm;z.S1; S2/ D k.S2 � zIH/�m � .S1 � zIH/�mkB1.H/; (1.3)

S1; S2 2 �m.T /, z 2 CnR, generates a topology, Tm.D; T /, on �m.T /. Finally,

suppose that B1 2 �m.B0/ and let

¹B�º�2Œ0;1� � �m.B0/

denote a path from B0 to B1 in �m.B0/ such that B� depends continuously on

� 2 Œ0; 1� with respect to the topology Tm.D; T /. If f 2 L1.R/, then

lim
�!0C

k�. � IB� ; A0/f � �. � IB0; A0/f kL1.RI.j�jmC1C1/�1d�/ D 0;

in particular,

lim
�!0C

Z

R

�.�IB� ; A0/d� g.�/ D
Z

R

�.�IB0; A0/d� g.�/ (1.4)

for all g 2 L1.R/ such that ess: sup�2R j.j�jmC1 C 1/g.�/j < 1.
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We emphasize that in the special case m D 1, the continuity result (1.4)

for spectral shift functions with respect to trace norm convergence of resolvent

di�erences was derived by Yafaev [21, Lemma 8.7.5]. To be able to apply this to

elliptic partial di�erential operators (particularly, to Dirac and Schrödinger-type

operators in R
n, n > 2, cf., e.g., [22], [23], and [24, Chapters 3 and 9]), one

typically needsm su�ciently large, depending on n (especially, for n > 4). It was

precisely this fact and concrete applications to one-dimensional as well as multi-

dimensional Dirac-type operators without a mass gap (rendering these Dirac-type

operators non-Fredholm) which are approximated by certain pseudo-di�erential

operators, that motivated us to write this note. The Witten index for these types

of non-Fredholm Dirac-type operators (a concept extending the Fredholm index)

is computed in terms of spectral shift functions and the latter are approximated by

the spectral shift functions corresponding to the pseudo-di�erential approximants.

Due to limitations of space we will not go into further details at this point but refer

to [7]–[9] (see also [14]).

Results of the type (1.4) and extensions thereof are treated in detail in Section 4,

employing [21, Lemma 8.7.5] and [22], and particularly the results derived in

Sections 2 and 3.

Finally, we brie�y describe some of the notation used in this note. The symbol

Bp.H/, p 2 Œ1;1/, denotes the standard `p-based Schatten–von Neumann trace

ideals over the complex, separable Hilbert space H, B1.H/ denotes the ideal of

compact operators in H, and if X is a Banach space, B.X/ denotes the Banach

space of all bounded, linear operators on X.

The family of strongly right-continuous spectral projections associated to a

self-adjoint operator A in H is denoted by ¹EA.�/º�2R, with

EA.�/ D EA..�1; ��/; � 2 R:

The notation s-limn!1 Tn stands for the strong (i.e., pointwise) limit of a

sequence of bounded operators ¹Tnº1
nD1 in H.

The symbol Cb.RC/ represents bounded, continuous functions on RC D
Œ0;1/, and analogously for C k

b
.RC/, k 2 N.

2. Norm bounds controlled by powers of resolvents via DOI

The principal aim of this section is to prove (2.19) which shows how trace ideal

bounds of resolvent powers of self-adjoint operators in H control those of a

su�ciently large class of functions of such operators.
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Throughout, we denote by J
A;B
� the linear mapping de�ned by the double

operator integral

J
A;B
� .T / D

Z

R

Z

R

�.�; �/ dEA.�/ T dEB.�/; T 2 B.H/;

whereEA; EB is spectral measures corresponding to the self-adjoint (respectively,

unitary) operators A;B . We refer to [4] for the precise de�nition and general

properties of the double operator integrals.

It is known that if �.�; �/ D a1.�/a2.�/, .�; �/ 2 R
2, for some bounded

functions a1 and a2 on R, then

J
A;B
� .T / D a1.A/Ta2.B/: (2.1)

Depending on the function �, the operator J
A;B
� .T / is bounded. Below we will

recall a result describing the class of functions � such that

J
A;B
� WBp.H/ �! Bp.H/; p 2 Œ1;1/;

J
A;B
� WB.H/ �! B.H/;

is a bounded operator. We introduce

Mp WD ¹� 2 L1.R2I d�/ j JA;B
� 2 B.Bp.H//º; p 2 Œ1;1/;

M1 WD ¹� 2 L1.R2I d�/ j JA;B
� 2 B.B.H//º;

where � D �A ˝ �B denotes the product measure of �A and �B , the latter

are suitable (scalar-valued) control measures for EA and EB , respectively (e.g.,

�A.�/ D
P

j 2J .ej ; EA.�/ej /H, with ¹ej ºj 2J a complete orthonormal system in H,

J � N an appropriate index set, and analogously for �B). In addition, we set

k�kMp
WD kJA;B

� kB.Bp.H//; p 2 Œ1;1/;

k�kM1
WD kJA;B

� kB.B.H//:

For simplicity, we denote

M WD M1 D M1;

and (cf. [4, Section 4])

k�kM WD k�kM1
D k�kM1

; � 2 M:
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Remark 2.1. By interpolation, the inclusion � 2 M implies that � 2 Mp for any

p 2 Œ1;1/, and k�kMp
6 k�kM, p 2 Œ1;1/.

We also recall the following result.

Theorem 2.2 ([4, Theorem 4.1]). Assume that A andB are self-adjoint operators

in H. If the function �. � ; � / admits a representation of the form

�.�; �/ D
Z

�

˛.�; t/ˇ.�; t/ d�.t/; .�; �/ 2 R
2;

where .�; d�.t// is an auxiliary measure space and

C 2
˛ WD sup

�2R

Z

�

j˛.�; t/j2 d�.t/ < 1; C 2
ˇ WD sup

�2R

Z

�

jˇ.�; t/j2 d�.t/ < 1;

then � 2 M and

k�kM 6 C˛Cˇ :

In the proof of the main theorem of this section, we need two results from [22]

and [4]. Since these results were stated without proof in those papers, we now

supply a proof for convenience of the reader.

Theorem 2.3 ([4, Theorem 5.2]). Assume thatA andB are self-adjoint operators

in H. If there exist 0 6 m1 < 1 and 1 < m2 such that

sup
�2R

Z

R

.j�jm1 C j�jm2/j O�.�; �/j2 d� D C 2
0 < 1; (2.2)

where O�.�; �/ stands for the partial Fourier transform of � with respect to the �rst

variable,

O�.�; �/ D .2�/�1

Z

R

�.�; �/e�i�� d�; .�; �/ 2 R
2;

then � 2 M and

k�kM 6 CC0;

where the constant C D C.m1; m2/ > 0 does not depend on EA or EB .

Proof. In view of

m1 < 1 < m2;

one obtains
Z

R

.j�jm1 C j�jm2/�1 d� D 2

Z C1

0

dr

jr jm1 C jr jm2
DW C 2 .0;1/: (2.3)
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That is,

fm1;m2
.�/ D .j�jm1 C j�jm2/�1=2; m1 < 1 < m2;

satis�es fm1;m2
2 L2.R/. Therefore, by (2.2) and Hölder’s inequality, one obtains

Z

R

j O�.�; �/j d�

D
Z

R

Œ.j�jm1 C j�jm2/1=2j O�.�; �/j�.j�jm1 C j�jm2/�1=2d�

6

� Z

R

Œ.j�jm1 C j�jm2/1=2
ˇ

ˇ O�.�; �/j�2d�
�1=2� Z

R

.j�jm1 C j�jm2/�1 d�

�1=2

6 C0

� Z

R

.j�jm1 C j�jm2/�1 d�

�1=2

;

uniformly for � 2 R. Hence,

O�. � ; �/ 2 L1.R/;

and

sup
�2R

k O�. � ; �/kL1.R/ < 1:

By the inverse Fourier transform

�.�; �/ D
Z

R

O�.�; �/ ei�� d�

D
Z

R

ei��Œ.j�jm1 C j�jm2/1=2 O�.�; �/�.j�jm1 C j�jm2/�1=2 d�:

Next, introduce the functions

˛.�; t/ D ei�t .jt jm1 C jt jm2/�1=2

and

ˇ.�; t/ D .jt jm1 C jt jm2/1=2 O�.t; �/:

By (2.2) and (2.3), the functions ˛ and ˇ satisfy the condition of Theorem 2.2

with respect to the measure space .�; d�.t// D .R; dt/. Hence, by Theorem 2.2,

� 2 M and k�kM 6 CC0, where the constant C D C.m1; m2/ does not depend

on the spectral measures EA and EB . �
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Proposition 2.4 ([22, Proposition 3.1]). Assume that A and B are self-adjoint

operators in H. Suppose that the function K.�; �/ on R
2 satis�es

jK.�; �/j 6 CK < 1; .�; �/ 2 R
2; (2.4)

and is di�erentiable with respect to � with

ˇ

ˇ

ˇ

ˇ

@K.�; �/

@�

ˇ

ˇ

ˇ

ˇ

6 zCK.1C �2/�1; .�; �/ 2 R
2; (2.5)

where the constant zCK is independent of �. Assume, in addition, that for every

�xed � 2 R

lim
�!�1

K.�; �/ D lim
�!C1

K.�; �/; (2.6)

where the limits exist by (2.5). Then J
A;B
K 2 B.B.H// and J

A;B
K 2 B.Bp.H//,

p 2 Œ1;1/.

Proof. By (2.4) and (2.6) the function

k.�/ WD lim
�!˙1

K.�; �/; � 2 R; (2.7)

is well-de�ned and bounded on R.

We set

h.�; �/ WD K.�; �/� k.�/; .�; �/ 2 R
2; (2.8)

and claim that this function satis�es the conditions of Theorem 2.3. Indeed, since

@h

@�
D @K

@�
;

one infers from (2.5) that

@h

@�
. � ; �/ 2 L2.R/; � 2 R; with sup

�2R









@h

@�
. � ; �/









L2.R/

< 1:

Furthermore, by the de�nition of the function h,

lim
�!˙1

h.�; �/ D 0;

and therefore,

h.�; �/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

�
Z C1

�

@h

@�
.t; �/ dt; � > 0;

Z �

�1

@h

@�
.t; �/ dt; � < 0:
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Hence, by (2.5) for � > 0,

jh.�; �/j 6

Z C1

�

ˇ

ˇ

ˇ

@h

@�
.t; �/

ˇ

ˇ

ˇdt 6 C

Z C1

�

.1C t2/�1 dt;

for an appropriate constant C > 0. A similar estimate for � < 0 yields

h.�; �/ D O.j�j�1/ if � ! ˙1;

uniformly for � 2 R. Hence, h.�; �/ 2 L2.R/ and by Parseval’s identity, one

obtains

sup
�2R

Z

R

j�j2j Oh.�; �/j2 d� < 1:

That is, the function h.�; �/ satis�es the condition of Theorem 2.3 with

m1 D 0 and m2 D 2:

Hence, Theorem 2.3 implies that the operator J
A;B

h
WB.H/ ! B.H/ is

bounded. Furthermore, since K.�; �/ D h.�; �/C k.�/, .�; �/ 2 R
2, eq. (2.1)

for the operator J
A;B
K implies

J
A;B
K .T / D J

A;B

h
.T /C T k.B/:

Since the function k is bounded one infers that the operator J
A;B
K is bounded on

B.H/. Finally, Remark 2.1 implies that the operator J
A;B
K is also bounded on any

Bp.H/, p 2 Œ1;1/. �

Corollary 2.5. The norms kJA;B
K kB.B.H//, kJA;B

K kB.Bp.H//, p 2 Œ1;1/, do not

depend on the spectral measures EA and EB .

Proof. This follows from the proof of Proposition 2.4 and Theorem 2.3. �

To prove the norm bounds required for the proof of Proposition 4.6, we now

introduce the following assumption.

Hypothesis 2.6. Assume that A and B are �xed self-adjoint operators in the

Hilbert space H, p 2 Œ1;1/, and there exists m 2 N, m odd, such that for all

a 2 Rn¹0º,

Œ.B � aiIH/
�m � .A � aiIH/�m� 2 Bp.H/ .resp., B.H//: (2.9)
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The following construction is taken from [22]. Fix a bijection 'WR ! R

satisfying for some c > 0 and r > 0,

' 2 C 2.R/; '.�/ D �m; j�j > r; '0.�/ > c; � 2 R: (2.10)

Let r > 0 be such that �.�/ D �m for j�j > r . We choose a function � 2 C 2.R/

such that �.�/ D 0 for j�j 6 r=2, �.�/ D 1 for j�j > r and

1

�.�/� i
D �.�/

1

�m � i C .1� �.�// 1

�.�/ � i DW g1.�/C g2.�/; � 2 R:

(2.11)

We note that g2 2 C 2.R/ with compact support.

Thus,

.�.A/ � iIH/�1 � .�.B/ � iIH/�1 D g1.A/ � g1.B/C g2.A/ � g2.B/: (2.12)

Next, we denote

G1;a.�; �/ D g1.�/ � g1.�/

.� � ia/�m � .� � ia/�m
; (2.13a)

G2;a.�; �/ D g2.�/ � g2.�/

.� � ia/�m � .� � ia/�m
; (2.13b)

�; � 2 R; where a 2 Rn¹0º: In [22, Proposition 3.3] it is proved that there

exists a (su�ciently small) a1 2 Rn¹0º, such that the function G1;a1
satis�es the

assumption of Proposition 2.4. Therefore, Proposition 2.4 implies that

g1.A/� g1.B/ D J
A;B
G1;a1

..A � a1iIH/
�m � .B � a1iIH/

�m/

and

kg1.A/� g1.B/kBp.H/ 6 C1k.A� a1iIH/
�m � .B � a1iIH/

�mkBp.H/; (2.14)

for some constant C1 D C1.a1; m/ 2 .0;1/ (and a corresponding estimate

for the B.H/-norm). Moreover, in [22, Proposition 3.2] it is proved that there

exists a (su�ciently large) a2 2 Rn¹0º, such that the function G2;a2
satis�es the

assumption of Proposition 2.4. Therefore,

g2.A/� g2.B/ D J
A;B
G2;a2

..A � a2iIH/
�m � .B � a2iIH/

�m/

and

kg2.A/ � g2.B/kBp.H/ 6 C2k.A � a2iIH/
�m � .B � a2iIH/

�mkBp.H/ (2.15)
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for some constant C2 D C2.a2; m/ 2 .0;1/ (and a corresponding estimate for

the B.H/-norm). We note that the independence of the constants C1 and C2

in (2.14) and (2.15) of p 2 .1;1/ follows from the fact that G1;a1
; G2;a2

2 M

(see Proposition 2.4) and Remark 2.1.

Combining this with (2.12) one arrives at the following result. If � satis-

�es (2.10), then there exist a1; a2 2 Rn¹0º and C D C.a1; a2; m/ 2 .0;1/ such

that

k.�.A/ � iIH/�1 � .�.B/ � iIH/�1kBp.H/

6 C.k.A� a1iIH/
�m � .B � a1iIH/

�mkBp.H/

C k.A� a2iIH/
�m � .B � a2iIH/

�mkBp.H//;

(2.16)

and an analogous estimate for the uniform norm k � kB.H/.

Next, we introduce the class of functions for which we prove the main results

of this and the next sections.

De�nition 2.7 ([22]). Let m 2 N. De�ne the class of functions Fm.R/ by

Fm.R/ WD ¹f 2 C 2.R/ j
f .`/ 2 L1.R/I
there exists " > 0 and f0 D f0.f / 2 C

such that .d `=d�`/Œf .�/ � f0�
�m� D

j�j!1
O.j�j�`�m�"/;

` D 0; 1; 2º:

.It is implied that f0 D f0.f / is the same as � ! ˙1./

In particular, one notes that for all m 2 N,

C1
0 .R/ � Fm.R/;

and

f .�/ D
j�j!1

f0�
�m CO.j�j�m��/; f 2 Fm.R/:

Let f 2 Fm.R/ and let � be as before (see (2.10)). The assumptions on the

functions � and f imply that f0 WD f ı ��1 2 F1.R/ (see [22]). It follows from

the discussion before [21, Theorem 8.7.1] that there is a continuously di�erentiable

function g onT, with g0 satisfying the Hölder condition with exponent " > 0, such

that

f0.�/ D g..�//; (2.17)

where .�/ D �Ci
��i

, � 2 R; denotes the Cayley transform.
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We denote U D .�.A//, V D .�.B//: By (2.16), there exist a1; a2 2 Rn¹0º
and a constant C D C.a1; a2; m/ 2 .0;1/ such that

kU � V kBp.H/ D k2i.�.A/� iIH/�1 � .�.B/ � iIH/�1kBp.H/

6 2C.k.A� a1iIH/
�m � .B � a1iIH/

�mkBp.H/ (2.18)

C k.A � a2iIH/
�m � .B � a2iIH/

�mkBp.H//;

and an analogous estimate for the uniform norm k � kB.H/.

Since g0 satis�es the Hölder condition with exponent " > 0, the double

operator integral J
U;V

gŒ1� , where

gŒ1�.u; v/ D g.u/ � g.v/
u � v ; u; v 2 T;

is a bounded operator on Bp.H/, p 2 Œ1;1/, and on B.H/, see [2, Theorem 11].

Thus,

f .A/ � f .B/ D f0.�.A//� f0.�.B// D g.U / � g.V / D J
U;V

gŒ1� .U � V /;

and therefore, Œf .A/ � f .B/� 2 Bp.H/ (resp., Œf .A/ � f .B/� 2 B.H/) and

kf .A/ � f .B/kBp.H/ 6 kJgŒ1�kB.Bp.H//kU � V kBp.H/

6 C.k.A� a1iIH/
�m � .B � a1iIH/

�mkBp.H/

C k.A � a2iIH/
�m � .B � a2iIH/

�mkBp.H//; f 2 Fm.R/

(2.19)

(and the corresponding estimate for the uniform norm k �kB.H/). Here the constant

C D C.f; a1; a2; m/ 2 .0;1/ is independent of p 2 Œ1;1/ (see Remark 2.1).

Remark 2.8. Assume Hypothesis 2.6 with p 2 .1;1/. Then estimate (2.19)

holds for a wider class of functions f , and the constant C can be sharpened.

Indeed, assume that function f on R is such that the function g on T de-

�ned by (2.17) is a Lipschitz function on T. Then combining [1, Theorem 2]

and [11, Corollary 5.5] one obtains Œf .A/ � f .B/� 2 Bp.H/ and

kf .A/� f .B/kBp.H/

6 32
�

C1

p2

p � 1 C 9
�

kU � V kBp.H/

(2.18)

6 64C2

�

C1

p2

p � 1 C 9
�

.k.A � a1iIH/
�m � .B � a1iIH/

�mkBp.H/

C k.A � a2iIH/
�m � .B � a2iIH/

�mkBp.H//;

where the constants C1 D C1.f / 2 .0;1/ and C2 D C2.a1; a2; m/ 2 .0;1/ are

independent of p 2 .1;1/.
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Remark 2.9. In the special casem D 1, an inequality similar to (2.19) was derived

for f 2 A.R/ in [15] using the notion of almost analytic extensions. Speci�cally,

it was shown in [15] that for each �xed z0 2 CnR and each f 2 A.R/, there exists

a constant C D C.f; z0/ 2 .0;1/, independent of p 2 Œ1;1/, such that

kf .A/� f .B/kBp.H/ 6 Ck.A� z0IH/
�1 � .B � z0IH/

�1kBp.H/; p 2 Œ1;1/:

Here A.R/ is de�ned as

A.R/ D
[

ˇ<0

Sˇ .R/;

with the class Sˇ .R/, ˇ 2 R, consisting of all functions f 2 C1.R/ such that

f .m/.x/ D
jxj!1

O.hxiˇ�m/; m 2 N0;

where

hzi D .jzj2 C 1/1=2; z 2 CI

in particular, C1
0 .R/ � A.R/. For the case Bp.H/ replaced by B.H/, we

refer to [12, Theorem 2.6.2]. The double operator integral (DOI) techniques

employed in the bulk of this section not only yield the stronger estimate (2.19)

for f 2 Fm.R/, but at the same time permit the use of higher powers m 2 N of

resolvents to control the left-hand side of (2.19).

Remark 2.10. In connection with containments of the type in (2.9), we recall

that a Cauchy-type formula implies the following elementary fact (cf. [21, p. 210]).

Let Sj , j 2 ¹1; 2º, be self-adjoint operators in some complex, separable Hilbert

space K. If

Œ.S2 � zIK/�m � .S1 � zIK/�m� 2 Bp.K/; z 2 CnR; (2.20)

for some p 2 Œ1;1/ [ ¹1º and some m 2 N, then

Œ.S2 � zIK/�n � .S1 � zIK/�n� 2 Bp.K/; z 2 CnR; n > m:

In the case where Sj , j D 1; 2, are bounded from below, see also [21, Propo-

sition 8.9.2]. Hence, if (2.20) holds for some m 2 N, we may, without loss of

generality, assume that m is odd (as we will in subsequent sections).
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3. Limiting process for double operator integrals

The main purpose of this section is to prove Theorem 3.7.

Let An; Bn; A; B be self-adjoint operators in the Hilbert space H. We recall

the de�nition of the classes As
r .EA/ and As

l
.EB/ (cf., e.g., [3, p. 40]). Suppose

�. � ; � / admits a representation of the form

�.�; �/ D
Z

�

˛.�; t/ˇ.�; t/ d�.t/; .�; �/ 2 R
2; (3.1)

where .�; d�.t// is an auxiliary measure space and

C 2
˛ WD sup

�2R

Z

�

j˛.�; t/j2 d�.t/ < 1; (3.2a)

C 2
ˇ WD sup

�2R

Z

�

jˇ.�; t/j2 d�.t/ < 1: (3.2b)

Set

a.t/ WD
Z

R

˛.�; t/ dEA.�/; an.t / WD
Z

R

˛.�; t/ dEAn
.�/; (3.3a)

b.t/ WD
Z

R

ˇ.�; t/ dEB.�/; bn.t / WD
Z

R

ˇ.�; t/ dEBn
.�/; (3.3b)

n 2 N, and introduce

"n.v; ˛/ D
� Z

�

kan.t /v � a.t/vk2 d�.t/

�1=2

;

ın.v; ˇ/ D
� Z

�

kbn.t /v � b.t/vk2 d�.t/

�1=2

;

n 2 N, v 2 H, and

As
r .EA/ WD ¹� in (3.1) j lim

n!1
"n.v; ˛/ D 0; v 2 Hº;

As
l .EB/ WD ¹� in (3.1) j lim

n!1
ın.v; ˛/ D 0; v 2 Hº:

If An; Bn; A; B are unitary operators on H, the classes As
r.EA/;A

s
l
.EA/ are intro-

duced similarly.

We note that the de�nitions of the classes As
r .EA/;A

s
l
.EA/ impose certain

restrictions on convergencesAn �! A and Bn �! B as well as on the properties

of the function �, given in (3.1).

Proposition 3.1. If �;  2 As
r .EA/ .respectively, �;  2 As

l
.EB//, then .�C / 2

As
r .EA/ .respectively, .� C  / 2 As

l
.EB//.
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Proof. We prove the assertion only for the set As
r .EA/, since for the set As

l
.EB/

the proof is similar.

Let the functions � and  have the representations

�.�; �/ D
Z

�1

˛1.�; t /ˇ1.�; t/ d�1.t /;

 .�; �/ D
Z

�2

˛2.�; t /ˇ2.�; t/ d�2.t /;

for some measure spaces .�i ; d�j .t //; and functions j̨ ; ǰ , j 2 ¹1; 2º.
Let .�;†; d�.t// be the direct sum of the measure spaces .�1; d�1.t // and

.�2; d�2.t // (so� D �1 t�2, the disjoint union of�1 and�2, etc.). De�ne the

function

˛ .�; t/ D
´

˛1 .�; t / ; t 2 �1;

˛2 .�; t / ; t 2 �2:

Evidently, the function ˛ satis�es condition (3.2). In addition,

an.t / D

8

ˆ

ˆ

<

ˆ

ˆ

:

Z

R

˛1 .�; t / dEAn
.t / D a.1/

n .t /; t 2 �1;

Z

R

˛2 .�; t / dEAn
.t / D a.2/

n .t /; t 2 �2;

and

a.t/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

Z

R

˛1 .�; t / dEA.t / D a.1/.t /; t 2 �1;

Z

R

˛2 .�; t / dEA.t / D a.2/.t /; t 2 �2;

where a
.j /
n .�/ and a.j /.�/ denote the operators de�ned by (3.3) with respect to the

functions j̨ , j 2 ¹1; 2º. Hence, for every �xed v 2 H,

"n.v; ˛/ D
� Z

�

kan.t /v � a.t/vk2d�.t/

�2

6

� Z

�1

ka.1/
n .t /v � a.1/.t /vk2d�1.t /

�2

C
� Z

�2

ka.2/
n .t /v � a.2/.t /vk2d�2.t /

�2

D "n.v; ˛1/C "n.v; ˛2/ ����!
n!1

0:

Thus, .� C  / 2 As
r.EA/. �
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Our proof of Theorem 3.7 is based on the following result in [3].

Proposition 3.2 ([3, Proposition 5.6]). Let � 2 As
r .EA/ \ As

l
.EB/. Then for any

T 2 Bp.H/, p 2 Œ1;1/,

lim
n!1

kJAn;Bn

� .T / � J
A;B
� .T /kBp.H/ D 0; p 2 Œ1;1/:

In order to formulate the main results of this section later on, we introduce the

following assumption.

Hypothesis 3.3. LetA, B , An, Bn, n 2 N, be self-adjoint operators in a separable

Hilbert space H and suppose that

s-lim
n!1

.An � z0IH/
�1 D .A � z0IH/

�1; (3.4a)

s-lim
n!1

.Bn � z0IH/
�1 D .B � z0IH/

�1; (3.4b)

for some z0 2 CnR .cf. [18, Theorem VIII.19 (b)]/.

Lemma 3.4. Assume Hypothesis 3.3. If a function �.�; �/ satis�es the condition of

Theorem 2.3, then � 2 As
r .EA/.

Proof. This argument is based on the proof of Theorem 2.3. Let .�; d�.t// D
.R; dt/ and let ˛.�; t/ D ei�t .jt jm1 C jt jm2/�1=2. If v 2 H, then

"n.v; ˛/ D
� Z

R

.jt jm1 C jt jm2/�1keitAnv � eitAvk2
H
dt

�1=2

; n 2 N:

Fix ı > 0. Since
R

R
.jt jm1 Cjt jm2/�1 dt < 1 (cf., eq. (2.3)), there existsR > 0

such that
Z

jt j>R

.jt jm1 C jt jm2/�1 dt < ı:

On the other hand, since the family of functions ¹ei�tºt2Œ�R;R� is uniformly

continuous, [18, Theorem VIII.21] and the comment following its proof guarantees

for each v 2 H,

lim
n!0

keitAnv � eitAvkH D 0;

uniformly in t 2 Œ�R;R�. Therefore, for each v 2 H, there exists N 2 N such

that

keitAnv � eitAvkH < ı; n > N; t 2 Œ�R;R�:
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Hence, for every v 2 H,

lim
n!1

"n.v; ˛/ 6 lim
n!1

� Z

jt j6R

keitAnv � eitAvk2
H
dt

�1=2

C lim
n!1

� Z

jt j>R

keitAnv � eitAvk2
H
dt

�1=2

6 2ıkvkH:

Since ı > 0 was arbitrary, one concludes

lim
n!1

"n.v; ˛/ D 0; v 2 H: �

The next corollary is an immediate consequence of Lemma 3.4 and Proposi-

tion 2.4.

Corollary 3.5. Assume Hypothesis 3.3. If a function K on R
2 satis�es the as-

sumption of Proposition 2.4, then K 2 As
r .EB/.

Proof. As in the proof of Proposition 2.4 (see (2.7) and (2.8)), we set

k.�/ D lim
�!˙1

K.�; �/; h.�; �/ D K.�; �/� k.�/; �; � 2 R;

and write

K.�; �/ D h.�; �/� k.�/: (3.5)

As established in the course of the proof of Proposition 2.4, the function h satis�es

the assumption of Theorem 2.3. Therefore, by Lemma 3.4 we have h 2 As
r .EA/.

In addition, for the function �.�; �/ WD k.�/ we can write

�.�; �/ D
Z

R

˛.�; t/ˇ.�; t/ dm.t/;

where ˛.�; t/ D 1, ˇ.�; t/ D k.�/, andm is the measure de�ned on the �-algebra

2R by setting

m.A/ D
´

1; 0 2 A;
0; otherwise:

Since for the function ˛.�; t/ D 1, the corresponding operators a.t/ and an.t /,

de�ned in (3.3) are just the identity operator, it is clear that the function � belongs

to the class As
r .EA/: Hence, equality (3.5) combined with Proposition 3.1 implies

that K 2 As
r .EA/. �



Double operator integral methods and spectral shift functions 765

To proceed further, we now strengthen the assumptions on the operators An; A

and Bn; B , n 2 N, as follows.

Hypothesis 3.6. In addition to Hypothesis 3.3 we assume that for some m 2 N,

m odd, p 2 Œ1;1/, and every a 2 Rn¹0º,

T .a/ WD Œ.AC iaIH/
�m � .B C iaIH/

�m� 2 Bp.H/; (3.6a)

Tn.a/ WD Œ.An C iaIH/
�m � .Bn C iaIH/

�m� 2 Bp.H/; (3.6b)

and

lim
n!1

kTn.a/ � T .a/kBp.H/ D 0: (3.7)

With this hypothesis in hand, the following theorem is the main result of this

section.

Theorem 3.7. Assume Hypothesis 3.6. Then for any function f 2 Fm.R/,

lim
n!1

kŒf .An/ � f .Bn/�� Œf .A/� f .B/�kBp.H/ D 0: (3.8)

Proof. Fix a bijection �WR ! R, satisfying (2.10). The proof is divided into two

steps.

Step 1. In this step we prove that

lim
n!1

kŒ.�.An/ � iIH/�1 � .�.Bn/ � iIH/�1�

� Œ.�.A/� iIH/
�1 � .�.B/ � iIH/�1�kBp.H/ D 0:

(3.9)

Let g1, g2 be as in (2.11). By (2.12) one infers

Œ.�.An/ � iIH/
�1 � .�.Bn/ � iIH/�1�

� Œ.�.A/� iIH/
�1 � .�.B/ � iIH/�1�

D Œg1.An/ � g1.Bn/ � g1.A/C g1.B/�

C Œg2.An/ � g2.Bn/ � g2.A/C g2.B/�:

Thus, to prove the assertion of Step 1 it su�ces to show that

lim
n!1

kg1.An/ � g1.Bn/ � g1.A/C g1.B/kBp.H/ D 0;

lim
n!1

kg2.An/ � g2.Bn/ � g2.A/C g2.B/kBp.H/ D 0:

Since the proofs of these assertions are very similar, we prove the �rst one only.
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LetG1;a be the function de�ned by (2.13). It is proved in [22, Proposition 3.3]

that there exists 0 ¤ a1 2 R such that the function G1;a1
satis�es the assumption

of Proposition 2.4. Thus (see the notation (3.6)),

g1.An/ � g1.Bn/ � g1.A/C g1.B/

D J
An;Bn

G1;a1

.Tn.a1// � J
A;B
G1;a1

.T .a1//

D J
An;Bn

G1;a1

.Tn.a1/ � T .a1//C J
An;Bn

G1;a1

.T .a1// � J
A;B
G1;a1

.T .a1//:

(3.10)

Next, we prove the convergence of each term on the right hand side of (3.10)

separately.

For the �rst term on the right-hand side of (3.10), Proposition 2.4 and Corol-

lary 2.5 imply that J
An;Bn

G1;a1

2 B.Bp.H// uniformly for n 2 N:Hence, by (3.7), one

obtains

lim
n!1

kJAn;Bn

G1;a1

.Tn.a1/ � T .a1//kBp.H/ D 0: (3.11)

For the second term on the right-hand side of (3.10) we claim that G1;a1
2

As
r .EA/ \ As

l
.EB/: Since by de�nition of G1;a1

, G1;a1
.�; �/ D G1;a1

.�; �/; it

su�ces to show that G1;a1
2 As

r.EA/: The latter inclusion follows from the fact

that the function G1;a1
satis�es the assumptions of Proposition 2.4 and hence also

of Corollary 3.5, that is, G1;a1
2 As

r.EA/ \ As
l
.EB/, as required.

Thus, Proposition 3.2 implies that

lim
n!1

kJAn;Bn

G1;a1
.T .a1// � J

A;B
G1;a1

.T .a1//kBp.H/ D 0;

concluding the proof of Step 1.

Step 2. Denote by .�/ D �Ci
��i

, � 2 R; the Cayley transform. We set

Un WD .�.An//; n 2 N; U WD .�.A//;

and

Vn WD .�.Bn//; n 2 N; V WD .�.B//:

Since Un � U D 2i..�.An/ � iIH/
�1 � .�.A/ � iIH/

�1/ and by [18, Theo-

rem VIII.20] s-limn!1.�.An/ � iIH/
�1 D .�.A/ � iIH/

�1, one concludes that

s-limn!1Un D U , and similarly, s-limn!1 Vn D V . Furthermore, the conver-

gence (3.9) implies that

lim
n!1

kUn � Vn � U C V kBp.H/ D 0:
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Let f 2 Fm.R/. The assumptions on the functions � and f imply that

f0 WD f ı ��1 2 F1.R/ (see [22]). It follows from the discussion before [21,

Theorem 8.7.1] that there is a continuously di�erentiable function g on T, with g0

satisfying the Hölder condition with exponent " > 0, such that

f0.�/ D g..�//:

One con�rms that

f .An/ � f .Bn/ D f0.�.An// � f0.�.Bn// D g.Un/ � g.Vn/;

and

f .A/ � f .B/ D f0.�.A//� f0.�.B// D g.U / � g.V /:
Thus, to prove the convergence (3.8) it su�ces to show that

lim
n!1

kŒg.Un/ � g.Vn/�� Œg.U / � g.V /�kBp.H/ D 0: (3.12)

Since g0 satis�es the Hölder condition with exponent " > 0, the double

operator integrals J
Un;Vn

gŒ1� , J
U;V

gŒ1� , where

gŒ1�.u; v/ D g.u/ � g.v/
u � v ; u; v 2 T;

are bounded operators on Bp.H/, p 2 Œ1;1/, with uniformly bounded norms

(with respect to n), see [2, Theorem 11]. Thus,

Œg.Un/ � g.Vn/�� Œg.U / � g.V /�

D J
Un;Vn

gŒ1� .Un � Vn/ � J
U;V

gŒ1� .U � V /

D J
Un;Vn

gŒ1� .Un � Vn � U C V /C .J
Un;Vn

gŒ1� .U � V / � J
U;V

gŒ1� .U � V //:

Since ŒUn�Vn�UCV � ����!
n!1

0 inBp.H/-norm, and the norms kJUn;Vn

gŒ1� kB.Bp.H//

are uniformly bounded, one obtains

lim
n!1

kJUn;Vn

gŒ1� .Un � Vn � U C V /kBp.H/ D 0:

Moreover, since g0 satis�es the Hölder condition with exponent " > 0, a

combination of [3, Proposition 7.5] and [3, Theorem 5.9], as well as the discussion

following the latter theorem, implies that the function gŒ1� is an element from the

class As
l
.EV / \ As

r .EU / and therefore, by Proposition 3.2, one infers

lim
n!1

kJUn;Vn

gŒ1� .U � V / � J
U;V

gŒ1� .U � V /kBp.H/ D 0:

Thus, (3.12) holds, concluding the proof. �
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4. Continuity of �. � I B; B0/ with respect to B

In this section we apply a continuity result for spectral shift functions �. � IB;B0/

with respect to the operator parameter B in terms of trace norm convergence of

resolvents derived by Yafaev [21, Lemma 8.7.5] and extend it to the case where

powers of resolvents converge, employing Sections 2 and 3 and the treatment

in [22].

Throughout this section, we suppose the following set of assumptions:

Hypothesis 4.1. Assume that A0 and B0 are �xed self-adjoint operators in the

Hilbert space H, and there exists m 2 N, m odd, such that

Œ.B0 � zIH/�m � .A0 � zIH/�m� 2 B1.H/; z 2 CnR: (4.1)

We denote by 'WR ! R a bijection satisfying for some c > 0,

' 2 C 2.R/; '.�/ D �m; j�j > 1; '0.�/ > c:

Then [22, Theorem 2.2] implies that

Œ.'.B0/ � iIH/
�1 � .'.A0/ � iIH/�1� 2 B1.H/: (4.2)

Following [22], one thus introduces the class of spectral shift functions for the

pair .B0; A0/ (cf. [5] and [21, Chapter 8] for details) via

�.�IB0; A0/ D �.'.�/I '.B0/; '.A0//; � 2 R;

implying

�. � IB0; A0/ 2 L1.RI .j�jmC1 C 1/�1d�/

since upon introducing the new variable

� D '.�/ 2 R; � 2 R; (4.3)

the inclusion (4.2) yields

�. � I '.B0/; '.A0// 2 L1.RI .j�j2 C 1/�1d�/:

Taking into account the change of variables (4.3), the corresponding trace formula

then is of the form

tr.f .B0/ � f .A0// D tr..f ı ��1/.�.B0// � .f ı ��1/.�.A0///

D
Z

R

d� .f ı ��1/0.�/ �.�I '.B0/; '.A0//

D
Z

R

d� f 0.�/ �.�IB0; A0/; f 2 Fm.R/;
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where the second equality follows from Krein’s trace formula for resolvent compa-

rable operators, that is, pairs of self-adjoint operators whose resolvent di�erence

is trace class (see, e.g., [21, Chapter 8]); the fact that the function f ı��1 satis�es

Krein’s condition, that is, f ı ��1 2 F1.R/, is guaranteed by (2.10).

If S and T are self-adjoint operators in H and for some z0 2 CnR,

Œ.S � z0IH/
�1 � .T � z0IH/

�1� 2 B1.H/;

then actually

Œ.S � zIH/�1 � .T � zIH/
�1� 2 B1.H/; z 2 CnR;

a fact which follows from the well-known resolvent identity (see, e.g., [20, p. 178]),

.S � zIH/�1 � .T � zIH/
�1 D .S � z0IH/.S � zIH/�1

Œ.S � z0IH/
�1 � .T � z0IH/

�1�

.T � z0IH/.T � zIH/�1;

z; z0 2 �.T1/\�.T2/. However, an analogous result cannot hold for higher powers

of the resolvent as the following remarkably simple example illustrates.

Example 4.2. Suppose H is an in�nite-dimensional Hilbert space, and let Pj 2
B.H/, j 2 ¹1; 2º, be in�nite-dimensional orthogonal projections with

P1P2 D 0 and P1 C P2 D IH:

Set

A D
p
3.P1 C P2/ and B D

p
3.P1 � P2/:

Evidently,

A2 D B2 D 3IH

and

.A � iIH/
3 D A3 � 3iA2 C 3.�i/2A � i3IH D �8iIH:

Similarly, one obtains .B � iIH/3 D �8iIH, and consequently,

.A � iIH/
�3 � .B � iIH/�3 D 0 2 B1.H/:

However, if z 2 Cn¹iº, then

.AC zIH/
3 D A3 C 3zA2 C 3z2AC z3IH (4.4)
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Taking, for example, z D 3i in (4.4), one computes

.AC zIH/
3 D A.A2 C 3z2IH/C z.3A2 C z2IH/ D �24A;

and similarly,

.B C 3iIH/
3 D �24B:

Computing inverses, one infers

.AC 3iIH/
�3 D � 1

24
A�1 D � 1

24
p
3
.P1 C P2/;

.B C 3iIH/
�3 D � 1

24
B�1 D � 1

24
p
3
.P1 � P2/;

so that

.AC 3iIH/
�3 � .B C 3iIH/

�3 D � 1

12
p
3
P2 … B1.H/;

due to the fact that P2 is an in�nite-dimensional projection in H.

Due to these reasons we are assuming the trace class hypothesis (4.1) for all

z 2 CnR, whenever m > 2.

De�nition 4.3. Let T be self-adjoint in H and m 2 N odd. Then �m.T / denotes

the set of all self-adjoint operators S in H for which the containment

Œ.S � zIH/
�m � .T � zIH/

�m� 2 B1.H/; z 2 CnR;

holds.

One observes the following transitivity property: if B 2 �m.A/ and C 2
�m.B/, then C 2 �m.A/, as well. In view of (4.1), one infers B0 2 �m.A0/

in the notation of De�nition 4.3.

We note that for each m 2 N, �m.T / can be equipped with the family

D D ¹dm;zºz2CnR of pseudometrics (see [13, De�nition IX.10.1] for a precise

de�nition) de�ned by

dm;z.S1; S2/ D k.S2 � zIH/�m � .S1 � zIH/�mkB1.H/; S1; S2 2 �m.T /:

For each �xed " > 0, z 2 CnR, and S 2 �m.T /, de�ne

B.S I dm;z; "/ D ¹S 0 2 �m.T / j dm;z.S; S
0/ < "º;

to be the "-ball centered at S with respect to the pseudometric dm;z .
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De�nition 4.4. Tm.D; T / is the topology on �m.T / with the subbasis

Bm.D; T / D ¹B.S I dm;z; "/ jS 2 �m.T /; z 2 CnR; " > 0º:

That is, Tm.D; T / is the smallest topology on �m.T / which contains Bm.D; T /.

In order to state the main results of this section, we introduce one more

hypothesis.

Hypothesis 4.5. (i) Let A0, B0, and B1 denote self-adjoint operators in H with

B0; B1 2 �m.A0/ for some odd m 2 N, and let ¹B�º�2Œ0;1� � �m.B0/ .and

hence in �m.A0// be a path from B0 to B1 in �m.B0/ depending continuously

on � 2 Œ0; 1� with respect to the topology Tm.D; T / introduced in De�nition 4.4.

(ii) Assume that 'WR ! R satis�es the conditions in (2.10).

Proposition 4.6. Assume Hypothesis 4.5. Then '.B0/ 2 �1.'.A0//, and

¹'.B�/º�2Œ0;1� � �1.'.B0//

is a path from '.B0/ to '.B1/ in �1.'.B0// depending continuously on � 2 Œ0; 1�
with respect to the metric d1;i . � ; � /.

Proof. The claims that '.B0/ 2 �1.'.A0// and ¹'.B�/º�2Œ0;1� � �1.'.B0//

follow immediately from [22, Theorem 2.3]. To establish continuity of the

path ¹'.B� /º�2Œ0;1� with respect to the metric d1;i . � ; � /, an application of the

estimate (2.16) yields the existence of a constant C.'/ 2 .0;1/ and points

a1; a2 2 Rn¹0º such that

d1;i .'.B� /; '.B� 0// 6 C.'/.dm;a1i .B� ; B� 0/C dm;a2i .B� ; B� 0//; �; � 0 2 Œ0; 1�:

Thus, continuity of the path ¹'.B� /º�2Œ0;1� with respect to d1;i . � ; � / follows

by hypothesis from the continuity of ¹B�º�2Œ0;1� with respect to the topology

Tm.D; T /. �

The following theorem represents the principal result of this section.

Theorem 4.7. Assume Hypothesis 4.5 and let �0. � I '.B0/; '.A0// be a spectral

shift function for the pair .'.B0/; '.A0//. Then for each � 2 Œ0; 1�, there is a unique

spectral shift function �. � I '.B�/; '.A0// for the pair .'.B� /; '.A0// depending

continuously on � 2 Œ0; 1� in the L1.RI .�2 C 1/�1d�/-norm such that

�. � I '.B0/; '.A0// D �0. � I '.B0/; '.A0//: (4.5)
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Consequently,

�. � IB� ; A0/ WD �.'.�/I '.B� /; '.A0//; (4.6)

the corresponding spectral shift function for the pair .B� ; A0/, depends continu-

ously on � 2 Œ0; 1� in the L1.RI .j�jmC1 C 1/�1d�/-norm and satis�es

�. � IB0; A0/ D �0.'.�/I '.B0/; '.A0//: (4.7)

Proof. Let �0. � I '.B0/; '.A0// be a spectral shift function for the pair of operators

.'.B0/; '.A0//. Since ¹'.B� /º�2Œ0;1� � �1.'.B0// is a continuous path with

respect to d1;i . � ; � /, an application of [21, Lemma 8.7.5] yields for each pair

.'.B� /; '.A0//, � 2 Œ0; 1�, a unique spectral shift function

�. � I '.B�/; '.A0// 2 L1.RI .�2 C 1/�1d�/;

depending continuously on � 2 Œ0; 1� in the L1.RI .�2 C 1/�1d�/-norm and such

that (4.5) is satis�ed.

For each � 2 Œ0; 1�, let �. � IB� ; A0/ denote the spectral shift function for the

pair .B� ; A0/ de�ned by (4.6). Evidently, (4.7) holds, and it only remains to

establish continuity of �. � IB� ; A0/ with respect to the L1.RI .j�jmC1 C 1/�1d�/-

norm. To this end, one applies (4.6) and makes the change of variable in (4.3).

Consequently,

Z

R

j�.�IB� ; A0/ � �.�IB� 0 ; A0/j.j�jmC1 C 1/�1 d�

D
Z

R

j�.�I '.B� /; '.A0// � �.�I '.B� 0/; '.A0//j
.j'�1.�/jmC1 C 1/'0.'�1.�//

d�:

(4.8)

Next, one obtains the following estimates on the weight of the measure on the

right-hand side of the equality in (4.8):

1

.j'�1.�/jmC1 C 1/'0.'�1.�//
6

C0

�2 C 1
; � 2 Œ�1; 1�; (4.9)

for some constant C0 > 0, having used the last inequality in (2.10), and

1

.j'�1.�/jmC1 C 1/'0.'�1.�//
D 1

mj�j1�1=m.j�j1C1=m C 1/

6
1

�2 C 1
; j�j > 1:

(4.10)
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Combining (4.8), (4.9), and (4.10), and setting C WD max¹1; C0º,
Z

R

j�.�IB� ; A0/ � �.�IB� 0 ; A0/j
j�jmC1 C 1

d�

6 C

Z

R

j�.�I '.B� /; '.A0// � �.�I '.B� 0/; '.A0//j
�2 C 1

d�; �; � 0 2 Œ0; 1�;

and continuity of �. � IB� ; A0/ inL1.RI .j�jmC1C1/�1d�/ follows from continuity

of �. � I '.B�/; '.A0// in L1.RI .�2 C 1/�1d�/. �

Remark 4.8. If ¹�nº1
nD1 � Œ0; 1� and �n ! 0 as n ! 1, then Theorem 4.7 implies

lim
n!1

k�. � IB�n
; A0/ � �. � IB0; A0/kL1.RI.j�jmC1C1/�1d�/ D 0: (4.11)

In particular, there exists a subsequence of ¹�. � IB�n
; A0/ºn2N which converges

pointwise a.e. to �. � IB0; A0/ as n ! 1.

We conclude with an elementary consequence of Theorem 4.7.

Corollary 4.9. Assume Hypothesis 4.5. If f 2 L1.R/, then

lim
�!0C

k�. � IB� ; A0/f � �. � IB0; A0/f kL1.RI.j�jmC1C1/�1d�/ D 0;

in particular,

lim
�!0C

Z

R

�.�IB� ; A0/d� g.�/ D
Z

R

�.�IB0; A0/d� g.�/

for all g 2 L1.R/ such that ess: sup�2R j.j�jmC1 C 1/g.�/j < 1.

In the special case of one-dimensional systems, particularly, Schrödinger and

Dirac-type operators on R or .0;1/ with su�ciently short-range potentials, the

scattering phase shift is known to coincide with the spectral shift function (up

to a constant factor) and continuity of scattering phase shifts with respect to the

potential coe�cient is known (see [6, Theorem 5.5]).

In conclusion, we note once more that in the special case m D 1, the con-

tinuity result for spectral shift functions with respect to trace norm convergence

of resolvent di�erences was derived by Yafaev [21, Lemma 8.7.5]. The principal

purpose of this section was to extend this result to higher odd integer powersm of

resolvents in order to make this continuity result available to n-dimensional ellip-

tic partial di�erential operators (e.g., Schrödinger and Dirac-type operators) for

which m has to be chosen su�ciently large, depending on n 2 N.
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Appendix A. The case where A and B are bounded from below

Due to its particular importance in applications (e.g., in connection with multi-

dimensional Schrödinger operators), we now also brie�y treat the case where

A and B be are self-adjoint and bounded from below. In fact, without loss of

generality, we assume throughout this appendix that A and B are strictly positive,

self-adjoint operators in H, that is, for some " > 0,

A > "IH; B > "IH: (A.1)

Since this case is signi�cantly simpler than the case treated in Sections 2 and 3,

we primarily mention results without detailed proofs.

The symbol J
A;B
� is now of the form

J
A;B
� .T / D

Z

RC

Z

RC

�.�; �/ dEA.�/ T dEB.�/; T 2 B.H/:

In addition, Mp , 1 6 p 6 1, and k�kMp
D kJA;B

� kBp.H/!Bp.H/ are de�ned as

in Section 2, and again, we denote M WD M1 D M1. As before, Mp � M and

k�kMp
6 k�kM, p 2 Œ1;1/.

Throughout this section we assume that A and B satisfy (A.1) and that

T WD Œ.AC IH/
�m � .B C IH/

�m� 2 Bp.H/; (A.2)

p 2 Œ1;1/ (resp., B.H/).

The principal reason why the case of semibounded operators is signi�cantly

easier than the case treated in Sections 2 and 3 is the fact than both .ACIH/�m and

.BC IH/
�m are self-adjoint operators and therefore, one can use the fundamental

results obtained in [16] and [17].

Let

 .�/ WD 1

.�C 1/m
; � > 0;

assume f is a bounded function on RC, and introduce g WD f ı  �1. One can

write

f .A/� f .B/ D .f ı  �1/. .A//� .f ı  �1/. .B// D J
A;B

gŒ1� . .A/ �  .B//:

Since by hypothesis, Œ .A/� .B/� 2 Bp.H/, p 2 Œ1;1/ (resp., Œ .A/� .B/� 2
B.H/), to establish the inclusion Œf .A/ � f .B/� 2 Bp.H/, p 2 Œ1;1/ (resp.,

Œf .A/ � f .B/� 2 B.H/), it su�ces to specify the class of functions rendering

J
A;B

gŒ1� a bounded operator on Bp.H/, p 2 Œ1;1/ (resp., B.H/).
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Let p 2 .1;1/ and let g be a (globally) Lipschitz function on .0; 1�. Then [17,

Theorem 1] guarantees that gŒ1� 2 Mp , and therefore, Œf .A/ � f .B/� 2 Bp.H/,

and

kf .A/� f .B/kBp.H/ 6 CkŒ.AC IH/
�m � .B C IH/

�m�kBp.H/;

for some constant C D C.p; f / 2 .0;1/, p 2 .1;1/.

Next, consider the case where (A.2) holds for B1.H/ or B.H/. Let g 2 B1
1;1,

where B1
1;1 stands for a certain Besov class (see [16, Section 6] for the precise

de�nition). Then [16, Theorem 8] implies that gŒ1� 2 M, that is, Œf .A/� f .B/� 2
B1.H/ (resp., Œf .A/ � f .B/� 2 B.H/), and

kf .A/ � f .B/kB1.H/ 6 CkŒ.AC IH/
�m � .B C IH/

�m�kB1.H/;

.resp., jf .A/ � f .B/kB.H/ 6 CkŒ.AC IH/
�m � .B C IH/

�m�kB.H//;

where C D C.f / 2 .0;1/.

Thus, one arrives at the following result.

Proposition A.1. Assume that (A.2) holds for Bp.H/, p 2 .1;1/, and B1.H/,

or B.H/, respectively. In addition, let f ı  �1 be a .globally/ Lipschitz function

on .0; 1� if p 2 .1;1/ and f ı  �1 2 B1
1;1 if p D 1 or in the B.H/-context.

Then,

Œf .A/ � f .B/� 2 Bp.H/; p 2 Œ1;1/ .resp., Œf .A/ � f .B/� 2 B.H//;

and for some Cp D Cp.f / 2 .0;1/, p 2 Œ1;1/ .resp., C D C.f / 2 .0;1/ in

the B.H/-context /,

kf .A/ � f .B/kBp.H/ 6 CpkŒ.AC IH/
�m � .B C IH/

�m�kBp.H/;

(A.3a)

.resp., kf .A/ � f .B/kB.H/ 6 CkŒ.AC IH/
�m � .B C IH/

�m�kB.H//: (A.3b)

Remark A.2. (i) Assume that (A.2) holds for p 2 .1;1/ and let f ı �1 2 B1
1;1.

Since in this case gŒ1� 2 M, one also concludes that gŒ1� 2 Mp and kgŒ1�kMp
6

kgŒ1�kM, p 2 .0;1/. Therefore, the dependence of the constant in (A.3) on p can

be eliminated.

(ii) On the other hand, if one is interested in the p-dependence of such a con-

stant, the following can be asserted. Assume that (A.2) holds for p 2 .1;1/ and

let f ı  �1 be a (globally) Lipschitz function. It follows from [11, Corollary 5.5]
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that there exists a constant C D C.f / 2 .0;1/, independent of p 2 .1;1/, such

that

kf .A/ � f .B/kBp.H/ 6 C
p2

p � 1kŒ.AC IH/
�m � .B C IH/

�m�kBp.H/:

To have a result similar to Theorem 3.7 we need to impose additional assump-

tions on the function f .

Theorem A.3. Let A;B be strictly positive self-adjoint operators on a Hilbert

space H, and let the families ¹Anº1
nD1 and ¹Bnº1

nD1 of strictly positive self-adjoint

operators converging to A and B , respectively, in the strong resolvent sense

.i.e., we assume (3.4)/. Suppose that for �xed m 2 N, m odd, and p 2 Œ1;1/,

T WD Œ.AC IH/
�m � .B C IH/

�m� 2 Bp.H/;

Tn WD Œ.An C IH/
�m � .Bn C IH/

�m� 2 Bp.H/; n 2 N;

and

lim
n!1

kTn � T kBp.H/ D 0:

Assume that g D f ı �1 is a .globally/ Lipschitz function on .0; 1� if p > 1, and

let f ı  �1 2 B1
1;1 if p D 1. Assume, in addition, that g0 is a bounded function

on .0; 1� satisfying a Hölder condition for some " > 0. Then

lim
n!1

kŒf .An/ � f .Bn/�� Œf .A/� f .B/�kBp.H/ D 0:

Proof. Writing

Œf .An/ � f .Bn/�� Œf .A/� f .B/�

D J
An;Bn

gŒ1� .Tn/ � J
A;B

gŒ1� .T /

D J
An;Bn

gŒ1� .Tn � T /C .J
A;B

gŒ1� .T / � J
A;B

gŒ1� .T //:

The convergence of the �rst term on the right hand-side above can be proved as

in Theorem 3.7. To prove the convergence of the second term, it is su�cient to

show that gŒ1� 2 As
l
.EB/ \ As

r .EA/. Since, by the assumption, g0 is a bounded

function g0 satisfying the Hölder condition for some " > 0, [3, Proposition 7.8 and

Theorem 5.7] imply that gŒ1� 2 As
l
.EB/ \ As

r .EA/, and hence by Proposition 3.2

we conclude that

lim
n!1

k.JA;B

gŒ1� .T / � J
A;B

gŒ1� .T /kBp.H/ D 0: �
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