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The weak Pleijel theorem with geometric control
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Abstract. Let � � R
d ; d � 2, be a bounded open set, and denote by �j .�/; j � 1, the

eigenvalues of the Dirichlet Laplacian arranged in nondecreasing order, with multiplicities.

The weak form of Pleijel’s theorem states that the number of eigenvalues �j .�/, for which

there exists an associated eigenfunction with precisely j nodal domains (Courant-sharp

eigenvalues), is �nite. The purpose of this note is to determine an upper bound for Courant-

sharp eigenvalues, expressed in terms of simple geometric invariants of �. We will see that

this is connected with one of the favorite problems considered by Y. Safarov.
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1. Introduction and main result

We consider the Dirichlet Laplacian H.�/ in a bounded open set � in R
d .

We denote by �j .�/ (j 2 N
�) the sequence of eigenvalues arranged in nonde-

creasing order, with multiplicities. The ground state energy �1.�/ is simply de-
noted by �.�/. We denote by N.�j / D ��1

j .0/ the nodal set of an eigenfunction
�j associated with �j .�/, and by �.�j / the number of connected components of
� n N.�j / (nodal domains).

Courant’s nodal domain theorem [8] (1923) says that for any j � 1, the number
�.�j / is not greater than j .

An eigenvalue �j .�/ is called Courant-sharp if there exists an associated
eigenfunction �j with �.�j / D j . In contrast with Sturm’s theorem in dimen-
sion 1, the weak form of Pleijel’s theorem [16] (1956) says:
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Theorem 1.1. In dimension 2, the number of Courant-sharp eigenvalues of H.�/

is �nite.

This theorem is the consequence of a more precise theorem (strong Pleijel’s
theorem):

Theorem 1.2. In dimension 2, for any sequence of spectral pairs .�n; �n/ of
H.�/,

lim sup
n!C1

�.�n/

n
� 4�

�.D1/
D

�2

j

�2

< 1;

where D1 is the disk of unit area, and j the least positive zero of the Bessel
function J0.

Remark. Pleijel’s theorem extends to bounded domains in R
d , and more gener-

ally to compact d -dimensional manifolds with boundary, see Peetre [15], Bérard
and Meyer [6]. More precisely for d � 2, there exists a constant 
.d/ < 1 such
that

lim sup
n!C1

�.�n/

n
� 
.d/:

It is interesting to note that the constant 
.d/ only depends on the dimension and
is otherwise independent of the geometry.

In view of Pleijel’s theorem, it is a natural question to look for geometric
upper bounds for Courant-sharp eigenvalues. The purpose of this note is to give
a geometrically controlled version of Theorem 1.1. In dimension 2, we prove the
following result.

Theorem 1.3. Let � � R
2 be a bounded C 2 domain. Then, there exists a positive

constant ˇ.�/ depending only on the geometry of �, such that any Courant-sharp
eigenvalue �k.�/ of H.�/ satis�es

k
�.D1/

j�j � �k.�/ � ˇ.�/:

More precisely, the constant ˇ.�/ can be computed in terms of the area j�j, the
perimeter `.@�/ of �, as well as bounds on the curvature of @� and on the cut-
distance1 "0.�/ to @�.

The result also holds with weaker regularity assumptions. For example, in-
spection of the proof which uses the results of van den Berg and Lianantonakis [7]
gives the following non optimal but more explicit corollary.

1 The cut-distance is de�ned in Section 3.1, equation (12).
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Corollary 1.4. Let � � R
2 be a bounded domain. De�ne the geometric quantity

D.�/ by

D.�/ D sup
">0

j¹x 2 �W d.x/ < "ºj
"

;

where d.x/ is the distance from x to the boundary of �. If D.�/ is �nite, then any
Courant-sharp eigenvalue �k.�/ satis�es

�.D1/ k � j�j �k.�/ � 2
� 24 � �.D1/

�.D1/ � 4�

�4 .D.�//4

j�j2 :

Observe that the lower and upper bounds are dilation invariant. When � is
regular, D.�/ can be bounded from above by

D.�/ � max
° j�j

"0.�/
; 2`.@�/

±

:

Remarks. (i) Corollary 1.4 holds as soon as the boundary of � has Minkowski
dimension 1, see Section 3.2. (ii) The constant D.�/ is bigger than the upper
Minkowski content. We cannot substitute D.�/ with the upper Minkowski content
because we need upper bounds on the quantities involved, not only an asymptotic
behaviour.

In all the paper, we only consider the Dirichlet problem. It would also be
interesting to analyze the Neumann problem in the same spirit. Looking at the
proof of Polterovich in [17], the main point would be to obtain a geometric estimate
of the number of nodal domains touching the boundary.

Organization of the paper. The paper is organized as follows. In Section 2,
we sketch the proofs of Pleijel’s theorem, and we explain the idea of how to obtain
geometric upper bounds for Courant-sharp eigenvalues. In Section 3 we describe
lower bounds on the counting function, using [19] or [7], and we derive upper
bounds for the Courant-sharp eigenvalues. In Section 4, we compare the bounds
obtained in Section 3 for three very simple examples (the disk, the annulus and
the square), and the bounds one can derive for other explicit examples (rectangles,
equilateral triangles, etc.).

2. Proofs of Pleijel’s theorem

In this section, we sketch the proof of Theorem 1.2 for a domain � in R
d . We �rst

introduce some notation.
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Let N�.�/ denote the counting function for H.�/,

N�.�/ D #¹j j �j .�/ < �º:

The counting function can be written as

N�.�/ D Cd j�j �d=2 � R.�/;

where Cd is the Weyl constant, j�j denotes the d -dimensional volume of �, and
the remainder term R.�/ satis�es R.�/ D o.�d=2/ according to Weyl’s theorem.
The Weyl constant is given by

Cd WD .2�/�d !d ;

where !d is the volume of the unit ball in R
d ,

!d D �d=2=�
�d

2
C 1

�

: (1)

We also denote by B
d
1 the ball of volume 1 in R

d .

To prove Theorem 1.2, we start with the identity

�.�n/

n

n

�n.�/d=2

�n.�/d=2

�.�n/
D 1: (2)

Applying the Faber–Krahn inequality to each nodal domain of �n and summing
up, we have

�n.�/d=2

�.�n/
� �.Bd

1 /d=2

j�j :

Note for later reference that

�.�n/ D n H) �n.�/d=2

n
� �.Bd

1 /d=2

j�j : (3)

This gives a necessary condition for �n.�/ to be Courant-sharp, which is (up to
the renormalization by the volume) independent of the geometry of �.

Taking a subsequence �ni
such that

lim
i!C1

�.�ni
/

ni

D lim sup
n!C1

�.�n/

n
;

and implementing in (2), we deduce

�.Bd
1 /d=2

j�j lim sup
n!C1

�.�n/

n
lim

n!C1

n

N�.�n/
lim

�!C1

N�.�/

�d=2
� 1:
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Having in mind Weyl’s formula, we obtain

lim sup
n!C1

�.�n/

n
� 
.d/ WD 1

Cd �.Bd
1 /d=2

:

When d D 2, one has C2 D 1
4�

, �.B2
1/ D �j2, so that 
.2/ D 4

j2 < 1 since
j � 2:40 . More generally, for d � 2 , one has


.d/ WD 2d�2d 2�.d=2/2

.j.d�2/=2;1/d
;

where j�;1 denotes the �rst positive zero of the Bessel function J� (in particular
j0;1 D j), and it can be shown, see [6], that


.d/ < 1: (4)

This proves Theorem 1.2, and Theorem 1.1 follows as well.

Remark. In the case of general Riemannian manifolds, one needs to use an
adapted isoperimetric inequality which is valid for domains with small enough
volume, see [15, 6].

We now give an alternative proof of Theorem 1.1 which provides a hint on how
to bound the Courant-sharp eigenvalues from above.

If �n is Courant-sharp, then �n�1 < �n and hence, n D N�.�n/C1. Using (3),
we obtain

�n Courant-sharp H) N�.�n/ C 1 D n � j�j
��n.�/

�.Bd
1 /

�d=2

: (5)

Writing the counting function as

N�.�/ D Cd j�j �d=2 � R.�/: (6)

and plugging this relation into (5), we obtain that

�n.�/ Courant-sharp H) F� .�n.�// � 0; (7)

where the function F� is de�ned for � > 0 by

F�.�/ D Cd .1 � 
.d// j�j �d=2 � R.�/ C 1:
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By Weyl’s theorem, the remainder term satis�es R.�/ D o.�d=2/. Since we have
1 � 
.d/ > 0, see (4), the function F� tends to in�nity when � tends to in�nity
and hence the number of Courant-sharp eigenvalues must be �nite.

As a matter of fact, the preceding proof tells us that Courant-sharp eigenvalues
must be less than or equal to

inf¹� > 0 j F�.�/ > 0 for � � �º:

Although this quantity is a geometric invariant associated with �, it is not clear
how to estimate it in terms of simple geometric invariants, even if we used Ivrii’s
sharp estimate R.�/ D O.�.d�1/=2/, see [12, 20]. In order to proceed, it is
su�cient to have an explicit geometric upper bound xR.�/ of R.�/. Indeed, de�ne
the function

xF�.�/ D Cd .1 � 
.d// j�j �d=2 � xR.�/ C 1: (8)

Then, any Courant-sharp eigenvalue �k.�/ must satisfy xF� .�k.�// � 0, and
hence the inequality

�k.�/ � inf¹� > 0 j xF�.�/ > 0 for � � �º: (9)

In the next section, we use the explicit upper bounds xR.�/ provided by the
papers of Safarov [19] and van den Berg and Lianantonakis [7] to obtain upper
bounds on the Courant-sharp eigenvalues in terms of simple geometric invariants.

3. Lower bounds on the counting function and applications

to Courant-sharp eigenvalues

In this section, we describe lower bounds on the counting functions derived
from [19] or [7], and apply them to bounding the Courant-sharp eigenvalues.

3.1. The approach via Y. Safarov. We implement a result by Y. Safarov [19]
(2001) which provides a lower bound for the spectral function on the diagonal, with
an explicit control on the remainder term. This estimate is obtained by making use
of �nite propagation speed for the wave equation, and precise Tauberian theorems.

If � � R
d is an open set, then the spectral function of the Dirichlet Laplacian

e.x; x; �/ WD 1

2

�

X

�j <�

�j .x/2 C
X

�j ��

�j .x/2
�

;
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satis�es [19, Corollary 3.1]

e.x; x; �/ � Cd �d=2 �
2d Cd ��1 �2

md

d.x/

�

�1=2 C �md

d.x/

�d�1

;

for all x 2 � and � > 0 .
Here d.x/ is the Euclidean distance to @�, and �md

is a universal constant
depending only on the dimension.

More precisely, let

md D

8

ˆ

ˆ

<

ˆ

ˆ

:

d C 1

2
; if d is odd;

.d C 2/

2
; if d is even:

Then,
�m D . Q�m/1=.2m/;

where Q�m is the ground state energy of the Dirichlet realization of .�1/m d2m

dt2m on
� � 1

2
; 1

2
Œ.

De�ne
zN�.�/ WD

Z

�

e.x; x; �/ dx;

and let �0.�/ be the largest number " with the property that

�b
� WD ¹x 2 �W d.x/ < �º

is di�eomorphic to @���0; �Œ.
Then, for 0 < � < �0.�/,

zN�.�/ � Cd j�j �d=2 � Cd j�b
� j�d=2

� 2d Cd ��1�2
md

�

�1=2 C �md

�

�d�1
�Z

d.x/>�

1

d.x/
dx

�

:

This inequality is also true by semi-continuity for N�.�/.

Writing N�.�/ D Cd j�j �d=2 � R.�/ as in (6), we have

R.�/ � Cd j�b
� j�d=2 C 2d Cd ��1�2

md

�

�1=2 C �md

�

�d�1
�Z

d.x/>�

1

d.x/
dx

�

:

(10)

We now use our freedom for choosing �. A convenient choice in order to get
the right power of � is to take

� WD ˛.�/��1=2:
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Because we need this estimate for any � in the spectrum of the Laplacian, and
actually for � > �2.�/ (because the Courant-sharp property is already established
for the two �rst eigenvalues), we choose

˛.�/ D �0.�/�2.�/1=2:

To have more explicit bounds, we could also choose

˛.�/ D �0.�/�2.�/1=2

where �2.�/ is a geometric lower bound of �2.�/ (using the Faber–Krahn
inequality or a consequence of the Li–Yau inequality, see below (18) and (19)).

For regular domains, the right-hand side of (10) can be estimated in terms of
the geometry of �.

For the sake of simplicity, we give the details in the case d D 2.

In dimension 2, the above lower bound for zN�.�/ (and N�.�/) reads

N�.�/ � C2j�j� � C2j�b
˛��1=2 j�

� 4C2��1�2
2

�

1 C �2

˛

�

�1=2

�Z

¹d.x/>˛��1=2º

1

d.x/
dx

�

:
(11)

When d D 2, we have m2 D 2, and we can verify (using the quasimode .1
4

� x2/2

of [19]) that

Q�2 � 7 � 8 � 9 � 29;

which implies the rough estimate

�2 � 4 � 21=4 � 5:

We now assume that @� is a smooth submanifold, so that @� is the union of
p smooth simple closed curves. We write the proof in the case p D 1, the general
case is similar. Let cW Œ0; L� ! R

2 be a parametrization of @� by arc-length,
with L WD `.@�/, the length of the boundary. The associated Frenet frame is
¹�.s/; �.s/º. We can assume that the orientation is chosen such that �.s/ points
towards the interior of �. The curvature �.s/ of the curve is given by the equation
P�.s/ D �.s/�.s/. Let ��.�/ denote the in�mum of � over Œ0; L�. De�ne the map

F W Œ0; L� � � � 1; 1Œ �! R
2; F.s; t / D c.s/ C t�.s/:
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We have
@sF.s; t / ^ @t F.s; t / D .1 � t�.s//�.s/ ^ �.s/:

The map F is a local di�eomorphism for jt j < tC with

tC WD . sup
Œ0;L�

j�.s/j/�1:

The injectivity of F is determined by the in�mum ıC of the cut-distance ıC.s/ to
the submanifold @�, where

ıC.s/ WD sup¹t > 0W t D dist.F.s; t /; @�/º: (12)

In this case, we have
�0.�/ D inf¹tC; ıCº

so that F is a di�eomorphism from Œ0; L� � �0; �0.�/Œ onto its image (i.e. so that
F is both a local di�eomorphism and injective). For � < �0.�/, we have

j�b
� j D

Z L

0

Z �

0

.1 � t�.s// ds dt:

It follows that
8

ˆ

<

ˆ

:

C2 j�b
˛�1=2 j � � ˇ1.�/�1=2; where

ˇ1.�/ D 1

4�
.1 C �0.�/j��.�/j/�0.�/�2.�/1=2`.@�/:

The third term in the right-hand side of (11) can be written as

8

ˆ

<

ˆ

:

ˇ2.�/�1=2

Z

¹d.x/>˛��1=2º

1

d.x/
dx; where

ˇ2.�/ WD ��2�2
2 .1 C �2�0.�/�1�2.�/� 1

2 /:

Write
Z

¹d.x/>˛��1=2º

1

d.x/
dx D

Z

¹d.x/>�0.�/º

1

d.x/
dx C

Z L

0

Z �0.�/

˛��1=2

.1 � t�.s//

t
ds dt

We can estimate the second integral in the right-hand side as we did above.
The �rst integral can be estimated from above by j�j="0.�/. It follows that
there exist positive constants ˇ3.�/ and ˇ4.�/ such that, for all � > �2.�/,
N�.�/ D j�j

4�
� � R.�/, with

R.�/ � xR.�/ D ˇ3.�/�1=2 ln
� �

�2.�/

�

C ˇ4.�/�1=2: (13)
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Note that the constants only depend on the geometry of the domain �. More
precisely, the constants can be computed in terms of j�j; `.@�/, ��.�/; �0.�/,
and �2.�/.

Remarks. (i) The preceding proof shows that one can alternatively estimate the
constants in terms of j�j; `.@�/, �0.�/, �2.�/, and the number of holes of the
domain (through the integral

R

@�
�).

(ii) In higher dimensions, one can state a similar result in which the curvature
� of the curve is replaced by the mean curvature h of the hypersurface @�.
For this purpose, one uses the Heintze-Karcher comparison theorem [9].

Applying (8) and (9), we obtain that any Courant-sharp eigenvalue �k.�/

satis�es

f�.�k/ � 0; (14)

where the function f� is de�ned for � > �2.�/ by

f�.�/ WD �.D1/ � 4�

4��.D1/
j�j� � ˇ3.�/�1=2 ln

� �

�2

�

� ˇ4.�/�1=2 C 1:

Since �.D1/ > 4� , see (4), the coe�cient of the term � in the expression of
f� is positive, so that the function tends to in�nity when � tends to in�nity. Hence
I� WD f �1

� .� � 1; 0�/ is either empty or bounded from above.
De�ne

ˇS .�/ D max¹�2.�/; ˇ0.�/º;

where ˇ0.�/ is the supremum of I� if I� is non empty and 0 otherwise. From
equation (14) we conclude that

�k.�/ Courant-sharp H) �k.�/ � ˇS .�/:

We have proved Theorem 1.3.

Starting from the inequality f�.�k/ � 0 in the above proof, we conclude that
any Courant-sharp eigenvalue �k satis�es

A2 j�j�1=2

k
� ˇ3.�/ ln

�k

�2

C ˇ4.�/;

where A2 D 1
4�

� 1
�.D1/

. Using the inequality ln �
�2

� 4
�

�
�2

�1=4
which holds for

any � � �2, we obtain the following more explicit bound.
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Corollary 3.1. In dimension 2, any Courant-sharp eigenvalue �k.�/ of H.�/

satis�es

�k.�/ � max
°

�2.�/;
� 16��.D1/

�.D1/ � 4�

�4 .ˇ3.�/ C ˇ4.�//4

j�j4�2.�/

±

: (15)

Remarks. (i) For the unit disk, the bound (15) is sharper than Corollary 1.4, see
Section 4. (ii) Pólya’s conjecture for Dirichlet eigenvalues (see [18]) does not go in
the right direction. Indeed lower bounds on the Dirichlet eigenvalues correspond
to upper bounds on N.�/. This would be good for Neumann eigenvalues, but in
this case, there are other problems, see [16] and more recently [17].

3.2. Approach via van den Berg–Lianantonakis. Prior to Y. Safarov, van den
Berg and Lianantonakis have given lower bounds for the counting function N�.�/

depending on the Minkowski dimension of @�. When this dimension is .d � 1/,
they prove [7, Theorem 2.1] that if

� � 4j�j�2=d ; (16)

then

N.�/ � Cd j�j �d=2 � 3D.�/�.d�1/=2 log..2j�j/2=d �/; (17)

where the geometric constant D.�/ is de�ned by

D.�/ WD sup
�

j�b
� j

�
:

To apply (17) to Pleijel’s theorem, one needs to compare condition (16) with
the condition � > �2.�/. One can for example observe that the Faber–Krahn
inequality applied to the second eigenvalue gives (see [1] or (3) for d D 2)

�2.�/ � .2!d /2=d j�j�2=d j 2
d=2�1;1: (18)

For d D 2, since 2�j 2
0;1 > 4, the condition � > �2.�/ implies (16). For d � 2,

we can use the following lower bound for �2.�/ which is a consequence of the
Li–Yau inequality, see [1, eq. (11.5)],

�2.�/ >
d

d C 2

4�222=d

.!d j�j/2=d
: (19)



728 P. Bérard and B. Hel�er

Hence it is enough to verify that

d

d C 2

4�222=d

.!d /2=d
� 4;

which is easy to establish. Indeed, using (1), we obtain

d

d C 2
� 22=d �

�d

2
C 1

�2=d

� 1;

which follows from the inequality d
dC2

� � 1 for d � 1.

Assuming d D 2 for the sake of simplicity, and using (7) together with (17),
we obtain that any Courant-sharp eigenvalue �k.�/, with �k > �2, satis�es
g�.�k/ � 0, where g� is de�ned by

g�.�/ D
� 1

4�
� 1

�.D1/

�

j�j � � 3D.�/ �1=2 ln.2j�j�/ C 1;

for � � �2.�/. De�ne ˇ1.�/ to be 0 if g�.�/ � 0, and sup¹� > �2W g�.�/ � 0º
otherwise, and de�ne

ˇB.�/ WD max¹�2.�/; ˇ1.�/º:

Then,
�k.�/ Courant-sharp H) �k.�/ � ˇB.�/:

This proves Theorem 1.3 using the lower bound for the counting function provided
by [7].

From the inequality g�.�k/ � 0 in the preceding proof, we have that any
Courant-sharp eigenvalue �k.�/ satis�es the inequality

� 1

4�
� 1

�.D1/

�

j�j �
1=2

k
� 3D.�/ ln.2j�j�k/ � 0;

for �k � �2. Using the inequality

ln � � 2 �1=4 for � � 16;

and the fact that 2j�j�k > 16 (Faber–Krahn), we obtain the more explicit bound
given in Corollary 1.4.

As kindly communicated by M. van den Berg, in dimension 2, when � is
su�ciently regular, the geometric invariant D.�/ can be bounded from above by

D.�/ � max
� j�j

�0.�/
; `.@�/ C � "0.�/ h.�/

�

;

where h.�/ is the number of holes of �, or by

D.�/ � max
� j�j

�0.�/
; 2`.@�/

�

:
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4. Examples and particular cases

4.1. Examples. In some 2-dimensional cases, it is possible to compute the upper
bounds for Courant-sharp eigenvalues arising from the preceding sections explic-
itly. Consider the following domains:

�1 D B.0; 1/; the unit disc in R
2;

�2 D B.0; 1/ n B.0; a/; 0 < a < 1; the annulus A.0; a; 1/ � R
2;

�3 D �0; �Œ � �0; �Œ ; the square in R
2 with side �:

For the unit disc, one �nds that ˇS .�1/ � 7:1 � 106 and ˇB.�1/ � 2:1 � 107.

For the annulus, one �nds that ˇB.�2/ � 4:2 � 108 when a D 0:75, and
ˇB.�2/ � 4 � 107 when a D 0:25 . This indicates that the cut-distance to the
boundary does matter in the upper bound on Courant-sharp eigenvalues.

For the square with side � , one �nds that ˇB.�3/ � 5:9 � 106. It turns out that
this bound is much bigger than the bound which is deduced in the next sub-section,
namely 51.

This is not surprising. The general lower bounds for the counting functions
used in the preceding sections, equations (13) and (17), are worse than the sharp
2-dimensional estimate R.�/ D O.�1=2/, see [12], by a ln.�/ factor. On the other-
hand, the estimate (22) has the right powers, and almost the right second constant.

Generally speaking one should therefore expect that the bounds ˇS .�/ and
ˇB.�/ are not sharp.

4.2. Particular cases. As already mentioned, improved Weyl’s formulas with
control of the remainder which are only asymptotic are not su�cient for an
explicit version of Pleijel’s theorem. We nevertheless mention for comparison
a formula due to V. Ivrii in 1980 (cf [11, Chapter XXIX, Theorem 29.3.3 and
Corollary 29.3.4]) which reads

N.�/ D !d

.2�/d
j�j �d=2 � 1

4

!d�1

.2�/d�1
j@�j �.d�1/=2 C r.�/; (20)

where r.�/ D O.�.d�1/=2/ in general, but can also be shown to be o.�.d�1/=2/ if
the boundary is C 1, and under some generic conditions on the geodesic billiards
(the measure of periodic trajectories should be zero). For piecewise smooth
boundaries, see [21]. The second term is meaningful in this case only.

Formula (20) is also established for irrational rectangles as a very special
case in [12], but more explicitly in [13] without any assumption of irrationality.
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See also [3] for some 2-dimensional domains with negative curvature. We do not
discuss here the case of “rough” boundaries which was in particular analyzed by
Netrusov et Safarov in [14] (and references therein).

Note that when d D 2, the second term in (20) is

W2.�/ WD � 1

4�
j@�j �1=2: (21)

The Dirichlet (and Neumann) eigenvalues are explicitly given for few domains.
In dimension 2 these domains include the rectangles, the right-angled isosceles
triangle, the equilateral triangle and the hemiequilateral triangle. In these cases,
estimating the counting function amounts to estimating the number of points with
integer coordinates inside some ellipse (these domains are obtained as quotient
of a torus). The estimates which are obtained in this manner are compatible with
Weyl’s two terms asymptotic formula (20)), involving the area of the domain and
the length of it boundary. Similarly, in higher dimensions, one can explicitly
describe the Dirichlet (and Neumann) eigenvalues of the fundamental domains
of crystallographic a�ne Weyl groups, [2]. As far as the asymptotic estimate is
concerned, this is possible because the remainder term in Weyl’s estimate has
order �.d�2/=2C1=.dC1/ for a d -dimensional torus.

Rectangle. Following (and improving) a remark in a course of R. Laugesen [4],
one has a lower bound of N.�/ in the case of the rectangle

R D R.a; b/ WD .0; a�/ � .0; b�/;

which can be expressed in terms of area and perimeter. One can indeed observe
that the area of the intersection of the ellipse

®

.xC1/2

a2 C .yC1/2

b2 < �
¯

with R
C �R

C

is a lower bound for N.�/.
The formula reads

NR.�/ >
1

4�
jRj � � 1

2�
j@Rj

p
� C 1; for � � 1

a2
C 1

b2
: (22)

Here we can observe that the second term is 2 W2.�/, see (21).

Equilateral triangle ([5]). We consider the equilateral triangle with side 1:

NT.�/ �
p

3

4

�

4�
� 3

2�

p
� C 1:

Again we observe that the second term is 2 W2.�/, see (21).
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Right-angled isosceles triangle ([5]). Let B� denote the right-angled isosceles
triangle,

B� D ¹.x; y/ 2 �0; �Œ2j y < xº;

NB.�/ � ��

8
� .4 C

p
2/

p
�

4
� 1

2
:

The cube ([10]). For the cube �0; �Œ 3, we have, for � � 3,

N.�/ >
�

6
�3=2 � 3�

4
� C 3

p
� � 2 � 1:
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Added in proof. We point out the following recent paper. M. van den Berg
and K. Gittins, On the number of Courant-sharp Dirichlet eigenvalues. J. Spectr.
Theory 6 (2016), no. 4, 735–745.

Concerning the Neumann problem, we point out the following recent pa-
per. C. Léna, Pleijel’s nodal domain theorem for Neumann eigenfunctions.
Preprint 2016. arXiv:1609.02331 [math.AP]
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