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1. Introduction

The famous Lidskii formula [11] states the equality between the operator trace of
trace-class operators in Hilbert spaces and the sum of their eigenvalues. Similar
properties can be established in Banach spaces using Grothendieck’s theory of
nuclear operators. The basic ingredient for such an approach is the approximation
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property of the Banach space under consideration. In this paper we describe the
approximation properties and the subsequent Grothendieck–Lidskii formulae for
the traces of operators in weighted mixed-norm and in variable exponent Lebesgue
spaces.

The approximation property is one of the fundamental properties of the ‘ge-
ometry’ of Banach spaces. A particular importance of this property from the
Grothendieck’s viewpoint is that once a Banach space is known to have it, the trace
can be de�ned and consequently the Fredholm’s determinant leading to numerous
further developments. Thus, the topic �nds itself closely related to a wide range of
analysis: spectral analysis, operator theory, functional analysis, harmonic analysis,
PDEs. In particular, nuclearity properties of a given operator allow to obtain in-
formation on the distribution eigenvalues through the use of Grothendieck, König,
Maurey, Retherford, and Johnson inequalities which can be seen as an extension
of the classical Weyl inequality relating sums of eigenvalues and Schatten–von
Neumann norms.

In the paper we present the metric approximation property for three scales of
spaces that are of importance in a broad range of mathematical subjects. First, the
mixed Lebesgue spaces are a basic tool for harmonic analysis and evolution PDEs
(Strichartz estimates). The approximation property of such spaces ([5]) gives rise
to an introduction of spectral methods (following Grothendieck) to a variety of
questions of harmonic analysis and PDEs. A part of the paper is also devoted to the
development of these ideas. Second, Wiener amalgam spaces are a central object
of the time-frequency analysis, another area with links to several mathematical
subjects as well as its applications. Also, the approximation property in the scale
of modulation spaces gives rise to the introduction of spectral analysis to PDEs of
very di�erent type - these spaces become more and more e�ective (compared
to Besov spaces) in many types of PDEs including such PDEs as the Navier-
Stokes equation, e.g. [9]. Finally, we discuss (following [4]) the validity of the
metric approximation property for the variable exponent Lebesgue spaces. In all
the considered spaces a characterisation of nuclear operators is established and
the corresponding Grothendieck–Lidskii formulae for the trace are derived. In
the case of variable exponent Lebesgue spaces on the torus we present su�cient
conditions to ensure the nuclearity of an operator of the form ˛.x/.I � �/� �

2 ,
where ˛ is a suitable function.

Let B1;B2 be Banach spaces and let 0 < r � 1. A linear operator T from B1

into B2 is called r-nuclear if there exist sequences .x0
n/ in B

0
1 and .yn/ in B2 so

that

T x D

1X

nD1

hx; x0
niyn and

1X

nD1

kx0
nkr

B
0
1
kynkr

B2
< 1:
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When r D 1 the notion of nuclear operators agrees with the one of trace class
operators in the setting of Hilbert spaces (B1 D B2 D H ). Grothendieck [8]
proved that the trace Tr.T / is well de�ned for all nuclear operators if and only if
the Banach space B has the approximation property, i.e. for every compact set K

in B and for every � > 0, there exists F 2 F.B/ such that

kx � F xk < �; for all x 2 K;

where F.B/ denotes the space of �nite rank bounded linear operators on B.
If in the de�nition above the operator F satis�es kF k � 1 one says that B pos-
sesses the metric approximation property. In [8] Grothendieck proved that if T is
2
3
-nuclear from B into B, then its trace agrees with the sum of eigenvalues.

The �rst example of a Banach space without the approximation property appeared
in [6]. In [17] Szankowski proved that B.H/ does not have the approximation
property. More recently, these properties have been intensively also investigated
in di�erent scales of function spaces, see e.g. [1], [10], and [12].

2. Mixed-Normed L
p, Modulation and Wiener-Amalgam spaces

The modulation spaces have been intensively investigated in the last decades.
Modulation spaces start �nding numerous applications in various problems in
linear and nonlinear partial di�erential equations, see [14] for a recent survey.
For a suitable weight w on R

2d , 1 � p; q < 1 and a window g 2 S.Rd / the
modulation space M

p;q
w .Rd / consists of the temperate distributions f 2 S

0.Rd /

such that

kf k
M

p;q
w

WD kVgf kL
p;q
w

WD

� Z

Rd

� Z

Rd

jVgf .x; �/jpw.x; �/pdx

� q
p

d�

� 1
q

< 1;

(1)

where Vgf .x; �/ denotes the short-time Fourier transform of f with respect to
g at the point .x; �/. The modulation space M

p;q
w .Rd / endowed with the above

norm becomes a Banach space, independent of g 6D 0. A weight function is a
non-negative, locally integrable function on R

2d . A weight function v on R
2d is

called submultiplicative, if

v.x C y/ � v.x/v.y/ for all x; y 2 R
2d : (2)

A weight function w on R
2d is v-moderate, if

w.x C y/ � v.x/w.y/ for all x; y 2 R
2d : (3)
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In particular the weights of polynomial type play an important role. They are of
the form

vs.x; �/ D .1 C jxj2 C j�j2/s=2: (4)

The vs-moderated weights (for some s) are called polynomially moderated.
We recall the de�nition of weighted mixed-norm Lp spaces. Let .�i ; Si ; �i /,

for i D 1; : : : ; n, be given �-�nite measure spaces. We write x D .x1; : : : ; xn/, and
let P D .p1; : : : ; pn/ a given n-tuple with 1 � pi < 1. We say that 1 � P < 1 if
1 � pi < 1 for all i D 1; : : : ; n. Let w be a strictly positive measurable function.
The norm k � kLP

w
of a measurable function f .x1; : : : ; xn/ on the corresponding

product measure space is de�ned by

kf kLP
w

WD

� Z

�n

� � �

� Z

�2

� Z

�1

jf .x/jp1w.x/d�1.x1/

�p2
p1

d�2.x2/

�p3
p2

� � � d�n.xn/

� 1
pn

:

LP
w -spaces endowed with the k � kLP

w
-norm become Banach spaces and the dual

.LP
w /0 of LP

w is LP 0

w�1 , where P 0 D .p0
1; : : : ; p0

n/. In view of our application to
the modulation spaces Mp;q

w we will consider in particular the case of the index
of the form .P; Q/ D .p1; : : : ; pd ; q1; : : : ; qd / where pi D p; qi D q and �i D R

endowed with the Lebesgue measure. In this case the weight is taken in the form
w D w.x; �/ where x 2 R

d ; � 2 R
d . In the rest of this section we will assume

that the weights w satisfy the following condition for all x 2 �:

w.x1; : : : ; xn/ � w1.x1/ � � � wn.xn/; (5)

where wj is a weight on �j (i.e. a strictly positive locally integrable function). In
particular, the condition holds for polynomially moderate weights onR

n satisfying
for a suitable n-tuple .ˇ1; : : : ; ˇn/ the condition

w.x1; : : : ; xn/ � hx1iˇ1 � � � hxniˇn ; (6)

where hxj i D 1 C jxj j. The following theorem was established in [5].

Theorem 2.1. The weighted mixed-norm spaces LP
w D L

.p1;:::;pn/
w with w satis-

fying (5) have the metric approximation property.

Let us recall now the de�nition of the Wiener amalgam spaces W
p;q
w .Rd /.

There are several de�nitions possible for the spaces Wp;q
w , in particular involving

the short-time Fourier transform similarly to the de�nition of the modulation
spaces in (1). To make an analogy with modulation spaces, we can reformulate
their de�nition (1) in terms of the mixed-normed Lebesgue spaces, by saying that

f 2 M
p;q
w .Rd / () Vgf � w 2 L.p;q/.Rd � R

d /: (7)
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Now, for a function F 2 L1
loc

.R2d /, we denote RF.x; �/ WD F.�; x/: Then we
can de�ne

f 2 W
p;q
w .Rd / () R.Vgf � w/ 2 L.q;p/.Rd � R

d /: (8)

However, for our purposes the following description through the Fourier transform
will be more practical. For a review of di�erent de�nitions we refer to [13]. So, in
what follows, we will always assume that the weights in modulation and Wiener
amalgam spaces are submultiplicative and polynomially moderate (but we do not
need to assume this when talking about weighted mixed-norm LP -spaces) as
in (2)–(4). Then, because of the identity

jVgf .x; �/j D .2�/�d jV Og
Of .�; �x/j;

the Wiener amalgam space W
p;q
w and the modulation spaces are related through

the Fourier transform by the formula

kf k
W

p;q
w

' k Of k
M

q;p
w0

; (9)

where w.x; �/ D w0.�; �x/: As a consequence of Theorem 2.1 we now immedi-
ately obtain:

Corollary 2.2. Let 1 � p; q < 1, and w a submultiplicative polynomially mod-

erate weight. Then M
p;q
w has the metric approximation property. Consequently,

also the Wiener amalgam space W
p;q
w has the metric approximation property.

It was observed by Feichtinger and Gröchenig [7] that the metric approxima-
tion property could be alternatively established for the corresponding sequence
spaces using appropriate atomic decompositions. Thus, Corollary 2.2 implies the
metric approximation property for the sequence spaces arising through the atomic
decompositions of Mp;q

w and W
p;q
w .

In order to formulate a characterisation of r-nuclear operators between two
weighted mixed-norm spaces we will consider 1 � P; Q < 1. The multi-index
P will be associated to the measures �i .i D 1; : : : ; l/ and Q will correspond
to the measures �j .j D 1; : : : ; m/. We will also denote � WD �1 ˝ � � � ˝ �l

and � WD �1 ˝ � � � ˝ �m the corresponding product measures on the product
spaces � D

Ql
iD1 �i ; „ D

Qm
j D1 „j . For a weight w we will denote wP .�/ WD

k1�kLP
w .�/. The additional property (5) will be only required for the formulation

of trace relations.
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De�nition 2.3. Let .�i ;Mi ; �i/ .i D 1; : : : ; l/ be measure spaces and � WD

�1 ˝ � � � ˝ �l the corresponding product measure on � D
Ql

iD1 �i . We will also
call ƒ 2 M WD

Nl
iD1 Mi a box if it is of the form ƒ D

Ql
iD1 ƒi . For a measure

�, a weight w on � and a multi-index P we will say that the triple .�; w; P /

is �-�nite if there exists a family of disjoint boxes �k such that �.�k/ < 1,S1

kD1 �k D � and
wP .�k/ D k1�k kLP

w .�/ < 1:

We can now give a characterisation of r-nuclear operators on weighted mixed-
norm spaces and a trace formula.

Theorem 2.4. Let 0 < r � 1. Let .�i ;Mi ; �i/ .i D 1; : : : ; l/ and .„j ;M0
j ; �j /

.j D 1; : : : ; m/ be measure spaces. Let 1 � P; Q < 1. Let w; zw be

weights on �; „ respectively such that the triples .�; w; P /, .�; zw�1
; Q0/ are

�-�nite. Then T is r-nuclear operator from LP
w .�/ into L

Q

zw
.�/ if and only if

there exist a sequence .gn/ in L
Q

zw
.�/, and a sequence .hn/ in LP 0

w�1.�/ such thatP1

nD1 kgnkr

L
Q

zw
.�/

khnkr

LP 0

w�1
.�/

< 1, and such that for all f 2 LP
w .�/

Tf .x/ D

Z

�

� 1X

nD1

gn.x/hn.y/
�
f .y/d�.y/; for a.e. x:

Moreover, if w D zw satis�es (5), � D �, P D Q and T is r-nuclear in L.LP
w .�//

with r � 2
3
, then

Tr.T / D

1X

j D1

�j ;

where �j .j D 1; 2; : : : / are the eigenvalues of T with multiplicities taken into

account, and

Tr.T / D

1X

j D1

huj ; vj i:

Analogous characterisations of r-nuclear operators can be obtained in the case
of modulation spaces and Wiener-Amalgam spaces (cf. [5]). We now formulate
an application in the case of modulation spaces to the study of functions of the
harmonic oscillator A D �� C jxj2 on R

d , de�ned by

F.�� C jxj2/�j D F.�j /�j ; j D 1; 2; : : : ; (10)

where �j ’s are the eigenvalues of A. We have:
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Theorem 2.5. Let 0 < r � 1, s 2 R and 1 � p; q < 1. The operator

F.�� C jxj2/ is r-nuclear on M
p;q
s .Rd / provided that

1X

j D1

jF.�j /jrk�j kr
M

p;q
s

k�j kr

M
p0;q0

�s

< 1: (11)

Moreover, if (11) holds with r D 1, we have the trace formula

TrF.�� C jxj2/ D

1X

j D1

F.�j /; (12)

with the absolutely convergent series.

3. Variable exponent Lebesgue spaces

The variable exponent Lebesgue spaces are a generalisation of the classical
Lebesgue spaces, replacing the constant exponent p by a variable exponent
function p.x/. The development of the analysis of many problems on those
spaces has been of great interest in the last decades as has been exhibited in
the recent books [3], [2], and the literature therein. We now recall the de�ni-
tion of variable exponent Lebesgue spaces and refer the reader to [3] for the
basic properties of such spaces. Let .�;M; �/ be a �-�nite, complete mea-
sure space. We de�ne P.�; �/ to be the set of all �-measurable functions
pW � ! Œ1; 1�: The functions in P.�; �/ are called variable exponents on �.
We de�ne pC D pC

� WD ess supx2� p.x/; p� D p�
� WD ess infx2� p.x/: If

pC < 1, then p is called a bounded variable exponent. If f W � ! R is a mea-
surable function we de�ne the modular associated with p D p.�/ by

�p.�/.f / WD

Z

�

jf .x/jp.x/d�.x/;

and kf kLp.�/.�/ WD inf¹� > 0W �p.�/.f =�/ � 1º: The resulting spaces Lp.�/.�/ of
measurable functions such that kf kLp.�/.�/ < 1 are Banach spaces and enjoy
many properties similar to the classical Lebesgue Lp spaces. If the variable
exponent p.�/ is bounded the space Lp.�/.�/ is separable and if we denote by p0.�/

the variable exponent de�ned pointwise by 1
p.x/

C 1
p0.x/

D 1; then .Lp.�/.�//0 D

Lp0.�/.�/. Moreover, if 1 < p� � pC < 1 the space Lp.�/.�/ is re�exive. For the
study of the approximation property we will restrict to consider bounded variable
exponents due to the density of the simple functions in Lp.�/ in that case. We can
now state the metric approximation property which was proved in [4]:
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Theorem 3.1. Let p 2 P.�; �/ be a bounded variable exponent. Then, the vari-

able exponent Lebesgue space Lp.�/.�/ has the metric approximation property.

We are now ready to give a characterisation of r-nuclear operators for variable
exponent spaces.

Theorem 3.2. Let .�;M; �/ and .„;M0; �/ be �-�nite complete measure spaces.

Let 0 < r � 1. Then T is r-nuclear operator from Lp.�/.�/ into Lq.�/.�/ if and

only if there exist a sequence .gn/ in Lq.�/.�/, and a sequence .hn/ in Lp0.�/.�/

such that
P1

nD1 kgnkr
Lq.�/.�/

khnkr

Lp0.�/.�/
< 1, and such that for all f 2 Lp.�/.�/

we have

Tf .x/ D

Z

�

� 1X

nD1

gn.x/hn.y/
�
f .y/d�.y/; for a.e. x:

Moreover, if � D „, � D �, p.�/ D q.�/, pC < 1, and T is r-nuclear in

L.Lp.�/.�// with r � 2
3
, then

Tr.T / D

1X

j D1

�j ;

where �j .j D 1; 2; : : : / are the eigenvalues of T on Lp.�/.�/ with multiplicities

taken into account, and

Tr.T / D

1X

nD1

hgn; hni D

Z

�

1X

nD1

gn.x/hn.x/d�:

We denote the n-dimensional torus by T
n D R

n=Zn. Its unitary dual can
be described as cTn ' Z

n, and the collection ¹�k.x/ D e2�ix�kºk2Zn is an
orthonormal basis of L2.Tn/. A corresponding operator is associated to a symbol
�.x; �/ which will be called a periodic pseudo-di�erential operator or the operator
given by the toroidal quantization:

T� f .x/ D
X

�2Zn

e2�ix���.x; �/.FTnf /.�/; (13)

which can also be written as

T� f .x/ D
X

�2Zn

Z

Tn

e2�i.x�y/���.x; �/f .y/dy: (14)
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We refer to [16] for an extensive analysis of such toroidal quantization, and to [15]
for the toroidal background analysis. In the rest of this section we will consider
T

n endowed with the Borel �-algebra and the Lebesgue measure so that we
will just write P.Tn/ to denote the corresponding class of variable exponents.
Given a measurable function ˛ on T

n, we take the symbols ˛.x/ and �.�/,
the corresponding multiplication is the operator denoted by ˛T� given by ˛T�f D

˛�.D/f on T
n.

Corollary 3.3. Let p.�/ 2 P.Tn/. Let 0 < r � 1, ˛ 2 Lp0.�/, and let �.�/ be a

symbol such that X

�2Zn

j�.�/jr < 1:

Then ˛T� is r-nuclear from Lp.�/ to Lq.�/ for all q.�/ 2 P.Tn/. If additionally

pC < 1, r � 2
3
, and q.�/ D p.�/, then ˛T� is r-nuclear in L.Lp.�/.Tn// and

Tr.˛T� / D

Z

Tn

˛.x/dx �
X

�2Zn

�.�/ D

1X

j D1

�j ;

where �j .j D 1; 2; : : : / are the eigenvalues of ˛T� with multiplicities taken into

account.

In particular, let us consider the symbol �.�/ D .1 C 4�2j�j2/� �
2 for � > 0.

The corresponding multiplication yields the operator ˛T� f D ˛.I � �/� �
2 f

on T
n. We observe that

P
�2Zn.1 C 4�2j�j2/� r�

2 < 1 if and only if r� > n.
Consequently we obtain:

Corollary 3.4. Let p.�/ 2 P.Tn/. If 0 < r � 1, ˛ 2 Lp0.�/, and r� > n,

then ˛T� D ˛.I � �/� �
2 is r-nuclear from Lp.�/ to Lq.�/ for all q.�/ 2 P.Tn/.

If additionally pC < 1, r � 2
3
, and q.�/ D p.�/, then ˛.I � �/� �

2 is r-nuclear in

L.Lp.�/.Tn// and

Tr.˛.I � �/� �
2 / D

Z

Tn

˛.x/dx �
X

�2Zn

.1 C 4�2j�j2/� �
2 D

1X

j D1

�j ;

where �j .j D 1; 2; : : : / are the eigenvalues of ˛.I � �/� �
2 on Lp.�/.Tn/ with

multiplicities taken into account.
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