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1. Introduction

In [12, 11], the authors studied spectra and eigenfunctions of conformally covariant

operators on compact manifolds of dimension n � 3. They showed, in particular,

that the number of negative eigenvalues of conformal Laplacian is unbounded on

any such manifold. One of the questions left open in those papers was whether for

a generic Riemannian metric g on a compact n-dimensional manifold M , 0 is an

eigenvalue of the conformal Laplacian Yg WD ��g C cnRg . The operator Yg is

also called the Yamabe operator. Here ��g is the nonnegative-de�nite Laplacian

for the metric g, cn WD .n� 2/=.4.n� 1//, and Rg denotes the scalar curvature of

g. In this paper we address that question.

Our �rst main result is

Theorem 1.1. For generic smooth metrics g onM , zero is not an eigenvalue of Yg .
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It follows from a transformation formula for Yg that if 0 is an eigenvalue of Yg0
,

then it is also an eigenvalue of Yg1
for all metrics g1 in the conformal class Œg0�.

Accordingly, one needs to change conformal class to �nd metrics for which 0 is

not an eigenvalue of Yg .

Also, 0 is an eigenvalue of Yg for conformally scalar �at metrics g, i.e. those

metrics lying in a conformal class Œg0� of a scalar-�at metric g0, such thatRg0
� 0.

The corresponding eigenfunction u is given by u.g0/ � 1, and by a suitable power

of the conformal factor one obtains the eigenfunction for g 2 Œg0�.

It is also clear that 0 is not an eigenvalue of Yg for metrics g with positive scalar

curvature Rg , and hence in the corresponding conformal classes. However, it is

known that some manifolds do not admit metrics with positive scalar curvature,

see [26]. Accordingly, in the current paper we restrict ourselves to metrics lying

in conformal classes of metrics with negative scalar curvature.

Remark 1.2. We remark that our proof of Theorem 1.1 works verbatim to show an

analogous statement for operators Pg;c D �g C cRg , where c 2 R is any constant

satisfying c ¤ 0; c ¤ 1=2.

The crucial result is Proposition 4.1, and the only part of the proof where

the numerical value of c becomes important is the argument after equation (2),

where it is necessary that 2c � 1 ¤ 0, hence c ¤ 1=2. Also, we assume that the

corresponding eigenfunctions are orthogonal to constants, hence we require that

c ¤ 0. Note that, Pg;c is only conformally covariant for c D cn, so for other

values of c an argument using conformal perturbations (as in [9]) should also

work. The case c D 0 corresponds to the very-well studied of eigenvalues of the

Laplacian �g .

Perturbation theory of conformally covariant operators was previously consid-

ered in [10, 30]; see also [29, 14, 15] for the corresponding results for the Dirac

operator. Applications to eigenvalue multiplicity of nonzero eigenvalues were dis-

cussed in [10]; arbitrary eigenvalues were considered in [30], but the question of

whether kerYg is generically empty was not settled. It seems interesting to under-

stand whether 0 is generically a simple eigenvalue of Yg , among those metrics for

which it is an eigenvalue of Yg .

Another question considered in this paper concerns the study of sequence of

metrics gk such that the number of negative eigenvalues of Ygk
increases. Recall

that it was shown in [12] that the results in [28] imply that the number of negative

eigenvalues of Yg can become arbitrarily large for metrics g on any compact

manifold of dimension � 3; thus, it seems natural to ask what is the geometric

signi�cance of the increasing number of negative eigenvalues of Yg .
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In Section 5, we show that a sequence of metrics gk, such that the num-

ber of negative eigenvalues of Ygk
increases, cannot satisfy two natural “pre-

compactness” conditions (see Proposition 5.3).

2. The space of conformal structures

Let M be a compact orientable manifold of dimension n � 3; we denote by M

the space of all Riemannian metrics on M . For simplicity, we only consider C1

metrics on M , although the regularity can be lowered signi�cantly.

De�nition 2.1. Given k � 1, we denote by M0;k the set of all metrics g on M

such that the multiplicity of 0 as an eigenvalue of Yg is at least k.

As we remarked in Section 1, if g0 2 M0;k , then so is every metric g in

the conformal class Œg0�; also that condition is invariant under composition with

di�eomorphisms of M . Consider the action on M of the group P of (pointwise)

conformal transformations (multiplication by positive functions), as well as by

the group D of di�eomorphisms; we shall denote by D0 the subgroup of D of

di�eomorphisms isotopic to identity. It seems natural to consider the Teichmüller
space of conformal structures

T.M/ D
M=P

D0

;

or the Riemannian moduli space of conformal structures

R.M/ D
M=P

D
;

in the terminology of Fischer and Monkrief, [19, 20].1

De�nition 2.2. We denote by T0;k.M/ the Teichmüller space of conformal struc-

tures corresponding to metrics g0 2 M0;k , i.e. the projection of M0;k into T.M/.

The meaning of Theorem 1.1 is the following, and we prove this in Section 4:

Theorem 2.3. The complement Tc0;1 of the set T0;1.M/ in T.M/ is open and dense
in T.M/.

1 If M is an orientable two-dimensional manifold, then T.M/ (resp. R.M/) are the usual

Teichmüller (resp. moduli) spaces. In [20], the space T.M/ for Haken 3-manifolds M of

degree 0 is proposed as a con�guration space for a Hamiltonian reduction of Einstein’s vacuum

�eld equations.
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3. Curves of metrics

Let g0 be a metric onM such that 0 is an eigenvalue of Yg0
with multiplicitym, so,

g0 2 M0;m (recall the de�nition 2.1). We note that it was shown in [2, Lemma 3.4]

that the eigenvalues of Yg depend continuously on g in the C 1-topology (see

also [27]). Thus, M0;m2
is a closed subset of M0;m1

for 0 � m1 < m2, in the

C k topology for any k � 1. Let C!.I�;M0;m/, � > 0 be the space of analytic

curves of metrics g.t/, t 2 I� D .��; �/ in M0;m for m � 1. We would like to

study the space

Tg0
.M0;m/ D ¹h 2 S2.M/W there exists g.t/ 2 C!.I�;M0;m/; � > 0;

with Pg.0/ D hº;

where S2.M/ is the space of symmetric 2-tensors on M .

Denote by E0 the zero eigenspace of Yg0
; it has dimension m. Let …0 denote

the orthogonal projection into E0 with respect to L2.M; dVg0
/. Consider a curve

gt of metrics on M passing through g0 at t D 0; denote the t -derivative by “ : ”.

Let Pg.0/ D h, i.e. g.t/ D g0 C thC o.t/. We denote by Qg0;h the operator

Qg0;h WD …0
PYg D …0.cn PR � P�/WE0 �! E0; (1)

Sometimes when the dependence on the metric g0 is clear, we shall omit the

subscript g0 and simply write Qh.

We have the following:

Proposition 3.1. The space Tg0
.M0;k/ consists of all the tensors

H0;k WD ¹hW 0 is an eigenvalue of Qg0;h of multiplicity � kº:

Proof. We refer to [31, p. 74] and the discussion in [10, §4,5] for basic results about

the perturbation theory of conformally covariant operators; see also [16], where

some important formulas that we use in our argument were derived.

It follows from general theory that for a real–analytic family of self-adjoint

operators ¹Yg.t/º, eigenvalue and eigenfunction branches can be chosen to depend

analytically on the perturbation parameter t , for t small enough, see for example

[5, Lemma 3.15]. Moreover, there is a positive constant � such that, for t small

enough, the number of eigenvalues of Yg.t/ in the interval .��; �/ is equal to m,

where m � k is the multiplicity of 0 for Yg0
; and the eigenvalue derivatives are

equal to the eigenvalues of Qg0;h. In particular, Qg0;h � 0 for any real–analytic

perturbation of g0 when m D k. The result is now immediate from the de�nition

of Tg0
.M0;k/ and H0;k. �
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It is well known (see e.g. [3, 18]) that the tangent space to T.M/ at g0 may be

identi�ed with the space of all transverse traceless symmetric tensors h satisfying

trg0
h D 0; ıh D 0. Clearly, the projection of H0;k into the tangent space of T.M/

at g0, consists of all transverse traceless tensors lying in H0;k .

4. Nullspace of Yg

In this section we prove Theorem 2.3. We keep the notation from Section 3. For

convenience we shall assume that g0 is a Yamabe metric, i.e. that Rg0
� �1.

Theorem 2.3 will follow from the following important result:

Proposition 4.1. There exists a symmetric tensor h such that Qg0;h 6� 0.

We postpone the proof that Proposition 4.1 implies Theorem 2.3 until later.

Proof. Let gt be a curve of metrics real-analytic in t , and  6� 0 be an element of

E0 that belongs to the Rellich basis of gt , i.e.  is an eigenvector of the operator

Qh de�ned in (1).

Di�erentiating the eigenfunction equation

.��C cnR/ D � ;

we �nd that
P� D .�� � �C cnR/ P C .cn PR � P�/ :

It su�ces to show that there exists a metric deformation gt real-analytic in t such

that P� ¤ 0.

Take the inner product (with respect to dVg0
) of both sides with  . Since

.�� � �C cnR/ is self-adjoint, we �nd that

..�� � �C cnR/ P ; / D . P ; .��� �C cnR/ / D 0:

Then
P�. ;  / D ..cn PR � P�/ ; /:

We assume for contradiction that P� D 0 for any analytic perturbation gt , i.e.

that (1) is identically zero for any analytic perturbation gt .

We next give the expressions for P� and PR. We need to recall some notation. Let

C1.˝rT �M/ be the space of .r; 0/-tensors onM , andC1.M/ D C1.˝0T �M/.

We consider the covariant derivative

rWC1.˝rT �M/ �! C1.˝rC1T �M/;
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which in local coordinates is given by

r˛ D
X

i

ri˛ ˝ dxi :

Notice that d D rWC1.M/ ! C1.T �M/: We denote the formal adjoint of r
by

ıWC1.˝rC1T �M/ �! C1.˝rT �M/;

i.e. for every ˛ 2 C1.˝rT �M/ and ˇ 2 C1.˝rC1T �M/; .r˛; ˇ/ D .˛; ıˇ/.

Here, .�; �/ D
R

M h�; �i, where h�; �i is the pointwise inner product. We can now recall

the expressions for P� and PR computed in [16, (2.5) and (2.6)], see also [4, 5]. They

are,
PR D �hh;Rici C ı2h ��trh;

and

P�f D �hh;r2f i C
D

ıhC
1

2
d trh; df

E

;

where r2f is the Hessian of f , and ı2 is the formal adjoint of the Hessian. Recall

the pointwise inner product on C1.˝2T �M/ is

h˛; ˇi D
X

i;j

˛ijˇij I

in particular, trgh D hg; hi. We know a priori that the only metric deformations

that will change the eigenvalue 0, are transverse traceless deformations h of g.

However, we shall only insist that h is traceless, and so trgh � 0. Then the

previous expressions simplify to

PR D �hh;Rici C ı2h

and
P�f D �hh;r2f i C hıh; df i:

Let A WD P�. ;  /. Combining the above expressions, we �nd that

A D .hh;r2 � cn Rici � hıh; d i C cn ı
2h;  /

D .h;  r2 / � cn.h;  
2Ric/ � .h;r. d //C cn. ı

2h;  /

D .h;  r2 / � cn.h;  
2Ric/ � .h;  r2 / � .h; d ˝ d /C cn. ı

2h;  /

D �.h; cn 
2Ric/ � .h; d ˝ d /C .ı2h; cn 

2/

D

Z

M

hh; cn.r
2 2 �  2Ric/ � d ˝ d i

D

Z

M

hh; cn .2r
2 �  Ric/C .2cn � 1/d ˝ d i:



Zero and negative eigenvalues 799

To get the last equality, we use the identity r2 2 D 2. r2 C d ˝ d /.

Using the assumption that trgh D hg; hi D 0, we �nd that

A D

Z

M

hh; cn .2 Vr2 �  2 VRic/C .2cn � 1/.d ˝ d /oi;

where VV D V � 1
n
trgVg is the traceless part of the corresponding expression V .

Putting h D cn .2 Vr2 � 2 VRic/C.2cn�1/.d ˝d /o (which is symmetric

and traceless), we �nd that A D 0 if and only if

cn .2 Vr2 �  2 VRic/C .2cn � 1/.d ˝ d /o � 0: (2)

We next remark that equation (2) has no non-trivial solutions. Indeed, take g0

to be the Yamabe metric; recall we assume that Rg0
� �1. By assumption  g0

is an eigenfunction of �g0
with eigenvalue cn, hence it is L2-orthogonal to the

constant function, and changes sign on M . Let N. / denote the nodal set of  .

The term cn .2 Vr2 �  2 VRic/ vanishes on N. /, so it follows from (2) that

.d ˝ d /o � 0;

on N. /. This is equivalent to

d ˝ d D
1

n
jd j2g � g

Now, the right-hand side has rank n whenever jd jg ¤ 0. On the other hand, the

left-hand side has rank � 1. The only way the equality is possible if both side are

identically zero on N. /, i.e. if

d 
ˇ

ˇ

N. / � 0: (3)

However, it is well known (see e.g. [13, 23, 25, 24]) that the intersection of the

nodal and critical sets of  has locally �nite Hausdor� .n � 2/-dimensional

measure, and so (3) is impossible for non-zero  . This contradiction �nishes

the proof of Proposition 4.1. �

An immediate consequence of the proof of Proposition 4.1 and Proposition 3.1

is the following corollary.

Corollary 4.2. Let g0 be a Yamabe metric onM , g0 2 M0;m.M/\M0;mC1.M/c :

Let h D cn .2 Vr2 �  2 VRic/ C .2cn � 1/.d ˝ d /o, where  D  g0

is a nonzero eigenfunction of Yg0
with eigenvalue 0. Consider the perturbation

g.t/ D g0 C th. Then for every � > 0, there exists jt j � � such that g.t/ 2 M
c
0;m.
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To complete the proof of Theorem 2.3, we need to prove the following

Claim 4.3. Proposition 4.1 implies Theorem 2.3.

Proof. Since T0;1.M/ is a closed subspace of T.M/, its complement T0;1.M/c is

clearly open in T.M/. We thus need to show that T0;1.M/c is dense in T.M/.

We shall show that M0;1.M/c is dense in M.M/. Let g0 be a metric on M .

It su�ces to show that M0;1.M/c is dense in some neighbourhood U of g0 in

M.M/. If g0 2 M0;1.M/c , we are done, so we can assume that g0 2 M0;1.M/.

The proof proceeds by induction on the dimension m of E0. We note that m

is �nite for any g0, and that Corollary 4.2 was proved for arbitrary m. First, let

m D 1, meaning 0 is a simple eigenvalue of Yg0
. By Corollary 4.2, we know that

one can choose a curve of metrics g.t/, real analytic in t , such that g.0/ D g0 and

g.t/ … M0;1 for arbitrary small2 t . Hence, the proof in case m D 1 is complete.

Next, assume that we have shown that M0;1.M/c is dense in any neighborhood

U of any metric g0 2 M0;1.M/ such that zero is an eigenvalue of Yg0
with the

multiplicity at most m � 1; we would like to prove the corresponding statement

for a metric g0 such that 0 is an eigenvalue of Yg0
with multiplicity exactly m.

By Corollary 4.2, there exists a small perturbation that decreases the multiplicity

m of 0 as an eigenvalue of Yg . By the inductive hypothesis, it follows that for any

neighborhoodU of g0, there exists a metric g1 2 U; such that 0 is an eigenvalue of

Yg1
with multiplicity � m� 1, and in a suitable neighborhood V of g1 (which can

be chosen to satisfy V � U ), have a nonempty intersection with M0;1.M/c . This

completes the proof of the Claim 4.3, and hence also of Theorems 2.3 and 1.1. �

5. Negative eigenvalues of the conformal Laplacian

In [12, 11, 17] the authors showed that the number of negative eigenvalues of

the conformal Laplacian cannot be uniformly bounded above on any compact

manifold M of dimension n � 3. Accordingly, it seems interesting to consider

sequences of metrics gk on M where the number of negative eigenvalues of

Ygk
D ��gk

C cnRgk
is growing.

It is known that the set of metrics gk on a manifold M of dimension n � 3 is

pre-compact in Gromov-Hausdor� topology if it satis�es either Condition 5.1 or

Condition 5.2 below:

2 It will then follow that (in the notation of [32]), the space of conformal structures corre-

sponding to metrics in M0;1 is of meager codimension 1 in the space of all conformal structures;

we leave the details of the argument to the reader.



Zero and negative eigenvalues 801

Condition 5.1. The volume Vol.M; gk/ � V < 1 is bounded above; the
injectivity radius inj.M; gk/ � r > 0 is bounded from below; the Ricci curvature
Ric.M; gk/ � �a2 is bounded from below.

Condition 5.2. The diameter diam.M; gk/ � D < 1 is bounded above; the Ricci
curvature Ric.M; gk/ � �a2 is bounded from below.

Consider a sequence of metrics Qgk on a �xed Riemannian manifold such

that the number of negative eigenvalues of the conformal Laplacian Y Qgk
goes to

in�nity. It is natural to choose a unique Yamabe representative gk in the conformal

class Œ Qgk �; the scalar curvature of gk is constant and equal to �1; the number of

negative eigenvalues of Ygk
and Y Qgk

are equal.

Proposition 5.3. The sequence gk cannot satisfy the pre-compactness Condi-
tion 5.1; nor can it satisfy the Condition 5.2.

Proof. The result follows from [7, Thm. 6.2] and [22, Appendix C]. Indeed,

since gk is Yamabe, the number of negative eigenvalues of Ygk
is equal to the

number N
�

n�2
4.n�1/

I gk
�

of eigenvalues of the Laplacian ��gk
that are less than

.n � 2/=.4.n � 1//. Assuming gk satis�es 5.1, it follows from [7, Theorem 6.2]

that N
�

n�2
4.n�1/

I gk
�

� C1 < 1 where the constant C1 only depends on V; r; n; ı.

Similarly, assuming gk satis�es Condition 5.2, it follows from Gromov’s result

in [22, Appendix C] that N
�

n�2
4.n�1/

I gk
�

� C2 < 1 where the constant C2 only

depends on D; n; a. These contradict the assumption on the number of negative

eigenvalues of Ygk
. �

Proposition 5.3 shows that sequences of metrics with increasing number of

negative eigenvalues of Ygk
cannot stay in the “thick” part of M satisfying natural

pre-compactness Conditions 5.1 or 5.2, and thus we cannot use those conditions to

choose a convergent subsequence of metrics. On the other hand, we remark that on

certain high-dimensional manifolds (cf. [21]) there exist in�nitely many connected

components of the set of metrics with positive scalar curvature. Accordingly, the

sequence of metrics can diverge but the number of negative eigenvalues of Y can

stay equal to 0.

5.1. Example: product of a surface with another manifold. We consider

(a slight modi�cation of) one of the examples discussed in [12, §4]. Let M

be a manifold of dimension d � 2, and let † be a Riemann surface of genus

 � 2. Assume that M admits a metric with positive scalar curvature, and

�x a Yamabe metric G on M with scalar curvature RG > 0. Fix a positive �.
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By a result of Buser [6, Theorem 4], for every k � 1, there exists a hyperbolic

metric hk on† such that the hyperbolic Laplacian ��hk
has at least k eigenvalues

in the interval .1=4; 1=4 C �/. Choose k of those eigenvalues and denote them

by 1=4 < �k;1 � �k;2 � � � � � �k;k < 1=4 C �. Denote the corresponding

eigenfunctions by uk;j ; 1 � j � k.

Consider the product metric gk WD .G˝t�1hk/ onM�†, where t is a positive

constant to be chosen later. It is easy to show that the scalar curvature of gk is equal

to RG � 2t for all k (the Gauss curvature of .†; hk/ is equal to �1). If we choose

t > RG=2; (4)

then the scalar curvature of gk will be negative.

Denote the coordinates on M �† by .x; y/. Then the conformal Laplacian is

given by

Ygk
D ��G;x � t�hk;y C

d

4.d C 1/
.RG � 2t/:

It follows that

Ygk
uj;k D

�

t�j;k C
d.RG � 2t/

4.d C 1/

�

uj;k :

We would like to choose t so that the eigenvalues t�j;kC d.RG�2t/
4.dC1/

are all negative.

Since �j;k < 1=4C � by assumption on hk, it su�ces to choose t so that

d.2t �RG/

4t.d C 1/
>
1

4
C �:

This can be rewritten as

� d

d C 1

�

.1�RG=2t/ > 1=2C 2�:

A straightforward calculation shows that this is equivalent to choosing

t < RG �
d

d � 1� 4�.d C 1/
: (5)

The inequalities (4) and (5) are compatible provided d=.d �1�4�.dC1// > 1=2,
which is easy to achieve by choosing � small enough. It follows that the functions

uj;k.y/ will be eigenfunctions of Ygk
with negative eigenvalues.

After rescaling gk by .2t � RG/, we can make the scalar curvature

Rgk
� �1. Note that the rescaling does not depend on k. It is well known that

as the number of eigenvalues of ��hk
in .1=4; 1=4C �/ increases, the injectivity

radius of the metric hk goes to 0, and hk leaves the “thick” part of the moduli
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space M of the hyperbolic metrics3 on †: Accordingly, the injectivity radius of

.M � †; gk=.2t � RG// also goes to 0. The moduli space M can be compacti-

�ed by adding surfaces with cusps; the sequence hk will then have a convergent

subsequence in M , and the sequence .M � †; gk=.2t � RG// will also have a

convergent subsequence.

It seems interesting to better understand under what circumstances a sequence

of metrics gk , with increasing number of negative eigenvalues of Ygk
, can be

made to converge in a suitable completion of the moduli spaceR.M/ of conformal

structures on M .
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