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Abstract. We consider arbitrary open sets � in Euclidean space with �nite Lebesgue

measure, and obtain upper bounds for (i) the largest Courant-sharp Dirichlet eigenvalue

of �, (ii) the number of Courant-sharp Dirichlet eigenvalues of �. This extends recent

results of P. Bérard and B. Hel�er.
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1. Introduction

Let � be an open set in Euclidean space Rm with �nite Lebesgue measure j�j and

boundary @�. We denote the spectrum of the Dirichlet Laplacian acting in L2.�/

by �1.�/ � �2.�/ � �3.�/ � � � � taking the multiplicities of these eigenvalues

into account. We de�ne the counting function for � by

N�.�/ D ]¹n 2 NW �n.�/ < �º:

Weyl’s law asserts that

N�.�/ D !m

.2�/m
j�j�m=2 C o.�m=2/; � ! 1; (1)

where !m is the measure of a ball Bm with radius 1 in R
m. We refer to Theorem 2

in [16] for a proof of (1) in this generality. For a proof of Weyl’s law with a
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non-trivial remainder estimate for � open, bounded and connected we refer to
Theorem 1.8 in [12].

Let ¹'1;�; '2;�; : : : º be an orthonormal basis in the Sobolev space H 1
0 .�/ of

eigenfunctions corresponding to the Dirichlet eigenvalues. These eigenfunctions
satisfy the Dirichlet boundary conditions in the usual trace sense. Let �.'n;�/

denote the number of nodal domains of 'n;�. Then Pleijel’s theorem ([13]) states
that

lim sup
n!1

�.'n;�/

n
� 
m;

where


m D .2�/m

!2
m

.�1.Bm//�m=2 < 1: (2)

It is known that Pleijel’s bound is not sharp. See [7], [18], and [14].
We say that �n.�/ is Courant-sharp if �.'n;�/ D n: Courant’s nodal domain

theorem asserts that �.'n;�/ � n. Courant’s original proof in [8] was for the planar
case. This has been subsequently stated and proved in a Riemannian manifold
setting in [3]. See also [13]. Pleijel’s theorem implies that for a given � the number
of Courant-sharp Dirichlet eigenvalues is �nite. Using results of [6] and [17],
Bérard and Hel�er, [1], obtained an upper bound for the largest Courant-sharp
Dirichlet eigenvalue if � is bounded and has smooth boundary @�.

This paper concerns arbitrary open sets in R
m with �nite Lebesgue measure.

The proofs of Courant’s theorem in [8], [13], and [3] all use the fact that a restriction
of an eigenfunction to a nodal domain U is the �rst Dirichlet eigenfunction on U .
This is immediate if .@�/ \ .@U / is su�ciently regular. The above fact holds
without that regularity requirement. See for example Theorem 1.1 in [9].

Our main result, Theorem 1 below, is for open sets � in R
m with �nite

Lebesgue measure. We obtain (i) an upper bound for the largest Dirichlet eigen-
value of � which is Courant-sharp, and (ii) an upper bound for the number of
Courant-sharp eigenvalues of �. For A � R

m; A ¤ ; let

d.x; A/ D inf¹jx � yjW y 2 Aº:

For � � 0 and j�j < 1 we de�ne

��.�/ D j¹x 2 �W d.x; @�/ < �ºj;

and
�.�/ D inf¹�W ��.�/ � 2�1.1 � 
m/j�jº: (3)

We denote the number of Courant-sharp eigenvalues of � by C.�/.
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Theorem 1. Let � be an open set in R
m with �nite Lebesgue measure. We have

the following.

(i) If �n.�/ is Courant-sharp, then

�n.�/ �
� 2�m2

.1 � 
m/�.�/

�2

: (4)

(ii)

C.�/ � !m

.1 � 
m/m
.m3.m C 2//m=2 j�j

�.�/m
: (5)

(iii) If n 2 N; n > !m

.1�
m/m .m3.m C 2//m=2 j�j
�.�/m ; then �n.�/ is not Courant-

sharp.

In Section 2 below we prove Theorem 1. In Section 3 we analyse some
examples including the von Koch snow�ake.

2. Proof of Theorem 1

Suppose �n.�/ is Courant-sharp with eigenfunction 'n;�. Let U1; : : : ; Un be the
nodal domains of 'n;� so that �n.�/ D �1.U1/ D � � � D �1.Un/. Without loss of
generality we may assume that jU1j � jU2j � � � � � jUnj. Hence jU1j � j�j=n.
By Faber–Krahn we have that

�n.�/ D �1.U1/ � �1.Bm/
�n!m

j�j

�2=m

:

It follows that, since �n�1.�/ < �n.�/,

.�n.�//m=2 � .�1.Bm//m=2 n!m

j�j

� .�1.Bm//m=2 !m

j�j.n � 1/

D .�1.Bm//m=2 !m

j�jN�.�n.�//:

This gives that

!m

.2�/m
.1 � 
m/j�j.�n.�//m=2 � R�.�n.�//; (6)

where R�WRC ! R is de�ned by

R�.�/ D !m

.2�/m
j�j�m=2 � N�.�/: (7)
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See (15) and (16) in [1]. Below we obtain an upper bound for R�.�/. Let � > 0 be
arbitrary. Consider the collection M� of open cubes of measure �m with vertices
in the set of m-tuples ¹Z�; : : : ;Z�º. Let M�.�/ be the number of open cubes of
side-length � in M� which are contained in �,

M�.�/ D ]¹N 2 M�W N � �º:

We have that

j�j � M�.�/�m � 0: (8)

In order to obtain an upper bound for the left hand-side of (8), we let x 2 �. If
d.x; @�/ > m1=2�, then x belongs to an open �-cube inM� contained in �. Hence
the measure of the set which is not covered by the �-cubes in M� that are entirely
contained in � is bounded from above by ��.m1=2�/. So

j�j � M�.�/�m � ��.m1=2�/: (9)

By Dirichlet bracketing (see [15]), we have that

N�.�/ � M�.�/NC�
.�/; (10)

where C� is an open cube in R
m with side-length �. The following standard

estimate is attributed to Gauss:

NC�
.�/ D ]

°

.k1; : : : ; km/ 2 N
mW

m
X

iD1

k2
i < ��2�2�

±

� !m

2m
.��1��1=2 � m1=2/m

C

� !m

.2�/m
�m�m=2

�

1 � �m3=2

��1=2

�

; (11)

where C denotes the positive part. By (10) and (11),

N�.�/ � M�.�/NC�
.�/

� M�.�/
!m

.2�/m
�m�m=2 � M�.�/

!m

.2�/m
�m3=2�m�1�.m�1/=2

D !m

.2�/m
j�j�m=2 � .j�j � M�.�/�m/

!m

.2�/m
�m=2

� M�.�/
!m

.2�/m
�m3=2�m�1�.m�1/=2: (12)
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We bound the second and third terms in the right hand-side of (12), using (9)

and (8) respectively. This then gives, by (7), that

R�.�/ � !m

.2�/m
��.m1=2�/�m=2 C �m3=2!m

.2�/m

j�j�.m�1/=2

�
: (13)

By (6) and (13) we have that if �n.�/ is Courant-sharp, then

!m

.2�/m
.1 � 
m/j�j.�n.�//m=2 � !m

.2�/m
��.m1=2�/.�n.�//m=2

C �m3=2!m

.2�/m

j�j.�n.�//.m�1/=2

�
: (14)

We now choose � such that the second term in the right hand-side of (14) equals
half of the left hand-side of (14). That is

� D 2�m3=2.1 � 
m/�1.�n.�//�1=2: (15)

By (14) and the choice of � in (15) we have that if �n.�/ is Courant-sharp, then

2�1.1 � 
m/j�j � ��.2�m2.1 � 
m/�1.�n.�//�1=2/: (16)

Since � 7! ��.�/ is continuous and onto Œ0; j�j�, the in�mum in (3) is over a
non-empty set which is bounded from below and therefore exists. So if �n.�/

is Courant-sharp, then, by (3) and (16), 2�m2

.1�
m/.�n.�//1=2 � �.�/. This proves
Theorem 1(i).

By [11], we also have that

�n.�/ � m

m C 2

.2�/2

!
2=m
m

� n

j�j

�2=m

: (17)

This, together with (4), implies (5) and proves Theorem 1(ii).
To prove Theorem 1(iii) we just note that by (17),

max
°

n 2 NW �n.�/ �
� 2�m2

.1 � 
m/�.�/

�2±

� !m

.1 � 
m/m
.m3.m C 2//m=2 j�j

�.�/m
:

�

We note that if we were to use the lower bounds for the counting function from
Section 2 in [6], then we would have to assume a weak integrability condition on
�� of the form

R

��1 d��.�/ < 1. Such an integrability condition may fail if the
interior Minkowski dimension of @� is equal to m. The procedure above avoids
this integrability condition.
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3. Examples

In this section we analyse three examples where explicit computations seem out
of reach.

Example 1. Let � be an open, bounded, convex set in R
m. Let Hm�1.@�/ denote

the .m � 1/-dimensional Hausdor� measure of @�. Then

C.�/ � !m

.1 � 
m/2m
.4m3.m C 2//m=2 .Hm�1.@�//m

j�jm�1
: (18)

Proof. By convexity of �, we have that

��.�/ � H
m�1.@�/�:

By (3),

�.�/ � 2�1.1 � 
m/
j�j

Hm�1.@�/
; (19)

and (18) follows from Theorem 1 and (19). �

It was shown in [10] that only the �rst, second and fourth Dirichlet eigenvalues
for B2 are Courant-sharp. Hence C.B2/ D 3; and the largest Courant-sharp
eigenvalue for B2 is equal to j 2

0;2. Here j0;2 � 5:520:: is the second positive
zero of the Bessel function J0. A straightforward computation using (4) and (19)

shows that the largest Courant-sharp eigenvalue of B2 is strictly less than 1:2 �106.
This compares well with the bound 7:1�106 obtained in [1]. For the unit square C2 it
is known ([13] and [2]) that only the �rst, second and fourth Dirichlet eigenvalues
are Courant-sharp. Hence C.C2/ D 3; and the largest Courant-sharp eigenvalue
for C2 is equal to 8�2. Using (4) and (19), we have that the largest Courant-sharp
eigenvalue of the unit square is strictly less than 4:5�106; whereas [1] gives a bound
5:9 �106: These examples illustrate that the bounds obtained in Theorem 1 are very
crude.

The second example is a von Koch snow�ake K with similarity ratio 1
3
.

We recall its construction. Let the basic square (generation 0) in K have side-
length 1. The �rst generation consists of 4 squares with side-length 1

3
each

attached symmetrically to the basic square. Proceeding inductively we have that
the j ’th generation in K, j 2 N, consists of 4 � 5j �1 squares with side-length 3�j .
We let K be the interior of its closure. Then K is connected, has Lebesgue measure
jKj D 2, and both the Hausdor� dimension of @K and the interior Minkowski
dimension of @K are equal to log 5= log 3: See Figure 1, and [4] for further details.
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Figure 1. The �rst two generations of K

Example 2. Let K be the von Koch snow�ake generated by the unit square and
similarity ratio 1

3
. Then

C.K/ � 15 � 107: (20)

Proof. By Theorem 1, (2), and jKj D 2, we �nd that

C.K/ � 64�j 4
0

.j 2
0 � 4/2

�.K/�2; (21)

where we have used that

�1.B2/ D j 2
0 ;

where j0 D 2:405::: is the �rst positive zero of the Bessel function J0. It remains
to �nd a lower bound for �.K/. We obtain an upper bound for ��.�/ by adding
all edges between squares of di�erent generations. This gives a disjoint union of
1 unit square and 4 � 5j �1 squares with side-lengths 3�j ; j 2 N. Let � < 1

18
, and

let J 2 N be such that

J <
log

�

1
2�

�

log 3
� J C 1:
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Then J � 2. The contribution to the upper bound for ��.�/ from the squares in
generations 1; : : : ; J � 1 is bounded from above by

�

4 C 16

J �1
X

j D1

5j �13�j
�

� � 24�

5

�5

3

�J

� 48

5
2

�
log 5

log 3 �
2�

log 5

log 3 : (22)

The �rst term in the left-hand side above is the contribution from the unit square.
The contribution to the upper bound for ��.�/ from the squares in generations
J; J C 1; : : : is bounded from above by

X

j �J

4 � 5j �19�j D
�5

9

�J �1

� 36

5
2

�
log 5

log 3 �
2�

log 5

log 3 : (23)

We recognise the interior Minkowski dimension log 5

log 3
of @K. By (22) and (23), we

have that

��.�/ � 84

5
2

�
log 5

log 3 �
2�

log 5

log 3 ; 0 < � <
1

18
:

Solving the equation
84

5
2

�
log 5

log 3 �
2�

log 5

log 3 D 1 � 4

j 2
0

gives that
�.K/ � 0:00379: (24)

The bound of (20) follows by (21) and (24). �

Below we construct an open set Ds � R
3. Let Q0 � R

3 be an open cube
of side-length 1. Let 0 < s �

p
2 � 1. Attach a regular open cube Q1;i of side-

length s to the centre c1;i ; i D 1; : : : ; 6; of each face of @Q0, and such that all the
faces are pairwise-parallel. Now proceed by induction. For j D 2; 3; : : : ; attach
N.j / D 6 � 5j �1 open cubes Qj;1; : : : ; Qj;N.j /; of side-length sj to the centres
of the boundary faces of the cubes Qj �1;1; : : : ; Qj �1;N.j �1/, again with pairwise-
parallel faces. We de�ne the polyhedron Ds as

Ds D interior
°

Q0 [
h

[

j �1

[

1�i�N.j /

Qj;i

i±

:

See Figure 2. We note that for 0 < s �
p

2 � 1 no cubes in the construction of Ds

overlap.
The asymptotic behaviour of the heat content of Ds in R

3 for small time was
analysed in [5]. Here we have the following.
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Figure 2. The �rst two generations of Ds with s D 1
3
.

Example 3. Let s 2 .0;
p

2 � 1�, and let Ds be the polyhedron in R
3 de�ned

above. Then
C.Ds/ � 25 � 1010: (25)

Proof. We have that

jDsj D 1 C s3

1 � 5s3
;

and that the two-dimensional Hausdor� measure of the boundary is given by

H
2.@Ds/ D 6

� 1 � s2

1 � 5s2

�

:

By Theorem 1, we have that

C.Ds/ � 36.15/3=2�
�

1 � 9

2�2

��3 jDsj
�.Ds/3

; (26)

where we have used that
�1.B3/ D j 2

1=2 D �2;

where j1=2 D � is the �rst positive zero of the Bessel function J1=2. We obtain an
upper bound for ��.�/ by adding all faces between cubes of di�erent generations.
This gives a disjoint union of 1 unit cube and 6 � 5j �1 cubes of side-length
sj ; j 2 N. Hence

��.�/ �
�

6 C 36

1
X

j D1

5j �1s2j
�

� D 6.1 C s2/

1 � 5s2
�: (27)
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By (3) and (27), we have that

�.Ds/ � 1

12

�

1 � 9

2�2

�1 � 5s2

1 C s2
jDsj: (28)

Finally by (26), (28), the fact that 0 < s �
p

2 � 1, and jDsj � 1, we obtain that

C.Ds/ � 6.12/4.15/3=2.140 C 99
p

2/�
�

1 � 9

2�2

��6

:

This implies (25). �
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