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1. Statements and discussion

1.1. Notation and preliminaries. Let .M; g/ be a compact n-dimensional Rie-

mannian manifold with or without boundary, and let

0 D �0.g/ < �1.g/ 6 �2.g/ 6 � � � 6 �k.g/ 6 � � �

be the eigenvalues of the Laplace–Beltrami operator on M . If the boundary

@M is non-empty we assume for now that the Neumann boundary conditions are

imposed. Later we also consider the Dirichlet eigenvalue problem; its eigenvalues

are denoted by �k.g/. Recall that the eigenvalue counting function Ng.�/ is

de�ned for any � > 0 as the number of Laplace eigenvalues, counted with

multiplicity, that are strictly less than �. By celebrated Weyl’s law the counting

function satis�es the following asymptotics:

Ng .�/ � !n

.2�/n
Volg.M/�n=2 as � ! C1; (1.1)
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where Volg.M/ is the volume of M and !n is the volume of a unit ball in the

Euclidean space Rn, see [34] for the re�ned asymptotics and other developments

in the subject. By mk.g/ we denote the multiplicity of the kth eigenvalue �k.g/.

Clearly, we have mk.g/ D Ng.�k C 0/ � Ng .�k/, and hence, mk.g/ D o.�
n=2

k
/ as

k ! C1.

The purpose of this paper is three-fold. First, we revisit classical lower bounds

for Laplace eigenvalues on closed Riemannian manifolds due to Gromov and

Buser, and give an alternative uni�ed approach to these statements. It avoids

delicate isoperimetric arguments used in the original proofs, and uses only the

Neumann–Poincaré inequality and geometric estimates for the cardinality of cer-

tain coverings. The advantage of our argument is that it carries over directly to

the boundary value problems for geodesically convex domains, and yields rather

explicit eigenvalue bounds, which appear to be new. Next, we turn our attention

to the eigenvalue upper bounds originally obtained by Cheng and Buser on closed

manifolds. Some of their versions for boundary value problems also appear to be

missing in the literature, and we �ll this gap by presenting such results. Finally,

we discuss eigenvalue multiplicity bounds on Riemannian manifolds, showing, for

example, that for geodesically convex compact domains in complete manifolds of

non-negative Ricci curvature the multiplicities mk.g/ of Neumann eigenvalues are

bounded in terms of the dimension and the index k only. We end Section 1 with a

few related open problems. Section 2 contains the necessary background material,

and the proofs of lower and upper eigenvalue bounds appear in Sections 3 and 4

respectively.

1.2. Lower eigenvalue bounds: Gromov and Buser revisited. Let M be a

closed manifold of non-negative Ricci curvature. A classical result by Li and

Yau [28] says that the �rst Laplace eigenvalue �1.g/ of M satis�es the inequality

�1.g/ > �2=.4d 2/, where d is the diameter of M . Later it has been improved by

Zhong and Yang [38] to the estimate �1.g/ > �2=d 2. For more general closed

manifolds the following inequalities for all Laplace eigenvalues hold.

Theorem 1.1. Let .M; g/ be a closed Riemannian manifold whose Ricci curvature
satis�es the bound Ricci > �.n � 1/�, where � > 0. Then there exist constants
Ci , i D 1; : : : ; 3, depending on the dimension n of M only, such that

�k.g/ > C
1Cd

p
�

1 d �2k2=n for any k > 1; (1.2)

and

�k.g/ > C2 Volg.M/�2=nk2=n for any k > 3C3 Volg.M/ max¹�n=2; inj�nº;
(1.3)

where d and inj are the diameter and the injectivity radius of M respectively.
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Inequality (1.2) is due to Gromov [21, Appendix C]. Motivated by Weyl’s

law (1.1), he also poses a question whether there is an asymptotically sharp lower

bound in terms of volume. This question has been answered by Buser who proved

inequality (1.3), which however has been stated in [6, Theorem 6.2] in a slightly

di�erent form. Note that the hypothesis on the index k in (1.3) is necessary: for

any given integer k no geometry-free lower bound for the renormalised eigen-

value �k.g/ Volg .M/2=n can hold. Indeed, the standard examples of manifolds

with long necks (the connected sums of the so-called Cheeger dumbbells) show

that there are sequences of metrics whose kth renormalised eigenvalues converge

to zero. Moreover, as the examples of long thin �at tori show, the appearance of the

injectivity radius in the hypothesis on the index k also can not be easily removed.

A number of related eigenvalue bounds have also been obtained by Li and

Yau [28], and Donnelly and Li [19].

Both arguments by Gromov and Buser use methods based on isoperimetric

inequalities: in the former case it is the circle of ideas around Levy’s isoperimetric

inequality, and in the latter – the estimate for the Cheeger constant. The lower

eigenvalue bounds above can be re-written in the form of upper bounds for the

counting function Ng .�/. In particular, Gromov’s bound (1.2) is equivalent to the

inequality

Ng.�/ 6 max¹C 1Cd
p

�
4 d n�n=2; 1º for any � > 0; (1.4)

and Buser’s inequality (1.3) is a consequence of

Ng.�/ 6 C3 Volg.M/.�n=2 C �n=2 C inj�n/ for any � > 0: (1.5)

In Section 3 we give a rather direct argument for the inequalities (1.4) and (1.5)

that allows to bound the values of the counting function via the cardinality of an

appropriate covering by metric balls, and avoids using isoperimetric inequalities

as in [6, 21]. We also obtain versions of these inequalities for boundary value

problems, which we discuss now.

Suppose that .M; g/ is a complete Riemannian manifold whose Ricci curvature

is bounded below Ricci > �.n � 1/�, where � > 0, and � � M is a compact

domain with a Lipschitz boundary. Recall that a domain with a smooth boundary

is said to satisfy the interior rolling ı-ball condition if for any x 2 @� there exists

a ball B of radius ı contained in � that touches the boundary @� at the point x,

that is B � � and B \ @� D ¹xº. We de�ne the maximal radius rad.�/ of an

interior rolling ball as the supremum of ı > 0 such that � satis�es the interior

rolling ı-ball condition; equivalently, it can be de�ned as

rad.�/ D inf
x2@�

sup¹r > 0W there exists B.z; r/ � � tangent to @� at xº:
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Finally, below by the injectivity radius inj.�/ of a domain � � M we mean the

in�mum of the injectivity radii inj.p/ of the ambient manifold M as the point p

ranges over �.

The following theorem is a version of the Gromov and Buser eigenvalue

bounds for the Neumann eigenvalue problem. For the convenience of future

references we state it in the form of upper bounds for the counting function.

Theorem 1.2. Let .M; g/ be a complete Riemannian manifold whose Ricci cur-
vature is bounded below Ricci > �.n � 1/�, where � > 0, and � � M be a
geodesically convex precompact domain with Lipschitz boundary. Then the count-
ing function for the Neumann eigenvalue problem on � satis�es inequality (1.4),
and hence the eigenvalues satisfy inequality (1.2), with d D d.�/ being the diam-
eter of the domain. In addition, if the boundary of � is smooth, then the counting
function Ng .�/ also satis�es the inequality

Ng .�/ 6 C5 Volg.�/.�n=2C�n=2Cinj.�/�nCrad.�/�n/ for any � > 0; (1.6)

where rad.�/ is the maximal radius of an interior rolling ball, inj.�/ is the
in�mum of the injectivity radii over �, and the constant C5 depends on the
dimension of M only.

To our knowledge, the equivalent estimates (1.2) and (1.4) have not been

available in the literature for domains with Neumann boundary conditions under

such general assumptions. Previously, Li and Yau [30, Theorem 5.3] showed that

when M has non-negative Ricci curvature and the second fundamental form of @�

is non-negative de�nite, the Neumann eigenvalues �k.g/ satisfy the inequalities

�k.g/ > C � d �2k2=n, with the constant C depending only on the dimension. It

is likely that the method in [30] can be also used to get eigenvalue lower bounds

under more general hypotheses, but probably with a more implicit dependence on

the diameter and the lower Ricci curvature bound, cf. [19, 37].

The convexity hypothesis on a domain � � M in estimates (1.2) and (1.4)

can not be easily removed. Indeed, consider a Euclidean domain obtained from a

disjoint union of small balls connected by even tinier passages. As the size of the

balls tends to zero and their number increases, so that the domain remains to be

contained in a ball of �xed radius, the number of eigenvalues close to zero tends

to in�nity, while the diameter remains bounded.

To our knowledge, inequality (1.6) for the counting function is new even if

M is a Euclidean space. Examples, obtained by smoothing long thin rectangles,

show that it fails to hold if the interior rolling ball radius rad.�/ is removed on

the right-hand side. However, if the manifold M has a �nite volume, then rad.�/
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can be dispensed at the price of replacing the volume Vol.�/ by the total volume

Vol.M/, see Remark 3.2.

Finally, by the variational principle the Neumann eigenvalues are always

not greater than the corresponding Dirichlet eigenvalues, and therefore inequal-

ities (1.4) and (1.6) hold also for the Dirichlet counting function under the as-

sumption that � is geodesically convex. A di�erent upper bound for the Dirichlet

counting function can be found in [10]; it is a generalization of the classical re-

sults by Berezin [2] and Li and Yau [29] to the setting of eigenvalue problems on

Riemannian manifolds. The bound does not assume that � is convex, but involves

a less explicit geometric quantity, which could be expressed in terms of the mean

curvatures of � with respect to isometric embeddings of M into a Euclidean space.

It is worth mentioning that upper bounds on the eigenvalue counting function are

important in applications, such as image processing and machine learning [24].

1.3. Upper eigenvalue bounds: extensions of Cheng and Buser. Now we

discuss the upper eigenvalue bounds on Riemannian manifolds with a lower Ricci

curvature bound. We start with recalling classical results due to Cheng [11] and

Buser [5] for the closed eigenvalue problem.

Theorem 1.3. Let .M; g/ be a closed Riemannian manifold whose Ricci curvature
satis�es the bound Ricci > �.n � 1/�, where � > 0. Then there exist constants
C6 and C7 depending on the dimension n of M only, such that

�k.g/ 6
.n � 1/2

4
� C C6.k=d/2 for any k > 1; (1.7)

and

�k.g/ 6
.n � 1/2

4
� C C7.k= Volg.M//2=n for any k > 1; (1.8)

where d D d.M/ is the diameter of M .

When a manifold .M; g/ has non-negative Ricci curvature, Cheng proves the

version of inequality (1.7) with an explicit constant:

�k.g/ 6

4k2j 2
n

2
�1

d 2
<

2k2n.n C 4/

d 2
;

where j n

2
�1 is the �rst zero of the Bessel function J n

2
�1. The striking di�erence

about the eigenvalue inequalities in Theorem 1.3 is that the power of k in the second

is optimal in the sense of Weyl’s law, while in the �rst it is not. Nevertheless, as

can be seen from the examples of thin �at tori, the quadratic growth in Cheng’s
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inequality (1.7) can not be improved. Note that inequalities similar to (1.8) have

been also obtained by Li and Yau [28] under somewhat stronger hypotheses.

Buser’s inequality (1.8) has been generalised by Colbois and Maerten [14]

to the Neumann eigenvalues for compact domains in complete manifolds with a

lower Ricci curvature bound. More precisely, they show that there exist constants

C8 and C9 depending on the dimension only such that for any compact domain

� � M with a Lipschitz boundary the Neumann eigenvalues of � satisfy

�k.g/ 6 C8� C C9.k= Volg.�//2=n for any k > 1: (1.9)

To complete the picture of eigenvalue upper bounds for the Neumann problem, in

Section 4 we prove the following version of Cheng’s inequality (1.7).

Theorem 1.4. Let .M; g/ be a complete Riemannian manifold whose Ricci cur-
vature is bounded below Ricci > �.n � 1/�, where � > 0, and � � M be a
geodesically convex precompact domain with Lipschitz boundary. Then there ex-
ists a constant C10 depending on dimension n of M only such that the following
inequality for the Neumann eigenvalues of � holds:

�k.g/ 6 C10.� C .k=d/2/ for any k > 1; (1.10)

where d D d.�/ is the diameter of �.

In the case when � is a convex Euclidean domain, inequality (1.10) has been

obtained in [27]. As the following example shows the convexity hypothesis on a

domain � in the theorem above can not be easily removed. First, note that when

a domain � is non-convex, its diameter can be also measured using the so-called

intrinsic distance on �. Recall that it is de�ned as the in�mum of the lengths of

paths that lie in � and join two given points.

Example 1.1. For a given real number R > 0 consider a surface of revolution

†R D ¹.x; y; z/ 2 R3W y2 C z2 D e�2xR=R2; x 2 Œ0; 1�º:

As is shown in [20, Lemma 5.1], the �rst non-zero Neumann eigenvalue of †R

satis�es the inequality �1.†R/ > R2=8. Hence, for the �rst eigenvalue of the

product †R � Œ0; ı� we have

�1.†R � Œ0; ı�/ > R2=8 when 0 < ı 6
p

8�R�1:
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Now for a su�ciently small ı > 0 consider a Euclidean domain in R3

�R.ı/ D ¹expp.tv/W p 2 †R; v is a unit outward normal vector; t 2 Œ0; ı�º;

where exp denotes the exponential map in R3. Clearly, it is quasi-isometric to

the Riemannian product †R � Œ0; ı�, and the quasi-isometry constant converges

to 1 as ı ! 0C. Thus, for any sequence R` ! C1 we may choose a sequence

ı` ! 0C such that the �rst eigenvalues of the domains �` D �R`
.ı`/ satisfy the

inequality �1.�`/ > R2
`
=16. Note that the extrinsic diameter of †R, and hence

of any domain containing it, is always greater than 1. In particular, the extrinsic

diameters of �` are bounded away from zero, and we obtain a counterexample

to inequality (1.10) for non-convex Euclidean domains in R3, independently of

whether the notion of extrinsic or intrinsic diameter is used. It is straightforward

to construct other examples of Euclidean domains inRn, where n > 3, with similar

properties. As was mentioned to us by A. Savo [36], there are also examples of

non-convex planar domains for which Cheng’s upper bound (1.10) fails. All these

examples are closely related to the concentration of measure phenomenon for large

eigenvalues, see [15] for details.

Now we state the version of Theorem 1.3 for the Dirichlet eigenvalue problem,

which to our knowledge, appears to be missing in the literature. It involves the

maximal radius rad.�/ of an interior rolling ball, and holds for domains with

smooth boundary that are not necessarily convex.

Theorem 1.5. Let .M; g/ be a complete Riemannian manifold whose Ricci cur-
vature is bounded below Ricci > �.n � 1/�, where � > 0, and � � M be a
precompact domain with smooth boundary. Then there exist constants Ci , where
i D 11; : : : ; 14 depending on the dimension only such that the Dirichlet eigenval-
ues �k.�/ satisfy the following inequalities:

�k.�/ 6 C11.� C rad�2/ C C12..k C 1/= Nd/2 for any k > 0; (1.11)

and

�k.�/ 6 C13.� C rad�2/ C C14..k C 1/= Vol.�//2=n for any k > 0; (1.12)

where rad D rad.�/ is the maximal radius of an interior rolling ball, and
Nd D Nd.�/ is the intrinsic diameter of �.

Since the extrinsic diameter d.�/ is not greater than the intrinsic diameter
Nd.�/, we conclude that estimate (1.11) holds also for the former in the place of the

latter. The examples obtained by rounding long thin rectangles in the Euclidean
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plane show that the inequalities in the theorem above fail to hold even for convex

domains if the quantity rad.�/ on the right-hand side is removed. If a domain

� has corners, and thus rad.�/ D 0, Theorem 1.5 can be applied to any smooth

domain contained inside �, yielding upper bounds on �k.�/ using the domain

monotonicity.

It is important to mention that the upper bounds for the Dirichlet eigenvalues

in Theorem 1.5 are also upper bounds for the Neumann eigenvalues. In particular,

inequality (1.11) for the Neumann eigenvalues can be viewed as a version of (1.10)

for non-convex domains; due to Example 1.1 the quantity rad.�/ is necessary. On

the other hand, inequality (1.12) does not give anything new for the Neumann

problem, since a stronger inequality (1.9) due to Colbois and Maerten holds.

The proofs of Theorems 1.4 and 1.5 follow the original strategy, used by Cheng

and Buser, and are based on versions of volume comparison theorems. They

appear in Section 4.

1.4. Multiplicity bounds and related open problems. Recall that a classical re-

sult due to Cheng [12] says that the multiplicities mk.g/ of the Laplace eigenvalues

�k.g/ on a closed Riemannian surface are bounded in terms of the index k and

the topology of the surface. The estimate obtained by Cheng has been further im-

proved by Besson [3] and Nadirashvili [33], and since then related questions have

been studied extensively in the literature, see [13, 16, 22, 25, 26] and references

therein for further details. Note that even the fact that eigenvalue multiplicities on

Riemannian surfaces of �xed topology are bounded is by no means trivial, and due

to the results of Colin de Verdière [17], fails in higher dimensions. More precisely,

in dimension n > 3 for any closed manifold M any �nite part of the spectrum can

be prescribed by choosing an appropriate Riemannian metric.

The purpose of the remaining part of the section is to discuss multiplicity

bounds for Laplace eigenvalues in terms of geometric quantities, which seem to

have been unnoticed in the literature. Recall that by the de�nition of the counting

function, the multiplicity mk.g/ of the Laplace eigenvalue �k.g/ satis�es the

inequality mk.g/ 6 Ng .�k C 0/. Thus, the combination of upper bounds for

the counting function and the upper bounds for the Laplace eigenvalues yields

the desired bounds for the multiplicities. For the convenience of references we

state them below in the form of corollaries, considering the cases of the closed,

Neumann, and Dirichlet eigenvalue problems consecutively. The �rst statement

follows by combination of Theorem 1.1, or rather inequalities (1.4) and (1.5), with

Theorem 1.3.
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Corollary 1.1. Let .M; g/ be a closed Riemannian manifold whose Ricci curvature
satis�es the bound Ricci > �.n � 1/�, where � > 0. Then there exist constants
C15 and C16 depending on the dimension n of M only, such that the multiplicities
mk.g/ of the Laplace eigenvalues �k.g/ satisfy the inequalities

mk.g/ 6 C
1Cd

p
�

15 .d
p

� C kn/ for any k > 1; (1.13)

and

mk.g/ 6 C16.k C Volg.M/.�n=2 C inj�n// for any k > 1; (1.14)

where d and inj are the diameter and the injectivity radius of M respectively.

As a direct consequence of inequality (1.13), we see that for manifolds of

non-negative Ricci curvature the multiplicities mk.g/ are bounded in terms of

the index k and the dimension only. In this statement the hypothesis � D 0 can

not be replaced by a weaker assumption � > 0, that is by a negative lower Ricci

curvature bound. Indeed, this follows from the prescription results [17] together

with the fact that the multiplicities mk.g/ are invariant under scaling of a metric

g. In a similar vein, Lohkamp [31] shows that any �nite part of spectrum can

be prescribed by choosing an appropriate Riemannian metric whose volume can

be normalised Volg .M/ D 1 and the Ricci curvature can be made negative and

arbitrarily large in absolute value. This result indicates that the presence of the

scale-invariant quantity Vol.M/�n=2 in inequality (1.14) is rather natural, and one

may ask the following question.

Open Problem 1. Apart from the index k and the dimension, can the multiplicity
mk.g/ of a Laplace eigenvalue �k.g/ on a closed manifold M be controlled by
the volume and the lower Ricci curvature bound only?

The inequalities in Corollary 1.1 have two notable di�erences. First, the second

inequality (1.14) is geometry free for a su�ciently large index k in the sense

that the second term is dominated by the �rst one. Second, it is linear in k,

while the growth in k in inequality (1.13) has order n. Concerning the growth of

multiplicities in the index k, recall that by the result of Hörmander [23] the sharp

remainder estimate in Weyl’s law (1.1) is O.�.n�1/=2/, and hence, for any given

metric g the quantity mk.g/k.1�n/=n is bounded as k ! C1. In other words, for

a su�ciently large k the multiplicity mk.g/ can not be greater than C.g/ � k1�1=n,

where C.g/ is a constant depending on a metric g. Though the dependence on

the index k in bound (1.14) might be satisfactory when the dimension n is large,

we ask the following question.
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Open Problem 2. In inequality (1.14) is the linear growth in k the best possible?
Can it be replaced by k1�1=n, where n is the dimension of M?

Now we state a version of Corollary 1.1 for the Neumann eigenvalue problem.

It is a consequence of Theorems 1.2 and 1.4, and inequality (1.9).

Corollary 1.2. Let .M; g/ be a complete Riemannian manifold whose Ricci cur-
vature is bounded below Ricci > �.n � 1/�, where � > 0, and � � M be a
geodesically convex precompact domain with Lipschitz boundary. Then the multi-
plicities mk.g/ of the Neumann eigenvalue problem on � satisfy inequality (1.13),
with d D d.�/ being the diameter of the domain. In addition, if the boundary of
� is smooth, then the multiplicities mk.g/ also satisfy the inequality

mk.g/ 6 C17.k C Volg.�/.�n=2 C inj�n C rad�n// for any k > 1; (1.15)

where rad.�/ is the maximal radius of an interior rolling ball, inj.�/ is the
in�mum of the injectivity radii over �, and the constant C17 depends on the
dimension of M only.

Following the discussion above for the eigenvalue problem on a closed man-

ifold, we see that the multiplicities mk.g/ of the Neumann eigenvalues of any

geodesically convex domain � in the manifold of non-negative Ricci curvature are

bounded in terms of the index k and the dimension n only. This statement, and

hence also inequality (1.13), is false without the convexity assumption: indeed,

by [17] in dimension n > 3 one can construct Euclidean domains with arbitrary

high multiplicities of Neumann eigenvalues.

We end this section with a discussion of the multiplicity bounds for the Dirich-

let eigenvalue problem. The following statement is a consequence of Theorems 1.2

and 1.5.

Corollary 1.3. Let .M; g/ be a complete Riemannian manifold whose Ricci cur-
vature is bounded below Ricci > �.n � 1/�, where � > 0, and � � M be a
geodesically convex precompact domain with smooth boundary. Then there exist
constants C18 and C19 depending on the dimension only such that the multiplici-
ties mk.g/ of the Dirichlet eigenvalues �k.g/ satisfy the following inequalities:

mk.g/ 6 C
1Cd

p
�

18 ..d
p

�/n C .d= rad/n C kn/ (1.16)

and

mk.g/ 6 C19.k C 1 C Vol.�/.�n=2 C inj�n C rad�n//; (1.17)

where rad D rad.�/ is the maximal radius of an interior rolling ball, and
d D d.�/ is the diameter of �.



Eigenvalue inequalities 817

Note that all multiplicity bounds in the corollaries above are in fact bounds

for the sums
P

i6k mi .g/, and in particular, may not re�ect the actual behaviour

of the individual multiplicities. It is plausible that in particular instances the

multiplicities satisfy better bounds. For example, considering inequality (1.16) for

Euclidean domains, one can ask whether the remaining dependence on geometry

is actually necessary.

Open Problem 3. Does there exist a constant C.n; k/ depending on the dimension
n > 3 and the index k > 1, such that the multiplicity of the kth Dirichlet eigenvalue
of a Euclidean domain � � R

n is bounded above by C.n; k/?

Clearly, C.n; 0/ D 1 for all n, and by the results of [33], see also [22, 25, 1],

one can take C.2; k/ D 2k C 1 for k > 1. To our knowledge, the question

above is open even for convex domains, where we have a positive answer for the

Neumann problem, see the �rst statement in Corollary 1.2. If instead of Euclidean

domains we consider arbitrary Riemannian manifolds with boundary, then the

answer to Open Problem 3 is negative. Indeed, by [13, 17] for any integers n > 2,

k > 1, and N > 0 there exists a closed manifold M of dimension n, such that

mk.M/ > N . Then, for a su�ciently small � > 0 the multiplicity of the kth

Dirichlet eigenvalue of the cylinder M �Œ��; ��, equipped with the product metric,

also satis�es mk.M/ > N .

Note also that the methods used in [13, 17] to construct closed surfaces with

Laplace eigenvalues of high multiplicity can be generalized directly to surfaces

with Neumann boundary conditions. However, the approach does not extend in a

straightforward way to the case of the Dirichlet boundary conditions. It would be

interesting to know whether for any k > 1 there exists a surface with boundary

whose kth Dirichlet eigenvalue has an arbitrary large multiplicity.

In higher dimensions the Dirichlet eigenvalues also behave di�erently: they

satisfy the so-called universal inequalities, and hence, there is no analogue of

the eigenvalue prescription results [17] for this problem. Nevertheless, it is still

possible that the multiplicities can be prescribed; we state this question in the

form of the following problem.

Open Problem 4. Let M be a manifold with boundary of dimension n > 3. For
given integers k > 1 and N > 1 does there exist a Riemannian metric on M such
that the multiplicity of the kth Dirichlet eigenvalue is equal to N ?

We conclude with a few remarks on multiplicity bounds similar to inequal-

ity (1.17). Recall that for a convex Euclidean domain � � R
n it takes the form

mk.g/ 6 C19.k C 1 C Vol.�/= radn/:
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For arbitrary precompact Euclidean domains one can also bound the multiplicity

in terms of volume and inradius; the latter quantity is de�ned as the maximal

radius of an inscribed ball

�.�/ D sup¹r W B.x; r/ � � for some x 2 �º:

In more detail, by the result of Li and Yau [29] the Dirichlet counting function

of an arbitrary domain � � R
n satis�es the inequality N.�/ 6 C20 Vol.�/�n=2,

where C20 is a constant depending only on the dimension. Combining this in-

equality with the upper bound due to Cheng and Yang [9, Proposition 3.1]:

�k.�/ 6
n C 3

n
�0.�/.k C 1/2=n for any k > n;

we obtain

mk.g/ 6 C21 Vol.�/�0.�/n=2.k C 1/

6 C21 Vol.�/�0.B.�//n=2.k C 1/

6 C22.Vol.�/=�.�/n/.k C 1/;

where B.�/ is an inscribed ball of radius � D �.�/, and in the second inequality

we used the domain monotonicity. Note that a similar multiplicity bound for

Neumann eigenvalues does not hold if n > 3, as one can prescribe any �nite

part of the Neumann spectrum while keeping the volume and the inradius of a

domain bounded. The last statement can be deduced by inspecting the arguments

in [17, pp. 610–611].

2. Poincaré inequality and coverings by metric balls

2.1. Poincaré inequality. A key ingredient in our approach to the lower eigen-

value bounds by Gromov and Buser is the following version of the Neumann–

Poincaré inequality.

Proposition 2.1. Let .M; g/ be a complete Riemannian manifold whose Ricci
curvature is bounded below, Ricci > �.n � 1/�, where � > 0 and n is the
dimension of M . Then, for any p > 1, there exists a constant CN D CN .n; p/

that depends on the dimension n and p only, such that for any smooth function u

on M the following inequality holds:
Z

BR

ju � uRjp dVol 6 CN Rpe.n�1/R
p

�

Z

B2R

jrujp dVol;

where BR and B2R are concentric metric balls in M of radii R and 2R respec-
tively, and uR is the mean-value of u on BR, i.e. uR D Vol.BR/�1

R

BR
u dVol.
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The statement above is folklore; related results can be found in [6, Section 5]

and [35]. We extend the above inequality to the case of convex domains in

Riemannian manifolds.

Proposition 2.2. Let .M; g/ be a complete Riemannian manifold whose Ricci
curvature is bounded below, Ricci > �.n � 1/�, where � > 0 and n is the
dimension of M . Then for any p > 1 there exists a constant

CN D CN .n; p/

that depends on the dimension n and p only such that for any geodesically convex
domain � � M and for any smooth function u on � the following inequality holds

Z

BR\�

ju � uRjp dVol 6 CN Rpe.n�1/R
p

�

Z

B2R\�

jrujp dVol; (2.1)

where BR and B2R are concentric metric balls in M of radii R and 2R respec-
tively, and uR is the mean-value of u on BR \ �, i.e.

uR D Vol.BR \ �/�1

Z

BR\�

udVol :

The inequality in Proposition 2.2 (with a slightly di�erent constant in the

exponent) can be obtained by building on the argument used in [35, Chapter 5].

Below we give a shorter proof, avoiding technicalities by using the so-called

segment inequality due to Cheeger and Colding [8]. Before stating it we introduce

the following notation: we set

C.n; �; R/ D 2R sup
0<s=26t6s

Vol.@B�.s//

Vol.@B�.t //
;

where R > 0 and @B�.r/ is a sphere of radius r in an n-dimensional simply

connected space of constant sectional curvature ��. Note that for � > 0 the ratio

of volumes above is not greater than .s=t/n�1e.n�1/s
p

� , and we obtain

C.n; �; R/ 6 2nRe.n�1/R
p

k (2.2)

The following proposition is a reformulation of [8, Theorem 2.11].
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Proposition 2.3 (segment inequality). Let .M; g/ be a complete Riemannian
manifold whose Ricci curvature is bounded below, Ricci > �.n � 1/�, where
� > 0 and n is the dimension of M . Let BR be a metric ball, A and B be open
subsets in BR, and W � M be an open subset that contains the convex hull of the
union A [ B . Then for any nonnegative integrable function F on W the following
inequality holds:

Z

A�B

Z d.x;y/

0

F.x;y.s//ds dx dy 6 C.n; �; R/.Vol.A/ C Vol.B//

Z

W

F.z/dz;

(2.3)

where x;y W Œ0; d.x; y/� ! M is a shortest geodesic joining x and y, and the �rst
integral on the left hand-side is taken over the subset of A �B formed by the pairs
.x; y/ of points that can be joined by such a unique geodesic.

Proof of Proposition 2.2. For arbitrary open subsets A and B consider the set of

pairs .x; y/ 2 A � B such that the points x and y can be joined by a unique

shortest geodesic x;y . By standard results in Riemannian geometry, see [7], its

complement in A � B has zero measure, and abusing the notation, we also denote

it below by A � B .

It is not hard to see that for any x 2 M the inequality

ju � uRjp .x/ 6 Vol.BR \ �/�1

Z

BR\�

ju.x/ � u.y/jp dy:

holds, where uR D Vol.BR \ �/�1
R

BR\�
u. Indeed, for p D 1 it is straightfor-

ward, and for p > 1 it can be obtained from the former case by using the Hölder

inequality. Integrating it over BR \ �, we obtain

Z

BR\�

ju.x/ � uRjp dx

6 Vol.BR \ �/�1

Z

BR\�

Z

BR\�

ju.x/ � u.y/jp dxdy

6 Vol.BR \ �/�1

Z

.BR\�/�.BR\�/

� Z d.x;y/

0

ˇ

ˇru.x;y.s//
ˇ

ˇ ds

�p

dxdy

6 .2R/p�1 Vol.BR \ �/�1

Z

.BR\�/�.BR\�/

Z d.x;y/

0

ˇ

ˇru.x;y.s//
ˇ

ˇ

p
dsdxdy;

where in the last inequality we used the Hölder inequality and the relation

dist.x; y/ 6 2R. Since � is convex, the convex hull of BR \ � lies in B2R \ �.
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Thus, applying Proposition 2.3 with A D B D BR \ � and W D B2R \ �, and

using inequality (2.2), we obtain

Z

.BR\�/�.BR\�/

Z d.x;y/

0

ˇ

ˇru.x;y.s//
ˇ

ˇ

p
ds dx dy

6 2nC1e.n�1/R
p

�R Vol.BR \ �/

Z

B2R\�

jru.z/jp dz:

Combining the last two inequalities, we arrive at the Poincare inequality (2.1). �

2.2. Coverings by metric balls: closed manifolds. We proceed with the es-

timates for the cardinality and multiplicity of certain coverings. The following

lemma is by now a standard application of the Gromov–Bishop volume compari-

son theorem. We outline its proof for the sake of completeness.

Lemma 2.1. Let .M; g/ be a closed Riemannian manifold whose Ricci curvature
satis�es the bound Ricci > �.n � 1/�, where � > 0. Let .Bi / be a covering of M

by balls Bi D B.xi ; �/ such that the balls B.xi ; �=2/ are disjoint. Then

(i) for any 0 < � 6 2d the cardinality of the family .Bi / is not greater than
2ne.n�1/d

p
�.d=�/n, where d is the diameter of M ;

(ii) for any � > 0 and for any x 2 M the number of balls from .B.xi ; 2�// that
contain x is not greater than 12ne6.n�1/�

p
� .

Proof. First, by the relative volume comparison theorem, see [7], it is straight-

forward to show that the volumes of concentric metric balls of radii 0 < r 6 R

satisfy the relation

Vol.BR/ 6 e.n�1/R
p

�.R=r/n Vol.Br/: (2.4)

Now to prove (i) note that m D card.Bi/ satis�es the following relations

m � inf
i

Vol.B.xi ; �=2// 6

X

i

Vol.B.xi ; �=2// 6 Vol.M/:

Let xi0 be a point at which the in�mum in the left hand-side above is achieved.

Then, for any 0 < � 6 2d we obtain

m 6 Vol.B.xi0; d //= Vol.B.xi0; �=2// 6 2ne.n�1/d
p

�.d=�/n;

where in the last inequality we used (2.4).
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To prove (ii) we re-denote by xi0 the point at which inf Vol.B.xi ; �=2// is

achieved while i ranges over all indices such that the balls B.xi ; 2�/ contain x.

Note that if x 2 B.xi ; 2�/, then B.xi ; 2�/ � B.xi0; 6�/. Thus, for any � > 0 we

obtain that

multx.Bi / 6 Vol.B.xi0; 6�//= Vol.B.xi0; �=2// 6 12ne6.n�1/�
p

�;

where in the last inequality we again used (2.4). �

For a proof of the Buser inequality in Theorem 1.1 we also need the following

supplement to Lemma 2.1.

Lemma 2.2. Under the hypotheses of Lemma 2.1, the cardinality of the family
.B.xi ; �// is not greater than c1 Vol.M/.min¹�; injº/�n, where inj is the injectivity
radius of M , and c1 is a constant that depends on the dimension n only.

Proof. As in the proof of Lemma 2.1, we see that

m D card.Bi/ 6 Vol.M/= Vol.B.xi0; �=2//

for some point xi0 . Recall that by [18, Proposition 14] the volume of a geodesic

ball satis�es the inequality

c2�n
6 Vol.B.x; �=2// for any � 6 inj;

where c2 is a constant that depends on n only. For � > inj, we clearly have

c2 injn 6 Vol.B.x; inj =2// 6 Vol.B.x; �=2//:

Combining these inequalities with the bound for the cardinality m above, we

complete the proof of the lemma. �

2.3. Coverings by metric balls: domains. Now we discuss versions of the

above statements for coverings of domains in Riemannian manifolds.

Lemma 2.3. Let .M; g/ be a complete Riemannian manifold whose Ricci curva-
ture is bounded below, Ricci > �.n � 1/�, where � > 0 and n is the dimension
of M . Let � � M be a precompact domain, and .Bi / be its covering by balls
Bi D B.xi ; �/ such that xi 2 � and the balls B.xi ; �=2/ are disjoint. Then
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(i) if � is convex, the conclusions of Lemma 2.1 hold, where d D d.�/ is the
(extrinsic) diameter of �;

(ii) if � has a smooth boundary, the cardinality of the covering .Bi / is not greater
than c3 Vol.�/.min¹�; inj; radº/�n, where c3 is a constant that depends on n

only, inj D inj.�/ is the injectivity radius of �, and rad D rad.�/ is the
maximal radius of an inscribed rolling ball;

(iii) if M has �nite volume, then the cardinality of the covering .Bi / is not greater
than c4 Vol.M/.min¹�; injº/�n.

In the sequel we use the following folklore version of Gromov–Bishop relative

volume comparison theorem, see [21, p. 524]; we outline its proof for the sake of

completeness.

Lemma 2.4. Let .M; g/ be a complete Riemannian manifold whose Ricci cur-
vature is bounded below, Ricci > �.n � 1/�, where � > 0, and � � M be a
precompact domain that is star-shaped with respect to a point x 2 x�. Then the
quotient Vol.B.x; r/ \ �/= Vol.B�.r//, where B�.r/ is a ball in the space of con-
stant curvature .��/, is a non-increasing function in r > 0. In particular, for any
0 < r 6 R we have

Vol.B.x; R/ \ �/ 6 e.n�1/R
p

�.R=r/n Vol.B.x; r/ \ �/:

Proof. For a given subset S of a unit sphere Sn�1 � R
n, consider the cone

CS D ¹expx.t�/W t > 0; � 2 Sº:

The standard proof of the Gromov–Bishop comparison theorem [7, pp. 134–135]

shows that the quotient Vol.B.x; r/\CS/= Vol.B�.r// is a non-increasing function

in r > 0. For a given 0 < r 6 R de�ne S as the set formed by � 2 Sn�1 such that

expx.r�/ 2 �. Since � is star-shaped with respect to x, we conclude that

(a) B.x; r/ \ CS � B.x; r/ \ �,

(b) .B.x; R/nB.x; r// \ � � .B.x; R/nB.x; r// \ CS .

By relation .a/ the quantity

h WD Vol.B.x; r/ \ �/ � Vol.B.x; r/ \ CS /

is non-negative, and by .b/, we obtain

Vol.B.x; R/ \ �/ � h 6 Vol.B.x; R/ \ CS /:
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Finally, using the Gromov–Bishop theorem for the intersections of balls with

cones, we obtain

Vol.B.x; R/ \ �/= Vol.B.x; r/ \ �/

6 .Vol.B.x; R/ \ �/ � h/=.Vol.B.x; r/ \ �/ � h/

6 Vol.B.x; R/ \ CS /= Vol.B.x; r/ \ CS /

6 Vol.B�.R//= Vol.B�.r//:

The last statement follows from the standard formula for the volume Vol.Bk.r//,

see [7], which leads to the estimate for the quotient Vol.B�.R//= Vol.B�.r//. �

Proof of Lemma 2.3. Following the argument in the proof of Lemma 2.1, we see

that

m D card.Bi / 6 Vol.�/= Vol.B.xi0; �=2/ \ �/ (2.5)

for some point xi0 2 �. If d D d.�/ is the diameter of �, then � lies in the ball

B.xi0 ; d /, and by Lemma 2.4, we obtain

m 6 Vol.B.xi0; d / \ �/= Vol.B.xi0; �=2/ \ �/ 6 2ne.n�1/d
p

�.d=�/n:

The estimate for the multiplicity of the covering .Bi/ is the same as in the proof

of Lemma 2.1. We proceed with the statement (ii): by relation (2.5) for a proof it

is su�cient to show that

c5�n
6 Vol.B.x; �=2/ \ �/ for any � 6 min¹inj; radº: (2.6)

To see that the above relation holds note that for any ball B.x; r/, where x 2 �

and r < 2 rad.�/, there exists a point Qx 2 B.x; r/ such that

dist.x; Qx/ < r=2 and B. Qx; r=2/ � B.x; r/ \ �:

Indeed, the statement is clear if B.x; r=2/ � �. If B.x; r=2/ does not lie entirely

in �, then since B. Qx; r=2/ � �, one can take an inscribed ball that touches the

boundary @� at a point p where the minimum of the distance dist.q; x/, while q

ranges over @�, is achieved. It is straightforward to see that the point x belongs

to the shortest geodesic arc joining Qx and p, which meets the boundary @� at the

point p orthogonally. In particular, the ball B. Qx; r=2/ is also contained in the ball

B.x; r/. Thus, we conclude that under our hypotheses

Vol.B. Qx; �=4// 6 Vol.B.x; �=2/ \ �/;
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and by [18, Proposition 14] the quantity on the left-hand side is at least c5�n when

�=2 < inj.�/. Combining the last statement with the hypothesis �=2 < rad.�/,

we prove relation (2.6).

Under the hypotheses of the last statement of the lemma we may bound the

cardinality m of the covering by Vol.M/= Vol.B.xi0; �=2//, and then appeal di-

rectly to Croke’s result [18, Proposition 14] in the same fashion as in the proof of

Lemma 2.2. �

3. Lower eigenvalue bounds

Proof of Theorem 1.1: Gromov’s inequalities. We prove (1.4) for the counting

function Ng .�/. For a given real number � > 0 denote by E.�/ the sum of all

eigenspaces that correspond to the eigenvalues �k.g/ < �. Recall that by the

variational principle, for any 0 ¤ ' 2 E.�/ we have

Z

M

jr'j2 dVol < �

Z

M

'2dVol : (3.1)

For a given � > 0 consider a covering of M by balls Bi D B.xi ; �/ such that the

balls B.xi ; �=2/ are disjoint. It can be obtained by choosing the collection of balls

B.xi ; �=2/ to be a maximal collection of disjoint balls. Given such a covering .Bi/

we de�ne the map

ˆ�W E.�/ �! R
m; u 7�! Vol.Bi /

�1

Z

Bi

u dVol;

where m stands for the cardinality of .Bi /, and i D 1; : : : ; m, cf. [32]. We claim

that there exists a constant c6 depending on the dimension n only such that if

��1 > c6�2e7.n�1/�
p

� , then the map ˆ� is injective. To see this we de�ne

c6 D 12nCN , where CN D CN .n; 2/ is the Poincaré constant from Proposition 2.1,

and argue by assuming the contrary. Suppose that ' ¤ 0 belongs to the kernel

of ˆ�. Then we obtain

Z

M

'2dVol 6
X

i

Z

Bi

'2dVol

6 CN �2e.n�1/�
p

�
X

i

Z

2Bi

jr'j2 dVol

6 c6�2e7.n�1/�
p

�

Z

M

jr'j2 dVol;
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where we used Proposition 2.1 in the second inequality and Lemma 2.1 in the last.

Now combining these relations with (3.1), we conclude that

��1 < c6�2e7.n�1/�
p

� (3.2)

and arrive at a contradiction. Thus, for a su�ciently small � the map ˆ� is injec-

tive, and the value Ng.�/ is not greater than the cardinality m of a covering .Bi/.

For a given � > 0 we set

�0 D .c6�e14.n�1/d
p

�/�1=2;

where d is the diameter of M . When �0 6 2d , it is straightforward to check that

the relation ��1 > c6�2
0e7.n�1/�0

p
� holds, and by Lemma 2.1 we obtain

Ng.�/ 6 m 6 2ne.n�1/d
p

�.d=�0/n
6 C

1Cd
p

�
4 d n�n=2:

To treat the case �0 > 2d , note that there is only one covering with balls of radius

� > 2d that satis�es our hypotheses, and it consists of only one ball. In particular,

if �0 > 2d , then the covering under the consideration coincides with the one for

�� D 2d for which ˆ� is also injective. Indeed, by the de�nition of �0, it is

straightforward to see that the relation �0 > 2d implies that

��1
> c6�2

�e7.n�1/��

p
� :

Since such a covering consists of only one ball, we conclude that in this case

Ng .�/ is not greater than 1. Combining these two cases, we �nish the proof of the

theorem. �

Remark 3.1. The idea to use the bounds for the �rst eigenvalue on small sets

to get estimates for higher eigenvalues is not new; see, for example, the al-

ready mentioned papers by Cheng [11], Gromov [21, Appendix C], and Li and

Yau [28]. A similar strategy has been used in [32] in the context of the multiplicity

bounds for Laplace eigenvalues. Note that the eigenvalue multiplicity bound for

closed manifolds of non-negative Ricci curvature obtained in [32], see formula .6/

in [32, Theorem 3.1], is a partial case of (1.13), which is a consequence of the re-

sults of Cheng and Gromov cited above.

Proof of Theorem 1.1: Buser’s inequalities. Consider a covering of M by balls

Bi D B.xi ; �/ such that B.xi ; �=2/ form a maximal family of disjoint balls. As

is shown above, if a real number � > 0 satis�es (3.2), where c6 depends on n

only, then Ng .�/ is not greater than the cardinality m D card.Bi /. In this case by

Lemma 2.2 we have

Ng .�/ 6 m 6 c1 Vol.M/.��n C inj�n/: (3.3)
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The hypothesis on � is clearly satis�ed, if ��1 > 2c6�2 and 2 > e7.n�1/�
p

� . Thus,

choosing �D�0 as the minimum of the values .2c6�/�1=2 and .ln 2/=.7.n�1/
p

�/,

by relation (3.3) we obtain

Ng.�/ 6 C3 Vol.M/.�n=2 C �n=2 C inj�n/;

where the value of the constant C3 depends on c1, c6, and the dimension n. �

Proof of Theorem 1.2: Gromov’s inequalities for domains. The proof of (1.4) for

convex domains follows a line of argument similar to the one in the proof of

Theorem 1.1; it uses the Neumann–Poincaré inequality in Proposition 2.2 and

Lemma 2.3.

More precisely, for � > 0 denote by E.�/ the sum of all eigenspaces that

correspond to the Neumann eigenvalues �k.g/ < �. Let .Bi / be a covering of

� by balls Bi D B.xi ; �/ such that xi 2 � and the smaller balls B.xi ; �=2/ are

disjoint. We claim that if ��1 > c6�2e7.n�1/�
p

� , then the map

ˆ�W E.�/ �! R
m; u 7�! Vol.Bi \ �/�1

Z

Bi \�

u dVol;

is injective, and the value Ng.�/ is not greater than m D card.Bi /. Indeed,

suppose that a function ' ¤ 0 belongs to the kernel of ˆ�. Then, setting

c6 D 12nCN with CN D CN .n; 2/ being the constant from Proposition 2.2,

we obtain
Z

�

'2dVol 6

X

i

Z

Bi \�

'2dVol

6 CN �2e.n�1/�
p

�
X

i

Z

2Bi \�

jr'j2 dVol

6 c6�2e7.n�1/�
p

�

Z

�

jr'j2 dVol;

where in the last relation we used Lemma 2.3. Now we arrive at a contradiction

in the same fashion as above.

For a given � > 0 we set

�0 D .c6�e14.n�1/d
p

�/�1=2;

where d is the diameter of �. When �0 6 2d , it is straightforward to check that

the above hypothesis on � holds, and the value Ng.�/ is bounded by the cardinal-

ity of the covering B.xi ; �0/ such that xi 2 � and the balls B.xi ; �0=2/ are disjoint.
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Then, by Lemma 2.3 we obtain

Ng.�/ 6 m 6 2ne.n�1/d
p

�.d=�0/n
6 C

1Cd
p

�
4 d n�n=2:

The case �0 > 2d is treated in the fashion similar to the one in the proof of

Theorem 1.1. �

Proof of Theorem 1.2: Buser’s inequalities for domains. Let .Bi / be a covering of

� by balls Bi D B.xi ; �/ such that xi 2 � and the smaller balls B.xi ; �=2/ form a

maximal family of disjoint balls. As is shown in the proof of Gromov’s inequalities

for Neumann eigenvalues, if ��1 > c6�2e7.n�1/�
p

� , then the value Ng .�/ is not

greater than m D card.Bi /. Now by Lemma 2.3 we have

Ng.�/ 6 m 6 c3 Vol.�/.��n C inj�n C rad�n/:

Choosing

� D �0 D min¹.2c6�/�1=2; .ln 2/=.7.n � 1/
p

�/º;

we obtain the desired bound on the counting function. �

Remark 3.2. When a manifold M has a �nite volume, the argument above yields

the estimate

N�.�/ 6 C � Volg.M/.�n=2 C �n=2 C inj.�/�n/ for any � > 0;

for the Neumann eigenvalues counting function of any compact geodesically

convex domain � � M . Indeed, this is a consequence of the following estimate

for the cardinality m of the covering .Bi / with the properties described above:

m D card.Bi/ 6 c4 Vol.M/.��n C inj�n/;

see Lemma 2.3.

4. Upper eigenvalue bounds

Proof of Theorem 1.4. Since � � M is geodesically convex, by Lemma 2.4 for

any x 2 x� and any 0 < r 6 1=
p

� we have

Vol.B.x; r/ \ �/= Vol.B.x; r=2/ \ �/ 6 2nen�1: (4.1)

For a given integer k > 0 let �.k/ be the supremum of all r > 0 such that there

exists k points x1; : : : ; xk 2 x� with dist.xi ; xj / > r for all i ¤ j . We consider the

following cases.
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Case 1: �.k/ > 1=
p

�. Then for any r < 1=
p

� there exist points x1; : : : ; xk 2 x�
such that the balls B.xi ; r=2/ are disjoint. Consider the plateau functions ui

supported in B.xi ; r=2/ such that ui � 1 on B.xi ; r=4/ and jrui j 6 4=r . Their

restrictions to � can be used as test-functions for the Neumann eigenvalue �k.g/,

and by the variational principle we obtain

�k.g/ 6 max
i

�Z

�

jrui j2 dVol

� � �Z

�

u2
i dVol

�

6 16r�2 max
i

Vol.B.xi ; r=2/ \ �/= Vol.B.xi ; r=4/ \ �/

6 2nC4en�1r�2:

Taking the limit as r ! 1=
p

�, we see that �k.g/ 6 C10�.

Case 2: �.k/ < 1=
p

�. Following the argument above, we see that

�k.g/ 6 C10r�2 for any 0 < r < �.k/,

and tending r ! �.k/, we obtain that �k.g/ 6 C10�.k/�2. Now we claim

that �.k/ > d=k. Indeed, to see this we note that the closure a convex domain

� contains a geodesic arc whose length equals the diameter d . Breaking it

into sub-arcs of the length d=k, we conclude that �.k/ > .d=k/, and hence,

�k.g/ 6 C10.k=d/2. Taking into account both cases we �nish the proof of the

theorem. �

Proof of Theorem 1.5: Cheng’s inequalities for the Dirichlet problem. Below we

give an argument based on Cheng’s comparison theorem for the principal Dirich-

let eigenvalue [11]; however, one can also argue as in the proof of Theorem 1.4

using the volume comparison theorem and constructing test-functions explicitly.

Denote by dist.x; y/ the intrinsic distance on �, that is the in�mum of lengths

of paths in � joining the points x and y. Note that the closure of � contains

a continuous path  whose length equals the intrinsic diameter Nd D Nd.�/; its

existence follows from the Arzela–Ascoli theorem, see [4] for details. Breaking

it into sub-arcs of the length Nd=.k C 1/, we �nd .k C 1/ points xi on  , where

i D 0; : : : ; k, such that

dist.xi ; xj / > 2r WD Nd=.k C 1/ for any i ¤ j:

In particular, we see that the sets

D.xi ; r/ D ¹y 2 �W dist.xi ; y/ < rº
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are disjoint. Since the extrinsic distance is not greater than the intrinsic distance,

we also conclude that each D.xi ; r/ lies in B.xi ; r/ \ �. Denote by k0 the integer

b Nd=.4 rad.�//c, the greatest integer that is at most Nd=.4 rad.�//. Following the

argument in the proof of Lemma 2.3, it is straightforward to see that for any k > k0

and any 0 6 i 6 k there exists Qxi 2 B.xi ; r/ \ � such that

dist. Qxi ; xi/ D dist. Qxi ; xi / 6 r=2 and B. Qxi ; r=2/ � B.xi ; r/ \ �: (4.2)

Here in the �rst relation we used the fact that the point Qxi can be chosen such that

Qxi and xi lie on a extrinsically shortest geodesic arc that is contained in �. Since

any extrinsically shortest path joining points in the ball B. Qxi ; r=4/ lies in the ball

B. Qxi ; r=2/ � �, we conclude that the intrinsic and extrinsic distances coincide on

B. Qxi ; r=4/. Using the �rst relation in (4.2), it is then straightforward to see that the

ball B. Qxi ; r=4/ lies in D.xi ; r/. In particular, the balls B. Qxi ; r=4/ are disjoint, and

by the domain monotonicity principle and Cheng’s comparison for the principal

eigenvalue, we obtain

�k.�/ 6 max
i

�0.B. Qxi ; r=4// 6 �0.B�.r=4//;

where B�.r=4/ is a ball of radius r=4 in the simply connected space of constant

sectional curvature .��/. As is shown by Cheng [11], there is a constant c7

depending on the dimension only such that

�0.B�.r=4// 6 c7.� C r�2/:

From the consideration above we conclude that for any integer k > k0 the Dirichlet

eigenvalue �k.�/ satis�es the inequality

�k.�/ 6 c7� C c8..k C 1/= Nd/2: (4.3)

If k0 D 0, then the statement is proved. If k0 > 1, then we can estimate the

eigenvalue �k0
.�/ in the following fashion

�k0
.�/ 6 c7.� C r�2

0 / 6 c7.� C rad�2/; (4.4)

where we used that

2r0 WD Nd=.k0 C 1/ > 2 rad.�/:

Finally, combining relations (4.3) and (4.4), for any k > 0 we obtain

�k.�/ 6 max¹�k0
.�/; �k.�/º 6 C11.� C rad�2/ C C12..k C 1/= Nd/2;

which is the desired inequality (1.11). �
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Proof of Theorem 1.5: Buser’s inequalities for the Dirichlet problem. We recall

that by the Bishop volume comparison theorem for any 0 < r 6 1=
p

� the volume

of a metric ball B.x; r/ in M satis�es the inequality

Vol.B.x; r// 6 n!n

Z r

0

tn�1e.n�1/t
p

�dt 6 !nen�1rn; (4.5)

where !n is the volume of a unit ball in the Euclidean space Rn, see [7].

For a given integer k > 0 let �.k C 1/ be the supremum of all r > 0 such that

there exist .k C 1/ points x0; : : : ; xk 2 � with dist.xi ; xj / > r for any i ¤ j .

Following the argument in the proof of Theorem 1.4, we consider the two cases

below.

Case 1: �.kC1/ > 1=
p

�. For every r < 1=
p

� there exist points x0; : : : ; xk such

that the balls B.xi ; r=2/ are disjoint. When r 6 rad, then repeating the argument

in the proof of Lemma 2.3, we �nd points Qxi 2 B.xi ; r=2/ such that

B. Qxi ; r=4/ � B.xi ; r=2/ \ �:

Now by the domain monotonicity and Cheng’s comparison for the zero Dirichlet

eigenvalue, we have

�k.�/ 6 max
i

�0.B. Qxi ; r=4// 6 c7.� C r�2/: (4.6)

Taking the limit as r ! min¹rad; 1=
p

�º, we obtain that �k.�/ is not greater than

c9.� C rad�2/.

Case 2: �.k C 1/ < 1=
p

�. Following the line of an argument in Case 1, we see

that for any r < min¹rad; �.k C 1/º relation (4.6) holds. Tending

r ! min¹rad; �.k C 1/º;

we obtain

�k.�/ 6 c7.� C rad�2 C�.k C 1/�2/: (4.7)

Now we estimate the value �.kC1/. For any given s such that �.kC1/ < s < 1=
p

�

let m be the maximal number of points y1; : : : ; ym 2 � such that dist.yi ; yj / > s

for any i ¤ j . In particular, the balls B.yi ; s/, where i D 1; : : : ; m, cover the

domain �. By the de�nition of �.k C 1/ we also conclude that m 6 k. Thus, by

inequality (4.5), we obtain

Vol.�/ 6

X

Vol.B.yi ; s// 6 m!nen�1sn
6 c10ksn:
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Letting s tend to �.k C 1/, we further obtain

�.k C 1/�2
6 .c10/2=n.k= Vol.�//2=n:

Combining the last relation with inequality (4.7), we get

�k.�/ 6 c7.� C rad�2/ C c11.k= Vol.�//2=n:

Taking into account both cases, we �nish the proof of the theorem. �
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