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1. Introduction

The original Hardy inequalities appeared �rst in Hardy’s proof of Hilbert’s the-

orem (related to discrete Hilbert transformation), [4]. After a few improvements

(see [6] for historical details), the inequalities read as follows ([5], Theorems 326

and 327).

D iscrete case. If p > 1 and vk > 0, then
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n
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Continuous case. If p > 1 and v.x/ � 0, x � 0, then
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�

1

x

Z x

0

v.t/ dt

�p

dx <
� p

p � 1
�p

Z 1

0

v.x/p dx; (1.2)

unless v � 0. The constant .p=.p � 1//p is sharp.
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Rewritten in a slightly di�erent form, inequalities (1.1) and (1.2) are

1
X

nD1

junjp
np

<
� p

p � 1
�p

1
X

nD1

jun � un�1jp (1.3)

and
Z 1

0

ju.x/jp
xp

dx <
� p

p � 1

�p
Z 1

0

ju0.x/jp dx:

It is assumed that u0 D 0 and u.0/ D 0.

There are many other inequalities which are also called Hardy inequalities,

see for instance a survey paper by E. B. Davies [2], the books of V. G. Maz0ya [8]

and Kufner and Opic [7], and a recent book by A. A. Balinsky, W. D. Evans, and

R. T. Lewis [1]. The number of research papers in this area is enormous. We just

mention [9], [12], [10], [11], and [3] as more closely related to our text.

In this short note we consider both discrete and continuous Hardy inequalities

with p D 2 in dimensions d � 2. The �rst part deals with the standard Hardy

type inequalities in R
d . Here we present an approach allowing us to obtain

inequalities with multiple singularities. It is based on the fact that the multi-

dimensional Hardy inequality is intimately related to the fundamental solution

of the Laplace equation (we explain the connection below). Inequalities with

multiple singularities obtained in Section 2 are sometimes better and sometimes

worse than the inequalities that one can derive by simply adding together standard

Hardy inequalities at di�erent points.

To our surprise Hardy inequalities for discrete operators seem to be a lot more

complicated. It is still not clear what the sharp constants are. In Sections 3 and

4 we consider Hardy type inequalities for discrete operators in dimensions d � 3

and d D 2 respectively. We would like to mention the papers [10] and [11], where

a very di�erent method is used to obtain a discrete Hardy type inequality when

d � 3.

2. Continuous case, multiple singularities

For the sake of completeness we revise here Hardy’s inequality in the continuous

case. One possible way of proving Hardy type inequality is as follows.

Let Aj .x/, j D 1; : : : ; d , be the components of a vector-�eld A.x/ in R
d

to be chosen later, and let � be a real parameter. The vector �eld A.x/ will de-

termine the type of the inequality, and � will be chosen to optimise it. Assuming
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u.x/ is su�ciently smooth and decaying where it should, perform the following

computation:

Z d
X

jD1

.j@ju.x/ � �Aj .x/ u.x/j2/ dx

D
Z

�

jruj2 � 2 �
X

Aj u @juC �2
d

X

jD1

jAj j2 juj2
�

dx

D
Z

�

jruj2 C
�

� divAC �2
d

X

jD1

jAj j2
�

juj2
�

dx:

Thence the primeval form of the Hardy inequality is

sup
�

h

�
Z

�

� divAC �2
d

X

jD1

jAj j2
�

juj2 dx
i

�
Z

jruj2 dx:

Maximizing the left hand side with respect to � we di�erentiate the integral

�
Z

�

� divAC �2
d

X

jD1

jAj j2
�

juj2 dx

with respect to � and �nd when the result is zero regardless of the choice of u.x/.

This leads to the requirement

2� jAj2 C divA D 0; for all x 2 R
d :

This is a serious restriction on A.x/ implying

divA.x/

jA.x/j2 D const.

Rescaling A, we arrive at

divA.x/ D �jA.x/j2: (2.1)

With this rescaling, the critical � is

�� D 1

2

and the corresponding Hardy inequality is

1

4

Z d
X

jD1

jAj .x/j2 juj2 dx �
Z

jruj2 dx: (2.2)
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If we assume that the �eld A is potential, i.e., A D r , for some function  ,

then (2.1) becomes

� C jr j2 D 0;

which in turn implies that the function

w D e � 0

is harmonic and positive valued. Then w is a constant > 0 or has a singularity.

In the 1D case, w.x/ D jxj (up to a translation and a scalar factor) and

 .x/ D ln jxj. Then A.x/ D 1=x and we obtain

1

4

Z ju.x/j2
jxj2 dx �

Z

ju0.x/j2 dx; (2.3)

where we assume that u.0/ D 0.

If d D 2 we take w.x/ D ln jxj assuming that jxj � 1. Then  .x/ D ln.ln jxj/
and

A.x/ D x

ln jxj jxj2 :

Then the corresponding Hardy inequality is

1

4

Z

¹jxj�1º

ju.x/j2

jxj2 ln2 jxj
dx �

Z

¹jxj�1º

jru.x/j2 dx;

where we assume that u.x/ D 0 for jxj D 1.

For d � 3, the choice is

w.x/ D 1

jxjd�2
:

Then

 .x/ D �.d � 2/ ln jxj
and A D r ,

Ai.x/ D �.d � 2/
xi

jxj2 :

This leads to the familiar Hardy inequality

�d � 2
2

�2
Z

Rd

ju.x/j2
jxj2 dx �

Z

Rd

jru.x/j2 dx:

This approach can be extended to Hardy inequalities with several singularities.

Let d � 3 and let ak D .ak1; ak2; : : : akd / 2 R
d , k D 1; : : : ; n. Introduce

w D
n

X

kD1

1

jx � ak jd�2
:
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Then

 .x/ D ln.w/:

Therefore

A.x/ D r.lnw/ D �.d � 2/
w

�

n
X

kD1

x � ak
jx � ak jd

�

and

jA.x/j2 D
d

X

jD1

jAj .x/j2 D
�d � 2

w

�2
d

X

jD1

�

n
X

kD1

xj � akj
jx � akjd

�2

:

Inequality (2.2) implies

Theorem 2.1. Let d � 3 and let ak D .ak1; ak2; : : : akd / 2 R
d , k D 1; : : : ; n.

Then we obtain the following generalised Hardy inequality with multiple singu-

larities

Z

Rd

jru.x/j2 dx �
�d � 2

2

�2
Z

Rd

Pd
jD1

�
Pn
kD1

xj �akj

jx�ak jd

�2

w2
ju.x/j2 dx: (2.4)

Note that if we add together the standard Hardy inequalities with singularities

at di�erent points we obtain

Z

Rd

jru.x/j2 dx � 1

n

�d � 2

2

�2
Z

Rd

n
X

kD1

� 1

jx � ak j2
�

ju.x/j2 dx: (2.5)

The Hardy weight in (2.4) and (2.5) asymptotically behaves as

�d � 2
2

�2 1

jxj2 ; as x ! 1:

However, in the vicinity of each singularity ak , the Hardy weight in (2.5) behaves

as

jA.x/j2 � 1

n

�d � 2
2

�2 1

jx � akj2 ; as x ! ak ;

while inequality (2.4) gives

jA.x/j2 �
�d � 2

2

�2 1

jx � ak j2 ; as x ! ak :
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Inequality (2.4) is not sharper than (2.5) in the sense that there is no inequality

for the weight functions. Indeed, let us consider a simple example d D 3, n D 2,

a1 D .1; 0; 0/ and a2 D .�1; 0; 0/. Then obviously at x D 0 we have

2
X

kD1

xj � akj
jx � ak j3 D 0; j D 1; 2; 3:

Let now d D 2. Then by analogy with the case d � 3 we introduce

w.x/ D ln
�

n
Y

kD1

jx � akj
�

;

de�ned for
Qn
kD1 jx � ak j � 1, where ak D .ak1; ak2/ 2 R

2.

Then  .x/ D ln ln
�Qn

kD1 jx � ak j
�

and

A.x/ D r .x/ D 1

ln
�

Qn
kD1 jx � ak j

�

�

n
X

kD1

x � ak
jx � akj2

�

:

Denote by Sn D ¹x 2 R
2W

Qn
kD1 jx � ak j � 1º. We immediately obtain the

following statement:

Theorem 2.2. Let us assume that u.x/ D 0 for x 2 @Sn. Then

Z

R2nSn

jru.x/j2 dx � 1

4

Z

R2nSn

P2
jD1

�
Pn
kD1

xj �akj

jx�ak j2

�2

w2
ju.x/j2 dx: (2.6)

If we add the standard 2D-Hardy inequalities with di�erent singularities we

obtain

Z

R2

jru.x/j2 dx � 1

4n

Z

R2

�

n
X

kD1

1

jx � ak j2 ln2 jx � ak j

�

ju.x/j2 dx; (2.7)

where it is assumed that u.x/ D 0 for x 2
Sn
kD1 ¹x 2 R

2W jx � ak j � 1º.
Similarly to the case d � 3 inequality (2.7) is not as good as (2.6) near

singularities because (2.7) contains an extra term 1=n. Moreover Theorem 2.2

requires functions to be zero only in Sn rather than in
Sn
kD1 ¹x 2 R

2W jx�akj � 1º
which is a lot less restrictive.

Note in the end that 1D case with multiple singularities is not interesting since

the conditions u.x/ D 0 at x D ak split the problem into one dimensional

problems on intervals .ak ; akC1/, k D 1; : : : ; n�1with zero boundary conditions.
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Remark 2.3. It would be interesting to study the shape of the subset of Rd where

the Hardy weights in (2.4) and (2.5) (and respectively (2.6) and (2.7)) are equal.

It might be also interesting to look at this problem with weighted singularities

b2
k

jx � akj2 ; where bk 2 R:

3. Discrete multi-dimensional Hardy’s inequalities, d � 3

Denote by 1j 2 R
d the unit vector in the direction j . Then the discrete partial

derivative in the direction j of a function f de�ned onZ
d equals f .n/�f .n�1j /,

n D .n1; : : : ; nd / 2 Z
d .

In this section we shall prove the following result.

Theorem 3.1. Let d � 3. For a function f de�ned on Z
d we have

X

n2Zd

jf .n/j2
jnj2 � C

X

n2Zd

d
X

jD1

jf .n/ � f .n � 1j /j2;

where

C � �2

4

� 2

d � 2
C

p
2 .d � 4/2

.d � 2/ .
p
2 d � 4

p
d � 2/ �

�

:

In order to prove this theorem we introduce a Fourier transform

Of .�/ D
X

n2Zd

f .n/ e�in� ;

where � D .�1; : : : ; �d / 2 T
d D Œ��; ��d . The inverse transform is

f .n/ D
Z

Td

Of .�/ ein� µ�;

where µ� D .2�/�d d� . Given f .n/, de�ne

fj .n/ D

8

ˆ

<

ˆ

:

nj

jnj2 f .n/; n ¤ 0;

0; n D 0:
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Then,
X

j

jfj .n/j2 D jf .n/j2
jnj2

and
X

j

nj fj .n/ D f .n/; nk fj .n/ D nj fk.n/; j ¤ k:

Since

f .n/ � f .n � 1j / D
Z

Td

Of .�/.ein� � ein��i�j / µ�

and

ein� � ein��i�j D 2 i e�i�j =2 sin.�j =2/ e
in� ;

we obtain using the Parseval identity

X

n2Zd

d
X

jD1

jf .n/ � f .n � 1j /j2 D 4

Z

Td

j Of .�/j2
X

j

sin2.�j =2/ µ�:

Let Ofj .�/ be the Fourier transform of the sequence ¹fj .n/º. Then

fj .n/ D
Z

Td

Of j .�/ein� µ�;

and

nk fj .n/ D
Z

Td

Of j .�/nk ein� µ� D
Z

Td

i @k Of j .�/ ein� µ� ;

where @k D @=@�k. Thus, we have

@k Of j .�/ � @j Of k.�/ � 0; when j ¤ k ; (3.1)

and also,
Of .�/ D i

X

j

@j Of j .�/:

Taking all this into account we arrive at

X

n2Zd

jf .n/j2
jnj2 D

Z

Td

X

j

j Of j .�/j2 µ�;

and

X

n2Zd

d
X

jD1

jf .n/ � f .n � 1j /j2 D 4

Z

Td

ˇ

ˇ

ˇ

X

k

@k Of k.�/
ˇ

ˇ

ˇ

2 X

j

sin2.�j =2/ µ�:
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Thus, the inequality we want to prove is reduced to

Z

Td

X

j

j Of j .�/j2 µ� � 4C

Z

Td

ˇ

ˇ

ˇ

X

k

@k Of k.�/
ˇ

ˇ

ˇ

2 X

j

sin2.�j =2/ µ�; (3.2)

for any Of j satisfying (3.1) and, since fj .0/ D 0,

Z

Td

Of j .�/ µ� D 0: (3.3)

Vector-valued functions Of j satisfying (3.1) and (3.3) are gradients. In other words,

there exists a periodic function  .�/ such that (normalization)

Z

Td

 .�/ µ� D 0

and
Of j .�/ D @j .�/:

In terms of  , inequality (3.2) reads (we can replace µ� with d� now)

Z

Td

jr .�/j2 d� � 4C

Z

Td

j� .�/j2
X

j

sin2.�j =2/ d�: (3.4)

This reminds us of the Poincaré–Friedrichs inequality, but here we have a stronger

inequality because of
P

j sin2.�j=2/ in the right hand side.

Let us prove (3.4). Denote

w.�/ D
�

X

j

sin2.�j =2/
�1=2

:

Then
Z

Td

jr .�/j2 d� D �
Z

Td

 �� d� � k� wkL2.Td /













 

w













L2.Td /

:

Since

w2.�/ D
X

j

sin2.�j=2/ D
h

4

P

j sin2.�j =2/

j� j2
i j� j2
4

� j� j2
�2

;

we obtain
Z

Td

j .�/j2
w2.�/

d� � �2
Z

Td

j .�/j2
j� j2 d�:

It remains to prove a Hardy inequality on the torus.
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Lemma 3.2. Let d � 3. Then there exists a constant C.d/ > 0 such that

Z

Td

j .�/j2
j� j2 d� � C.d/

Z

Td

jr .�/j2 d�; (3.5)

for all smooth  with zero average:

Z

Td

 .�/ d� D 0: (3.6)

In fact, we can take

C.d/ D 2

d � 2 C
p
2 .d � 4/2

.d � 2/ .
p
2 d � 4

p
d � 2/ �

:

Proof. We will use our assumption (3.6) to have the Poincaré–Friedrichs inequal-

ity:

k k2 D .2�/�d
X

n2Zd n¹0º

j O .n/j2 � .2�/�d
X

n2Zd n¹0º

jnj2j O .n/j2 D kr k2: (3.7)

Here k � k is the L2 norm over Td and ¹ O .n/º are the Fourier coe�cients of  ,

 .�/ D .2�/�d
X

n2Zd

O .n/ ein� :

Sometimes it will be useful to think of as a function onR
d , which is 2�-periodic

in each variable. Let �.�/ be a product of one-dimensional cut-o� functions,

�.�/ D
Qd
jD1

Q�.�j /, where each Q�.t/ is piece-wise linear, 0 � Q�.t/ � 1 for all

t , Q�.t/ D 1, when jt j � r , and Q�.t/ D 0, when jt j � r C � (where r and � are

positive numbers, and r C � < �). We have













 

j� j
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�  

j� j
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.1 � �/  
j� j













(3.8)

Viewing �  as a compactly supported function on R
d , apply the standard Hardy

inequality in R
d :













�  

j� j













D












�  

j� j













L2.Rd /

� 2

d � 2
kr.�  /kL2.Rd / D 2

d � 2 kr.�  /k: (3.9)
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Since

kr.�  /k � k� r k C k r�k � kr k C 1

�
k k;

we invoke (3.7) to obtain

kr.�  /k �
�

1C 1

�

�

kr k: (3.10)

The second term in (3.8) is even simpler, since j� j � r on the support of 1 � �.

Thus, applying again (3.7),












.1� �/  
j� j













� 1

r
k k � 1

r
kr k:

Combining this with (3.9) and (3.10), we estimate the right hand side in (3.8) as

follows

�
h 2

d � 2

�

1C 1

�

�

C 1

r

i

kr k:

In order to minimize the quantity

2

d � 2
1

�
C 1

r
;

take r D � � �. The minimum of

2

d � 2
1

�
C 1

� � �
(3.11)

is attained at

� D
p
2d � 4 � 2
d � 4 �

(with � D �=2 for d D 4), and the corresponding value of (3.11) is
p
2 .d � 4/2

.d � 2/ .
p
2 d � 4

p
d � 2/ �

:

This proves (3.5) �

4. Hardy’s inequality on Z
2

The main result of this section is the following theorem.

Theorem 4.1. There exists a constant C > 0 such that

X

x2Z2; jxj�2

jf .x/j2
jxj2.ln jxj/2 � C

X

x;y2Z2; x�y

jf .x/ � f .y/j2; (4.1)

for all compactly supported f .x/ with f .x/ D 0 for jxj � 1.
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In fact instead of (4.1) we shall prove an equivalent inequality

X

x2Z2; kxk�2

jf .x/j2
kxk2.ln kxk/2 � C

X

x2Z2

X

jD1;2

jf .x/ � f .x � 1j /j2; (4.2)

where as before 1j is the unit vector in the direction j . In this section we denote

by kxk the `1-norm of x

kxk D max¹jx1j; jx2jº:

Let us introduce the discrete polar coordinates on Z
2 based on this norm. Denote

byDR the closed disk ¹x 2 Z
2W kxk � Rº and by @DR denote its boundary. Thus,

if n > 0 is an integer,

@Dn D ¹x 2 Z
2W jx1j D n;�n � x2 � n or jx2j D n;�n � x1 � nº:

De�ne a non-linear operation, U , of turning one step counterclockwise along the

circle:

U

"

x1

x2

#

D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

"

x1

x2 C 1

#

D x C 12; if x1 > 0 and � jx1j � x2 < jx1j;

"

x1 � 1
x2

#

D x � 11; if x2 > 0 and � jx2j < x1 � jx2j;

"

x1

x2 � 1

#

D x � 12; if x1 < 0 and � jx1j < x2 � jx1j;

"

x1 C 1

x2

#

D x C 11; if x2 < 0 and � jx2j � x1 < jx2j:

For x D 0 set U0 D 0. Note that U is invertible on @Dn for n > 0. Also,

U 8�n D Id. If

x D Umhni; where hni D n 11 C n 12;

we call hn;mi the (discrete) polar coordinates of x. Each circle @Dn has four

corners:

U 0hni; U 2nhni; U 4nhni; U 6nhni:
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To describe other points Umhni D hn;mi on @Dn, we sometimes decompose m

as follows

m D 2snC t; s D 0; 1; 2; 3; 0 < t < 2n

(but sometimes, for convenience, t will be equal to 0 or 2n). For a function f

on Z
2, we write its value at x as f .x/ or, when using polar coordinates, f hn;mi.

We say that x � y if x and y are neighbours in the sense that y D x ˙ 1j for

j D 1 or j D 2.

Let us begin with an useful observation that allows one to take care of �nite

sums of jf .x/j2. This is a discrete analog of the Poincaré–Friedrichs lemma.

Lemma 4.2. For any integer N � 1,

X

kxk�N

jf .x/j2 � 4

3
N.N C 1/.2N C 1/

X

x;y2DN ;x�y

jf .x/ � f .y/j2 (4.3)

for any function f such that f .0/ D 0.

Proof. We have

X

kxk�N

jf .x/j2 D
N

X

nD1

X

x2@Dn

jf .x/j2:

For any point x0 2 @Dn, there is a path x0 � x1 � � � � � xk � 0 from x0 to the

origin. The smallest k is at most 2n� 1. We have

jf .x0/j � jf .x0/ � f .x1/j C � � � C jf .xk/ � f .0/j

and therefore,

jf .x0/j2 � 4n
�

jf .x0/ � f .x1/j2 C � � � C jf .xk/ � f .0/j2
�

:

When x0 runs over @Dn, the corresponding paths can be chosen so that the

maximum number of times an edge is repeated in di�erent paths is 2n. A very

rough estimate is thus

X

x02@Dn

jf .x0/j2 � 8n2
X

x;y2Dn;x�y

jf .x/ � f .y/j2:

Summing it from n D 1 to n D N results in (4.3). �
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Plan of the proof of (4.2). In polar coordinates, the sum we are going to esti-

mate is

A0 WD
1

X

nD2

1

n2.ln n/2

8n�1
X

mD0

jf hn;mij2:

Subtract from f hn;mi and add back the average of f hn;mi over the circle @Dn,

N
f .n/ D 1

8n

8n�1
X

mD0

f hn;mi:

Then

A0 � 2

1
X

nD2

1

n2.ln n/2

8n�1
X

mD0

jf hn;mi �
N
f .n/j2 C 2

1
X

nD2

1

n2.ln n/2

8n�1
X

mD0

j
N
f .n/j2

� 2

1
X

nD2

1

n2.ln n/2

8n�1
X

mD0

jf hn;mi �
N
f .n/j2 C 16

1
X

nD2

1

n.ln n/2
j
N
f .n/j2:

Since we are not going to �nd sharp constants, it is convenient to use the notation

. and write simply a . b when there is an absolute constant C > 0 such that

a � Cb. Thus, the above inequality can be written as

A0 . A1 C A2;

where

A1 WD
1

X

nD2

1

n2.lnn/2

8n�1
X

mD0

jf hn;mi �
N
f .n/j2;

and

A2 WD
1

X

nD2

1

n.ln n/2
j
N
f .n/j2: (4.4)

The sum A1 is estimated with the help of Lemma 4.3, which implies that even

without ln in the denominator, we have

1
X

nD2

1

n2

8n�1
X

mD0

jf hn;mi �
N
f .n/j2 .

1
X

nD2

8n�1
X

mD0

jf hn;mC 1i � f hn;mij2: (4.5)

(This is because the average of f hn;mi �
N
f .n/ over @Dn is zero.) The sum on the

right is (a part of) the angular part of the sum

B0 WD
X

x;y2Z2; x�y

jf .x/ � f .y/j2: (4.6)
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The sum A2 is harder to estimate. We will show that, for any su�ciently small

�0 > 0,

A2 � C.�0/ B0 C �0 A0; (4.7)

where the constant C.�0/ goes to 1 as �0 & 0. A choice of �0 then will conclude

the proof of A0 . B0, which is (4.2).

Let us start with the proof of (4.5).

Lemma 4.3. For functions ghn;mi whose averages over the circles @Dn vanish,

1
X

nD2

1

n2

8n�1
X

mD0

jghn;mij2 .
X

x;y2Z2nD1; x�y

jg.x/ � g.y/j2:

This result is a consequence of the following discrete Poincaré–Friedrichs type

inequality on the circle.

Lemma 4.4. For any function � on the �nite set ¹0; 1; : : : ; N � 1º such that
PN�1
mD0 �.m/ D 0,

4 sin2.�=N/

N�1
X

mD0

j�.m/j2 �
N�1
X

mD0

j�.mC 1/ � �.m/j2; (4.8)

where we set �.N/ D �.0/.

Proof. Use the discrete Fourier transform:

O�.k/ D
N�1
X

mD0

�.m/ e�2�imk=N :

Then

�.m/ D 1

N

N�1
X

kD0

O�.k/ e2�imk=N ;

and

�.mC 1/ � �.m/ D 1

N

N�1
X

kD0

O�.k/ Œe2�ik=N � 1� e2�imk=N

D 1

N

N�1
X

kD0

2 i e�ik=N sin.�k=N/ O�.k/ e2�imk=N :
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By Plancherel,

N�1
X

mD0

j�.mC 1/ � �.m/j2 D 4

N

N�1
X

kD0

sin2.�k=N/ j O�.k/j2

Since O�.0/ D 0 due to our assumption on the average of �,

N�1
X

kD0

sin2.�k=N/ j O�.k/j2 � sin2.�=N/

N�1
X

kD0

j O�.k/j2;

and inequality (4.8) follows. �

Next we prove (4.2) in the case of radial functions on Z
2. A function f is

radial if f hn;mi does not depend on the angular variable m. If f is radial, and if

we write f hn;mi D g.n/, then

X

x2Z2; kxk�2

jf .x/j2
kxk2.ln kxk/2 D 8

1
X

nD2

jg.n/j2
n .ln n/2

:

Lemma 4.5. We have

1
X

nD2

jg.n/j2
n .ln n/2

� C

1
X

nD2

n jg.nC 1/ � g.n/j2: (4.9)

Proof. Using an elementary inequality

1

n .ln n/2
<

1

ln.n � 1/ � 1

ln n
; (4.10)

we obtain

1
X

nD3

jg.n/j2
n .ln n/2

<

1
X

nD3

jg.n/j2
ln.n� 1/

�
1

X

nD3

jg.n/j2
ln n

D
1

X

kD2

jg.k C 1/j2
ln k

�
1

X

kD3

jg.k/j2
ln k

D jg.3/j2
ln 2

C
1

X

kD3

jg.k C 1/j2 � jg.k/j2
ln k
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and continue, using Cauchy–Schwarz followed by Young’s inequality,

� jg.3/j2
ln 2

C
�

1
X

nD3

n jg.nC 1/ � g.n/j2
�1=2�

1
X

kD3

.jg.k C 1/j C jg.k/j/2
k .ln k/2

�1=2

� jg.3/j2
ln 2

C 1

4�

1
X

nD3

n jg.nC 1/ � g.n/j2 C �

1
X

kD3

.jg.k C 1/j C jg.k/j/2
k .ln k/2

Choose the right � and apply Lemma 4.2 to obtain (4.9). �

Let us now estimate A2. Since
N
f .n/ is the average of f we have

64A2 D A3 WD
1

X

nD2

1

n3 .ln n/2

ˇ

ˇ

ˇ

ˇ

8n�1
X

mD0

f hn;mi
ˇ

ˇ

ˇ

ˇ

2

;

(see (4.4)). Use (4.10) to proceed as follows:

1
X

nD2

1

n3 .ln n/2

ˇ

ˇ

ˇ

ˇ

8n�1
X

mD0

f hn;mi
ˇ

ˇ

ˇ

ˇ

2

<
1

23 .ln 2/2

ˇ

ˇ

ˇ

ˇ

8�2�1
X

mD0

f h2;mi
ˇ

ˇ

ˇ

ˇ

2

C
1

X

nD3

1

n2

� 1

ln.n � 1/ � 1

lnn

�

ˇ

ˇ

ˇ

ˇ

8n�1
X

mD0

f hn;mi
ˇ

ˇ

ˇ

ˇ

2

D 1

23 .ln 2/2

ˇ

ˇ

ˇ

ˇ

8�2�1
X

mD0

f h2;mi
ˇ

ˇ

ˇ

ˇ

2

C
1

X

nD2

1

.nC 1/2 ln n

ˇ

ˇ

ˇ

ˇ

8.nC1/�1
X

mD0

f hnC 1;mi
ˇ

ˇ

ˇ

ˇ

2

�
1

X

nD3

1

n2 ln n

ˇ

ˇ

ˇ

ˇ

8n�1
X

mD0

f hn;mi
ˇ

ˇ

ˇ

ˇ

2

:

Splitting the term with n D 2 from the second sum we continue

D 1

23 .ln 2/2

ˇ

ˇ

ˇ

ˇ

8�2�1
X

mD0

f h2;mi
ˇ

ˇ

ˇ

ˇ

2

C 1

32 ln 2

ˇ

ˇ

ˇ

ˇ

8�3�1
X

mD0

f h3;mi
ˇ

ˇ

ˇ

ˇ

2

C
1

X

nD3

1

.nC 1/2 ln n

ˇ

ˇ

ˇ

ˇ

8.nC1/�1
X

mD0

f hnC 1;mi
ˇ

ˇ

ˇ

ˇ

2

�
1

X

nD3

1

n2 ln n

ˇ

ˇ

ˇ

ˇ

8n�1
X

mD0

f hn;mi
ˇ

ˇ

ˇ

ˇ

2

� 1

23 .ln 2/2

ˇ

ˇ

ˇ

ˇ

8�2�1
X

mD0

f h2;mi
ˇ

ˇ

ˇ

ˇ

2

C 1

32 ln 2

ˇ

ˇ

ˇ

ˇ

8�3�1
X

mD0

f h3;mi
ˇ

ˇ

ˇ

ˇ

2

C
1

X

nD3

1

n2 ln n

ˇ

ˇ

ˇ

ˇ

8.nC1/�1
X

mD0

f hnC 1;mi
ˇ

ˇ

ˇ

ˇ

2

�
1

X

nD3

1

n2 ln n

ˇ

ˇ

ˇ

ˇ

8n�1
X

kD0

f hn; ki
ˇ

ˇ

ˇ

ˇ

2

:
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By Lemma 4.2, we can take care of the �rst two terms and write

A3 . B0 C
1

X

nD3

1

n2 lnn

ˇ

ˇ

ˇ

ˇ

8.nC1/�1
X

mD0

f hnC 1;mi
ˇ

ˇ

ˇ

ˇ

2

�
1

X

nD3

1

n2 lnn

ˇ

ˇ

ˇ

ˇ

8n�1
X

kD0

f hn; ki
ˇ

ˇ

ˇ

ˇ

2

:

In the sum

ˇ

ˇ

ˇ

ˇ

8.nC1/�1
X

mD0

f hnC 1;mi
ˇ

ˇ

ˇ

ˇ

2

;

separate eight terms corresponding to the following values of m:

m D 2s.nC 1/C t; s D 0; 1; 2; 3; t D 2nC 1; 2nC 2:

The remaining 8n terms will be paired with the corresponding terms in the sum

ˇ

ˇ

ˇ

ˇ

8n�1
X

kD0

f hn; ki
ˇ

ˇ

ˇ

ˇ

2

:

Figure 1 shows (thick lines) the sample edges pairing f h3; 1i with f h2; 0i, f h3; 2i
with f h2; 1i, f h3; 3i with f h2; 2i, f h3; 4i with f h2; 3i, and f h3; 8i with f h2; 5i.
The excluded nodes on @D3 are circled.

0

h3; 0i

h3; 23i

h3; 22ih3; 8i

Figure 1. Paths.
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Since

ˇ

ˇ

ˇ

ˇ

8.nC1/�1
X

mD0

f hnC 1;mi
ˇ

ˇ

ˇ

ˇ

2

.

3
X

sD0

jf hnC 1; 2s.nC 1/C 2nC 1j2

C
3

X

sD0

jf hnC 1; 2s.nC 1/C 2nC 2ij2

C
ˇ

ˇ

ˇ

ˇ

�
X

mD0;:::;8.nC1/�1

f hnC 1;mi
ˇ

ˇ

ˇ

ˇ

2

;

where
�

P

stands for the sum without eight terms, we have

A3 . B0 C A4 C A5;

where

A4 WD
1

X

nD3

1

n2 ln n

3
X

sD0

jf hnC 1; 2s.nC 1/C 2nC 1ij2

C
1

X

nD3

1

n2 ln n

3
X

sD0

jf hnC 1; 2s.nC 1/C 2nC 2ij2

and

A5 WD
1

X

nD3

1

n2 ln n

�
ˇ

ˇ

ˇ

ˇ

�
X

mD0;:::;8.nC1/�1

f hnC 1;mi
ˇ

ˇ

ˇ

ˇ

2

�
ˇ

ˇ

ˇ

ˇ

8n�1
X

kD0

f hn; ki
ˇ

ˇ

ˇ

ˇ

2�

:

The sum A5 can be estimated as follows. Since

�

N
X

1

aj

�2

�
�

N
X

1

bj

�2

D
�

N
X

jD1

.aj � bj /
� �

N
X

kD1

.ak C bk/
�

� N
1

4�N

N
X

jD1

.aj � bj /2 CN �N

N
X

jD1

.aj C bj /
2;

we have
ˇ

ˇ

ˇ

ˇ

�
X

mD0;:::;8.nC1/�1

f hnC 1;mi
ˇ

ˇ

ˇ

ˇ

2

�
ˇ

ˇ

ˇ

ˇ

8n�1
X

kD0

f hn; ki
ˇ

ˇ

ˇ

ˇ

2

� 8n
1

4�n

X

�

.f hnC 1;mi � f hn; ki/2

C 8n �n
X

�

.f hnC 1;mi C f hn; ki/2
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� 8n
1

4�n

X

�

.f hnC 1;mi � f hn; ki/2

C 16n �n
X

�

jf hnC 1;mij2 C jf hn; kij2:

Choose �n so that 16n �n D �0= lnn, i.e.,

�n D �0

16n ln n
;

with some small �0 to be chosen later. Then,

ˇ

ˇ

ˇ

ˇ

�
X

mD0;:::;8.nC1/�1

f hnC 1;mi
ˇ

ˇ

ˇ

ˇ

2

�
ˇ

ˇ

ˇ

ˇ

8n�1
X

kD0

f hn; ki
ˇ

ˇ

ˇ

ˇ

2

� 32n2 ln n
1

�0

X

�

.f hnC 1;mi � f hn; ki/2

C �0

ln n

X

�

jf hnC 1;mij2 C jf hn; kij2:

:

This leads to the following estimate

A5 � 32

�0

1
X

nD3

X

�

.f hnC 1;mi � f hn; ki/2

C �0

1
X

nD3

1

n2.ln n/2

X

�

jf hnC 1;mij2 C jf hn; kij2;

which implies

A5 .
32

�0
B0 C �0A0:

Now look at the excluded eight terms comprising A4. To each of them we can

apply the one-dimensional Hardy inequality (1.3). Consider, for example,

1
X

nD3

1

n2 lnn
jf hnC 1; 2s.nC 1/C 2nC 1ij2:

De�ne temporarily u.n/ D f hnC 1; 2s.nC 1/C 2nC 1i for n � 3 and u.n/ D 0

for n D 0; 1; 2. Then,

1
X

nD3

1

n2 ln n
jf hnC 1; 2s.nC 1/C 2nC 1ij2 � 4

1
X

nD1

ju.n/ � u.n � 1/j2:

In the case s D 3, the discrete function u.n/ picks up the values of f .x/ from the

lattice points on the dashed line on Fig. 1. Although each di�erence u.n/�u.n�1/
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is not between the values at the neighboring lattice points, it can be modi�ed by

adding and subtracting a value at one of the two lattice points on either side of the

dashed line segment. In addition, we must remember that the sum is from n D 3.

Hence,

1
X

nD1

ju.n/ � u.n � 1/j2 � 2B0 C jf h3C 1; 2s.3C 1/C 2 � 3C 1ij2:

The last term is bounded by B0 in view of Lemma 4.2. Thus,

A4 . B0:

Putting all the estimates together, we complete the proof of Theorem 4.1.

References

[1] A. A. Balinsky, W. D. Evans, and R. T. Lewis, The analysis and geometry of Hardy’s

inequality. Universitext. Springer, Cham, 2015. MR 3408787 Zbl 1332.26005

[2] E. B. Davies, A review of Hardy inequalities. In J. Rossmann, P. Takáč, and

G. Wildenhain (eds.), The Maz0ya anniversary collection. Vol. 2. Rostock Conference

on Functional Analysis, Partial Di�erential Equations and Applications. Papers from

the conference held at the University of Rostock, Rostock, August 31–September 4,

1998. Operator Theory: Advances and Applications, 110. Birkhäuser Verlag, Basel,

1999, 55–67. MR 1747888 Zbl 0936.35121

[3] V. Felli, E. M. Marchini, and S. Terracini, On Schrödinger operators with multisin-

gular inverse-square anisotropic potentials. Indiana Univ. Math. J. 58 (2009), no. 2,

617–676. MR 2514383 Zbl 1169.35013

[4] G. H. Hardy, Note on a theorem of Hilbert. Math. Z. 6 (1920), no. 3-4, 314–317.

MR 1544414 JFM 47.0207.01

[5] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities. Second edition. Cambridge

University Press, Cambridge, 1952. MR 0046395 Zbl 0047.05302

[6] A. Kufner, L . Maligranda, and L.-E. Persson, The prehistory of the Hardy inequality.

Amer. Math. Monthly 113 (2006), no. 8, 715–732. MR 2256532 Zbl 1153.01015

[7] A. Kufner and B. Opic, Hardy-type inequalities. Pitman Research Notes in Math-

ematics Series, 219. Longman Scienti�c & Technical, Harlow, 1990. MR 1069756

Zbl 0698.26007

[8] V. G. Maz0ya, Sobolev spaces. Translated from the Russian by T. O. Shaposhnikova.

Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1985. MR 0817985

Zbl 0692.46023

http://www.ams.org/mathscinet-getitem?mr=3408787
http://zbmath.org/?q=an:1332.26005
http://www.ams.org/mathscinet-getitem?mr=1747888
http://zbmath.org/?q=an:0936.35121
http://www.ams.org/mathscinet-getitem?mr=2514383
http://zbmath.org/?q=an:1169.35013
http://www.ams.org/mathscinet-getitem?mr=1544414
http://zbmath.org/?q=an:47.0207.01
http://www.ams.org/mathscinet-getitem?mr=0046395
http://zbmath.org/?q=an:0047.05302
http://www.ams.org/mathscinet-getitem?mr=2256532
http://zbmath.org/?q=an:1153.01015
http://www.ams.org/mathscinet-getitem?mr=1069756
http://zbmath.org/?q=an:0698.26007
http://www.ams.org/mathscinet-getitem?mr=0817985
http://zbmath.org/?q=an:0692.46023


858 L. Kapitanski and A. Laptev

[9] E. Mitidieri, A simple approach to Hardy inequalities. Mat. Zametki 67 (2000), no. 4,

563–572. In Russian. English translation, Math. Notes 67 (2000), no. 3-4, 479–486.

MR 1769903 Zbl 0964.26010

[10] G. Rozenblum and M. Solomyak, On the spectral estimates for the Schrödinger oper-

ator on Z
d , d � 3. Probl. Mat. Anal. 41 (2009), 107–126. In Russian. English trans-

lation, J. Math. Sci. (N.Y.) 159 (2009), no. 2, 241–263. MR 2544038 Zbl 1207.35237

[11] G. Rozenblum and M. Solomyak, On the spectral estimates for the Schrödinger op-

erators in global dimension 2. Algebra i Analiz 25 (2013), no. 3, 185–199. Reprint,

St. Petersburg Math. J. 25 (2014), no. 3, 495–505. MR 3184603 Zbl 1304.35454

[12] F. Takahashi, A simple proof of Hardy’s inequality in a limiting case. Arch. Math.

(Basel) 104 (2015), no. 1, 77–82. MR 3299153 Zbl 1308.35010

Received February 7, 2016

Lev Kapitanski, Department of Mathematics, University of Miami, Coral Gables,

FL 33124, USA

e-mail: levkapit@math.miami.edu

Ari Laptev, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK

e-mail: a.laptev@imperial.ac.uk

http://www.ams.org/mathscinet-getitem?mr=1769903
http://zbmath.org/?q=an:0964.26010
http://www.ams.org/mathscinet-getitem?mr=2544038
http://zbmath.org/?q=an:1207.35237
http://www.ams.org/mathscinet-getitem?mr=3184603
http://zbmath.org/?q=an:1304.35454
http://www.ams.org/mathscinet-getitem?mr=3299153
http://zbmath.org/?q=an:1308.35010
mailto:levkapit@math.miami.edu
mailto:a.laptev@imperial.ac.uk

	Introduction
	Continuous case, multiple singularities
	Discrete multi-dimensional Hardy's inequalities, d3
	 Hardy's inequality on Z2
	References

