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A generalised Gauss circle problem

and integrated density of states

Jean Lagacé1 and Leonid Parnovski2

Abstract. Counting lattice points inside a ball of large radius in Euclidean space is a

classical problem in analytic number theory, dating back to Gauss. We propose a variation

on this problem: studying the asymptotics of the measure of an integer lattice of a�ne

planes inside a ball. The �rst term is the volume of the ball; we study the size of the

remainder term. While the classical problem is equivalent to counting eigenvalues of the

Laplace operator on the torus, our variation corresponds to the integrated density of states

of the Laplace operator on the product of a torus with Euclidean space. The asymptotics we

obtain are then used to compute the density of states of the magnetic Schrödinger operator.
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1. Introduction and Main results

The �rst problem we are considering in this paper has several equivalent formu-

lations.

1.1. Number theoretic formulation. For � > 0 and k 2 R
d , let B.�I k/ be the

ball of radius � centered at k. Let S.�I k/ be the number of integer points inside

the disk B.�; k/ � R
2. The classical Gauss Circle Problem consists in estimating

the remainder term

zR.�I 0/ D S.�I 0/� ��2

Hardy and (Edmund) Landau have found lower bounds for this problem, while the

current best upper bound is given by Huxley in [4]. This problem has also been

1 The research of J. Lagacé was partially supported by the NSERC CGS-M scholarship.
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studied for balls of dimension higher than two, see e.g. [2], and it is well-known

that averaging over the radius of the ball improves regularity of the remainder.

In this paper, we consider a variation on this problem: we estimate the measure

of the intersection of a�ne planes sitting on integer coordinates with balls of large

radius in R
d . More precisely, put

Ak WD Z
k � R

d�k � R
d

and let Bd .�; k/ be a ball in R
d of radius � centred at k WD .k1; k2/ 2 R

k � R
l ,

where k C l D d . Denote by S.�I k1I d; k/ the l-dimensional volume of the set

Bd .�; k1/ \ Ak. A simple observation shows that we have

S.�I k1I d; k/ D !l

X


2Zk

j
�k1j<�

.�2 � j
 � k1j2/l=2; (1)

where !d is the volume of the unit ball in R
d . One can see that the integral of

zR.�; k/ over k2 2 T
l D R

l=Zl , is the same as the remainder term

R WD S.�I k1I d; k/ � !d�
d ;

obtained from equation (1). Our aim is to compute an estimate of R for large

values of �. Before discussing the results, we would like to describe di�erent

formulations of this problem.

1.2. First spectral theoretic formulation. Let

H D ��C V

be a Schrödinger operator acting in R
d with a smooth real-valued periodic poten-

tial V ; for simplicity we assume that the lattice of periods � D .2�Z/d , with

dual lattice �� D Z
d Denote the integrated density of states (IDS) of H by

N.�/ WD N.�IH/. It can be de�ned by the formula

N.�IH/ WD lim
L!1

zN.�IHL/

Ld
; (2)

where HL is the restriction of H to the cube Œ0; L�d with appropriate self-adjoint

boundary conditions and zN.�;HL/ is the counting functions of the (discrete)

eigenvalues of HL. Note that this parameter � is related to the parameter � of

the previous section by � D
p
�. While this formulation of the IDS is important

for Theorem 1.5, for periodic V we use an useful equivalent de�nition.
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Following [10], we expressH as a direct integral

H D
Z ˚

Td

H.k/ dk:

Then, one can express N.�IH/ in terms of the counting functions of the �bre

operators H.k/:

N.�/ WD 1

.2�/d

Z

Td

N.�IH.k// dk;

where N.�;H.k// is the eigenvalue counting function of H.k/. Remarkably,

despite the fact that the asymptotic behaviour of N.�;H.k// for �xed k and

� ! 1 is very irregular (so that even the precise size of the remainder

R.�I k/ WD N.�;H.k//� Cd�
d=2

is unknown), integration over all quasimomenta k 2 T
d WD R

d=Zd makes things

extremely regular, so that there exists a complete asymptotic expansion of N.�/

in powers of � as � ! 1, [8, 9]. Here, we have denoted

Cd D !d

.2�/d
and !d D �d=2

�.1C d=2/

is the volume of the unit ball in R
d . The question we want to study is what would

happen if, instead of integrating against all quasimomenta, we integrate over a

subset of them, say over an a�ne plane. We write k D .k1; k2/, where k1 2 T
k,

k2 2 T
l and de�ne the partial density of states (PDS) as

Np.�I k1/ D Np.�I k1I d; k/ WD 1

.2�/d

Z

Tl

N.�;H.k1; k2// dk2:

Our aim is to investigate the asymptotic behaviour of the PDS as � ! 1.

Obviously, the regularity at in�nity will be improving as l increases and so the

larger l is, the more asymptotic terms we are likely to obtain. This asymptotic

problem can be treated in two steps.

Step 1. Obtain the asymptotic behaviour of the PDS for unperturbed operator

H 0 WD ��. More precisely, we want to obtain as good an estimate on

R0.�I k1I d; k/ WD N 0
p .�I k1I d; k/� Cd�

d=2

as possible (of course, superscript 0 refers to the fact that we are dealing with the

case V D 0). A simple calculation shows that if k D 0, then R0.�I k1I d; 0/ D 0,

so this step is trivial when dealing with the IDS. In the case of k > 0 this step
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becomes quite non-trivial and interesting. Once we have performed this step, we

can move to the next one.

Step 2. Compute (or estimate) the di�erence

Np.�I k1I d; k/ �N 0
p .�I k1I d; k/

and try to obtain as many asymptotic terms of it as possible. It follows from a

simple computation that

N 0
p .�I k1I d; k/ D .2�/�dS.

p
�I k1I d; k/;

hence the main aim of this paper deals with the �rst step of this programme;

we intend to perform the second step in a separate publication.

1.3. Second spectral theoretic formulation. Let us consider the operator
zH D �� C zV acting on T

l � R
k with a smooth potential zV WTl � R

k ! R.

We assume that, as a function on R
k, zV is periodic with the lattice of periods

.2�Z/k . Then, we have, from the de�nition of both the IDS and the PDS that

N.�I zH/ D 1

.2�/k

Z

Tl

N.�IH.k2// dk2 D .2�/lNp.�I 0I d; k/;

that is to say that the integrated density of states equals the partial density of

states up to a constant. If we consider a more general (but also less natural)

operator zHk1
, the domain of which consists of functions onT

l �R
k which become

periodic after multiplication by eik1x1 , then the IDS of zHk1
equals, again up to the

same constant,Np.�I k1I d; k/. We would also like to mention that expression (1)

appears in the study of integer points in anisotropically expanding domains. This

has applications in the study of the asymptotic behaviour of the eigenvalue of the

Laplace operator on the torus in the adiabatic limit, and was developed in [5].

1.4. Main results. Our �rst main result is as follows:

Theorem 1.1. The error term R.�I k1I d; k/ satis�es the asymptotic estimates

R.�I k1I d; k/ D

8
ˆ̂̂
<
ˆ̂̂
:

O.�.d�1/=2/ if k < .d C 1/=2;

O.�.d�1/=2 log �/ if k D .d C 1/=2;

O.�d�2k=.1�dC2k// if k > .d C 1/=2;

uniformly in k1.

Remark 1.2. Recall that R.�I k1I d; 0/ D 0 for all values of �; k1; d .
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We do not pretend that all of these estimates are optimal, but some of them

are, as can be seen from the following result:

Theorem 1.3. For k > 1 and � su�ciently large, there exists a positive constant

Cd;k and k1 2 T
k such that

R.�I k1I d; k/ �

8
<
:
Cd;k�

.d�1��/=2 if d � 1 mod 4;

Cd;k�
.d�1/=2 else,

where � > 0 is arbitrary. When d 6� 1 mod 4, the lower bound

R.�I k1I d; k/ � Cd;k�
.d�1/=2

holds for k D 1.

In particular, this theorem means that for 1 � k < dC1
2

and d 6� 1 mod 4, we

cannot get improvements on the upper bounds found in Theorem 1.1. It also means

that for d � 1 mod 4, k ¤ 1, we cannot get improvements in the exponent.

Remark 1.4. It seems interesting that, after we have integrated N.�IH.k//
.d � 1/=2 times, additional integrations do not improve the remainder estimate,

until we perform the last (d -th) integration, which makes the remainder equal zero.

Open problem. The results in [2] imply that for k D d , our upper bound is not

optimal, but as d ! 1, our upper bound converges to the optimal one, in the

sense that d �
�
d � 2k

1�dC2k

�
! 2. Hence we may ask what is the optimal upper

bound for k � dC1
2

.

1.5. Operators with constant magnetic �eld. Another type of problems we

consider in this paper is the asymptotic behaviour of the density of states of the

(Lev) Landau Hamiltonian (Schrödinger operator with constant magnetic �eld).

LetDj D �i @
@xj

. Then we de�ne the Landau Hamiltonian Hd as the operator

acting in R
d whose action is given by

Hd D .D1 C x2/
2 CD2

2 C � � � CD2
d :

Of course, only operatorsH2 andH3 make real physical sense, but for the sake of

completeness we will deal with all dimensions.
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Let �d .�/ for d � 2 be the parabolic domain in R
d given by

�d .�/ WD ¹.x0; x/ 2 R
d W 0 � x0 � � � jxj2º:

De�ning P.�I d; k/ analogously to S.�I 0I d; k/, that is,

P.�I d; k/ D Voll .�
d .�/\ Ak/;

one can see that

P.�I d; k/ D
b�cX

j D0

S..� � j /1=2I 0I d � 1; k � 1/:

The IDS N.�IHd / is related to P.�I d; k/ by the following proposition.

Proposition 1.5. Let Hd be the d -dimensional Landau Hamiltonian. Then, its

integrated density of states is given by

N.�IHd / D 2
�d

2 �1�dP
�� � 1

2
I d � 1; 1

�

for � � 1, and 0 otherwise.

We get an asymptotic expression for P.�I d; k/, via the next theorem. De�ning

E0.�/ WD E0.�; d/ D 2

d C 1
�.dC1/=2 C 1

2
�.d�1/=2

and

En.�/ WD En.�; d/ D E0 C
nX

kD1

B2k

.2kŠ/

�
�

dC1
2

�

�
�

dC3�4k
2

��.dC1�4k/=2;

we obtain the following theorem.

Theorem 1.6. As � ! 1, P.�I d; k/ admits the asymptotic expansions

P.�I d; 1/ D !d�1E
�

dC1
4

˘.�/CO.1/;

P.�I d; d/ D 2!d�1

d C 1
CO.�.d2�dC2/=.2d//:

If k > dC2
2

, we have

P.�I d; k/ D E�
k�1

4k�2

˘.�/CO.�.d�1�.2k�2/=.2k�d//=2/:

Finally, if k � dC2
2

,

P.�I d; k/ D E�
d�4

8

˘.�/CO.�.dC4/=4.log �/ı/;

where ı D 1 if k D dC2
2

and 0 otherwise.
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Replacing the result in Proposition 1.5 with the asymptotics in Theorem 1.6,

we immediately deduce the following corollary.

Corollary 1.7. The integrated density of states of the Landau Hamiltonian on R
3

admits the asymptotic expansion

N.�IH3/ D 1

6�2
�3=2 CO.1/

for large enough �.

The rest of the paper is organised as follows: in Section 2 we formulate several

results which will be used in the proof of the main theorems, but we will postpone

their proofs until Section 6. In Section 3 we prove the upper bounds in the Laplace

case, and in Section 4 we obtain lower bounds. Finally, in Section 5 we deal with

the magnetic case.

Acknowledgments. The research of J.L. is part of his doctoral studies at Uni-

versité de Montréal, under the supervision of Iosif Polterovich. We are grate-

ful to Zeev Rudnick for outlining the proofs of Lemmas 2.1 and 2.2 in the case

d D 3; k D 2. We are also grateful to Guillaume Poliquin for providing a general-

isation of Lemma 2.1 to arbitrary dimension, and for fruitful discussions. We also

want to thank Yuri Kordyukov for reading the preliminary version of our manu-

script and making useful suggestions as well as for bringing [5] to our attention.

2. Auxiliary results

In order to prove Theorem 1.1, it will be useful to give an alternate expression for

S.�I k1I d; k/. Let us de�ne the function �WRk ! R as

�.x/ D

8
<
:
.1� jxj2/l=2 if jxj < 1;
0 otherwise.

We can then observe that

S.�I 0I d; k/ D !l�
l

X

n2Zk

�.n=�/:

We would like to use Poisson’s summation formula

X

n2Zk

f .n/ D
X

m2Zk

Of .m/ (3)
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with f D �. This will allow us to get upper bounds for all k1 2 T
k , from the

relation

F.f .x � k1// D e�2�ik1��.Ff /.�/; (4)

where F is the Fourier transform operator. For the rest of this section, we therefore

consider k1 D 0, and it will be seen in the proof of Lemma 2.2 that this assumption

is made without loss of generality. In order for equation (3) to hold we need

to smooth out �. To do so, we will consider its convolution with Friederichs’

molli�er ‰� . Hence, setting �� D ‰� � � we get that

O��.�/ D y‰�.�/ O�.�/:

Theorem 1.1 follows from two lemmas. The �rst one �nds asymptotic upper

and lower bounds for S :

Lemma 2.1. Let �C
� and ��

� be de�ned on R
k by

�˙
� .x/ D 1

.1� �/l
��..1� �/x/:

Then, we have that

��
� .x/ � �.x/ � �C

� .x/ (5)

for all x 2 R
k. Immediately, if we de�ne

S˙
� .�/ D !l

X

n2Zk

�˙
� .n=�/;

we get that

S�
� .�/ � S.�/ � SC

� .�/:

Since �˙
� are smooth functions, we can use Poisson’s summation formula to

compute the asymptotic expansion of S˙
� . The second lemma therefore gives the

asymptotic expansion of O�.�/.

Lemma 2.2. The Fourier transform of � satis�es

O�.�/ D C

j�j.dC1/=2
cos

�
2�j�j � .d C 1/�

4

�
CO.j�j�.dC3/=2/

for some C > 0 as j�j ! 1. Furthermore, its derivative satis�es

d

dj�j O�.�/ D
zC

j�j.dC1/=2
sin

�
2�j�j � d�

4

�
CO.j�j�.dC3/=2/

In particular, the asymptotic behaviour of both O�.�/ and its derivative does not

depend on the co-dimension k.

We will postpone the proof of these lemmas until Section 6.
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3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 using both Lemmas 2.2 and 2.1. We have

that

S�
� .�/ � S.�/ � SC

� .�/:

Let us therefore �nd asymptotic expansions on S˙
� . We shall split those compu-

tations in two cases: whether k � .d C 1/=2 or k < .d C 1/=2

3.1. Case 1. Here, we assume that k � .d C 1/=2. Let us �nd asymptotic

expansions on S˙
� . Since �� is a smooth compactly supported function of x, we

may use Poisson’s summation formula (3) to obtain

S˙
� D !d�

l
X

n2Zk

�˙
� .n=�/ D !d�

d
X

m2Zk

O�˙
� .�m/:

Since we have that

O�˙
� .m�/ D 1

.1� �/d
y‰.�m�/ O�

� m�

1� �

�
;

we get, assuming � � 1=�, that

S˙
� D !d

X

m2Zk

.1CO.�//�d y‰.�m�/ O�.m�/

CO
� X

m2Zk

�m�dC1‰.�m�/j O�0.m�/j
�
;

which directly implies

S˙
� D !d�

d CO.��d /CO
� X

m2Zk

jmj¤0

�d y‰.�m�/j O�.m�/j
�

CO
� X

m2Zk

�m�dC1‰.�m�/j O�0.m�/j
�
:

(6)

Observe that y‰.�/ D O.j�jq/ for any q whenever j�j > 1 and bounded for j�j � 1.

Recall from Lemma 2.2 that O�.�/ D O.j�j�.dC1/=2/. Hence, choosing

q D d � 2k � 1
2

;



868 J. Lagacé and L. Parnovski

the third summand in (6) can be split into two terms, becoming

O
�
�.d�1/=2

h X

m2Zk

1�jmj�1=.��/

1

jmj.dC1/=2
C

X

m2Zk

jmj>1=.��/

1

.��/.2kC1�d/=2jmjkC1

i�
:

The �rst sum can be estimated by

X

m2Zk

1�jmj�1=.��/

1

jmj.dC1/=2
�

Z 1=��

1

rk�1

r .dC1/=2
dr

D

8
<
:
O..��/.dC1�2k/=2/ if k > .d C 1/=2;

O.log ��/ if k D .d C 1/=2:

The second sum can be estimated by

X

m2Zk

jmj�1=.��/

1

.��/.2k�dC1/=2jmjkC1

�
Z 1

1=��

1

.��/.2k�dC1/=2

rk�1

rkC1
dr D O..��/.dC1�2k/=2/:

As for the last summand, it is easy to see with the same computations and using
y‰.�/ D o.j�j.d�2k�3/=2/ that the extra power of �� exactly compensates the extra

power of m, and we have that the asymptotic behavior in �� is the same for all

for summands whenever k > .d C 1/=2. Furthermore, when equality holds, the

polynomial component is the same. Therefore, we have to choose � D ��j such

that

��d D �.d�1/=2.��/.dC1�2k/=2:

This is achieved exactly when

j D 2k

1� d C 2k
:

This gives us the announced asymptotic estimates when k � .d C 1/=2, that is

S.�/ D

8
<
:
!d�

d CO.�d�2k=.1�dC2k// if k > .d C 1/=2;

!d�
d CO.�.d�1/=2 log �/ if k D .d C 1/:
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3.2. Case 2. We now assume that k < .d C 1/=2. In this case, we have that

the sum converges with y‰ D O.1/. Hence, the asymptotic expansion for S˙
�

simpli�es to

S˙
� D !d�

d CO.��d /CO
�
�.d�1/=2

X

m2Zk

jmj¤0

1

jmj.dC1/=2

�

CO
�
�.d�1/=2

X

m2Zk

m¤0

�� y‰.�m�/
jmj.d�1/=2

�
:

The third sum converges and the last one as well if k < d�1
2

. In that case, choosing

� D ��.dC1/=2 satis�es Theorem 1.1, and choosing � smaller does not improve the

estimate. If k D d
2

or k D d�1
2

, using y‰.�/ D O
�
j�j�1

�
for m > .��/�1 yields

the same result, �nishing the proof.

Note that equation (4) ensures that these estimates hold for all k1 2 T
k.

4. Lower bounds

Let us �rst follow the argument given in [1] for d D k D 2. The beginning of the

argument is the same, which we add for completeness. Since R.�I k1/ is periodic

in k1 with respect to �, we can compute its Fourier coe�cients, obtaining

Z

Tk

R.�I k1/e
�2�ik1�
 dk1

D
Z

Tk

�
� !d�

d C �l
X


2�

�
�
 � k1

�

�
e�2�ik1�


�
dk1

D
Z

Rk

�l�
�k1

�

�
e�2�ik1�
 dk1

D �d
h C

.�j
 j/.dC1/=2
cos

�
2��j
 j � .d C 1/�

4

�
CO.j�
 j�.dC3/=2/

i
;

from Lemma 2.2. Additionally, we have that

Z

Tk

R.�I k1/ dk1 D 0:
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Hence, for all 
 2 � n ¹0º, we have that
Z

Tk

jR.�I k1/j dk1

� max

�ˇ̌
ˇ̌
Z

Tk

R.�I k1/e
�2�ik1�
 dk1

ˇ̌
ˇ̌;

ˇ̌
ˇ̌
Z

Tk

R.�I k1/e
�4�ik1�
 dk1

ˇ̌
ˇ̌
�

� C
�.d�1/=2


 .dC1/=2
max

�ˇ̌
ˇ cos

�
2��j
 j � .d C 1/�

4

�ˇ̌
ˇ;

1

2.dC1/=2

ˇ̌
ˇ cos

�
4��j
 j � .d C 1/�

4

�ˇ̌
ˇ
�

� c �
.d�1/=2


 .d�1/=2

(7)

for C; c positive constants whose value can change throughout. Whenever d 6� 1

mod 4, we have that

0 < inf
x2R

max

�ˇ̌
ˇ̌cos

�
x � .d C 1/�

4

�ˇ̌
ˇ̌ ;

ˇ̌
ˇ̌cos

�
2x � .d C 1/�

4

�ˇ̌
ˇ̌
�
;

hence in that case, �xing 
 2 �, we conclude that there exists r� such that for all

r � r� Z

Tk

jR.�I k1/j dk1 � C�.d�1/=2:

We conclude that whenever d 6� 1 mod 4,

sup
k12Tk

R.�I k1/ � C�.d�1/=2:

The remaining case, that is when d � 1 mod 4 is more subtle. We will

use results found in [7][Theorem 3.1, Lemma 3.3]. Indeed, from equation (7),

we have

Z

Tk

jR.�I k1/j dk1 � C
�.d�1/=2


 .dC1/=2

ˇ̌
ˇ cos

�
2��j
 j � �

2

�ˇ̌
ˇ � c �

.d�1/=2


 .d�1/=2
:

From Lemma 3.3 in [7], we know that, if k � 2, for all � > 0, there exists �0 > 0

and ˛ 2 .0; 1=2/ such that for all � > �0 there exists 
 2 � such that j
 j < .2��/�
and the distance from 2�
 to an integer is greater than ˛. Choosing such a 


bounds cos.2��j
 j � �=2/ away from 0, and we get that
Z

Tk

jR.�I k1/j dk1 � C�.d�2/=2��.dC1/=2:

Since � > 0 is arbitrary, we get the desired result.
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5. An application to the Landau Hamiltonian

5.1. The Landau Hamiltonian. Decomposing Hd D H2 ˚Dd�2, we can �rst

study the problem

H2u D �u:

Consider the de�nition (2) for N.�IHd /, with periodic boundary conditions for

x1 and Dirichlet boundary conditions for x D .x2; : : : ; xd /.

For H2, we can write the solutions as u.x1; x2/ D e2�inx1=Lf .x2/, which

reduces the problem to solving the eigenvalue problem

..�1 C x2/
2 CD2

2/f .x2/ D �f .x2/:

This is a shifted quantum harmonic oscillator. We have that

�.H2/ D ¹2j C 1W j 2 Nº;

each with in�nite multiplicity. It is a standard computation, see e.g. [6], that

N.�IH2/ D 1

2�

�
� � 1

2

�
;

for � � 1, and 0 otherwise. Extending the methods of [6] to higher dimensions,

it is again a simple computation to show that for � � 1,

N.�IHd / D !d�2

.2�/d�1

�
��1

2

˘
X

nD0

.� � 2n � 1/.d�2/=2:

Thus, from the de�nition of P.�I d; k/, we have indeed that

N.�IHd / D 2�d=2�1�dP
�� � 1

2
I d � 1; 1

�
:

5.2. Computations for general paraboloids. In this section we prove Theo-

rem 1.6. Consider the expression

P.�I d; k/ D
b�cX

j D1

S..� � j /1=2I 0I d � 1; k � 1/:

By Theorem 1.1, we have

b�cX

j D0

S..� � j /1=2I 0I d � 1; k � 1/ D
b�cX

j D0

.!d�1.� � j /.d�1/=2 CO.X.�///;
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where

X.�/ D

8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:

�
1
2

.d�1�.2k�2/=.2k�d// if k > .d C 2/=2;

�.d�2/=4 log � if k D .d C 2/=2;

�.d�2/=4 if 1 < k < .d C 2/=2;

0 if k D 1:

(8)

Comparing with the integral, we get that for all X as de�ned above,

b�cX

j D0

X.�/ D O.�X.�//:

For any d , we can use the Euler–Maclaurin formula:

bX

nDa

f .n/ D
Z b

a

f .x/dx C f .a/C f .b/

2

C
pX

kD1

B2k

.2k/Š

� d2k�1f

dx

ˇ̌
ˇ
xDb

� d2k�1f

dx

ˇ̌
ˇ
xDa

�

CO
� Z b

a

ˇ̌
ˇ d2pf

dx2p

ˇ̌
ˇ
xDt

dt
�
;

for any integer p � 1, where Bk is the kth Bernoulli number. Note that for

integer a,

aX

j D0

.a � j /.d�1/=2 D
aX

j D0

j .d�1/=2:

Hence, by the Euler–Maclaurin formula, we get that

aX

j D0

.a � j /.d�1/=2 D
Z a

0

t .d�1/=2 dt C a.d�1/=2

2

C
X

k�.dC1/=4

B2k

.2kŠ/

�
�

dC1
2

�

�
�

dC3�4k
2

�a.dC1�4k/=2 CO.a�1=2/:

Obviously, when d is odd, this last sum is actually �nite and the error term 0.
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When � is not an integer, we can write � D a C � , where � is the fractional

part. In that case, using the Euler–Maclaurin formula again, we get

aX

j D0

.a C � � j /.d�1/=2

D
aX

j D0

.j C �/.d�1/=2

D
Z a

0

.t C �/.d�1/=2 dt C 1

2
.� .d�1/=2 C �.d�1/=2/

C
X

k� dC1
4

B2k

.2kŠ/

�
�

dC1
2

�

�
�

dC3�4k
2

� .�
dC1�4k

2 � �
dC1�4k

2 /CO.�/

D 2

d C 1
.�.dC1/=2 � � .dC1/=2/C 1

2
.� .d�1/=2 C �.d�1/=2/

C
X

k� dC1
4

B2k

.2kŠ/

�
�

dC1
2

�

�
�

dC3�4k
2

� .�.dC1�4k/=2 � � .dC1�4k/=2/CO.�/:

Let us observe that

lim
�!1

� 2
dC1

�.dC1/=2 C
Pa

j D0.� � j /.d�1/=2

1
2
�.d�1/=2

D lim
�!1

� 4
dC1

� .dC1/=2 C � .d�1/=2 C �.d�1/=2 CO.�.d�3/=2/

�d�1

D 1:

This is because � D O.1/. Similarly, if we de�ne

E0 D 2

d C 1
�.dC1/=2 C 1

2
�.d�1/=2

and

En D E0 C
nX

kD1

B2k

.2kŠ/

�
�

dC1
2

�

�
�

dC3�4k
2

��.dC1�4k/=2;

we get that

lim
�!1

�En C
Pa

j D0.� � j /.d�1/=2

�.d�1/=2�2n�1
D B2.nC1/

.2.nC 1//Š

�d � 1
2

�
2nC1
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whenever .d�1/=2�2n�1 > 0, after which point the contribution of the fractional

remainder � gets more important than the denominator. Hence, we obtain the

asymptotic expansion

b�cX

j D0

.� � j /.d�1/=2 D 2

d C 1
�.dC1/=2 C 1

2
�.d�1/=2

C
X

k� d�3
4

B2k

.2kŠ/

�
�

dC1
2

�

�
�

dC3�4k
2

��.dC1�4k/=2 CO.�/:

(9)

When k D 1, we already have that X.�/ D 0. Therefore, we have that

P.�; d; 1/

!d�1

D 2

d C 1
�.dC1/=2 C 1

2
�.d�1/=2

C
X

1�k< d�3
4

B2k

.2kŠ/

�
�

dC1
2

�

�
�

dC3�4k
2

��.dC1�4k/=2 CO.�/;

from which we recover a (quite sharp) asymptotic integrated density of states for

the magnetic Hamiltonian HdC1.

Let us combine equations (8) and (9). When k D d , we get that the error term

from X is greater than d�1
2

, and as such,

P.�I d; d/ D 2!d�1

d C 1
CO.�.d2�dC2/=.2d//:

When k > dC2
2

, we get that

P.�I d; k/
!d�1

D 2

d C 1
�.dC1/=2 C 1

2
�.d�1/=2

C
X

1�j < k�1
4k�2

B2j

.2j /Š

�
�

dC1
2

�

�
�

dC3�4j
2

��.dC1�4j /=2

CO.�.d�1�.2k�2/=.2k�d//=2/:

Finally, when k � dC2
2

, we get that

P.�I d; k/
!d�1

D 2!d�1

d C 1
�.dC1/=2 C 1

2
�.d�1/=2

C
X

1�j < dC4
8

B2j

.2j /Š

�
�

dC1
2

�

�
�

dC3�4j
2

��.dC1�4j /=2

CO.�.dC4/=4.log �/ı/;

where ı D 1 if k D dC2
2

and 0 otherwise.
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6. Proofs of auxiliary results

6.1. Smoothing of the cut-o� function. Let us de�ne a smooth, even bump

function  in C1
c .R/, supported in Œ�1; 1�, such that the integral

Z 1

0

 .r/rk�1 dr D 1

Vk�1

;

where Vk�1 is the area of the unit sphere in R
k.

Using this function, we can de�ne the radial bump function ‰� on R
k, of total

mass 1 to be given by

‰�.x/ D 1

�k
 

� jxj
�

�
:

Let ‰ WD ‰1 and ��.x/ D ‰�.x/ � �.x/. Its Fourier transform is given by

���.�/ D y‰.��/ O�.�/:

Let �C
� and ��

� be de�ned on R
k by

�˙
� .x/ D 1

.1� �/l
��..1� �/x/:

We can now proceed with the proof of Lemma 2.1.

Proof. To show that ��
� .x/ � �.x/ � �C

� , the idea is to obtain �˙
� .x/ by averaging

�.x/ on a ball of radius 0 < � < x about each x. To do so, �rst notice that

��.x/ � sup
jt j��

.�.x � t //
Z

Rk

‰�.x/ dx

D

8
<
:
1 if jxj � �;

.1� .jxj � �/2/ l
2 if � � jxj � 1C �:

If we show that

��.x/ � .1C �/l�
� x

1C �

�
; (10)

we get the desired lower bound. Indeed, taking y D x
1C�

in the preceding equation

yields

�.y/ � 1

.1C �/l
��..1C �/y/ D ��

� .y/:

Therefore, it only remains to show that (10) holds for all x 2 R
k. First note that

if jxj � 1C �, both sides are 0. We shall split the remaining cases in jxj � � and

� < jxj < 1C �.
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Restricting ourselves to the �rst case, if jxj D �, we get that

.1C �/l�
� x

1C �

�
D .1C �/l

�
1� �2

.1C �/2

�l=2

D .1C 2�/l=2

� 1 � ��
� .x/:

Since �
�

x
1C�

�
is a decreasing function of jxj, we conclude that (10) holds for

0 � jxj � �.

In the case where � < jxj � 1C �, we need to show that

.1 � .jxj � �/2/
l
2 � .1C �/l

�
1� jxj2

.1C �/2

�l=2

:

It is equivalent to show that 1 � .jxj � �/2 � .1C �/2 � jxj2. This is the case if

1� jxj2 C 2jxj� � �2 � 1C 2� C �2 � jxj2 () 2jxj� � 2�.1C �/

() jxj � 1C �:

Since the last line is true by hypothesis, we can conclude that the left-hand side

inequality of (5) is true.

In order to get an upper bound on �.x/, we proceed in a similar fashion,

averaging ��.x/ on a ball of radius � around x, which yields

��.x/ � inf
jt j<�

�.x � t /

�

8
<
:

�
1� .jxj C �/2

�l=2
if jxj < 1� �;

0 otherwise.

As we did before, it su�ces to show that

��.x/ � .1 � �/l�
� x

1 � �
�
:

Notice that the left hand side of that equation is 0 whenever jxj � 1 � �. Like

before, we see that

.1� .jxj C �/2/
l
2 � .1� �/l

h
1 �

� jxj
1� �

�2 il=2

is equivalent to jxj < 1� �. This concludes the proof. �
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6.2. Fourier transform of �

Proof. Let us compute O�.�/. We will split the cases k D 1, k D 2, and k > 2.

If k D 1, then

O�.�/ D
Z 1

�1

.1� x2/.d�1/=2e�i2�x� dx

D C

j�jd=2
Jd=2.2�j�j/

D C

j�j.dC1/=2
cos

�
2�j�j � .d C 1/�

4

�
CO.j�j.dC3/=2/;

using [3], equations 3.387 and 8.451, which is the desired result.

We also obtain that, following [3], equation 3.621,

O�.0/ D 2dB
�d C 1

2
;
d C 1

2

�
:

Using identities of the Gamma function, we get that

!l2
dB

�d C 1

2
;
d C 1

2

�
D �d=2

�
�

d
2

C 1
� D !d ;

which is the desired value.

If k D 2, then the Fourier transform is given by

O�.�/ D
Z

R2

�.x/e�i2�x�� dx:

Working in polar coordinates, we get that

O�.�/ D
Z 1

0

Z 2�

0

r.1� r2/.d�2/=2e�i2�r j�jcos � d� dr

D
Z 1

0

r.1� r2/.d�2/=2J0.2�j�jr/ dr

D C

j�jd=2
Jd=2.2�j�j/

D C

j�j.dC1/=2
cos

�
2�j�j � .d C 1/�

4

�
CO.j�j.dC3/=2/;

which is the desired result. Equations 8.411, 6.567, and 8.451 in [3] were used

respectively for an integral formula for the Bessel function, its integral, and its

asymptotic expansion.
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We also obtain that

O�.0/ D 2�

d
:

Using identities of the Gamma function, we get that

!l

2�

d
D �d=2

�
�

d
2

C 1
� D !d ;

which is the desired value. Finally, if k > 2, then, working in spherical coordi-

nates, we get that the Fourier transform of � is, for some constant C ,

O�.�/ D C

Z 1

0

Z �

0

rk�1.1� r2/l=2 sink�2 �e�i2�r j�jcos � d� dr

D C

j�j.k�2/=2

Z 1

0

rk=2.1 � r2/l=2J.k�2/=2.2�j�jr/ dr

D C

j�j.k�2/=2

1

j�j.lC2/=2
Jd=2.2�j�j/

D C

j�j.dC1/=2
cos

�
2�j�j � .d C 1/�

4

�
CO.j�j.dC3/=2/:

using [3], equation 8.411, in the �rst line, which is the desired result.

Additionnally, we have that

O�.0/ D Vol.Sk�1/

Z 1

0

rk�1.1� r2/.d�k/=2 dr

D
�k=2B

�
k
2
; d�kC2

2

�

�.k
2
/

:

Using identities of the Gamma function, we get that

O�.0/!d�k D !d

which is once again the desired value.

One can note that in each of those cases, we ignored the trigonometric term

to get an upper bound, considering it to be 1. Hence, since translation by k1 is

simply multiplication by a complex exponential in equation (3), it can be ignored

in just the same fashion.

Finally, we get the result for the derivative using the identity

J 0
� D 1

2
.J��1 � J�C1/

and basic trigonometric identities. This completes the proof of Lemma 2.2. �
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