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Abstract. The classical N@-method has been generalized recently ([13] and [14]) to be

used in the presence of exceptional points. We apply this generalization to solve Dirac

inverse scattering problem with weak assumptions on smoothness of potentials. As a

consequence, this provides an e�ective method of reconstruction of complex-valued one

time di�erentiable conductivities in the inverse impedance tomography problem.
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1. Introduction

Let O be a bounded connected domain in R
2 with a smooth boundary. The

electrical impedance tomography problem (e.g., [6]) concerns determining the

impedance in the interior of O, given simultaneous measurements of direct or al-

ternating electric currents and voltages at the boundary @O. If the magnetic perme-

ability can be neglected, then the problem can be reduced to the inverse conductiv-

ity problem (ICP), which consists of reconstructing function .z/; z D .x; y/ 2 O,

via the known, dense in some adequate topology, set of data .uj@O;
@u
@�

j@O/, where

div.ru.z// D 0; z 2 O: (1)
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Here � is the unit outward normal to @O, .z/ D �.z/ C i!�.z/, where � is

the electric conductivity and � is the electric permittivity. If the frequency ! is

negligibly small, then one can assume that  is a real-valued function, otherwise

it is supposed to be a complex-valued function.

An extensive list of references on tomography problem can be found in

review [6]. Here we will mention only the papers that seem to be particularly

related to the present work. For real  , the inverse conductivity problem has been

reduced to the inverse problem for the Schrödinger equation. The latter was solved

by Nachman in [16] in the class of twice di�erentiable conductivities. Later Brown

and Uhlmann [7] (see also Francini [9] for the case of small Im) reduced ICP to

the inverse problem for the Dirac equation, which has been solved in [3] and [20].

This approach requires the existence of only one derivative of  . The authors

of [7] proved the uniqueness for ICP. Later Knudsen and Tamasan [11] extended

this approach and obtained a method to reconstruct the conductivity. Finally, the

ICP has been solved by Astala and Päivärinta in [2] for real conductivities when

both  � 1 and 1= � 1 are in L1
comp.R

2/.

If a complex conductivity has at least two derivatives, then one can reduce

equation (1) to the Schrödinger equation and apply the reconstruction method of

Bukhgeim [8] or the one developed in our recent work [13]. This approach does not

work in the case of only one time di�erentiable conductivities. On the other hand,

the ideas of [7] and [9] (and of related inverse scattering methods discussed in [3]

and [20]) are not applicable to general complex conductivities due to possible

existence of the so called exceptional points. In [13] we generalized the N@-method

for the Schrödinger equation to the case when exceptional points exist. A prototype

of this generalization was considered in Section 8 of [17]. In the current paper,

we use the ideas from [13] to extend the N@-method to the inverse Dirac problem in

the presence of exceptional points. This reduces the smoothness assumption on 

in the ICP with complex conductivities.

Note that the N@-method for the inverse Dirac scattering problem is important

per se as a tool for solving certain nonlinear equations. We believe that results

presented below can be used for solving non-linear Davey-Stewartson and Ishi-

mori equations (see, e.g., [4]) where the N@-method for the inverse Dirac problem

has been used.

Thus we will split the ICP into two independent parts:

1. solving the inverse Dirac scattering problem (Sections 2–6);

2. representing the scattering data (10) of the Dirac scattering problem via the

D-t-N map for equation (1) (Section 6).
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The �rst problem will be solved (Theorem 2.1) if  � 1 2 W
1;p

comp.R
2/; p > 4;

and F.r/ 2 L2�".R2/ (here F is the Fourier transform). The second problem

will be solved under a much less restrictive condition that �1 2 L1
comp.R

2/. Note

that solutions of the second problem can be found in [11] (with three equations for

two unknown functions) and [10] (in the case of absence of exceptional points).

We will closely follow the approach used in [10] (Section 3) combined with some

ideas from [11] to extend the results of [10] to the situation when exceptional points

are present.

Our smoothness requirement for the reconstruction of the complex conduc-

tivities is close to the one used in the case of real-valued conductivities. Indeed,

while  � 1 2 W
1;p

comp.R
2/; p > 2; is assumed in order to prove a uniqueness re-

sult [7] in the class of real-valued conductivities, additional smoothness is usually

required for the reconstruction of the conductivities. For example,  2 C 1C"

is assumed in [11]. The di�erence in assumptions for the uniqueness and re-

construction results was also mentioned in [1], [5], and [19]. Similarly, our as-

sumption F.r/ 2 L2�".R2/ requires  to be a little bit smoother than just

 � 1 2 W
1;p

comp.R
2/; p > 4.

Below z will be considered as a point of a complex plane, i.e.,

z D x C iy 2 C;

and O will be considered as a domain in C.

The following observation made in [7] and [9] plays an important role. Let u

be a solution of (1) and @ D 1
2

�

@
@x

� i @
@y

�

. Then the pair � D 1=2.@u; N@u/t D

1=2
�

@u

N@u

�

satis�es the Dirac equation

�

N@ 0

0 @

�

� D q�; z D x C iy 2 O; (2)

where

q.z/ D

�

0 q12.z/

q21.z/ 0

�

; q12 D �
1

2
@ log ; q21 D �

1

2
N@ log : (3)

Thus it is enough to solve the inverse Dirac scattering problem instead of the ICP.

If it is solved and q is found, then conductivity  can be immediately found

from (3).

In order to complete the reduction of the ICP to the inverse Dirac problem,

one needs only to show that the scattering data for the Dirac equation can be

found via
�

u
ˇ

ˇ

@O
; @u
@�

ˇ

ˇ

@O

�

. In fact, the scattering data for the Dirac equation can

be obtained by simple integration of the Dirichlet data for the same equation,
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see formula (12). In the last section we will show that the latter data can be found

via known
�

u
ˇ

ˇ

@O
; @u
@�

ˇ

ˇ

@O

�

. This will complete the reconstruction of conductivity.

We assume that log  is well de�ned in the whole complex plane, e.g., there

exist a ray that does not intersect the range of  .

2. Main results

We will use a di�erent form of equation (2) in Sections 2–5: instead of Beals–

Coifmann notations � D .�1; �2/
t , we will rewrite the equation in Sung notations:

 1 D �1;  2 D S�2. Then the vector  D . 1;  2/
t is a solution of the following

system
N@ D Q x ; (4)

where

Q.z/ D

�

0 Q12.z/

Q21.z/ 0

�

; q12 D Q12; Q21 D q21: (5)

Consider the matrix solution of (4) that depends on parameter k 2 C and has

the following behavior at in�nity:

 .z; k/e�i Nkz=2 �! I; z ! 1: (6)

Note that the plane waves

'0.k; z/ WD ei
Nkz=2; k 2 C;

are growing at in�nity exponentially in some directions, and the same is true for

the elements of the matrix  .z; k/.

Problem (4)–(6) is equivalent (e.g., [20]) to the Lippmann–Schwinger equa-

tion:

 .z; k/ D ei
Nkz=2I C

Z

C

G.z � z0; k/Q.z0/ x .z0; k/dx0dy0; (7)

G.z; k/ D
1

�

ei
Nkz=2

z
: (8)

Denote

�.z; k/ D  .z; k/e�i Nkz=2 D  .z; k/'0.k;�z/: (9)

Let Q12; Q12 2 L
p
comp.R

2/; p > 2. Here and below we use the same notations

for functional spaces, irrespectively of whether those are the spaces of matrix
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or scalar valued functions. Let us make the substitution  ! �.�; k/ � I in (7).

It was proved in [7, Theorem A. iii] that equation (7) after the substitution becomes

Fredholm in Lq.R2/; q > 2p=.p�2/. Solutions  of (7) are called the scattering

solutions, and the values of k such that the homogeneous equation (7) has a non-

trivial solution are called exceptional points. The set of exceptional points will be

denoted by E. Thus the scattering solution may not exist if k 2 E.

Let us de�ne a matrix that is called the (generalized) scattering data. It is

given by the formula

h.&; k/ D
1

.2�/2

Z

C

'0.�z; &/Q.z/x .z; k/dxdy; & 2 C; k 62 E; (10)

which can be rewritten as

h.&; k/ D
1

.2�/2

Z

C

e�i.k NzCx&z/=2Q.z/ N�.z; k/dxdy; & 2 C; k 62 E: (11)

To justify the use of the term scattering data we can use Green formula for a

regular domain O and function f :

Z

@O

fdz D 2i

Z

O

N@fdxdy:

Then h can be rewritten as follows:

h.&; k/ D
1

.2�/2

Z

@O

'0.�z; &/ x .z; k/dz; & 2 C; k 62 E; (12)

where � is the outer unit normal to @O. Thus, one does not need to know the

potential Q in order to �nd the values of h. The latter matrix can be evaluated if

the Dirichlet data  j@O is known for equation (4).

There are no exceptional points in some neighborhood of k D 1 (e.g., [20,

Lemma 2.8] and [7, Lemma C]) and for each " > 0 there exists some R."/ such

that

k� � Ik < " in L1
z .L

1
k .¹kW jkj > R."/º// (13)

Let us chooseA large enough and k0 2 C such that all the exceptional points for

both conductivities  and 1= (i.e., for potentials Q.�/ and �Q.�/) are contained

in the disk

D D ¹k 2 CW 0 � jkj < Aº; (14)

and that k0 belongs to the same disc D and is not exceptional for both conductiv-

ities  and 1= .
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Consider the space

H
s D ¹u 2 Ls.R2k/ \ C.D/º; s > 2:

Recall that we use the same notation for matrices if their entries belong to Hs . Let

Tz WH
s ! Hs be the operator de�ned by the formula

Tz�.k/ D
1

�

Z

CnD

ei.x&zCNz&/=2x�.&/ho.&; &/
d&Rd&I

& � k

C
1

2�i

Z

@D

d&

& � k

Z

@D

Œei=2.& NzCS& 0z/��.& 0/…o

C ei=2.&�& 0/ Nz��.& 0/…dC�
h

Ln
S& 0 � x&

S& 0 � Sk0
h.& 0; &/d& 0

i

;

(15)

where � 2 Hs , �� is the boundary trace of � from the interior of D, C is the

operator of complex conjugation,…oM D M o is the o�-diagonal part of a matrix

M , …dM D M d is the diagonal part, and ho D …oh. The logarithmic function

here is well de�ned, see the Remark after Lemma 3.4.

We’ll use the word generic when referring to elements that belong to an open

and dense subset V of a topological space S .

Let S";p be the space of potentials Q with support in O such that Q 2

L
p
comp.R

2/; p > 4; and FQ 2 L2�".R2/; " > 0.

Theorem 2.1. Let Q12; Q21 2 S";p. Then for each Qs > max
�

2p
p�4

; 4
"

� 2
�

the

following statements are valid.

� The operator Tz is compact in HQs for all z 2 C and depends continuously

on z.

� Let us �x z0 2 C. Then for generic potentials Q12; Q21 in S";p, the equation

.I C Tz/wz D �TzI (16)

is uniquely solvable in HQs for all z in some neighborhood of z0 (the neigh-

borhood may depend on Q).

� For k 62 E, the function  D Œei
Nkz=2C…d Ce�i Nzk=2…o�.wzCI /, wherewz.�/

is the solution of (16), satis�es the equation N@ D Q x in O.

Remarks. 1) After equation (16) is solved and  de�ned in the last item of

the theorem is found, one can immediately reconstruct potential Q from (4):

Q D @ 
@ Nz

x �1; jkj � 1: Note that det ¤ 0 for large jkj due to (13).
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2) Consider a set of conductivities a that depend on power a 2 .0; 1�. These

conductivities correspond to potentials aQ; a 2 .0; 1� (see (5)). Then item 2

of the theorem can be replaced by the following statement: equation (16) with

Q replaced by aQ0 with a �xed potential Q0 is uniquely solvable for a set of

parameters .z; a/ 2 O � .0; 1� of full 3D-measure. In fact, it will be proved that,

for each z, the unique solvability can be violated for at most �nitely many values

of a D aj .z/; z 2 O.

3) If the kernel ho.&; &/ is truncated (as it is usually done in numeric applica-

tions), then operator Tz becomes analytic in <z;=z, and therefore the invertibility

of (16) at a point z0 implies its invertibility at a.e. point of C.

3. Derivation of the integral equation

Following [20], we will work with the matrix

v D

�

�11.z; k/ �12.z; k/e
i. NkzCNzk/=2

�21.z; k/e
i. NkzCNzk/=2 �22.z; k/

�

; k 2 CnD; (17)

instead of �. It was shown in [20] that

@

@ Nk
v.z; k/ D ei.

NkzCNzk/=2 Nv.z; k/ho.k; k/ DW Tv; k 2 CnD; (18)

where ho D …oh.

We introduce the matrix function  C.z; k/ D  C.z; k; k0/ as the solution of

the Lippmann–Schwinger equation

 C.z; k/ D ei
Nkz=2I C

Z

C

G.z � &; k0/Q.&/ C.&; k/d&Rd&I ; k 2 xD; (19)

where k0 was introduced in (14). This equation is similar to (7), but the parameter

k D k0 in the argument of G is �xed now. We de�ne

�C.z; k/ D ¹�C
ij .z; k/º WD  Ce�i Nkz=2; k 2 xD; (20)

and vC as

vC D

0

@

�C
11.z; k/ �C

12.z; k/e
i. NkzCNzk/=2

�C
21.z; k/e

i. NkzCNzk/=2 �C
22.z; k/

1

A ; k 2 SD: (21)
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Lemma 3.1. The following relation holds

@vC

@ Nk
D 0; k 2 D:

Proof. Denote �C
0 D ¹�C

ij;0º WD  Ce�i Sk0z=2. Thus matrix �C
0 has the same form

as matrix �C de�ned by (20), but now the value of k in the exponent is �xed. In

other words,

�C D �C
0 e

i.Sk0� Nk/z=2: (22)

Let

Lk'.z/ D
1

�

Z

C

'.w/
e�i<. Nkw/dwRdwI

z �w
: (23)

Then equation (19) implies that

�C
11;0 D ei.

Nk� Nk0/z=2 C Lk0
ŒQ12.z

0/�C
21;0.z

0; k/�;

�C
21;0 D Lk0

ŒQ21.z
0/�C

11;0.z
0; k/�;

and therefore

�C
11;0 D ei.

Nk� Nk0/z=2 C Lk0
ŒQ12.z

0/Lk0
ŒQ21.z

0/�C
11;0.z

0; k/��;

�C
21;0 D Lk0

ŒQ21.z
0/.ei.k�k0/ Nz=2 C Lk0

ŒQ12.z
0/�C

21;0.z
0; k/�/�:

These equations are Fredholm with empty kernel due to the choice of the point

k0 since operator I � .Gk0
QC/2 is invertible if both operators I � Gk0

QC and

I C Gk0
QC are invertible. Here Gk0

is the convolution operator with the kernel

G.z; k0/ and C is the operator of complex conjugation. Thus �C
11;0 is analytic in Nk

and �C
21;0 is analytic in k, i.e.,

@�C
11;0

@k
D 0;

@�C
21;0

@ Nk
D 0:

Using (22) we get

@vC
11

@ Nk
D
@�C

11

@ Nk
D
@�C

11;0e
i.Sk0� Nk/z=2

@ Nk
D 0;

@vC
21

@ Nk
D
@�C

21;0e
i.Sk0� Nk/z=2ei<.

Nkz/

@ Nk
D
@�C

21;0e
i.Sk0zCNzk/=2

@ Nk
D 0:

One can prove similarly that

@vC
22

@ Nk
D 0;

@vC
12

@ Nk
D 0: �
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For each z 2 C, consider the following matrix function v0:

v0.z; k/ WD

8

<

:

v.z; k/; k 2 CnD;

vC.z; k/; k 2 D:
(24)

From (18) and Lemma 3.1 it follows that

@

@ Nk
v0.z; k/ D T0.k/v0.z; �/; k … @D; (25)

where the operator T0 is given by

T
0 D

8

<

:

T.k/; k 2 CnD;

0; k 2 D;

and T is de�ned in (18).

Our main goal in this section is to prove the following statement.

Lemma 3.2. If  satis�es the Lippmann–Schwinger equation (7), then the matrix

function w D v0 � I with v0 de�ned by (24) satis�es equation (16), where Tz is

given by (15).

Before we proceed with the proof of this lemma, we need to describe the

boundary condition for the matrix function v0 at @D. We start by noting that (17)

and (21) together with (9) and (20) imply that

…d .v � vC/ D …d . �  C/eik Nz=2;

…o.v � vC/ D …o. �  C/e�i Nkz=2ei<.
Nkz/;

…d C D …dvCei
Nkz=2;

…o C D …ovCei
Nkz=2e�i<. Nkz/:

The latter relations can be rewritten as follows:

v � vC D A.k; z/. �  C/;  C D A�.k; z/vC;

where

A.k; z/ D Œeik Nz=2C…d C e�i Nkz=2ei<
Nkz…o�;

A
�.k; z/ D Œei

Nkz=2
C…d C ei

Nkz=2e�i< Nkz…o�:
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Lemma 3.3. The following integral equation holds for each z 2 C

v0.z; k/ � I D
�1

�

Z

C

.T0v0/.&/
d&Rd&I

& � k
C

1

2�i

Z

@D

Œv0�.z; &/

& � k
d&; (26)

where Œv0� D vC � v is the jump of v0 on @D.

Remark. Here and everywhere below, the direction of integration over the bound-

ary of a domain is chosen in such a way that the domain remains on the left during

the motion along of the boundary.

Proof of Lemma 3.3. The following Cauchy-Green formulas hold for each f 2

C 1.x�/ and an arbitrary bounded domain � with a smooth boundary:

f .k/ D �
1

�

Z

�

@f .&/

@x&

d&Rd&I

& � k
C

1

2�i

Z

@�

f .&/

& � k
d&; k 2 �; (27)

0 D �
1

�

Z

�

@f .&/

@x&

d&Rd&I

& � k
C

1

2�i

Z

@�

f .&/

& � k
d&; k 62 x�: (28)

Denote by DR the disk D with the constant A replaced by R > A, i.e.,

DR D ¹k 2 CW jkj < Rº. Let D�
R D DRnD. Assume that k 2 D�

R. We add the

left- and right-hand sides in formulas (27) and (28) with f D v0 in both formulas

and � D D�
R in (27) and � D D in (28). If we take (25) into account, we obtain

that

v0.z; k/ D �
1

�

Z

D�

R

.T0v0/.z; &/
d&Rd&I

& � k
C

1

2�i

Z

@D

Œv0�

& � k
d&

C
1

2�i

Z

@DR

v0

& � k
d&:

It remains to note that the last term on the right converges to the unit matrix as

R ! 1, due to (13). �

Equation (26) does not take into account the fact that the matrix functions  

and  C are related. Our next goal is to take that relation into account and change

the last term in (26). The �rst step in this direction is

Lemma 3.4. Let

W.k; &/ WD Ln
x& � Nk

x& � Sk0
; k; & 2 @D; (29)

where k0 was introduced in (14). Then the following relation holds

G.z; k/ �G.z; k0/ D
1

.2�/2

Z

@D

W.k; &/eix&z=2d&; k 2 @D:
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Remark. Let us move the origin in C into the point N�, and then make the rotation

of axis such that the direction of the x-axis is de�ned by the vector from N� to �N�.

Then j arg.S& � Nk/j � �=2 and j arg.x& � Sk0/j < �=2, i.e.,

ˇ

ˇ

ˇ

ˇ

arg
x& � Nk

x& � Sk0

ˇ

ˇ

ˇ

ˇ

< �; &; k 2 @D:

Hence, function (29) is well de�ned.

Proof of Lemma 3.4. We apply the Cauchy formula to (8) and obtain that

@

@ Nk
G.z; k/ D

1

.2�/2

Z

@D

dx&

x& � Nk
eix&z=2; k 2 D:

From (8) it also follows that

@

@k
G.z; k/ D 0; k 2 D:

We reconstruct G from its gradient and obtain

G.z; k/ �G.z; k0/ D

Z k

k0

@

@ Nk
G.z; k/d Nk D

1

.2�/2

Z k

k0

Z

@D

dx&

x& � Nk
eix&z=2d Nk:

It remains only to change the order of integration. �

Now we are in a position to express  �  C in (26) in the form of a compact

operator applied to  C.

Lemma 3.5. The following representation holds

 .z; k/ D  C.z; k/C

Z

@D

.…d C.z; &/C…o C.z; &/C/ŒW.k; &/h.&; k/d&�;

(30)

for all k 2 @D, whereW.k; &/ is given by formula (29) and h is de�ned in (10).

Proof. Recall that '0.z; k/ D ei
Nkz=2. We will denote by Gk0

; Gk the convolution

operators with the kernels G.z; k0/; G.z; k/. Then one can rewrite (19) and (7) as

follows

 C.z; k/ D .I � Gk0
QC/�1'0.z; k/I;  .z; k/ D .I �GkQC/�1'0.z; k/I:

(31)
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Thus

 C.z; k/ D .I � Gk0
QC/�1Œ.I � GkQC/ .z; k/�;

and therefore

 .z; k/�  C.z; k/ D .I �Gk0
QC/�1.Gk �Gk0

/.Q.�/C .�; k//: (32)

We evaluate Gk �Gk0
using Lemma 3.4 and the obvious relation that

'0.z � u; k/ D '0.z; k/'0.�u; k/:

This leads to

.Gk � Gk0
/.QC .�; k//

D
1

.2�/2

Z

@D

W.k; &/'0.z; &/

�Z

C

'0.�u; &/Q.u/ x .u; k/duIduR

�

d&

D

Z

@D

W.k; &/'0.z; &/h.&; k/d&:

We plug the last relation into (32). Note that operator .I �Gk0
QC/ contains factor

C, and therefore it is nonlinear with respect to multiplication by complex numbers.

Formula (31) implies that .I �Gk0
QC/�1'0.�; &/I D  C.z; &/ and

.I �Gk0
QC/�1.i'0.�; &/I / D i.…d �…o/ C.z; &/:

The validity of the last equality is easy to verify directly if the matrix equation (19)

is written in a component-wise fashion. Formula (32) and the last two relations

imply (30). �

Proof of lemma 3.2. We put (30) into (26) and obtain equation (16) with

Tz�.k/ D
1

�

Z

CnD

ei.x&zCNz&/=2x�.&/ho.&; &/
d&Rd&I

& � k

C
1

2�i

Z

@D

d&

& � k

Z

@D

A.&; z/Œ…dA�.& 0; z/��.& 0/

C…oA�.& 0; z/��.& 0/C�
h

Ln
S& 0 � x&

S& 0 � Sk0
h.&; & 0/d& 0

i

:

Then an explicit straightforward calculation shows that Tz can be simpli�ed to (15).

�
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4. Analysis of scattering data and of operator Tz

Lemma 4.1. If Q12; Q21 2 L
p
comp.R

2/; p > 4, and FQ12;FQ21 2 L2�".R2/,

then h12.k; k/, h21.k; k/ 2 Ls.R2nD/ for each s > max. p
p�2

; 2� "/.

Proof. By (7),(9), and (23),

� D I C LkQ.I C Lk xQ/�: (33)

Thus

�11 D 1C
1

�2

Z

C

dS1

Z

C

dS2
ei<.k Nz1/

Nz � Sz1
xQ12.z1/

e�i<.k Nz2/

z1 � z2
Q21.z2/�11.z2; k/; (34)

where dS D dzRdzI . Recall that

h21.k; k/ D
1

.2�/2

Z

C

e�i<.k Nz/Q21.z/ N�11.z; k/dS: (35)

We replace N�11 in (35) by the right hand side of (34). By assumption, the right

hand side of (35) with �11 D 1 belongs to L2�". It remains only to show that the

function

g.k/ WD

Z

C

dSei<.k Nz/Q21.z/

Z

C

dS1

Z

C

dS2
ei<.k Nz1/

Nz � Sz1
xQ12.z1/

e�i<.k Nz2/

z1 � z2
Q21.z2/ N�11.z2; k/

(36)

belongs to Ls
k
.R2nD/; s > p

p�2
.

Denote

m.z1; k/ D

Z

C

ei<.k Nz/Q21.z/
dS

Nz � Sz1
:

Since Q21 2 Lp and 1
z�z1

2 L2�ı ; ı > 0, the Holder inequality implies that

Q21.z/
z�z1

2 L
q0

z with arbitrary q0 2 .1; 2p
2Cp

/. Obviously, 1 < q0 < 2 when p > 4.

The latter allows one to apply the Hausdor�–Young inequality, which implies that

the Fourier transform m.z1; �/ of the function Q21.z/
z�z1

belongs to L
q

k
; q > 2p

p�2
,

uniformly in z1 2 C .

We split �11 in (36) into two terms: �11 D 1 C .�11 � 1/. Respec-

tively, let g D g1 C g2. Function g1 (where �11 D 1) can be estimated by

C
R

dS1jQ12.z1/m.z1; k/m.z1;�k/j, and therefore, g1 2 Ls
k
.R2nD/; s > p

p�2
,

due to the Minkowski inequality (written in the integral form). It remains to show
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that g2 2 Ls
k
.R2nD/; s > p

p�2
. First we estimate the interior part g21 of the

integral g2:

g21.k; z1/ D

Z

C

dS2
e�i<.k Nz2/

z1 � z2
Q21.z2/. N�11.z2; k/ � 1/:

Recall that

sup
z

k�.z; �/� IkLq

k
.R2nD/ � C; q >

2p

p � 2
:

This estimate can be found in [7, see Theorem 2.3 and the discussion about the

condition Q D Q� in the proof]. Moreover,









ei<.�k Nz2/

z1 � z2
Q21.z2/









L1
z2
.R2/

� C

uniformly in z1 due to the Holder inequality and the compactness of the support

of Q21. Thus from the integral form of Minkowski’s inequality it follows that

kg21k
q

L
q

k

D









Z

C

dS2
ei<.�k Nz2/

z1 � z2
Q21.z2/. N�11.z2; k/ � 1/









L
q

k

�

Z

C

dS2

ˇ

ˇ

ˇ

ˇ

ei<.�k Nz2/

z1 � z2
Q21.z2/

ˇ

ˇ

ˇ

ˇ

k N�11.z2; k/ � 1kLq

k

� Ck N�11.z2; k/ � 1kLq

k

� C1:

Function g2 can be estimated by C
R

dS1jm.z1; k/Q12.z1/g21.z1; k/j. Finally,

applying the integral form of Minkowski’s inequality to the integral in z1, we get

that g2 2 Ls
k
.R2nD/; s > p

p�2
. Hence, h21 2 Ls

k
.R2nD/; s > p

p�2
. The same

inclusion for h12 can be proved similarly. �

Lemma 4.2. For each z2C, we have TzI 2LQs.R2/ for each Qs>max
�

2p
p�4

; 4
"
�2
�

.

Proof. Note that 1 < s < 2 for s de�ned in Lemma 4.1. Thus Lemma 4.1 and the

Hardy–Littlewood–Sobolev inequality imply that the �rst term in the right-hand

side of (15) with � D I belongs to LQs.R2/ for each Qs D 2s
2�s

. Thus the statement

of the lemma holds for the �rst term in (15). The second term in (15) is continuous

in Cn@D with continuous limits at @D and has order 1=k at in�nity. Hence, it also

belongs to LQs.R2/. �
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Lemma 4.3. The operator Tz is compact in Hs D Ls.R2/\C.D/ for each s > 2

and depends continuously on z.

Proof. For each function g.�/ in L2.R2/, the operator N@ �1
k
.g.k/�/ is compact on

Ls.R2/ for all s > 2 (see, e.g., [15, Lemma 5.3]) and the following estimate holds

(see the same lemma)

kN@ �1
k .g.k/�/kLs.R2/ � Ckg.k/kL2.R2/: (37)

From this fact and Lemma 4.1, it follows that the operator T
.1/
z de�ned by the

�rst term in the right-hand side of (15) is compact in Ls.R2/; s > 2; and depends

continuously on z. While the compactness follows immediately from the refer-

ences above, in order to prove the continuity in z, one needs to split the operator

in two terms T
.1/
z D T

.1;1/
z C T

.1;2/
z by introducing factors ˛.&/ and 1 � ˛.&/ in

the integrand in (15), where ˛ is the characteristic function of the region j& j > R.

For each " > 0, one can choose R D R."/ so large that kT
.1;1/
z k < " for all z.

This can be done due to (37) and Lemma 4.1. The continuity of T
.1;2/
z follows

from (37) due to the uniform continuity in z of the exponents ei.x&zCNz&/=2 when

j& j < R. Thus operator T
.1/
z in Ls.R2/; s > 2; depends continuously on z.

To prove compactness of T
.1/
z in Hs , we need the following inequality (see [21,

Theorem 1.22]): if f 2 Lr.R2/ \ Lq.R2/ for 1 < r < 2 < q; then

kN@ �1f kL1 � cr;q.kf kLr C kf kLq /: (38)

Since functions � from the domain of operator T
.1/
z belong to Ls.R2nD/ and

h12.&; &/ is smooth in CnD and belongs to L2.R2nD/, the product h12.&; &/�.&/

belongs to Lr .R2nD/ \ Lq.R2nD/ for some r; q such that 1 < r < 2 < q:

In fact, Holder’s inequality implies that one can take r D 1 C s�2
sC2

; q D s.

Thus from (38) it follows that kT
.1/
z �kL1.R2/ � k�kLs.R2nD/. Since the range

of T
.1/
z consists of functions that are holomorphic in D, the boundedness of the

set ¹T
.1/
z �; k�kHs D 1º in C.D/ implies its compactness in C.D/. Hence, the

operator T
.1/
z is compact in Hs. Its continuity in z can be proved similarly to

continuity in Ls.R2/:

Let us show the compactness and the continuity in z of the second term T
.2/
z

in the right-hand side of (15). We write T
.2/
z in the form T

.2/
z D I1I2R, where

RWHs ! C.@D/ is a bounded operator that maps � 2 Hs (recall that � belongs

to C.D/) into its restriction �� on @D, I2WC.@D/ ! C ˛.@D/ is de�ned by the

interior integral in the expression for T
.2/
z , and operator I1WC

˛.@D/ ! Hs is

de�ned by the exterior integral in the expression for T
.2/
z . Here C ˛.@D/ is the

Holder space and ˛ is an arbitrary number in .0; 1=2/. The integral kernel of
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operator I2 has a logarithmic singularity at & D & 0 (due to the presence of the

term W.&; & 0/). Thus operator I2 is a PDO operator of order �1 and therefore I2

is a bounded operator from C.@D/ into the Sobolev space H 1.@D/. Thus it is

compact as an operator from C.@D/ to C ˛.@D/; ˛ 2 .0; 1=2/, due to the Sobolev

imbedding theorem. Thus the compactness of T
.2/
z will be proved as soon as we

show that I1 is bounded.

For each � 2 C ˛.@D/, the function I1� is analytic outside of @D and vanishes

at in�nity. Due to the Sokhotski–Plemelj theorem, the limiting values .I1�/˙

of .I1�/ on @D from inside and outside of D, respectively, are equal to ˙�
2

C

P.V. 1
2�i

R

@D
�.&/d&
&��

. Thus

max
@D

j.I1�/˙j � Ck�kC˛.@D/:

From the maximum principle for analytic functions it follows that the same

estimate is valid for the function I1� on the whole plane. Taking also into ac-

count that I2� has order 1=k at in�nity, we obtain that jI1�j � C
1Cjkj

k�kC˛.@D/,

i.e., operator I1 is bounded. Hence operator T
.2/
z is compact.

Obviously, operator I2 depends continuously on z, and operators R and I1 do

not depend on z, i.e., T
.2/
z is continuous in z. �

5. Proof of Theorem 2.1

Consider the Lippmann–Schwinger equation (33) for � D �a; a > 0; where the

potentialQ is replaced by aQ. Writing this equation for each component of matrix

�a separately, we obtain (compare to (34))

N�a;11 D 1C
a2

�2

Z

C

dS1

Z

C

dS2
ei<.k Nz1/

Nz � Sz1
NQ12.z1/

ei<.�k Nz2/

z1 � z2
Q21.z2/ N�a;11.z2; k/;

(39)

�21;a D aLk ŒQ21.z
0/ N�a;11.z

0; k/�: (40)

Similar equations hold for �a;12; �a;22. We de�ne �a for complex a via this

Lippmann–Schwinger equation. Let ha.&; k/; & 2 C; k 2 CnD; be de�ned by (11)

with �a in the integrand instead of �.

Lemma 5.1. Constant A in (14) can be chosen so large that all the exceptional

points for potentials aQ; 0 � a � 1; are located in the disc jkj < A � 1. Then

point k0 (see (14) and (19)) can be chosen independently of a and the matrix

ha.&; k/; & 2 C; k 2 CnD; is analytic in a 2 .0; 1�. Moreover, the entries of the

derivative
@ho

a.k;k/

@a
belong to Ls

k
.R2nD/ for each s > max

�

p
p�2

; 2� "
�

.
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Proof. The �rst statement follows from the last step in the proof of [7, Lemma C],

where it is shown that the norm inL1
z .L

q

k
.CnD//; q > 2p=.p�2/; of the operator

M de�ned by

.Mv/.z; k/ D

Z

C

dS1

Z

C

dS2
ei<.k Nz1/

Nz � Sz1
xQ12.z1/

ei<.�k Nz2/

z1 � z2
Q21.z2/ Nv.z2; k/

vanishes when A ! 1.

From (11) it follows that ha.�; �/ depends on a only because � D �a.z; k/

depends on a. The choice of A guarantees that the solutions of (39) and (40)

are analytic in a 2 .0; 1�. Thus ha.�; �/ is analytic in a 2 .0; 1�. Point k0 can be

chosen in the region A � 1 < jkj < A. It remains to show that

@hoa.k; k/

@a
2 Lsk.R

2nD/: (41)

Di�erentiation of (39) in a implies that

@ N�a;11

@a
�
a2

�2

Z

dS1

Z

dS2
ei<.k Nz1/

z � z1
xQ12.z1/

ei<.�k Nz2/

z1 � z2
Q21.z2/

@ N�a;11

@a
.z2; k/

D
2a

�2

Z

dS1

Z

dS2
ei<.k Nz1/

z � z1
xQ12.z1/

ei<.�k Nz2/

z1 � z2
Q21.z2/ N�a;11.z2; k/:

(42)

It was proved in Lemma 4.1 that �11 � 1 2 L1
z .L

q

k
.CnD//; q > 2p=.p � 2/.

Thus the second term in the right-hand side of (34) belongs to L1
z .L

q

k
.CnD//,

q > 2p=.p� 2/. Lemma 4.1 remains valid whenQ is replaced by aQ. Hence, the

right-hand side of (42) belongs toL1
z .L

q

k
.CnD//; q > 2p=.p�2/. From here and

the invertibility of I � a2M in L1
z .L

q

k
.CnD//we get that @�a

@a
2 L1

z .L
q

k
.CnD//,

q > 2p=.p � 2/. Now in order to prove (41), one can repeat the arguments from

the proof of Lemma 4.1 that were used to estimate g2. The function �11 � 1 in

these arguments must be replaced by
@�11;a

@a
. �

Proof of Theorem 2.1. The �rst statement was proved in Lemma 4.3. Since Tz is

continuous in z, the invertibility of Tz at z D z0 implies its invertibility when

jz � z0j � 1. Thus the second statement of the theorem will be proved if

we show that the set of potentials Q 2 S";p (with the support in a �xed O),

for which I C Tz0
with a �xed z0 is invertible, is generic, i.e., this set is open

and everywhere dense. This set of potentials is open since Tz0
depends contin-

uously on Q. In order to see that this set of potentials is dense, we note that

operator Tz0
is analytic in a 2 .0; 1� due to Lemma 5.1. Obviously, its norm
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goes to zero as a ! C0. Thus operator I C Tz0
with Q replaced by ˛Q

is invertible for all a 2 .0; 1� except at most a �nite number of values of a.

The second statement of the theorem is proved. The third one follows immedi-

ately from Lemma 3.2 and the uniqueness of the solution of (16). �

6. Calculation of scattering data via the D-t-N map

In this section we discuss the relation between ICP (reconstruction of  via the

Dirichlet-to-Neumann map for equation (1) in O) and the inverse Dirac scattering

problem. In fact, we consider the matrix Lippman–Scwhwinger equation (7)

instead of the Dirac equation (4) or (2). The potential Q in (7) and  are related

via (3) and (5), and therefore a reconstruction ofQ implies the reconstruction of  .

Since we know how to solve the inverse Dirac scattering problem (see Remark 1

after Theorem 2.1), it remains only to �nd the Dirac scattering data via the D-t-N

map ƒ for equation (1). Moreover, since the potential Q vanishes outside of O,

the scattering data for the solution of (7) can be obtained by simple integration

of the Dirichlet data of the same solution  , see formula (12). So our aim in this

section is to show how the Dirichlet data  j@O for solutions  .z; k/ of (7) with

non-exceptional k can be evaluated via the D-t-N map for equation (1) in O.

Consider the Faddeev solutions U1; U2 of equation (1) in R
2, which are deter-

mined by the following asymptotic behavior at in�nity:

i Nk

2
U1e

� i Nkz
2 � 1 �! 0; z ! 1; (43)

�ik

2
U2e

ik Nz
2 � 1 �! 0; z ! 1: (44)

We will show existence of these solutions when k is not an exceptional point

for equation (7). The traces of these solutions on @O can be found as follows:

U1j@O D
2

i Nk
.I C S Nk

2

.ƒ �ƒ1//
�1e

iz Nk
2 ; (45)

U2j@O D C

h 2

i Nk
.I C S Nk

2

.ƒ N �ƒ1//
�1e

iz Nk
2

i

: (46)

Here ƒ is the D-t-N map for equation (1) in O, ƒ1 is the same map when  D 1,

and Sk is the single layer operator on the boundary with zero energy Faddeev’s

Green function:

Sk�.z/ D

Z

@O

Gk.z � z0/�.z0/d lz0 ; z 2 @O;
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where dl is the element of the length and

Gk.z/ D
1

4�2
eikx�ky

Z

R2

ei.�1xC�2y/

j�j2 C 2k�
d�1d�2; � D �1 C i�2:

Formulas (45) and (46) can be found in [18, formula (5.18)] and [12, formula (26)]

in the case of the Schrödinger operator, but the proofs there can be carried over

without any changes to the case of the conductivity equation (1).

A point k 2 C is called exceptional for the Faddeev problem if equation (1) in

R
2 has a nontrivial solution u such that

ue� i Nkz
2 �! 0 as z ! 1: (47)

Obviously, the latter condition is equivalent to ue
ik Nz

2 ! 0; z ! 1; and corre-

sponds to (43), (44) with �1 in the left-hand sides dropped.

Let �.z/ D �1.z/ C i�2.z/, where � D �.z/ D .�1; �2/ is the unit outward

normal at a point z 2 @O, and let @s be the operator of the tangential (counter-

clockwise) derivative on @O.

Theorem 6.1. 1) The set E � C of exceptional points for the Dirac problem

coincides with the set of exceptional points for the Faddeev problem. The formula

 D .1=2@u; 1=2@xu/t ; k 2 E;

establishes a one-to-one correspondence between vector solutions  of homoge-

neous equation (7) and solutions u of (1) in R
2 that satisfy (47).

2) The formula

 .z; k/ D

 

1=2@U1 1=2@U2

1=2@SU1 1=2@SU2

!

; k 2 CnE; (48)

establishes a one-to-one correspondence between the Faddeev solutions .U1; U2/

and the scattering solutions  of the Dirac equation (4) that satisfy (6).

3) The Dirichlet data j@O of the scattering solutions of the Dirac problem can

be found as follows

 

 11  12

 21  22

!

D
1

2

 

N� �i N�

� i�

! 

ƒU1 ƒU2

@sU1 @sU2

!

; z 2 @O; k … E: (49)
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Remarks. 1) In order to apply (49), one needs only to knowƒ and to be able to

evaluate the right-hand sides in (45) and (46).

2) Recall that the problems (4)-(6) and (7) are equivalent.

Proof of Theorem 6.1. Let us prove the second statement. Let .U1; U2/ be the

Faddeev solutions. It was shown in [7] and [9] (and can be easily veri�ed) that the

matrix function (48) satis�es the Dirac equation (4). Since formulas (43) and (44)

admit di�erentiation, one can also check that matrix (48) satis�es (6). (Note that

@SU1e
ik Nz

2 ! 0; z ! 1; is equivalent to @SU1e
� i Nkz

2 ; z ! 1: This simple fact

is needed in order to establish the asymptotic behavior for the o�-diagonal terms

in (48).)

Conversely, let D . 1;  2/
t be the �rst column of the solution of (4) and (6).

Let �1 D  1 and �2 D x 2. Then � D .�1; �2/
t is a solution of (2). From (2)

and (3) it follows that the compatibility condition

N@.�1=2�1/ D @.�1=2�2/

holds. Then the Poincare lemma implies the existence of such a U1 that

�

�1

�2

�

D �1=2

�

@U1
N@U1

�

: (50)

By applying operator N@ to the �rst components of vector equation (50) (or applying

@ to the second components) and using (2), (3), one can proof that U1 satis�es

equation (1) in R
2. Moreover, U1 can be represented in the form of a contour

integral involving  , and asymptotics (6) of  admits di�erentiation. Using

integration by parts, one can show that this representation of U1 implies (43). This

justi�es the equality of the �rst columns in (48). Function U2 can be constructed

similarly. The second statement of the theorem is proved. The proof of the

�rst statement is no di�erent. Relation (49) follows from (48) if one applies the

complex conjugation to the second rows in (48) and expresses the vector .@; N@/t

there via .@� ; @s/
t . �
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