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Abstract. We show that not feeling the boundary estimates for heat kernels hold for

any non-negative self-adjoint extension of the Laplace operator acting on vector-valued

compactly supported functions on a domain in R
d . They are therefore valid for any

choice of boundary condition and we show that the implied constants can be chosen

independent of the self-adjoint extension. The method of proof is very general and is based

on �nite propagation speed estimates and explicit Fourier Tauberian theorems obtained by

Y. Safarov.
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1. Introduction

Let U be an open set in R
d (d � 2) and consider the Dirichlet Laplace operator

�D on L2.U /. Then the fundamental solution K.t/; t � 0 of the heat equation

with Dirichlet boundary conditions can be constructed via spectral calculus as

KD.t / D exp.�t�D/:

The integral kernel KD.x; yI t / of KD.t / de�ned by

.KD.t /f /.x/ D
Z

U

KD.x; yI t /f .y/dy

is a positive smooth function on U � U � RC. It describes the propagation of

heat from the point x to the point y in time t . In case U D R
d the heat kernel is

explicitly given by

K0.x; yI t / D .4�t/�d=2 exp
�

�jx � yj2
4t

�

:
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On physical grounds one expects that for small times the heat kernel is domi-

nated by local contributions that do not involve the boundary of U . This is es-

sentially the principle of not feeling the boundary by Kac ([19]). Both qualitative

and explicit quantitative versions of this principle have been obtained by some

authors ([2, 4, 18]) by exploiting the probabilistic interpretation of the heat kernel

([27, 28, 31]). The best estimate for the Dirichlet Laplacian we are aware of was

obtained in [4] and reads

1 � KD.x; yI t /
K0.x; yI t / � 1� e�ı2=t

d
X

jD1

2j

.j � 1/Š

�ı2

t

�j�1
: (1.1)

Here ı is the distance of the convex hull of ¹x; yº to the boundary @U of U . It is

also known (see e.g. [4, 17]) that

lim
t!0C

t log
�

1� KD.x; xI t /
K0.x; xI t /

�

D ��2.x/;

where �.x/ is the distance of x to @U . These estimates show that as t goes to 0 the

error in approximating the heat kernel by K0.x; yI t / is exponentially small with

decay rate determined by the distance to the boundary.

Explicit estimates like these are important in spectral geometry and mathe-

matical physics. For example the meromorphic extension of the local spectral

zeta function is usually based on the expansion of the heat kernel ([16]). The above

estimates directly lead to bounds on the local spectral zeta functions or other spec-

tral invariants ([15]). A particular example of such a local spectral function is the

Casimir energy density that plays a distinguished role in physics. For these appli-

cations it is important to allow for boundary conditions other than Dirichlet. For

example Casimir interaction between two conducting obstacles is described by

the Casimir energy density of the photon �eld. This is obtained from the Laplace

operator acting on one forms with relative boundary conditions. To be able to

deal with Laplace operators of such type one needs to consider self-adjoint exten-

sions of the vector-valued Laplace operator on domains that are not simply sums

of Laplace operator on functions. In order to illustrate this let us discuss brie�y

the example of the propagation of electromagnetic waves, or in a quantum �eld

theoretic description the propagation of a photon. To keep things simple assume

that U is either R3nK, where K � R3 is a compact subset with smooth bound-

ary, or a bounded domain with smooth boundary. If the boundary is modelled as

a perfect conductor then separation of variables in the wave equation results in

the Laplace operator acting on C
3-valued functions and the following boundary
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conditions for the electromagnetic vector potential A.x/ of the form

n.x/ � A.x/ D 0; rA.x/ D 0

for all x 2 @U . Here n.x/ is the outward pointing unit-vector-�eld on the boundary

@U ofU . These boundary conditions de�ne a self-adjoint extension of the Laplace

operator acting on C
3-valued smooth compactly supported functions. This self-

adjoint extension is however not simply a sum of operators acting on function, as

the boundary conditions are di�erent for the di�erent components. In fact, the

wave group as well as the heat semi-group will in general mix the components of

the vector they are acting on. In physics this corresponds to the fact that mirrors

change the polarization of light. We would like to refer the reader to [7] for further

details and references on Casimir energy density computations.

The aim of this note is to show that explicit not feeling the boundary estimates

can be obtained for any self-adjoint extension of the Laplace operator acting on

vector-valued functions on a domain. They can be derived from a combination

of �nite propagation speed estimates and explicit Fourier Tauberian theorems

that were found by Safarov in [29]. The idea of using �nite propagation speed

estimates in this context is not new and is already present in the classical paper [10].

It has since been used by many authors to derive heat kernel bounds on manifolds

(see e.g. [11, 14, 23, 26, 30]). The combination with the estimates of the spectral

function obtained via Fourier Tauberian arguments gives bounds that in some

regimes are better than the known estimates for the Dirichlet heat kernel. The

implied constants are independent of the boundary conditions.

To describe the main result let us assume that, as before, U is an open set in

R
d ; d � 2 and denote by �.x/ the distance from x 2 U to the boundary of U .

Let N be a positive integer. Consider in the Hilbert space L2.U ICN / an arbitrary

non-negative self-adjoint extension �U of the Laplacian

�
� @2

@x21
C � � � C @2

@x2
d

�

WC1
c .U ICN / �! C1

c .U ICN /

acting component-wise. The heat kernel for �U , denoted by

KU .x; yI t / D

0

B

B

@

K
.11/
U .x; yI t / � � � K

.1N/
U .x; yI t /

:::
: : :

:::

K
.N1/
U .x; yI t / � � � K

.NN/
U .x; yI t /

1

C

C

A

;

is the integral kernel of e�t�U ; t > 0 de�ned by the functional calculus of self-

adjoint operators. When U D R
d the counterpart for �U and KU .x; yI t / is



906 L. Li and A. Strohmaier

denoted respectively by �0 and K0.x; yI t /. Of course,

K0.x; yI t / D .4�t/�d=2 exp
�

�jx � yj2
4t

�

1:

Theorem 1.1. There exist two positive constants C1; C2 depending only on d such

that if t � .�.x/C�.y//2
8

then

kKU .x; yI t /� K0.x; yI t /k � .C1�.x; y/
�d C C2/ �

exp
�

� .�.x/C�.y//2
4t

�

t2d dC1
2

e� 1
2

:

Here �.x; y/ D min.�.x/; �.y//.

The constants C1; C2 can be explicitly given, but we refer the reader to the

relevant section of this paper for the full description. As a corollary, we are able

to answer a question raised in [21] about an upper estimate for the Neumann heat

kernel.

2. Vector-valued Laplacians

Throughout we �x some notations: Let m 2 N be such that m > d
2
. Let V denote

either U or 0. Let G
.m/
V denote the (distributional) integral kernel of the operator

.1C�V /
�m. If N D 1 we also write G

.m/
V for G

.m/
V . By (local) elliptic regularity

G
.m/
V is continuous on the open set U � U . For any R > 0 de�ne

Jm.RI t / D inf
 2AR

Jm. I t / .R > 0/; (2.1)

whereAR is the set of real-valued functions in C 2m.R/ such that Supp.1� / �
.�R;R/, and

Jm. I t / D
Z

R

ˇ

ˇ

ˇ

�

1 � d2

ds2

�m

. .s/e� s2

4t /
ˇ

ˇ

ˇds: (2.2)

Any matrix of size N � N can be naturally regarded as a linear operator on the

Hilbert space C
N , so we let k � k denote its operator norm.

2.1. Finite propagation speed. Before we start let us make some notational

remarks. Let x; y 2 U , v; w 2 CN . We denote ı
.v/
x D ıx ˝ v, where ıx is

the Dirac delta distribution at x. Strictly speaking, ıx ˝ v is not in the domain

of the self-adjoint operators e�t�V and cos.s
p
�V /. We understand however

expressions such as cos.s
p
�V /.ıx ˝ v/ as distributions (in x) with values in the

Hilbert space L2.U ICN /. Pairing with the test function ' 2 C1
c .U / is de�ned as
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cos.s
p
�V /.'˝v/. As usual, the expression cos.s

p
�V /.ıx/ is then understood as

a distribution with values in L2.U ICN ˝ .CN /�/ D L2.U I Mat.N;C//With this

notation the distributional integral kernel k 2 D0.U�U I Mat.N;C// of an operator

K is k.x; y/ D hıx ; Kıyi. In particular, expressions of the form hı.v/x ; Kı
.w/
y i are

bi-distributions and the pairing with test functions '1˝'2 2 C1
c .U �U/ is given

by h'1 ˝ v;K'2 ˝ wi D hv; k wiCN .'1 ˝ '2/.

Alternatively, one can also understand cos.s
p
�V /.ıx˝v/ as the distributional

limit of a sequence cos.s
p
�V /.'n ˝ v/, where 'n is a ı-family centered at

x. Note that cos.s
p
�V / is formally self-adjoint, and a continuous map from

C1
c .U ICN / to C1.U ICN /. This follows from (local) elliptic regularity because

�mV cos.s
p
�V / D cos.s

p
�V /�

m
V is a continuous map from C1

0 .U / ! L2.U /

for anym 2 N. It therefore extends by duality to a continuous map from E
0.U ICN /

to D
0.U ICN /. As usual, here D

0.U ICN / denotes the space of distributions with

values in C
N , and E

0.U ICN / denotes the subspace of distributions of compact

support.

Theorem 2.1. The following pointwise estimate holds for the heat kernel:

kKU .x; yI t / � K0.x; yI t /k

�
�

.kG
.m/
U .x; x/kkG

.m/
U .y; y/k/ 1

2 C
�

�

m � d
2

�

.4�/
d
2 .m� 1/Š

�Jm.�.x/C �.y/I t /
2
p
�t

:

Proof. Let  2 AR where R D �.x/C �.y/. It is well known (see e.g. [34]) that

e�t�V D 1

2
p
�t

Z

R

cos.s
p

�V /e
� s2

4t ds

D 1

2
p
�t

Z

R

cos.s
p

�V /.1�  .s//e� s2

4t ds

C 1

2
p
�t

Z

R

.1C�V /
�m cos.s

p

�V /
�

1� d2

ds2

�m

. .s/e� s2

4t /ds:

(2.3)

Finite propagation speed for the wave equation implies that if js1j < �.x/ then

cos.s1
p
�0/ı

.v/
x has compact support inU and agrees with cos.s1

p
�U /ı

.v/
x . Note

that any s 2 Rwith jsj < �.x/C�.y/ can be written as s D s1Cs2 with js1j < �.x/,
js2j < �.y/, s1s2 � 0. With this decomposition available and by considering

cos.s
p

�V / D 2 cos.s1
p

�V / cos.s2
p

�V / � cos..s1 � s2/
p

�V / cos.0
p

�V /
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as well as js1 � s2j < max¹�.x/; �.y/º, 0 < min¹�.x/; �.y/º, one obtains

hı.v/x ; cos.s
p

�U /ı
.w/
y i � hı.v/x ; cos.s

p

�0/ı
.w/
y i D 0

for any s 2 R with jsj < �.x/C �.y/. As

supp.1�  / � .��.x/� �.y/; �.x/C �.y//;

we get

.1�  .s//hı.v/x ; cos.s
p

�U /ı
.w/
y i � .1 �  .s//hı.v/x ; cos.s

p

�0/ı
.w/
y i D 0 (2.4)

for any s 2 R. On the other hand, note that

hı.v/x ; .1C�V /
�m cos.s

p

�V /ı
.w/
y i

D h.1C�V /
� m

2 ı.v/x ; cos.s
p

�V /.1C�V /
� m

2 ı.w/y i:

Applying the Cauchy-Schwarz inequality several times this gives

jhı.v/x ; .1C�V /
�m cos.s

p

�V /ı
.w/
y ij

� jvjjwj.kG
.m/
V .x; x/kkG

.m/
V .y; y/k/1=2

(2.5)

for any s 2 R. Combining (2.4), (2.5), and (2.10), with (2.3) su�ces to conclude

the proof. �

2.2. Safarov’s estimate. Since �U is a non-negative self-adjoint operator, by

the spectral theorem

�U D
Z 1

0

� d….�/;

where….�/ (� � 0) denotes the spectral projection of�U onto the interval Œ0; ��.

The so-called spectral function e.x; yI�/, de�ned to be the integral kernel of

….�/, is smooth in U � U for each �xed �.

IfN D 1 we also write e.x; yI�/ for e.x; yI�/. Safarov ([29, Cor. 3.1]) proved

for every x 2 U and all � > 0 that

e.x; xI�/ � C
.1/

d
�d=2 C

C
.2/

d

�.x/

�

�1=2 C
C
.3/

d

�.x/

�d�1
; (2.6)
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where C
.1/

d
, C

.2/

d
, C

.3/

d
are universal constants given respectively by

C
.1/

d
D !d .2�/

�d

with !d denoting the volume of the unit ball in R
d ,

C
.2/

d
D dC

.1/

d
.2��1.C .3/

d
/2 C C

.3/

d
/;

C
.3/

d
� 2md3

1
2md ;

where md D
˙

dC1
2

�

(see [29, Lemma 2.6]). We should mention that Safarov

originally established (2.6) by understanding e.x; xI�/ as the integral kernel of
….��0/C….�C0/

2
. But the right hand side of (2.6) is a continuous function of � > 0,

therefore (2.6) also holds for our choice of the spectral function.

The key points for proving (2.6) are the fact (see [29, Lemma 2.7, Cor. 3.1]) that

�C.�/e.x; xI�2/ is a non-decreasing function of � on R, and the cosine Fourier

transform of

.C
.1/

d
/�1 � d

d�
.�C.�/e.x; xI�2//

coincides on the interval .��.x/; �.x// with the cosine Fourier transform of

d�d�1
C . Here �C is the characteristic function of the positive axis. The latter

property can be seen from the �nite propagation speed for the wave equation.

In the vector-valued situation, we claim as (non-negative) self-adjoint matrices,

e.x; xI�/ �
�

C
.1/

d
�d=2 C

C
.2/

d

�.x/

�

�1=2 C
C
.3/

d

�.x/

�d�1�
1 (2.7)

for every x 2 U and all � > 0. To this end we see once again from the �nite

propagation speed for the wave equation that for each �xed unit vector v 2 C
N ,

the cosine Fourier transform of

.C
.1/

d
/�1 � d

d�
.�C.�/hı.v/x ;….�2/ı.v/x i/

coincides on the interval .��.x/; �.x// with the cosine Fourier transform of

d�d�1
C . Also, �C.�/hı.v/x ;….�2/ı

.v/
x i is a non-decreasing function of � on R.

So similar to (2.6) we have

hı.v/x ;….�/ı.v/x i � C
.1/

d
�d=2 C

C
.2/

d

�.x/

�

�1=2 C
C
.3/

d

�.x/

�d�1
.x 2 U; � > 0/;

which proves (2.7). For simplicity, applying Hölder’s and Young’s inequalities to

the right hand side of (2.7) gives for every x 2 U and all � > 0 that

e.x; xI�/ � .C
.4/

d
�d=2 C C

.5/

d
�.x/�d /1; (2.8)

where C
.4/

d
D

�

C
.1/

d
C d�1

d
2d�2C .2/

d

�

, C
.5/

d
D 2d�2C .2/

d

�

.C
.3/

d
/d�1 C 1

d

�

.
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According to the functional calculus of self-adjoint operators, we have

.1C�U /
�m D

Z 1

0

1

.1C �/m
d….�/:

For m > 0 this integral can be understood as an operator-valued integral that

converges in the strong operator topology. For the purposes of this paper it is

enough to understand it in the weak sense as a statement about quadratic forms.

For m > d
2

the integral kernel G
.m/
U .x; y/ of .1C�U /

�m is continuous on U �U
and we have

G
.m/
U .x; x/ D

Z 1

0

1

.1C �/m
de.x; xI�/:

Pointwise convergence of the integral can easily seen as follows. Choose s2R

such that m > s > d
2
. The operator .1 C �U /

s=2 commutes with the spectral

measure and .1 C �U /
s=2.1 C �U /

�m.1 C �U /
s=2 is bounded. Therefore, its

integral spectral representation converges in the sense of quadratic forms. Since

.1C�U /
�s=2 maps L2.U ICN / to H s

loc.U ICN / it extends by duality to a contin-

uous map H�s
comp.U ICN / to L2.U ICN /. We conclude that

.1C�U /
�m D

Z 1

0

1

.1C �/m
d….�/

converges in the sense of quadratic forms on H�s
comp.U ICN /. By the Sobolev

embedding theorem ı
.v/
x is in H�s

comp.U ICN /. Considering m > d
2
, (2.8),

e.x; xI 0/ � 0, and the following equivalent representation of the classical Beta

function

B.˛; ˇ/ D
Z 1

0

�˛�1

.1C �/˛Cˇ d� .Re.˛/ > 0; Re.ˇ/ > 0/;

one can use integration by parts to get

G
.m/
U .x; x/ D

Z 1

0

1

.1C �/m
de.x; xI�/

D m

Z 1

0

e.x; xI�/
.1C �/mC1d� � e.x; xI 0/

�
�

m

Z 1

0

C
.4/

d
�d=2 C C

.5/

d
�.x/�d

.1C �/mC1 d�

�

1

D
�

mC
.4/

d
B

�

1C d

2
;m� d

2

�

C C
.5/

d
�.x/�d

�

1:

(2.9)
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On the other hand we have e0.x; xI�/ D C
.1/

d
�d=21 (see [33, Example 3.1]), where

e0.x; yI�/ denotes the spectral function of �0. Therefore, one obtains

G
.m/
0 .x; x/ D

�
�

m � d
2

�

.4�/
d
2 .m � 1/Š

1: (2.10)

Finally, by considering (2.9) and (2.10) and by introducing

C
.6/

d
D mC

.4/

d
B

�

1C d

2
;m� d

2

�

C
�

�

m � d
2

�

.4�/
d
2 .m� 1/Š

;

we can deduce from Theorem 2.1 the following result.

Theorem 2.2. The following pointwise estimate holds for the heat kernel:

kKU .x; yI t /� K0.x; yI t /k � .C
.5/

d
�.x; y/�d C C

.6/

d
/ � Jm.�.x/C �.y/I t /

2
p
�t

:

2.3. Optimizing cut-o� functions. This section is devoted to proving Theo-

rem 1.1. To this end it su�ces to bound Jm.RI t / for R D �.x/C �.y/. In general

we suppose R > 0. The Hermite polynomials

Hn.s/ D .�1/nes2 dn

dsn
e�s2

.n D 0; 1; 2; : : :/

can be written as

Hn.s/ D
b n

2
c

X

kD0

.�1/knŠ
kŠ.n � 2k/Š .2s/

n�2k;

from which it is easy to deduce that

dn

dsn
.e� s2

4t / D
b n

2 c
X

kD0

�

� 1
2

�n
.�1/knŠ

kŠ.n� 2k/Š
tk�nsn�2ke� s2

4t .n D 0; 1; 2; : : :/:

Consequently, by Leibniz’s rule one gets for any non-negative integer n � 2m that

dn

dsn
. .s/e� s2

4t / D
n

X

jD0

b j
2

c
X

kD0

�

n

j

�

 .n�j /
�

� 1
2

�j
.�1/kj Š

kŠ.j � 2k/Š
tk�j sj�2ke� s2

4t :

To optimize the choice of cuto� functions we �rst let  0 denote a �xed real-

valued function in C 2m.R/ such that 0.s/ D 0 for s � 0 and 0.s/ D 1 for s � 1.

Later on we will give concrete examples of  0 and thus

Mj . 0/ D max
0�s�1

ˇ

ˇ

ˇ

ˇ

d j 0

dsj
.s/

ˇ

ˇ

ˇ

ˇ

.j D 0; 1; : : : ; 2m/
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can be explicitly determined. Then for any 0 < �1 < �2 < R de�ne

 �1;�2
.s/ D  0

� jsj � �1
�2 � �1

�

;

which is an even function in C 2m.R/ with Supp.1 �  �1;�2
/ � .�R;R/. We let

the parameters �1; �2 (depending on both R and t ) behave in the following way:

� �2 ! R,

� �2 � �1 � 2t
R

.

With the help of Lemma 2.4, it is not hard to show that if 0 < t � R2

8
, then

lim
�2!R

Z

R

ˇ

ˇ

ˇ

dn

dsn
. �1;�2

.s/e� s2

4t /
ˇ

ˇ

ˇds � Z.n;  0; RI t /e� R2

4t .n � 2m/; (2.11)

where Z.n;  0; RI t / is short for the rational function

b n
2

c
X

kD0

nŠ
˙

n�2k�1
2

�

ŠM0. 0/e
2Rn�2k�1

22n�2k�1kŠ.n � 2k/Š
t1Ck�n

C
n�1
X

jD0

b j
2

c
X

kD0

nŠMn�j . 0/eRn�2k�1

2n�2kŠ.j � 2k/Š.n� j /Š t
1Ck�n:

In general, it follows straightforward from Leibniz’s rule and (2.11) that

Theorem 2.3. Suppose 0 < t � R2

8
. Then

Jm.RI t / �
m

X

nD0

�

m

n

�

Z.2n;  0; RI t /e� R2

4t :

Theorem 1.1 is an immediate consequence of Theorems 2.2 and 2.3 with

m D
˙

dC1
2

�

.

Lemma 2.4. If ˇ is a non-negative integer and if � � 2
p
t , then

Z 1

�

sˇ e� s2

4t ds � 2e

�

ˇ � 1

2

�

Š �ˇ�1te� �2

4t :
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Proof. Note �rst

Z 1

�

sˇe� s2

4t ds D 2ˇ t
ˇC1

2 �
�ˇ C 1

2
;
�2

4t

�

;

where �.�; �/ is the upper incomplete Gamma function. If ˇC1
2

is a positive integer

then it is known that�.ˇC1
2
; r/ D

�

ˇ�1
2

�

Š e�r P

ˇ�1
2

kD0
rk

kŠ
for all r > 0. This partially

proves the lemma simply by considering �2

4t
� 1. If ˇC1

2
is a positive half-integer

then we can use �
�

ˇC1
2
; r

�

� 1p
r
�

�

ˇC2
2
; r

�

and the previous explicit formula for

�.ˇC2
2
; r/ to prove the remaining part of the lemma. This �nishes the proof. �

Although there are many test functions for  0, we use an interpolating polyno-

mial becauseMj . 0/ can be determined rather easily. For any n 2 N, there exists

a unique polynomial Pn of degree � 2nC 1 such that Pn.0/ D 0, Pn.1/ D 1, and

d i

dsi
Pn

ˇ

ˇ

ˇ

ˇ

sD0
D d i

dsi
Pn

ˇ

ˇ

ˇ

ˇ

sD1
D 0 .1 � i � n/:

We then de�ne a function zPn on R such that it agrees with Pn on Œ0; 1�, equals 0

on .�1; 0/, and equals 1 on .1;1/. It is easy to check that zPn 2 C n.R/. This

means that one can set  0 D zP2m. A few examples of Pn are listed below:

P1.s/ D 3s2 � 2s3;

P2.s/ D 10s3 � 15s4 C 6s5;

P3.s/ D 35s4 � 84s5 C 70s6 � 20s7;

P4.s/ D 126s5 � 420s6 C 540s7 � 315s8 C 70s9:

3. Dirichlet boundary conditions

We denote by K
.D/
U .x; yI t / the Dirichlet heat kernel for an open set U � R

d .

Michiel van den Berg’s (1.1) gives

jK.D/
U .x; yI t /�K0.x; yI t /j

� .4�t/�d=2 exp
�

�jx � yj2 C 4ı2

4t

�

d
X

jD1

2j ı2j�2

.j � 1/Št j�1 :
(3.1)

To compare, Theorem 1.1 is a slight improvement of (3.1) for the short-time

diagonal elements of the Dirichlet heat kernel if d � 5.
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It is known that G
.m/
U .x; x/ � G

.m/
0 .x; x/ for any x 2 U , where G

.m/
U is

interpreted in accordance with the choice that�U denotes the Dirichlet Laplacian

on U . Thus it follows from Theorem 2.1 and (2.10) that

jK.D/
U .x; yI t /�K0.x; yI t /j �

�
�

m � d
2

�

.4�/
d
2 .m� 1/Š

p
�

� Jm.�.x/C �.y/I t /p
t

: (3.2)

We remark that two other estimates by Michiel van den Berg ([2]) reading

jK.D/
U .x; xI t / �K0.x; xI t /j � 2d

.4�t/
d
2

exp
�

� �.x/2

dt

�

;

jK.D/
U .x; yI t /�K0.x; yI t /j

� 2d

.4�t/d=2
exp

�

� .3 � 2
p
2/
.max¹�.x/; �.y/º/2

dt

�

;

have been widely used in the study of short-time asymptotics of the heat trace (see

e.g. [3, 6, 32]) and some other related problems (see e.g. [5]).

4. Neumann boundary conditions

LetK
.N/
U .x; yI t / denote the Neumann heat kernel for a smooth bounded open set

U � R
d . As an application of Theorem 1.1 (or Theorem 4.1 with m D

˙

dC1
2

�

),

there exists a positive function g on U such that if 0 < t � �.x/2

2
then

K
.N/
U .x; xI t / � .4�t/�d=2 C g.x/ � t�˛ � exp

�

��.x/
2

t

�

; (4.1)

where ˛ D 2
˙

dC1
2

�

� 1
2
. This answers a question raised by Lacey ([21]) who

conjectured that for the class of smooth bounded strictly star-shaped domains (4.1)

holds for some ˛ > d
2

as long as time t is su�ciently small. Lacey also asked to

extend the main result in [21] to unbounded domains, domains with non-smooth

boundary, or more general boundary conditions. Because of Theorem 1.1 this is

indeed doable for the diagonal element of the corresponding Neumann heat kernel.

In the rest of the section we also give a replacement of (2.9) for G
.m/
U .x; x/

without using Safarov’s estimate (2.6). Here G
.m/
U is interpreted in accordance

with the choice that �U denotes the Neumann Laplacian on U . This can be done

by appealing to partial domain monotonicity of the Neumann heat kernel.
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For simplicity we assume that U � R
d is a smooth bounded open set. Note

�rst (see e.g. [8, (3.33)] and [12, ÷3.4])

G
.m/
U .x; x/ D 1

.m � 1/Š

Z 1

0

tm�1e�tK.N/
U .x; xI t /dt; (4.2)

so it is enough to �nd suitable upper bounds for K
.N/
U .x; xI t /. In contrast to the

Dirichlet boundary problems, there does not exist a general domain monotonicity

principle ([1]) claiming for any U2 � U1 that

K
.N/
U1
.x; yI t / � K

.N/
U2
.x; yI t / ..x; y; t / 2 U2 � U2 � R

C/:

Kac’s original idea ([19]) of comparing K
.D/
U .x; xI t / with K

.D/
Bx

.x; xI t /, where

Bx is chosen here1 to be the ball in R
d with center x and radius �.x/, still works

for the Neumann boundary problems. This is exactly a result by Kendall ([20],

see also [24]; if U is convex then see [9]) stating

K
.N/
U .x; xI t / � K

.N/
Bx

.x; xI t / ..x; t / 2 U � R
C/; (4.3)

which combined with (4.2) yields

G
.m/
U .x; x/ � G

.m/
Bx
.x; x/ .x 2 U/: (4.4)

Let Ud .x; yI t / denote the Neumann heat kernel for the d -dimensional unit

ball. The Pascu–Gageonea resolution ([25]) of the Laugesen–Morpurgo conjec-

ture ([22]) says that

Ud .x; xI t / < Ud .y; yI t / (4.5)

holds for all t > 0 and all x; y in the d -dimensional unit ball with jxj < jyj. This

result implies that

Ud .0; 0I t / <
Tr.e�t�.N/

d /

!d
; (4.6)

where �
.N/

d
is short for the Neumann Laplacian on the d -dimensional unit ball.

Now let x 2 U be �xed. It is straightforward to verify that

K
.N/
Bx

.x; xI t / D
Ud

�

0; 0I t
�.x/2

�

�.x/d
: (4.7)

1 To be precise, Kac ([19]) set Bx to be the largest open cube contained in U .
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Hence by considering (4.4), (4.2) with U replaced by Bx, (4.7), and (4.6), we get

G
.m/
U .x; x/ � 1

.m � 1/Š �
Z 1

0

tm�1e�t Tr.e
� t

�.x/2
�

.N/

d /

!d�.x/d
dt

D �.x/2m�d

.m � 1/Š!d
�
Z 1

0

tm�1e�t�.x/2Tr.e�t�.N/

d /dt

� �.x/2m�d

.m � 1/Š!d
�
� Z 1

0

tm�1Tr.e�t�.N/

d /dt

C Tr.e��.N/

d /

Z 1

0

tm�1e�t�.x/2dt

�

D �.x/2m�d

.m � 1/Š!d
�
Z 1

0

tm�1Tr.e�t�.N/

d /dt C Tr.e��.N/

d /

!d�.x/d
;

where in the last inequality we have used the fact Tr.e�t�.N/

d / � Tr.e��.N/

d / for

all t � 1. This estimate together with (2.10) gives from Theorem 2.1 the following

Theorem 4.1. Let U � R
d be a smooth bounded open set and let m 2 N be such

that m > d
2
. For any t > 0 and any x; y in U one has

ˇ

ˇ

ˇ

ˇ

K
.N/
U .x; yI t /� .4�t/�d=2 exp

�

�jx � yj2
4t

�

ˇ

ˇ

ˇ

ˇ

� Nd .x; y/ � Jm.�.x/C �.y/I t /
2
p
�t

;

where

Nd .x; y/ D

Z 1

0

tm�1Tr.e�t�.N/

d /dt

.m� 1/Š!d
� .max¹�.x/; �.y/º/2m�d

C
�

�

m � d
2

�

.4�/
d
2 .m � 1/Š

C Tr.e��.N/

d /

!d
� .min¹�.x/; �.y/º/�d :
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