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Abstract. We describe large classes of compact self-adjoint Hankel operators whose

eigenvalues have power asymptotics and obtain explicit expressions for the coe�cient

in front of the leading term. The results are stated both in the discrete and continuous

representations for Hankel operators. We also elucidate two key principles underpinning

the proof of such asymptotic relations. We call them the localization principle and the

symmetry principle. The localization principle says that disjoint components of the singular

support of the symbol of a Hankel operator make independent contributions into the

asymptotics of eigenvalues. The symmetry principle says that if the singular support of

a symbol does not contain the points 1 and �1 in the discrete case (or the points 0 and

1 in the continuous case), then the spectrum of the corresponding Hankel operator is

asymptotically symmetric with respect to the re�ection around zero.
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1. Introduction

1.1. Localization and symmetry principles. Hankel operators admit various

unitary equivalent descriptions. First we recall the de�nition of Hankel operators

on the Hardy classH 2.T/. Let T be the unit circle in the complex plane, equipped

with the normalized Lebesgue measure dm.�/ D .2�i�/�1d�, � 2 T. The

Hardy class H 2.T/ � L2.T/ is de�ned in the standard way as the subspace

spanned by the functions 1; �; �2; : : : in L2.T/. Let PCWL2.T/ ! H 2.T/ be the

orthogonal projection onto H 2.T/, and let W be the involution in L2.T/ de�ned

by .Wf /.�/ D f . N�/. For a function ! 2 L1.T/, the Hankel operatorH.!/with

the symbol ! is de�ned on the Hardy class H 2.T/ by the relation

H.!/f D PC.!Wf /; f 2 H 2.T/: (1.1)

Background information on the theory of Hankel operators can be found in the

books [7, 8].

In this paper, we are interested in self-adjoint Hankel operators. Thus, we will

always assume that the symbol ! satis�es the symmetry condition

!.�/ D !. N�/; � 2 T: (1.2)

It is well known thatH.!/ is bounded if ! 2 L1.T/ and thatH.!/ is compact

if ! is continuous. Moreover, if ! 2 C1.T/, then the eigenvalues of H.!/ go to

zero faster than any power of n�1 as n ! 1. Conversely, the singularities of !.�/

are responsible for the power-like decay of eigenvalues or even for the appearance

of the continuous spectrum.

The �rst result in this direction is due to S. R. Power [9] who considered the

essential spectrum of H.!/ for piecewise continuous symbols !. The structure

of the absolutely continuous spectrum was later described by J. S. Howland [4].

Although the assumptions of [9] and [4] are slightly di�erent, in both cases ! has

jump discontinuities on the unit circle; the essential (resp. absolutely continuous)

spectrum can be described in terms of these jumps. It turns out that the contri-

butions of di�erent jumps of ! (i.e. the jumps located at di�erent points of the

unit circle) to the essential spectrum are independent of each other. We call this

fact the localization principle. Further, observe that under the symmetry condi-

tion (1.2), the singularities of ! can be located (i) at the points C1 and �1 and

(ii) at pairs .�; N�/ of complex conjugate points on the unit circle. It turns out that

the contributions of the jumps to the essential spectrum in cases (i) and (ii) are

qualitatively di�erent. More precisely, the jumps of !.�/ at the points � D ˙1
yield the intervals Œ0; �˙� (with �˙ determined by the size of the jumps) of the es-

sential spectrum, while the jumps at each pair .�; N�/ of complex conjugate points



Spectral asymptotics for Hankel operators 923

yield symmetric intervals Œ��; ��. The last assertion is natural to call the symmetry

principle.

Our goal is to �nd the asymptotic formulas for eigenvalues for wide classes of

compact self-adjoint Hankel operators. To that end, we state both the localization

principle and the symmetry principle in a rather general setting adapted to the

study of the discrete spectrum. In this paper we are interested in Hankel opera-

tors with the power-like asymptotics of eigenvalues. For Hankel operators H.!/

realized in the space H 2.T/ by formula (1.1), such behavior occurs for symbols

!.�/ with logarithmic singularities. This means that !.�/ is continuous at singu-

lar points � but the rate of convergence !.�/�!.�/ ! 0 as � ! � is logarithmic;

thus, ! does not satisfy the Hölder condition with any positive exponent.

Before going into details, we describe another representation for Hankel oper-

ators as “in�nite matrices.”

1.2. Matrix Hankel operators. Let ! 2 L1.T/, and let the operator H.!/ be

de�ned by formula (1.1). The “matrix elements” ofH.!/ in the orthonormal basis

¹�j º1
jD0 in H 2.T/ are

.H.!/�j ; �k/L2.T/ D O!.j C k/; j; k � 0; (1.3)

where O! are the Fourier coe�cients of !,

O!.j / D
Z

T

!.�/��jdm.�/; j 2 Z:

This gives the standard “matrix representation” for Hankel operators in the space

`2.ZC/.

It will be convenient to introduce some notation related to this representation.

For a sequence ¹h.j /º1
jD0 of complex numbers, the Hankel operator �.h/ in the

space `2.ZC/ is formally de�ned by the “in�nite matrix” ¹h.j C k/º1

j;kD0
, that is,

.�.h/u/.j / D
1

X

kD0

h.j C k/u.k/; u D ¹u.j /º1
jD0 2 `2.ZC/: (1.4)

Of course, �.h/ is symmetric if the sequence h is real-valued. By (1.3), a Hankel

operator �.h/ is unitarily equivalent to H.!/ if and only if

O!.j / D h.j /; j � 0I (1.5)

in this case! is called a symbol of�.h/. Since (1.5) involves only j � 0, a symbol

is not uniquely de�ned. By Nehari’s theorem [6], the operator �.h/ is bounded if

and only if relation (1.5) is satis�ed for some ! 2 L1.T/.
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Suppose that, for some ˛ � 0 and j ! 1,

h.j / D
�

b1 C b�1.�1/j C 2

L
X

`D1

b` cos.'`j �  `/
�

j�1.log j /�˛ C error term;

(1.6)

where '1; : : : ; 'L 2 .0; �/ are distinct numbers and  1; : : : ;  L as well as

b�1; b1; b1; : : : ; bL are arbitrary real numbers. It can be shown that the singular

support of the symbol !.�/ of the corresponding Hankel operator �.h/ (with-

out the error term in (1.6)) consists of the points ˙1 (if b˙1 ¤ 0) and the pairs

.ei'` ; e�i'`/, ` D 1; : : : ; L. If ˛ D 0, then !.�/ has jumps at these points. This

implies (see [4] and [10]) that the absolutely continuous spectrum of �.h/ equals

specac.�.h// D Œ0; �b1�[ Œ0; �b�1�[
L

[

`D1

Œ��jb`j; �jb`j� (1.7)

(each of the intervals in the right-hand side yields the absolutely continuous

spectrum of multiplicity one).

In the case ˛ > 0, the singularities of !.�/ are weaker so that the operators

�.h/ are compact, and the decay of their eigenvalues is determined by these

singularities. Let us describe a typical result of this paper. For a compact self-

adjoint operator �, let us denote by ¹�C
n .�/º1

nD1 the non-increasing sequence of

positive eigenvalues of � and set ��
n .�/ D �C

n .��/. We show that

�˙
n .�.h// D a˙n�˛ C o.n�˛/; n ! 1; ˛ > 0; (1.8)

where

a˙ D ~.˛/
�

.b�1/
1=˛
˙

C .b1/
1=˛
˙

C
L

X

`D1

jb`j1=˛
�˛

; (1.9)

b˙ D .jbj ˙ b/=2, and the numerical coe�cient ~.˛/ can be expressed in terms

of the Beta function,

~.˛/ D 2�˛�1�2˛
�

B
� 1

2˛
;
1

2

��˛

: (1.10)

Thus both in the theory of the continuous spectrum (formula (1.7)) and in the

theory of the discrete spectrum (formula (1.9)) the contributions of di�erent

terms in (1.6) are independent of each other. So it is natural to use the term the

localization principle for this phenomenon.

Observe that the �rst two terms in the right-hand side of (1.6) contribute

to the leading term of the asymptotics of �C
n .�.h// (resp. of ��

n .�.h//) only

if the coe�cients b1 or b�1 are positive (resp. negative). On the other hand,



Spectral asymptotics for Hankel operators 925

in both continuous and discrete cases, the oscillating terms in (1.6) yield sym-

metric contributions to the continuous spectrum of �.h/ and to the leading term

of the asymptotics of the eigenvalues �˙
n .�.h//. It is natural to call this phenom-

enon the symmetry principle.

1.3. Related work. This paper can be considered as a continuation of our pre-

vious work [12] where Hankel operators �.h/ with matrix elements (1.6) were

studied for ˛ > 0 under the assumption that b1 D � � � D bL D 0; in this case

h.j / does not contain the oscillating terms. Extending this to the case of non-zero

coe�cients b1; : : : ; bL turns out to be a non-trivial problem. In fact, we had to iso-

late and formalise both the localization and the symmetry principles for compact

self-adjoint Hankel operators precisely in order to handle this situation.

We note also our paper [13] where Hankel operators �.h/ corresponding to the

sequences

h.j / D
� L

X

`D1

b`�
�j

`

�

j�1.log j /�˛ C error term; j ! 1; ˛ > 0; (1.11)

were considered. Here �1; : : : ; �L 2 T are distinct points (not necessarily complex

conjugate pairs of points) and b1; : : : ; bL are any complex coe�cients so that

the operators �.h/ need not be self-adjoint. In [13], we studied singular values

sn.�.h// of the operator �.h/ and obtained the asymptotic formula

sn.�.h// D a n�˛ C o.n�˛/; n ! 1; (1.12)

with the coe�cient

a D ~.˛/

� L
X

`D1

jb`j1=˛
�˛

:

The proof of this assertion in [13] used our result of [12] and also required the

localization principle for singular values of Hankel operators. This principle

allowed us to separate the contributions of di�erent terms in the right-hand side

of (1.11).

We �nally mention the fundamental paper [5] where the spectra of all bounded

self-adjoint Hankel operators were characterized in terms of a certain balance of

their positive and negative parts. In particular, the spectra of compact Hankel

operators were characterized by the two conditions: (i) the multiplicities of the

eigenvalues � and �� do not di�er by more than one; (ii) if the point � D 0

is an eigenvalue, then necessarily it has in�nite multiplicity. The �rst of these

conditions is similar in spirit to the asymptotic formulas (1.8) and (1.9) for the

eigenvalues, but of course neither of these two results implies the other one.
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1.4. Main ideas of the approach. The results of [12, 13] are the basis for our

proof of the relations (1.8) and (1.9). The other two ingredients are the localization

and the symmetry principles for eigenvalues.

The localization principle allows us to separate the contributions of di�erent

terms in the right-hand side of (1.6). In a more general setting it says that

the contributions of disjoint components of the singular support of ! (denoted

sing supp!) to the asymptotics of the eigenvalues of H.!/ are independent of

each other. The precise statement is Theorem 3.2 below. This principle allows

one to split the singular support of ! into disjoint pieces and to study the operators

corresponding to each piece separately. In our previous work [13] we discussed

localization principle for singular values of (not necessarily self-adjoint) Hankel

operators. The localization principle for eigenvalues requires some new operator

theoretic input, which is stated here as Theorem 2.2.

The symmetry principle is needed to treat Hankel operators �.h/ with the os-

cillating matrix elements h.j / D cos.'j � /j�1.log j /�˛ . It shows that asymp-

totically the sequence sn.�.h// of singular values is “shared equally” between

the sequences �C
n .�.h// and ��

n .�.h// of positive and negative eigenvalues. So

given the asymptotic formula for sn.�.h// obtained in [13], we get a formula for

�˙
n .�.h//. More generally, the symmetry principle says that if sing supp! does

not contain 1 and �1, then the spectrum of the self-adjoint Hankel operatorH.!/

is asymptotically symmetric with respect to the re�ection � 7! ��. For com-

pact operators �.h/ with such symbols, this means that the leading terms of the

asymptotics of �C.�.h// and ��.�.h// coincide.

For our purposes, it su�ces to consider the case when sing supp! consists of

a �nite number of points.

1.5. The structure of the paper. Along with the representation in the space

`2.ZC/, Hankel operators can be de�ned as integral operators ���.h/ in L2.RC/

with kernels h.t C s/. We will refer to the Hankel operators �.h/ acting in

`2.ZC/ as to the discrete representation, and to the Hankel operators ���.h/ acting

in L2.RC/ as to the continuous representation. Similarly to the realization of

operators �.h/ in the Hardy space H 2.T/ described in Section 1.1, “continuous”

Hankel operators ���.h/ can be realized in the Hardy space H 2.R/ of functions

analytic in the upper half-plane. We use boldface font for objects associated with

the continuous representation. We have tried to make exposition in the discrete

and continuous cases parallel as much as possible.

We collect necessary operator theoretic background in Section 2; the key

results of that section are Theorems 2.3 and 2.7. In Section 3 we prove the
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localization principle, see Theorems 3.2 and 3.3 (one of these theorems refers to

the discrete representation and the other one to the continuous one). In Section 4

we prove the symmetry principle, see Theorems 4.1 and 4.3 (again, those are the

discrete and the continuous versions).

Applications of these general results to Hankel operators �.h/ and ���.h/ are

given in Sections 5 and 6, respectively. The main result for the operators �.h/

is stated as Theorem 5.7. Here we prove formulas (1.8) and (1.9) for sequences

h.j / with asymptotics (1.6) as j ! 1. Moreover, in Section 5.3 we discuss the

version of Theorem 5.7 for Hankel operators acting on the Hardy spaceH 2.T/.

The results on the asymptotic behavior of eigenvalues of integral Hankel

operators ���.h/ are stated similarly to the discrete case. However, we have to take

into account the fact that h.t /may be singular both as t ! 1 and as t ! 0. Note

that oscillating terms appear for t ! 1 only. Singularities of h.t / at points t0 > 0

are also not excluded.

2. Abstract operator theoretic input

The main results of this section are Theorems 2.3 and 2.7. They are used for the

proofs of the localization principle in Section 3 and of the symmetry principle in

Section 4.

2.1. Notation. Here we recall some notation related to eigenvalues and singular

values of compact operators. For a compact self-adjoint operator A, we denote by

¹�C
n .A/º1

nD1 the non-increasing sequence of positive eigenvalues ofA; we assume

that the eigenvalues are enumerated with multiplicities and that the sequence

¹�C
n .A/º1

nD1 is appended by zeros ifA has only �nitely many positive eigenvalues.

We also set ��
n .A/ D �C

n .�A/. The singular values of a (not necessarily self-

adjoint) compact operatorA are de�ned by sn.A/ D �C
n .jAj/where jAj D

p
A�A.

To describe the power asymptotics of the type (1.8) and (1.12), it is convenient

to de�ne the following functionals. For p > 0, and for a compact operator A, we

set

�p.A/ D lim sup
n!1

nsn.A/
p; ıp.A/ D lim inf

n!1
nsn.A/

p: (2.1)

Moreover, if A is self-adjoint, we denote

�˙
p .A/ D lim sup

n!1

n�˙
n .A/

p; ı˙
p .A/ D lim inf

n!1
n�˙

n .A/
p: (2.2)
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Put A˙ D .jAj ˙ A/=2. Since �˙
n .A/ D sn.A˙/ for an arbitrary self-adjoint

operator A, we have

�˙
p .A/ D �p.A˙/; ı˙

p .A/ D ıp.A˙/: (2.3)

In all concrete applications, our upper limits will coincide with the lower limits;

however, we work with the upper and lower limits separately because it is more

general and, at the same time, it is technically more convenient.

We denote by Sp;1 the class of all compact operators A such that �p.A/ is

�nite, and by S 0
p;1 � Sp;1 the subclass of all operators A such that �p.A/ D 0.

It is well known that both Sp;1 and S 0
p;1 are ideals of the algebra of bounded

operators B; in particular, they are linear spaces. Of course A 2 Sp;1 (or A 2
S 0
p;1) if and only if the same is true for its adjoint A�. We set S0 D \p>0Sp;1,

that is,

A 2 S0 () sn.A/ D O.n�˛/; n ! 1; for all ˛ > 0: (2.4)

It is convenient to make use of the counting functions

n.�IA/ D #¹nW sn.A/ > �º; n˙.�IA/ D #¹nW�˙
n .A/ > �º; � > 0:

In terms of these functions, we have

�p.A/ D lim sup
�!0

�pn.�IA/; �˙
p .A/ D lim sup

�!0

�pn˙.�IA/; (2.5)

and similarly for the lower limits.

Asymptotic formulas for singular values and eigenvalues can be equivalently

rewritten in terms of the functionals (2.1) and (2.2). We make a standing assump-

tion that the indices ˛ > 0 and p > 0 are related by p D 1=˛. Then

lim
n!1

n˛sn.A/ D c () �p.A/ D ıp.A/ D cp

and

lim
n!1

n˛�˙
n .A/ D c˙ () �˙

p .A/ D ı˙
p .A/ D .c˙/p:

Since, for self-adjoint operators A, the sequence sn.A/ is the union of the two

sequences �C
n .A/ and ��

n .A/, for the counting functions we have

n.�IA/ D nC.�IA/C n�.�IA/; � > 0: (2.6)
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2.2. Asymptotically orthogonal operators. First we recall a lemma which goes

back to H. Weyl.

Lemma 2.1 ([2, Section 11.6]). Let A be a compact operator and let B 2 S 0
p;1

for some p > 0. Then

�p.AC B/ D �p.A/ and ıp.AC B/ D ıp.A/: (2.7)

If A and B are self-adjoint, then also

�˙
p .AC B/ D �˙

p .A/ and ı˙
p .AC B/ D ı˙

p .A/:

Recall the implication (see, e.g. [2, Theorem 11.6.9])

A 2 Sp;1; B 2 Sp;1 H) A�B 2 Sp=2;1; AB� 2 Sp=2;1: (2.8)

We will say that the operators A and B in Sp;1 are asymptotically orthogonal if

the class Sp=2;1 in the right side of (2.8) can be replaced by its subclass S 0
p=2;1

.

Theorem 2.2 ([13, Theorem 2.2]). LetA1; : : : ; AL be compact operators such that

for some p > 0

A�

`Aj 2 S 0
p=2;1; A`A

�
j 2 S 0

p=2;1 for all ` 6D j .

Then for A D A1 C � � � C AL, we have

�p.A/ �
L

X

`D1

�p.A`/; ıp.A/ �
L

X

`D1

ıp.A`/:

In particular, if �p.A`/ D ıp.A`/ for all `, then

�p.A`/ D ıp.A`/ D
L

X

`D1

�p.A`/:

A very similar (only a slightly weaker) result was obtained much earlier in [3];

note that the proofs in [3] and [13] are quite di�erent.

Here we need an analogue of this statement for self-adjoint operators.
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Theorem 2.3. Let A1; : : : ; AL be compact self-adjoint operators such that for

some p > 0

A`Aj 2 S 0
p=2;1 for all ` 6D j . (2.9)

Then for A D A1 C � � � C AL, we have

�˙
p .A/ �

L
X

`D1

�˙
p .A`/; ı˙

p .A/ �
L

X

`D1

ı˙
p .A`/: (2.10)

In particular, if �˙
p .A`/ D ı˙

p .A`/ for all `, then

�˙
p .A/ D ı˙

p .A/ D
L

X

`D1

�˙
p .A`/:

Again, a version of this theorem can be found in [3]; here we give a di�erent

proof. In order to explain the intuition behind this theorem, we observe that the

estimates (2.10) are quite obvious if the operators A` are orthogonal in the sense

that

A`Aj D 0; for all ` 6D j: (2.11)

Then A D A1 C � � � C AL is a “block-diagonal” operator acting in the direct sum

˚L
`D1

Ran.A`/. It follows that

n˙.�IA/ D
L

X

`D1

n˙.�IA`/; � > 0:

Multiplying this by �p, taking lim sup (resp. lim inf) as � ! 0 and recalling the

expressions (2.5) for�˙
p , ı˙

p in terms of the counting functions, we obtain the �rst

(resp. the second) inequality in (2.10). Our goal is to replace the trivial condition

(2.11) by a much weaker assumption (2.9).

In order to prove Theorem 2.3, we will need the following auxiliary assertions.

Lemma 2.4 ([3, Proposition 4]). Let p > 0, and let M0, M1 be bounded non-

negative self-adjoint operators such thatM1�M0 2 S 0
p=2;1

. ThenM
1=2
1 �M 1=2

0 2
S 0
p;1.

The proof of this lemma in [3] uses a non-trivial estimate of [1, Theorem 3]:

�˙
p .M

1=2
1 �M

1=2
0 / � c.p/.�˙

p=2.M1 �M0//
1=2:

Lemma 2.5. Let A, B be self-adjoint operators in Sp;1 such that AB 2 S 0
p=2;1

.

Then

jAC Bj � .jAj C jBj/ 2 S 0
p;1: (2.12)
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Proof. Since

jAC Bj2 � .jAj C jBj/2 D AB C BA � jAjjBj � jBjjAj (2.13)

and jAjjBj D sign.A/AB sign.B/; expression (2.13) belongs to S 0
p=2;1

. So it

remains to apply Lemma 2.4 with M0 D .jAj C jBj/2, M1 D jAC Bj2. �

Adding and subtracting AC B in (2.12), we obtain

Corollary 2.6. Under the assumptions of Lemma 2.5, the inclusions

.AC B/˙ � .A˙ C B˙/ 2 S 0
p;1 (2.14)

hold.

Proof of Theorem 2.3. Using induction in L, it is easy to reduce the problem to

the case L D 2. Thus, changing our notation slightly, we will assume that A, B

are self-adjoint operators in Sp;1 and AB 2 S 0
p=2;1

. We will prove that

�˙
p .AC B/ � �˙

p .A/C�˙
p .B/; (2.15)

ı˙
p .AC B/ � ı˙

p .A/C ı˙
p .B/: (2.16)

According to the statement (2.7) of Lemma 2.1, it follows from (2.14) that

�p..AC B/˙/ D �p.A˙ C B˙/: (2.17)

Since A˙B˙ 2 S 0
p=2;1

, Theorem 2.2 implies that

�p.A˙ C B˙/ � �p.A˙/C�p.B˙/: (2.18)

Combining (2.17) and (2.18), and taking (2.3) into account, we conclude the proof

of (2.15). The estimate (2.16) for the lower limits can be obtained in a similar

way. �

2.3. Symmetry with respect to the re�ection around zero. The meaning of

the following result is that if a compact self-adjoint operator A is “almost” uni-

tarily equivalent to �A, then its positive and negative eigenvalues have the same

asymptotic behaviour.
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Theorem 2.7. Let p > 0, and let A be a compact self-adjoint operator such that

for some unitary operator U , we have

R WD UAU � C A 2 S 0
p;1: (2.19)

Then

�C
p .A/ D ��

p .A/ D 1

2
�p.A/; (2.20)

ıC
p .A/ D ı�

p .A/ D 1

2
ıp.A/: (2.21)

Proof. The �rst equalities in (2.20) and (2.21) are easy to check. Indeed, accord-

ing to Lemma 2.1 it follows from (2.19) that

�C
p .A/ D �C

p .UAU
�/ D �C

p .�A/ D ��
p .A/;

ıC
p .A/ D ıC

p .UAU
�/ D ıC

p .�A/ D ı�
p .A/:

The second pair of equalities is more delicate. Let us multiply (2.6) by �p.

Passing to the upper limit as � ! 0 and using the de�nition (2.5) of the quantities

�p, we see that

�p.A/ � �C
p .A/C��

p .A/ D 2�C
p .A/: (2.22)

Similarly, passing to the lower limit, we see that

ıp.A/ � ıC
p .A/C ı�

p .A/ D 2ıC
p .A/:

It remains to prove the opposite estimates. In view of (2.6) for all � > 0, we

have

n.�IA/ D nC.�IA/C n�.�IA/ D nC.�IA/C n�.�IUAU �/

D nC.�IA/C n�.�I �ACR/ D nC.�IA/C nC.�IA�R/:
(2.23)

For any compact self-adjoint A1, A2 we have the inequality (see e.g. [2, Theo-

rem 9.2.9])

nC.�1 C �2IA1 C A2/ � nC.�1IA1/C nC.�2IA2/; �1; �2 > 0: (2.24)

In particular, for every " 2 .0; 1/

nC..1C "/�IA/ � nC.�IA� R/C nC."�IR/

and therefore (2.23) yields the estimate

n.�IA/ � nC.�IA/CnC..1C"/�IA/�nC."�IR/ � 2nC..1C"/�IA/�nC."�IR/:
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Let us multiply this estimate by �p and pass to the upper limit as � ! 0. Since

R 2 S 0
p;1, we have �pnC."�IR/ ! 0. Therefore according to de�nition (2.5),

we �nd that

�p.A/ � 2.1C "/�p�C
p .A/:

Hence �p.A/ � 2�C
p .A/ because " > 0 is arbitrary. Together with (2.22), this

proves (2.20).

Similarly, (2.24) implies that for every " 2 .0; 1/

nC.�IA�R/ � nC..1 � "/�IA/C nC."�I �R/

and therefore (2.23) yields the estimate

n.�IA/ � nC.�IA/C nC..1 � "/�IA/C nC."�I �R/

� 2nC..1� "/�IA/C nC."�I �R/:

Let us again multiply it by �p and then pass to the lower limit whence

ıp.A/ � 2.1� "/�pıC
p .A/:

This su�ces to conclude the proof of (2.21). �

3. Localization principle

The localization principle for eigenvalues of Hankel operators in the spacesH 2.T/

and H 2.R/ will be stated in Theorems 3.2 and 3.3, respectively.

3.1. Hankel operators in H 2.T/. In a standard way, we de�ne the singular

support sing supp! of a function ! 2 L1.T/ as the smallest closed set X � T

such that ! 2 C1.T nX/. Recall also that the class S0 of compact operators was

de�ned by (2.4).

The key analytic ingredient of the proof of Therem 3.2 is the following state-

ment.

Lemma 3.1 ([13, Lemma 2.6]). Let !1; !2 2 L1.T/ be such that

sing supp!1 \ sing supp!2 D ¿:

Then

H.!1/
�H.!2/ 2 S0:
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Below we state the localization principle for eigenvalues of self-adjoint Hankel

operators. We use the functionals �˙
p and ı˙

p , de�ned by formulas (2.2).

Theorem 3.2. Let !1; : : : ; !L 2 L1.T/ be symbols such that the singular sup-

ports of !` are disjoint:

sing supp!` \ sing supp!j D ¿; ` 6D j;

and such that the symmetry condition (1.2) is satis�ed. Then for ! D !1C� � �C!L
and for an arbitrary p > 0, we have

�˙
p .H.!// �

L
X

`D1

�˙
p .H.!`//; ı˙

p .H.!// �
L

X

`D1

ı˙
p .H.!`//: (3.1)

In particular, if �˙
p .H.!`// D ı˙

p .H.!`// for all `, then

�˙
p .H.!// D ı˙

p .H.!// D
L

X

`D1

�˙
p .H.!`//:

Proof. It su�ces to use Theorem 2.3 with A` D H.!`/. The inclusion A`Aj 2
S 0
p=2;1

for ` 6D j follows from Lemma 3.1. �

Note that the expressions in (3.1) may be in�nite. In [13], we have an exact

analogue of Theorem 2.3 for singular values of (not necessarily self-adjoint)

Hankel operators.

3.2. Hankel operators in H 2.R/. Hankel operators can also be de�ned in the

Hardy space H 2.R/ of functions analytic in the upper half-plane. We denote by

f̂ D Of the Fourier transform of f in L2.R/,

. f̂ /.t / D Of .t/ D 1p
2�

Z 1

�1

f .x/e�ixtdx: (3.2)

Let H 2.R/ � L2.R/ be the Hardy class,

H 2.R/ D ¹f 2 L2W Of .t/ D 0 for t < 0º;

and let PCWL2.R/ ! H 2.R/ be the corresponding orthogonal projection. Let

W be the involution in L2.R/, .W f /.x/ D f .�x/. For !!! 2 L1.R/, the Hankel

operator H .!!!/ in H 2.R/ is de�ned by

H .!!!/f D PC.!!!W f /; f 2 H 2.R/: (3.3)



Spectral asymptotics for Hankel operators 935

It is straightforward to see that the symmetry condition

!!!.x/ D !!!.�x/; x 2 R;

ensures that H .!!!/ is self-adjoint.

There is a unitary equivalence between the Hankel operators H.!/ de�ned

in H 2.T/ by formula (1.1) and the Hankel operators H .!!!/ de�ned in H 2.R/ by

formula (3.3). Indeed, let

w D z � i=2

z C i=2
; z D i

2

1C w

1 �w ; (3.4)

be the standard conformal map sending the upper half-plane onto the unit disc,

and let UWL2.T/ ! L2.R/ be the corresponding unitary operator de�ned by

.Uf /.x/ D 1p
2�

1

x C i=2
f

� x � i=2

x C i=2

�

;

.U�f /.�/ D i
p
2�

1

1 � �f
� i

2

1C �

1� �

�

:

Then

UH.!/U� D H .!!!/ (3.5)

provided

!!!.x/ D �x � i=2

x C i=2
!

�x � i=2

x C i=2

�

: (3.6)

Symbols !!!.x/ of Hankel operators (3.3) have the exceptional point x D 1.

In order to rewrite the results obtained for Hankel operators H.!/ in terms of the

Hankel operators H.!!!/, we identify the points x D C1 and x D �1. The real

line with such identi�cation will be denotedR�. We write!!! 2 C.R�/ if!!! 2 C.R/
and if

lim
x!1

!!!.x/ D lim
x!�1

!!!.x/:

Similarly, we write !!! 2 C1.R�/ if !!! 2 C1.R/ and

lim
x!1

!!!.m/.x/ D lim
x!�1

!!!.m/.x/ (3.7)

for all m 2 ZC. In particular, the point x D 1 belongs to the singular support

of !!!.x/ if for some m � 0 the relation (3.7) fails (i.e. if either at least one of the

limits does not exist or if the limits are not equal).

In view of relations (3.5) and (3.6) the localization principle for Hankel oper-

ators in H 2.R/ given below is a direct consequence of the localization principle

in H 2.T/ (Theorem 3.2).
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Theorem 3.3. Let !!!1; : : : ;!!!L 2 C.R�/ be symbols satisfying the symmetry

condition

!!!.x/ D !!!.�x/ (3.8)

and such that the singular supports of !!!` for di�erent ` are disjoint. Then for the

symbol !!! D !!!1 C � � � C!!!L and for any p > 0 we have

�˙
p .H .!!!// �

L
X

`D1

�˙
p .H .!!!`//; ı˙

p .H .!!!// �
L

X

`D1

ı˙
p .H .!!!`//:

In particular, if �˙
p .H .!!!`// D ı˙

p .H .!!!`// for all `, then

�˙
p .H .!!!// D ı˙

p .H .!!!// D
L

X

`D1

�˙
p .H .!!!`//:

4. Symmetry principle

The symmetry principle for the eigenvalues of Hankel operators in the spaces

H 2.T/ andH 2.R/will be stated in Theorems 4.1 and 4.3, respectively, in terms of

the functionals �˙
p , ı˙

p (see (2.1) and (2.2)). Moreover, in Section 4.3 we discuss

the symmetry principle for the essential spectrum of Hankel operators.

4.1. Symmetry principle in H 2.T/. The symmetry principle for compact self-

adjoint Hankel operators H.!/ in the space L2.T/ can be stated as follows.

Theorem 4.1. Let! 2 L1.T/ be a symbol satisfying the symmetry condition (1.2)

and such that sing supp! does not contain the points 1 and �1. Then for any

p > 0,

�C
p .H.!// D ��

p .H.!// D 1
2
�p.H.!//;

ıC
p .H.!// D ı�

p .H.!// D 1
2
ıp.H.!//:

If sing supp! contains the points 1 or �1, the symmetry breaks down: the

contribution of each of these points to the spectrum is not symmetric. This will

be illustrated below by Theorem 5.10.
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Put

s.�/ D sign Im�; � 2 T: (4.1)

The operator of multiplication by s in L2.T/ will also be denoted by s. Clearly,

s D s� and s2 D I . In the following statement, H.!/ is not necessarily self-

adjoint.

Below it will be convenient to consider Hankel operators H.!/ as operators

acting not on the Hardy class, but on the spaceL2.T/; in this caseH.!/ is de�ned

by the formula

H.!/ D PC!WPC: (4.2)

Of course, the non-zero spectra of the operators (1.1) and (4.2) coincide.

Lemma 4.2. Let ! 2 L1.T/ be such that the singular support of ! does not

contain the points 1 and �1. Then

sH.!/CH.!/s 2 S0: (4.3)

Proof. We will use two well-known facts (see the book [8] and Lemma 4.2 in [13],

for additional details):

(i) if � 2 C1.T/, then H.�/ 2 S0;

(ii) if � 2 C1.T/, then the commutator Œ�; PC� WD �PC � PC� 2 S0.

Write ! D !0C!1, where!0 2 L1.T/ vanishes identically in a neighborhood

of ¹�1; 1º, and !1 2 C1.T/. By (i), it su�ces to prove (4.3) with !0 instead of

!. In what follows, we drop the subscript 0 and simply assume that ! vanishes in

a neighborhood of ¹�1; 1º.
Put !�.�/ D !. N�/. Let us choose ' 2 C1.T/ such that '! D ! and

'!� D !�, and ' vanishes in a neighborhood of ¹�1; 1º. Then we also have

s' 2 C1.T/. It follows from (ii) that

Œs; PC�' D sPC' � PCs' D sŒPC; '�C Œs'; PC� 2 S0;

whence

sPC! � PCs! D Œs; PC�! D Œs; PC�'! 2 S0 (4.4)

and, multiplying by WPC on the right,

sH.!/ � PCs!WPC 2 S0: (4.5)

Similarly to (4.4), we have

!�PCs � !�sPC 2 S0:
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Therefore using that H.!/ D PCW!�PC and multiplying by PCW on the left,

we obtain

H.!/s � PCW!�sPC 2 S0: (4.6)

Putting together (4.5) and (4.6) and taking into account that s!W CW!�s D 0,

we conclude the proof of (4.3). �

Proof of Theorem 4.1. It remains to use Theorem 2.7 with A D H.!/ and U D s;

the inclusion (2.19) in the hypothesis of this theorem holds true by Lemma 4.2.

�

4.2. Symmetry principle in H 2.R/. The symmetry principles in H 2.T/ and

H 2.R/ are equivalent.

Theorem 4.3. Let!!! 2 L1.R/ satisfy the symmetry relation!!!.x/ D !!!.�x/, and

suppose that sing supp!!! does not contain 0 or 1. Then for any p > 0,

�C
p .H .!!!// D ��

p .H .!!!// D 1

2
�p.H .!!!//; (4.7)

ıC
p .H .!!!// D ı�

p .H .!!!// D 1

2
ıp.H .!!!//: (4.8)

Proof. Observe that the map (3.4) sends the point z D 1 into the point w D 1

and the point z D 0 into the point w D �1. Let the symbol ! be de�ned by

formula (3.6). Since its singular support does not contain the points 1 and �1,
Theorem 4.1 applies to the Hankel operatorH.!/. According to (3.5) the operators

H.!/ and H .!!!/ are unitarily equivalent, which yields (4.7) and (4.8). �

4.3. Essential spectrum. Although this is not the focus of the present paper,

we mention that some variants of the symmetry principle also hold true for non-

compact Hankel operators. For example, we have

Theorem 4.4. Let ! 2 L1.T/ be a symbol satisfying the symmetry condi-

tion (1.2). Suppose that ! is continuous in some neighborhoods of the points

1 and �1. Then

�ess.H.!// D �ess.�H.!//: (4.9)

Proof. Let! be continuous on the unionG of two arcs Œe�iı ; eiı � and Œ�eiı;�e�iı �

for some ı > 0. There exist functions !n 2 C1.G/ such that k!�!nkL1.G/ ! 0

as n ! 1. We set !n.�/ D !.�/ for � 2 T n G. Then k! � !nkL1.T/ ! 0 as

n ! 1. It follows that kH.!/ �H.!n/k ! 0 and hence

k.sH.!/s CH.!//� .sH.!n/s CH.!n//k �! 0; n ! 1;
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where s is de�ned by formula (4.1). By Lemma 4.2, the operators sH.!n/s C
H.!n/ are compact for all n and so the operator sH.!/sCH.!/ is also compact.

Applying H. Weyl’s theorem on the stability of the essential spectrum under

compact perturbations, we obtain that

�ess.H.!// D �ess.sH.!/s/ D �ess.�H.!//;

as required. �

We are not aware of this statement appearing explicitly in the literature, al-

though similar considerations have been used by S. Power in his work [9].

If ! is discontinuous at 1 or �1, then in general the symmetry (4.9) breaks

down (see formula (1.7)).

Of course Theorem 4.4 can be reformulated in terms of Hankel operators in

the spaceH 2.R/.

Theorem 4.5. Let!!! 2 L1.R/ be a symbol satisfying the condition (3.8). Suppose

that !!! is continuous in neighborhoods of the points 0 and 1. Then

�ess.H .!!!// D �ess.�H .!!!//:

5. Spectral asymptotics for Hankel operators in `2.ZC/

Recall that Hankel operators �.h/ in `2.ZC/ were de�ned by formula (1.4). The

main result of this section is Theorem 5.7. It gives the asymptotics of eigenvalues

of operators�.h/ corresponding to “oscillating” sequencesh of the form (1.6). An

equivalent result for Hankel operators H.!/ in the Hardy space H 2.T/ is stated

in Theorem 5.10.

5.1. Previous results. We proceed from a particular case of Theorem 5.7 when

the asymptotics of h.j / consists of one term only.

Theorem 5.1 ([12, Theorem 1.1]). Let ˛ > 0 and let

q.j / D j�1.log j /�˛; j � 2; (5.1)

.the choice of any �nite number of terms of the sequence q is not important/. Then

the eigenvalues of the Hankel operator �.q/ satisfy the asymptotic relation

�C
n .�.q// D ~.˛/n�˛ C o.n�˛/; ��

n .�.q// D o.n�˛/;

where the coe�cient ~.˛/ is given by formula (1.10).
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Let q�1.j / D .�1/jq.j /, and let the unitary operator T in `2.ZC/ be de�ned

by the relation .T u/.j / D .�1/ju.j /. Then �.q�1/ D T ��.q/T whence

�˙
n .�.q�1// D �˙

n .�.q//. Therefore Theorem 5.1 yields

Corollary 5.2. The conclusions of Theorem 5.1 are true for the sequence

q�1.j / D .�1/j j�1.log j /�˛:

The �rst step in the proof of Theorem 5.7 is to construct a symbol correspond-

ing to the sequence (5.1). It is convenient to consider a slightly more general case.

Lemma 5.3 ([13, Lemma 4.3]). Let � 2 T, ˛ � 0, and let

q�.j / D ��j j�1.log j /�˛; j � 2; (5.2)

.q�.0/ D q�.1/ D 0/. Put

!�.�/ D
1

X

jD2

j�1.log j /�˛
�

.�=�/j � .�=�/�j
�

; � 2 T: (5.3)

Then !� 2 L1.T/ and !� 2 C1.T n ¹�º/. For the Fourier coe�cients of

function (5.3), we have O!�.j / D q�.j / for all j � 0.

The assertion below is a particular case of our general result (Theorem 3.1

in [13]) on the asymptotics of singular values of Hankel operators, needed in the

present text. Its proof in [13] uses the localization principle for singular values

(which is the analogue of Theorem 3.2).

Theorem 5.4 ([13, Theorem 3.1]). Let ˛ > 0, let � 2 T, Im � ¤ 0, and let b 2 C

be arbitrary. Consider the sequence h given by h.0/ D h.1/ D 0 and

h.j / D 2Re .b��j /j�1.log j /�˛; j � 2:

Then the singular values of �.h/ satisfy the asymptotic relation

sn.�.h// D 2˛~.˛/jbjn�˛ C o.n�˛/: (5.4)

In view of the symmetry principle, this results yields the asymptotics of the

eigenvalues of �.h/.

Theorem 5.5. Let �.h/ be the same as in Theorem 5.4. Then

�˙
n .�.h// D ~.˛/jbjn�˛ C o.n�˛/: (5.5)
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Proof. Let the symbol !� be de�ned by formula (5.3) and let ! D b!� C Nb! N�
.

Then O!.j / D h.j / for j � 0, and hence the operators �.h/ andH.!/ are unitarily

equivalent. By Lemma 5.3, the singular support of ! consists of the pair of points

�; N�. Therefore by the symmetry principle (Theorem 4.1) we have

�C
p .�.h// D ��

p .�.h// D 1
2
�p.�.h//;

and similarly for the lower limits. The asymptotic relation (5.4) for the singular

values can be equivalently rewritten as �p.�.h// D 2~.˛/pjbjp , and thus we

obtain

�C
p .�.h// D ��

p .�.h// D ~.˛/pjbjp

and similarly for the lower limits. This yields (5.5). �

In order to estimate the error terms, we use the following result of [11]. Let Œ˛�

be the integer part of ˛, Œ˛� D max¹m 2 ZWm � ˛º. We set

M.˛/ D

8

<

:

Œ˛�C 1; if ˛ � 1=2;

0; if ˛ < 1=2:
(5.6)

For a sequence g D ¹g.j /º1
jD0, we de�ne iteratively the sequences

g.m/ D ¹g.m/.j /º1
jD0; m D 0; 1; 2; : : : ;

by setting g.0/.j / D g.j / for all j and

g.mC1/.j / D g.m/.j C 1/ � g.m/.j /; j � 0:

Before stating the next result, let us comment that for the sequence q de�ned

by (5.1), the sequences q.m/ for all m � 1 satisfy

q.m/.j / D O.j�1�m.log j /�˛/; j ! 1:

On the other hand, the sequence (5.2) with � ¤ 1 satis�es only the condition

q
.m/

�
.j / D O.j�1.log j /�˛/ for any m � 1. Nevertheless we have the following

assertion.

Theorem 5.6 ([11, Theorem 2.3]). Let ˛ > 0 and let M D M.˛/ be the integer

given by (5.6). Let g be a complex valued sequence such that

g.m/.j / D o.j�1�m.log j /�˛/; j ! 1; (5.7)

for all m D 0; : : : ;M . Pick any � 2 T and put g� .j / D ��jg.j /. Then

sn.�.g� // D o.n�˛/.
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5.2. Asymptotics of eigenvalues. Our main result below concerns the real se-

quences of the form (1.6).

Theorem 5.7. Let ˛ > 0, p D 1=˛; let '1; : : : ; 'L 2 .0; �/ be distinct numbers

and let  1; : : :  L 2 R as well as b1; b�1 2 R, b1; : : : ; bL 2 R be arbitrary. Let h

be a sequence of real numbers such that

h.j / D b1j
�1.log j /�˛ C g1.j /C .�1/j .b�1j

�1.log j /�˛ C g�1.j //

C 2

L
X

`D1

.b`j
�1.log j /�˛ C g`.j // cos.'`j �  `/; j � 2;

(5.8)

where all error terms g1; g�1; g1; : : : ; gL satisfy condition (5.7) for all m D
0; 1; : : : ;M.˛/ .M.˛/ is given by (5.6)/. Then the eigenvalues of the Hankel

operator �.h/ satisfy the asymptotic relation (1.8) with the coe�cients a˙ de�ned

by (1.9).

Proof. It is convenient to give the proof in terms of the functionals �˙
p , ı˙

p ,

(see (2.2) or (2.5)). We �rst consider every term in the right-hand side of (5.8)

separately. Put

h1.j / D b1j
�1.log j /�˛; h�1.j / D b�1.�1/j j�1.log j /�˛;

and for ` D 1; : : : ; L,

h`.j / D 2b` cos.'`j �  `/j
�1.log j /�˛ D 2Re .b`e

i `�
�j

`
/j�1.log j /�˛;

where �` D ei'` . By Theorem 5.1 and Corollary 5.2, we have

�˙
p .�.h1// D ı˙

p .�.h1// D .~.˛/b1/
p
˙
; (5.9a)

�˙
p .�.h�1// D ı˙

p .�.h�1// D .~.˛/b�1/
p
˙
; (5.9b)

and by Theorem 5.5, we have

�˙
p .�.h`// D ı˙

p .�.h`// D .~.˛/jb`j/p; ` D 1; : : : ; L: (5.10)

It follows from Lemma 5.3 that the singular supports of the symbols of the

operators �.h1/, �.h�1/ and �.h`/ consist of the points 1, �1 and of the pairs

�`, S�`, respectively. So we can apply Theorem 3.2 (the localization principle for

eigenvalues) to the Hankel operator �.h�/ with

h� D h1 C h�1 C
L

X

`D1

h`
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which yields

�˙
p .�.h�// D ı˙

p .�.h�// D �˙
p .�.h1//C�˙

p .�.h�1//C
L

X

`D1

�˙
p .�.h`//:

Now relations (5.9) and (5.10) imply that

�˙
p .�.h�// D ı˙

p .�.h�// D ~.˛/p
�

.b1/
p
˙

C .b�1/
p
˙

C
L

X

`D1

jb`jp
�

: (5.11)

Finally, set g D h � h�. Using the representation (5.8) and our conditions on

g1; g�1; g1; : : : ; gL and applying Theorem 5.6, we see that �.g/ 2 S 0
p;1. Since

�.h/ D �.h�/C �.g/, it follows from Lemma 2.1 that

�˙
p .�.h// D �˙

p .�.h�// and ı˙
p .�.h// D ı˙

p .�.h�//:

Thus by (5.11), we obtain the relations (1.8), (1.9). �

5.3. Spectral asymptotics for Hankel operators in the Hardy space. Here

we give an analogue of Theorem 5.7 in terms of the Hankel operators H.!/ in

the space H 2.T/. They are linked to the operators �.h/ by formulas (1.3), (1.5).

Below we consider a class of symbols ! whose Fourier coe�cients satisfy the

asymptotic relation (5.8). All necessary calculations have already been done in

[14]. Here we only state the results. Note that our notation is slightly di�erent

from that in [14] because in [14] Hankel operators were considered in a di�erent

representation.

We consider a class of functions !.�/ that are smooth on the unit circle except

at some �nite number of points where they have logarithmic singularities. We

describe an admissible singularity supposing �rst that it is located at the point

� D 1. Let us introduce an even function �0 2 C1.R/ satisfying the condition

�0.�/ D
´

1 for j� j � c1,

0 for j� j � c2,

with c1 2 .0; c2/ and su�ciently small c2. We accept the following su�ciently

general assumption.

Assumption 5.8. Let ˛ > 0, and let vj;�.�/ and uj;� .�/, j D 0; 1, � D ˙,

be complex valued C1 functions of � 2 R such that

v0;C.0/ D v0;�.0/ DW v0: (5.12)
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We suppose that the function ! is de�ned by the relation

!.ei�/ D
X

jD0;1

X

�D˙

vj;�.�/.� logj� j C uj;� .�//
1�j�˛1� .�/�0.�/; � 2 .��; ��:

(5.13)

Here c2 is chosen so small that � D 0 is the only singularity of function (5.13),

that is,

� logj� j C uj;� .�/ ¤ 0 if � 2 Œ�c2; c2�
for j D 0; 1, � D ˙. The branch of the function zj�˛ D e.j�˛/ logz where

z D � logj� j C uj;� .�/ is �xed by the condition

arg.� logj� j C uj;� .�// �! 0 as � ! 0:

We emphasize that because of the additional factor log j� j, the terms in (5.13)

corresponding to j D 0 are more singular than the terms corresponding to j D 1.

However due to the condition (5.12) the sum of the terms with j D 0 over

� D C;� is essentially an even function of � . It can be deduced from this fact

that the contribution of this sum to the asymptotics of the Fourier coe�cients is

of the same order as that of the terms corresponding to j D 1.

For a function ! satisfying Assumption 5.8, we put

b D .1� ˛/v0
�1

2
C 1

2�i
.u0;C.0/� u0;�.0//

�

C 1

2�i
.v1;C.0/� v1;�.0//: (5.14)

If !. N�/ D !.�/, then it follows from equality (5.13) that necessarily

v0 D Nv0; u0;C.0/ D u0;�.0/; v1;C.0/ D v1;�.0/:

In this case b D b where

b D .1� ˛/v0

�1

2
C 1

�
Imu0;C.0/

�

C 1

�
Im v1;C.0/; v0 D Nv0; (5.15)

is real.

From the analytic point of view we rely on the following assertion.

Theorem 5.9 ([14, Theorem 3.2]). Under Assumption 5.8, the Fourier coe�cients

O!.j / of !.�/ admit the representation

O!.j / D bj�1.log j /�˛ C g.j /; (5.16)

where the coe�cient b is given by formula (5.14) and the error term g.j / satis�es

the estimates

g.m/.j / D O.j�1�m.log j /�˛�1/; j ! 1;

for all m � 0.



Spectral asymptotics for Hankel operators 945

Note that in [14] the asymptotics of O!.j / was considered for j ! �1.

In order to translate the results of [14] into the context of this paper, one needs

to use the complex conjugation: O!1.�j / D O!.j / if !1.�/ D !.�/.

We emphasize that the leading term of the asymptotics of the Fourier coe�-

cients of the function (5.13) depends on the combination (5.14) only. We also note

that without condition (5.12) asymptotics of O!.j / would be di�erent from (5.16).

Here we state a result about the eigenvalue asymptotics for self-adjoint Hankel

operatorsH.!/with symbols having �nitely many logarithmic singularities. Thus

we suppose that the symbol is a sum of the functions!`.�=�`/where �` are distinct

points of T and each !` satis�es Assumption 5.8. According to the symmetry

condition (1.2) if Im �` ¤ 0, then together with !`.�=�`/, the symbol necessarily

contains the term !`. N�=�`/.
In view of Theorem 5.9, the result below follows directly from Theorem 5.7.

Theorem 5.10. Let functions �1; ��1; !1; : : : ; !L satisfy Assumption 5.8. Suppose

that

!.�/ D �1.�/C ��1.��/C
L

X

`D1

.!`.�=�`/C !`. N�=�`//C Q!.�/

where �1; : : : ; �L 2 T are distinct numbers with Im �` > 0 and the remainder

Q! 2 L2 and PC Q! belongs to the Besov space B˛
1=˛;1=˛

.T/. We assume that the

functions �1, ��1 and Q! satisfy the symmetry condition (1.2). Let the numbers

b1; : : : ; bL be the asymptotic coe�cients for the functions !1; : : : ; !L, de�ned

by (5.14), and let b1, b�1 be the coe�cients for �1, ��1, de�ned by (5.15). Finally,

let the coe�cient a˙ be given by (1.9). Then the Hankel operatorH.!/ is compact

and its eigenvalues have the asymptotic behavior

�˙
n .H.!// D a˙ n�˛ C o.n�˛/

as n ! 1.

We refer to the book [8], Appendix 2, for the precise de�nition of Besov

classes. Note also that the conditions on the remainder Q! can be stated (see [14])

in a more explicit although less sharp form. For example, it su�ces to suppose

that

Q!.�/ D Q�1.�/C Q��1.��/C
L

X

`D1

. Q!`.�=�`/C Q!`. N�=�`//

where Q�1; Q��1; Q!1; : : : ; Q!L satisfy Assumption 5.8 for some ˇ > ˛.
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Observe that the function ! in (5.13) is unbounded if ˛ < 1. Nevertheless

according to Theorem 5.10 the corresponding operator H.!/ is compact. This

is of course consistent with the Hartman theorem (see [8], Chapter 1.5) which

guarantees that H.!/ is compact if ! 2 VMO.T/ (the class of functions of

vanishing mean oscillation).

6. Spectral asymptotics for Hankel operators in L2.RC/

The main result of this section is stated as Theorem 6.5 where kernels h.t / are

singular both for t ! 1 and for t ! 0. We also consider (see Theorem 6.8)

kernels with singularities at points t0 > 0 (instead of t0 D 0).

6.1. Basic de�nitions. Integral Hankel operators �.h/ in the space L2.RC/ are

formally de�ned by the relation

.�.h/u/.t / D
Z 1

0

h.t C s/u.s/ds; u 2 C1
0 .RC/;

where h 2 L1loc.RC/; this function is called the kernel of the Hankel operator

�.h/. Under the assumptions below the operator �.h/ are compact. Of course

the operator �.h/ is self-adjoint if and only if the function h.t / is real valued.

Similarly to the discrete case, bounded Hankel operators �.h/ are unitarily

equivalent to the operators H .!!!/ de�ned by formula (3.3) in the Hardy space

H 2.R/:

ˆH .!!!/ˆ� D �.h/ if h.t / D 1p
2�

O!!!.t/ for t > 0, (6.1)

where ˆ is the Fourier transform (3.2). The Fourier transform O!!! of !!! 2 L1.R/

should in general be understood in the sense of distributions (for example, on the

Schwartz class S0.R/) and the precise meaning of (6.1) is given by the equation

.H .!!!/ˆ�u; ˆ�u/ D .�.h/u; u/; u 2 C1
0 .RC/:

A function !!!.x/ satisfying the second equality (6.1) is known as a symbol of the

Hankel operator �.h/.

In the discrete case, the spectral asymptotics of �.h/ is determined by the

behavior of the sequence h.j / as j ! 1. In the continuous case, the behavior

of the kernel h.t / for t ! 1 and for t ! 0 as well as the singularities of h.t / at

points t0 > 0 contribute to the spectral properties of �.h/.
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6.2. Previous results. We �x two functions �0; �1 2 C1.RC/ such that

�0.x/ D
´

1 for jxj � c1,

0 for jxj � c2,
�1.x/ D

´

0 for jxj � C1,

1 for jxj � C2,

for some 0 < c1 < c2 < 1 and 1 < C1 < C2, and de�ne the model kernels

q0.t / D �0.t /t
�1.log.1=t//�˛; q1.t / D �1.t /t

�1.log t /�˛; t > 0: (6.2)

As usual, the coe�cient ~.˛/ is given by (1.10).

Theorem 6.1 ([12, Theorem 3.1]). Let ˛ > 0. Then

�C
n .�.q0// D ~.˛/n�˛ C o.n�˛/ and �C

n .�.q1// D ~.˛/n�˛ C o.n�˛/

as n ! 1. Moreover,

��
n .�.q0// D o.n�˛/ and ��

n .�.q1// D o.n�˛/:

Let us construct symbols corresponding to the kernels (6.2).

Lemma 6.2 ([13, Lemma 6.3]). Let !!!0 and !!!1 be de�ned by

!!!0.x/ D 2i

Z 1

0

q0.t / sin.xt/dt; !!!1.x/ D 2i

Z 1

0

q1.t / sin.xt/dt; x 2 R;

(6.3)

where q0.t / and q1.t / are given by (6.2) with ˛ � 0. Then!!!0;!!!1 2 L1.R/ and

!!!0 2 C1.R/, !!!1 2 C1.R� n ¹0º/. For t > 0, we have

q0.t / D 1p
2�

O!!!0.t / and q1.t / D 1p
2�

O!!!1.t /:

The assertion below is a particular case of our general result (Theorem 5.1 in

[13]) on the asymptotics of singular values of integral Hankel operators, needed

in the present text.

Theorem 6.3. Let ˛ > 0, let � 2 R, � 6D 0, and let b 2 C be arbitrary. If

h.t / D 2Re .be�i�t/q1.t /;

then

sn.�.h// D 2˛~.˛/jbjn�˛ C o.n�˛/: (6.4)

Using the symmetry principle, we get the following result.
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Theorem 6.4. Let the function h.t / be the same as in Theorem 6.3. Then

�˙
n .�.h// D ~.˛/jbjn�˛ C o.n�˛/: (6.5)

Proof. Let the symbol !!!1 be de�ned by (6.3) and let

!!!.x/ D b!!!1.x � �/C Nb!!!1.x C �/:

Then O!!!.t/ D
p
2�h.t / for t > 0, and hence the operators �.h/ and H .!!!/ are

unitarily equivalent. By Lemma 6.2, the singular support of the symbol!!! consists

of the pair of points �;��. Therefore by the symmetry principle (Theorem 4.3)

we have

�C
p .�.h// D ��

p .�.h// D 1

2
�p.�.h//;

and similarly for the lower limits. The asymptotic relation (6.4) for the singular

values can be equivalently rewritten as �p.�.h// D 2~.˛/pjbjp, and thus we

obtain

�C
p .�.h// D ��

p .�.h// D ~.˛/pjbjp

and similarly for the lower limits. This yields (6.5). �

Note that Theorems 6.3 and 6.4 are the analogues of Theorems 5.4 and 5.5

in the continuous case. The following result concerning the error term is the

analogue of Theorem 5.6. Below hxi D
p

1C jxj2.

Theorem 6.5. Let ˛ > 0 and let M D M.˛/ be the integer given by (5.6).

Let g be a complex valued function in L1
loc.RC/; if ˛ � 1=2, suppose also that

g 2 CM .RC/. Assume that for all m D 0; : : : ;M , we have

g.m/.t / D o.t�1�mhlog ti�˛/ (6.6)

as t ! 1 and as t ! 0. Pick any � 2 R and put g�.t / D e�i�tg.t /. Then

sn.�.g�// D o.n�˛/.

6.3. Asymptotics of eigenvalues. Our main result concerns real kernels h.t /

that are singular at t D 0 and contain several oscillating terms at in�nity.

The assertion below is the analogue of Theorem 5.7, and its proof follows the

same steps.



Spectral asymptotics for Hankel operators 949

Theorem 6.6. Let ˛ > 0, let �1; : : : ; �L be distinct positive numbers, and let

b0; b1; : : : ; bL; b1 as well as  1; : : : ;  L be any real numbers. Let the number

M D M.˛/ be given by (5.6). Suppose that h 2 L1
loc.RC/ if ˛ < 1=2 and

h 2 CM .RC/ if ˛ � 1=2. Assume that

h.t / D b1t
�1.log t /�˛ C g1.t /

C 2

L
X

`D1

.b`t
�1.log t /�˛ C g`.t // cos.�`t �  `/ t � 2;

(6.7)

h.t / D b0t
�1.log.1=t//�˛ C g0.t /; t � 1=2; (6.8)

where the error terms g1, g1; : : : ;gL obey the estimates (6.6) as t ! 1 and

g0 obeys these estimates as t ! 0. Then the eigenvalues of the integral Hankel

operator �.h/ satisfy the asymptotic relation

�˙
n .�.h// D a˙n�˛ C o.n�˛/ (6.9)

where

a˙ D ~.˛/
�

.b0/
1=˛
˙

C .b1/
1=˛
˙

C
L

X

`D1

jb`j1=˛
�˛

(6.10)

and the coe�cient ~.˛/ is given by (1.10).

Proof. We �rst consider every term in the right-hand sides of (6.7) and (6.8)

separately. Recall that the functions q0.t / and q1.t / are de�ned by formulas (6.2).

Put

h0.t / D b0q0.t /; h1.t / D b1q1.t /;

and

h`.t / D 2b` cos.�`t �  `/q1.t / D 2Re .b`e
i `e�i�`t /q1.t /; ` D 1; : : : ; L:

Similarly to Theorem 5.7, we make the reasoning in terms of the functionals �˙
p ,

ı˙
p , where p D 1=˛. By Theorem 6.1, we have

�˙
p .�.h0// D ı˙

p .�.h0// D .~.˛/b0/
p
˙
; (6.11a)

�˙
p .�.h1// D ı˙

p .�.h1// D .~.˛/b1/
p
˙
; (6.11b)

and by Theorem 6.4, we have

�˙
p .�.h`// D ı˙

p .�.h`// D j~.˛/b`jp; ` D 1; : : : ; L: (6.12)
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It follows from Lemma 6.2 that the singular supports of the symbols of the op-

erators �.h0/ and �.h1/ consist of the points 1 and 0, respectively. Lemma 6.2

also implies that the singular supports of the symbols of the operators �.h`/ con-

sist of the pairs ¹��`; �`º. So we can apply Theorem 3.3 (the localization principle

for eigenvalues) to the Hankel operator �.h�/ with

h� D h0 C h1 C
L

X

`D1

h` (6.13)

which yields

�˙
p .�.h�// D ı˙

p .�.h�// D �˙
p .�.h0//C�˙

p .�.h1//C
L

X

`D1

�˙
p .�.h`//:

Now relations (6.11) and (6.12) imply that

�˙
p .�.h�// D ı˙

p .�.h�// D ~.˛/p
�

.b0/
p
˙

C .b1/
p
˙

C
L

X

`D1

jb`jp
�

: (6.14)

Finally, put g D h � h�. Using representations (6.7), (6.8), our conditions on

g1, g1; : : : ;gL, g0 and applying Theorem 6.5, we see that �.g/ 2 S 0
p;1. Since

�.h/ D �.h�/C �.g/, it follows from Lemma 2.1 that

�˙
p .�.h// D �˙

p .�.h�// and ı˙
p .�.h// D ı˙

p .�.h�//:

Now using (6.14), we obtain the relations (6.9) and (6.10). �

6.4. Local singularities of the kernel. The localization principle shows that the

results on the asymptotics of eigenvalues of di�erent Hankel operators can be

combined provided that the singular supports of their symbols are disjoint. This

idea has already been illustrated by Theorems 5.4 and 6.6. Here we apply the

same arguments to kernels h.t / satisfying condition (6.7) as t ! 1 and singular

at some positive point.

The e�ect of local singularities of a kernel on the asymptotics of eigenvalues

of the corresponding Hankel operator was studied in [15].

Lemma 6.7 ([15, Lemma 6.2]). Let t0 > 0, m 2 ZC and

f .t / D .t0 � t /m for t � t0; f .t / D 0 for t > t0: (6.15)

Then

�˙
n .�.f // D mŠtmC1

0 .2�n/�m�1.1CO.n�1//; n ! 1: (6.16)
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We also note the explicit formula for the symbol �m.x/ of the operator �.f /:

�m.x/ D mŠ.ix/�m�1
�

eit0x �
m

X

kD0

1

kŠ
.i t0x/

k
�

; x 2 R: (6.17)

Obviously, �m 2 C1.R/ and �m.x/ is an oscillating function as jxj ! 1.

Therefore sing supp �m D ¹1º, and hence the symmetry principle (Theorem 4.3)

cannot be applied to the operator �.f /. Nevertheless according to (6.16) its

spectrum is asymptotically symmetric.

We are now in a position to consider the general case.

Theorem 6.8. Let t0 > 0, m 2 ZC and b 2 R. Set

h.t / D bf .t /C h.t /

where f .t / is given by (6.15) and h.t / satis�es the assumptions of Theorem 6.6

with b0 D 0 and ˛ D mC1. Then the eigenvalues of the integral Hankel operator

�.h/ satisfy the asymptotic relation

�˙
n .�.h// D a˙n�m�1 C o.n�m�1/ (6.18)

with

a˙ D
�

.2�/�1t0.mŠjbj/1=˛ C ~.˛/1=˛
�

.b1/
1=˛
˙

C
L

X

`D1

jb`j1=˛
��˛

; ˛ D mC 1:

The proof of this result is practically the same as that of Theorem 6.6.

The only di�erence is that the term h0.t / should be replaced by bf .t / in (6.13).

Observe that we have excluded the term (6.8) singular at t D 0 in Theorem 6.8

because the corresponding symbol is singular at the same point x D 1 as the

function (6.17). In this case one might expect that the contributions of singularities

of h.t / at t D 0 and t D t0 > 0 are not independent of each other. In any case, our

technique does not allow us to treat this situation. Finally, we note that we have

chosen ˛ D mC 1 in Theorem 6.8 since in this case both the local singularity of

h.t / at t D t0 and its “tail” as t ! 1 contribute to the asymptotic coe�cient a˙

in (6.18).

Similarly to Section 5, Theorems 6.6 and 6.8 can also be reformulated in terms

of Hankel operators in the Hardy spaceH 2.R/, but we do not dwell upon it here.
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