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Abstract. Our main goal in this paper is to prove existence (and uniqueness) of the quantum

propagator for time-dependent quantum Hamiltonians yH.t/ when this Hamiltonian is

perturbed with a quadratic white noise P̌ yK. ˇ is a continuous function in time t , P̌ its

time-derivative and K is a quadratic Hamiltonian. yK is the Weyl quantization of K.

For time-dependent quadratic Hamiltonians H.t/ we recover, under less restrictive

assumptions, the results obtained in [3, 9, 10]. In our approach we use an exact Herman–

Kluk formula [20] to deduce a Strichartz estimate for the propagator of yH.t/C P̌K.

This is applied to obtain local and global well posedness for solutions for non-linear

Schrödinger equations with an irregular time-dependent linear part.

Mathematics Subject Classi�cation (2010). 35Q55, 35Q41.

Keywords. Non-linear time-dependent Schrödinger equations, Strichartz estimate,

Herman–Kluk formula.

1. Introduction

The linear time-dependent Schrödinger equation was studied in [22, 23] for time

dependent potential at least continuous in time. There are physical motivations

to consider Schrödinger equations perturbed by quadratic potentials times a white

noise in time (see for [3, 9, 10]). But the constructions elaborated in Fujiwara

[11] and Yajima [22] are no more valid for time-discontinuous Hamiltonians.

Nevertheless it has been shown in [3, 9, 10] that these constructions, based on

Fourier integral representations of the propagator, can be revisited and extended

1 This work was supported by the French Agence Nationale de la Recherche, NOVESOL

project, ANR 2011, BS0101901.
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when the time dependence in the Hamiltonian is irregular, as for white noise.

The main motivation for considering irregular time dependent Hamiltonian comes

from Bose Einstein condensation or �ber optics (see [3] and its bibliography).

The main idea developped in [9, 10] to construct a propagator Uˇ .t; s/ for

the quantum Hamiltonian yH.t/ C P̌ yK, where ˇ is in some Hölder class (so its

derivative P̌ is a distribution in time), is to establish a suitable representation

formula when ˇ is C 1-smooth in time and to prove that the dependence ofUˇ .t; s/

in ˇ is continuous for the topology of the Hölder space C�.IT /, 0 � � < 1 in a

time interval IT D Œt0 � T; t0 C T �, T > 0.

This strategy was initiated by Sussmann [21] for solving stochastic di�erential

equations by deterministic methods.

In this paper we shall extend the main results of [3, 9, 10] to more general

quadratic Hamiltonians by using a di�erent approach. Instead of establishing

a generalized Mehler formula for the time-dependent propagator we choose to

use a formula inspired from the Herman–Kluk formula [20], which is more

�exible. The advantage of this approach is that the link between classical and

quantum mechanics is straightforward, we do not need to take care of caustics

because it is not necessary to solve the classical Hamilton–Jacobi equation as in

the Hörmander–Maslov approach. The quantum oscillations are represented by

complex phases so that a Melher (or Van Vleck) type formula can be recovered

by a stationary phase argument. This is related to complex WKB analysis and

coherent states (see [7] and its bibliography).

We shall extend here several well known results in the C
1 time regular case

when ˇ in only continuous or in an Hölderian class of order� 2�0; 1Œ. For example

ˇ could be a trajectory of a one dimensional Brownian motion (� D 1
2

� ") or of

a fractional Brownian motion (� D H � ",H 2 �0; 1Œ being the Hurst index of the

process).

Acknowledgements. The author thank Laurent Thomann for his comments on a

preliminary version of this paper and the referee for the relevant suggestions.

2. Mathematical Settings and Results

Let H.t/ be a time-dependent real polynomial Hamiltonian, of degree at most 2

in the phase space space R
d
q � R

d
p , with continuous coe�cients in t 2 IT D

Œt0 � T; t0 C T �, K is a real polynomial time-independent Hamiltonian of degree

at most 2.
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Let ˇ be a continuous function of time t . Denote Hˇ .t / D H.t/ C P̌K an

irregular perburbation of H.t/ where Pw D dˇ
dt

. Hˇ is here a distribution in the

time t so the meaning of the classical Hamilton equation is not clear. Denote

z D .q; p/ a generic point in the phase space R
d
q � R

d
p . The classical Hamilton

system is

8
<
:

Pqˇ D @pHˇ .qˇ ; pˇ /;

Ppˇ D �@qHˇ .qˇ ; pˇ /;
(1)

where qˇ D qˇ .t; s/, pˇ D pˇ .t; s/with initial data at time t D s, qˇ .s; s/ D q.s/,

pˇ .s; s/ D p.s/.

If ˇ is C 1 the classical evolution (1) is linear and so well de�ned. Let us denote

ˆˇ .t; s/z D .qˇ .t; s/; pˇ.t; s// where z D .q; p/, q D q.s/, p D p.s/. Using the

method developed in [21, 9, 10] the Hamiltonian �ow ˆˇ .t; s/ can be extended in

a natural way as a symplectic map for ˇ 2 C
0.

Let us now consider the quantum evolution. If ˇ isC 1.IT / denote by yHˇ .t / the

Weyl quantization ofHˇ .t; q; p/, see for example [7]. Here the Planck constant is

�xed, so we choose „ D 1.

It is well known that yHˇ .t / is a self-adjoint operator in L2.Rd / and that the

time-dependent Schrödinger equation generates a continuous family of unitary

operators in L2.Rd /, which we denote by Uˇ .t; s/, satisfying

i@tUˇ .t; s/ D yHˇ .t /Uˇ .t; s/; Uˇ .s; s/ D I: (2)

Denote

C 0
R.IT / D ¹ˇ 2 C 0.IT /; kˇk1 � Rº and C 1

R.IT / D C 0
R.IT / \ C 1.IT /

(equipped with the sup-norm). We have the following preliminary result.

Theorem 2.1. (i) The map ˇ 7! ˆˇ is a Lipschitzian map from C 1
R.IT / into

C 0.IT � IT ; S.2d// where S.2d/ is the space of linear symplectic maps of R2d .

In particular for any T > 0, the map .ˇ; t; s/ 7! ˆˇ .t; s/ can be extended in a

unique continuous map from C 0
R.IT / � IT � IT into the a�ne symplectic group

of R2d .

(ii) For any  2 S.Rd /, the map ˇ 7! Uˇ .t; s/ is uniformly continuous on

C 1
R.IT /. In particular the map .ˇ; t; s/ 7! Uˇ .t; s/ can be extended in a unique

continuous map from C 0
R.IT / � IT � IT into the unitary group of L2.Rd /.

Part (i) of Theorem 2.1 will be proved in Section 3 and part (ii) in Section 4.2.
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Let Kˇ .t; sI x; y/ be the (distribution) Schwartz kernel of Uˇ .t; s/. The next

result is an exact formula for Kˇ .t; sI x; y/ depending only on the classical

dynamics ˆˇ .t; s/. A more precise statement will be given later in Corollary 3.3.

Theorem 2.2. For everyˇ 2 C
0.IT / there exist explicit complex functions aˇ .t; s/

and ‰ˇ .t; s; z; x; y/ where t; s 2 IT , z D .q; p/ 2 R
2d , x; y 2 R

d , such that

Kˇ .t; sI x; y/ D aˇ .t; s/

Z

R2d

exp.i‰ˇ .t; s; z; x; y//dz: (3)

Moreover ‰ˇ is polynomial of degree at most 2 in z and =‰ˇ � 0.

The maps .ˇ; t; s/ 7! aˇ .t; s/ and .ˇ; t; s/ 7! ‰ˇ .t; s; z; x; y/ are continuous

on C 0
R.IT / � IT � IT .

Equation (3) is an equality between two distributions in the Schwartz space

S
0.Rd

x � R
d
y /.

Notice that formula (3) is valid without condition on the time interval IT , the

caustics are not obstructions here. Of course this di�culty appears again when

computing the integral in z 2 R
2d to get the following result. To go further we

need the following hypothesis.

Hypothesis 2.3. The Hessian matrix @2
p;pH (constant here) is non singular and

@2
p;pK D 0.

Hypothesis 2.4. @2
q;pK D 0 or ˇ 2 C

�.IT / with � > 1
2
.

Remark 2.5. If d D 3 and if @2
q;pK is an antisymmetric matrix, it represents an

angular momentum rotation term. This case was considered in [1] without noise

and in [9, 10] for perturbations by noise.

The following result is a consequence of Sections 4.1 and 5.1.

Theorem 2.6. Assume that Hypothesis 2.3 and Hypothesis 2.4 are satis�ed.

(I) For everyR > 0 there exists TR > 0 such that for every t; s 2 ITR
and every

ˇ such that if ˇ 2 C�.IT /, kˇkC� � R and t ¤ s, the Schwartz kernel Kˇ .t; s/ of

Uˇ .t; s/ is a C1 function of .x; y/ given by the following formula

Kˇ .t; sI x; y/ D bˇ .t; s/
�d=2eiSˇ.t;sIx;y/; (4)

where bˇ .t; s/ is continuous in .ˇ; t; s/, t ¤ s, Sˇ .t; sI x; y/ is the classical action

along the unique classical trajectory joining y to x at time s.

Moreover there exists  > 0 such that jbˇ .t; s/j �  jt � sj for every t; s 2 IT R.
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(II) There exists a constant CR, depending only on R such that for every

t; s 2 IT R and every x; y 2 R
d , we have

jKˇ .t; sI x; y/j � CRjt � sj�d=2: (5)

and for every p 2 Œ2;C1�, we have for  2 Lp.Rd /,

kUˇ .t; s/ kLp.Rd / � CRjt � sj�d.1=2�1=p/k kLp0
.Rd /; 1=p C 1=p0 D 1: (6)

As it is well known the dispersive estimate (6) is closely related with Strichartz

estimates (see [15]) and allows application to non-linear Schrödinger equations.

The case with noise was considered in [3, 9].

Let us consider the non-linear Schrödinger equation (NLS):

i@t D yHˇ .t / C �j j2� ;  .s/ D  ; (7)

where � 2 R; � > 0.

Here Hˇ .t / is irregular in time t so we have to consider the following integral

mild version of (7)

 .t/ D Uˇ .t; s/ � i�

Z t

s

Uˇ .t; u/j .u/j
2� .s/du: (8)

Let us introduce the Sobolev weighted spaces associated with the harmonic oscil-

lator:

H
k.Rd / D ¹ 2 L2.Rd /;  2 H k.Rd /; jxjk 2 L2.Rd /º;

where H k.Rd /, k 2 N, is the usual Hilbertian Sobolev space.

We shall see that these spaces are invariant by the quantum propagatorUˇ .t; s/

for any ˇ 2 C
0.IT /. In order to include the Gross–Pitaevski non-linearity (� D 1)

we have to consider initial data in the space H1.Rd /. Here we have the following

local result proved in Section 5.

Theorem 2.7. We assume that Hypothesis 2.3 and Hypothesis 2.4 are satis�ed.

(I) If 0 < � < 2
d

, then then for any  2 L2.Rd / the integral equation (8) has

a unique solution  ˇ 2 C
0.IT ; L

2.Rd //. Moreover, for every T > 0, we have

 ˇ 2 C
0.IT ; L

2.Rd // \ Lr .IT ; L
2�.Rd //, with r D 4.�C1/

d�
.

The L2 norm is conserved: k ˇ .t /kL2.Rd / D k kL2.Rd / for every t 2 IT .

Moreover if  2 H
1.Rd / then  ˇ 2 C

0.R;H1.Rd //.
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(II) If 0 < � < 2
d�2

, d � 3. Then for any  2 H
1.Rd / there exists

0 < T D T .k k
H1.Rd /; s/ such that the integral equation (8) has a unique

solution  ˇ 2 C
0.IT ; L

2.Rd // \ Lr.IT ; L
2�.Rd //, with r D 4.�C1/

d�
and such

that for any a; b 2 R
d ,

.a � x C b � rx/ ˇ 2 C
0.IT ; L

2.Rd // \ Lr..IT /; L
2�.Rd //:

Remark 2.8. A global well-posedness result in the H
1-subcritical case with a

rotation term for (8) is proved in [1] for time-independent Hamiltonians. For � < 2
d

(L2-subcritical non-linearity ) a global result in H
1.Rd / could be obtained under

the assumptions of Theorem 2.7 following [1, Theorem 2.2] but for 2
d

� � < 2
d�2

,

d � 2 and � � 0 (defocusing case) the situation is much more involved because

we cannot use the energy conservation. In [9, Theorem 3] the author uses the

result of [1] to get a global H1-well-posedness result with a rotation term in the

regular part H assuming that K is linear in .q; p/.

Notice that global well-posedness results in the supercritical case are proved

in [18] for the Gross–Pitaevski equation with random initial data.

Remark 2.9. The non-linear Schrödinger equation with a white noise dispersion

is also considered in [2] (see also the references of [2]). These papers use the

probabilistic setting of stochastic processes.

3. The smooth time-dependent case

In this section we assume thatH.t/ is a time-dependent polynomial Hamiltonian,

of degree at most 2, with continuous coe�cients in t 2 IT D Œt0 � T; t0 C T �, K

is time-independent. Let ˇ be a continuous function of time t . Denote Hˇ .t / D

H.t/C P̌K the irregular perburbation of H.t/ where P̌ D dˇ
dt

.

If ˇ is C 1 the classical and quantum evolutions are well de�ned. We shall

show in the next section that these evolutions are still well de�ned for ˇ 2 C 0.IT /

following an approach inspired from [21, 9].

We shall review here some more or less well known formulas concerning

quantum time-dependent quadratic Hamiltonians.

It is well known that classical and quantum evolution are well de�ned if H.t/

is continuous in time (and for Hˇ .t / if ˇ is C 1) and there exist exact formulas

related the classical and quantum evolution. Denote byˆH .t; s/ the classical �ow

in the phase space R2d , at time t with initial data at s and by UH .t; s/ the quantum

propagator generated by the Weyl quantization yH.t/ of H.t/.
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Let us recall now a formulation of the exact correspondence classical–quantum.

We have

H.t/ D H2.t /CH1.t /CH0.t /;

where Hj .t / is a polynomial of degree j in .q; p/ 2 R
2d . Let us denote SH2

.t /

the matrix of the quadratic form H2.t /. Explicitly,

H2.t I q; p/D
1

2
.GH .t /q � q C 2LH .t /q � p CEH .t /p � p/; p; q 2 R

d :

and

SH2
.t / D

�
GH .t / LH .t /

>

LH .t / Et

�
;

where q; p 2 R
d , and GH .t /, LH .t /, and EH .t / are real, d � d matrices,

continuous in time t 2 R, EH .t /; GH .t / are symmetric, LH .t /
> is the transposed

matrix of LH .t /. The classical motion de�ned by H2.t / in the phase space R
2d ,

is given by the linear di�erential equation

�
Pq

Pp

�
D J:

�
GH .t / LH .t /

T

LH .t / EH .t /

��
q

p

�
; J D

�
0 I

�I 0

�
; (9)

where the matrix J de�nes the symplectic form

�.z; z0/ WD J z � z0; z D .q; p/; z0 D .q0; p0/;

where z � z0 denotes the scalar product in R
2d .

This equation de�nes a linear symplectic transformation, ˆH2
.t; s/, such that

ˆH2
.s; s/ D I. It can be represented as a 2d � 2d matrix which can be written as

four d � d blocks:

ˆH2
.t; s/ D

�
A.t; s/ B.t; s/

C.t; s/ D.t; s/

�
: (10)

Let us denote yH the Weyl quantization of the Hamiltonian H (see [7] for the

de�nition and properties of the Weyl quantization).

Let us denote KH2
.t; t0I x; y/ the Schwartz kernel of the quantum propagator

UH2
.t; t0/.

It is known that the propagator UH .t; t0/ is well de�ned ([7], p.67). It is unique

and satis�es the properties

i@tUH .t; s/ D yH.t/UH .t; s/; UH .s; s/ D I: (11)
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Let KH .t; t0/ 2 S
0.Rd

x � R
d
y / be the Schwartz Kernel of UH .t; t0/. There exist

many papers giving more or less explicit formula for KH .t; t0/, see [13, 17, 20].

For our purpose it is convenient to use a formula closely related with coherent

states and symplectic geometry of the phase space (for details see [20]).

Let us introduce the Siegel space †C.d/ of d � d complex matrices � with

imaginary part

=� WD
� � �>

2i

de�nite-positive. Let be ‚ be a continuous map from IT into †C.d/ and

M‚.t; t0/ D .C.t; t0/ � iD.t; t0/ �‚.t/.A.t; t0/ � iB.t; t0//:

The exact correspondence between classical and quantum mechanics can be

expressed as follows. Let us denote K.t; t0I x; y/ the Schwartz kernel of the quan-

tum propagator UH2
.t; s/.

Proposition 3.1 (Herman–Kluk formula in the quadratic case [20]). We have the

following exact formula

KH2
.t; t0I x; y/ D 2d=2.2�/�3d=2det�1=2

�M‚.t; t0/

i

� Z

R2d

ei‰‚;2.t;t0IzIx;y/dz;

(12)

where

‰‚;2.t; t0I zI x; y/ D
1

2
.qt � pt � q � p/C pt � .x � qt / � p � .y � q/

C
1

2
.‚.t/.x � qt / � .x � qt /C i.y � q/ � .y � q//;

with z D .q; p/ 2 R
d � R

d .

Remark 3.2. ‚ is a useful degree of freedom to compute KH2
.t; t0I x; y/.

The choices ‚ D iI and ‚.t/ D �.t; t0/ can be useful, where

�.t; t0/ D C.t; t0/C iD.t; t0/.A.t; t0/C iB.t; t0//
�1:

In [20] ‚ is supposed to be C 1 in t . The result is clearly valid for ‚ only

continuous. In formula (2.12) of [20] we have to read det�1=2 and not det1=2.

Notice that M‚.t; t0/ is invertible (property of the action of symplectic matrices

on the Siegel space).
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Adding now lower order terms we get

Corollary 3.3. Suppose now thatH.t/ D H2.t /CH1.t /CH0.t / whereHj .t / is

homogeneous of degree j in z D .q; p/ 2 R
2d .

Then the Schwartz kernel KH .t; t0I x; y/ of UH .t; t0/ has the following expres-

sion:

KH .t; t0I x; y/UH2
.t; t0/

D 2d=2.2�/�3d=2det�1=2
�M.t; t0/

i

� Z

R2d

ei‰.t;t0IzIx;y/dz;
(13)

where

‰‚.t; t0; z; x; y/

D ‰‚;2

�
t; t0I zI x; y C

Z t

t0

Qb.s/ds

�
�

Z t

t0

Qa.s/ysds �

Z t

t0

H0.s/ds;

with

ys D y C

Z s

t

Qb.s/ds;

and Qa and Qb depend on H1.t / and are given in the proof.

When applied to Hˇ .t / (here ˇ 2 C
1.IT /) we use the notations Kˇ D KHˇ

and  ˇ D  .

Proof. It is enough to assume thatH0.t / D 0. Recall here a well known argument

(Lagrange method). Let us compute V.t; t0/ such that

UH .t; t0/ D UH2
.t; t0/ � V.t; t0/:

We get

i@tV.t; t0/ D UH2
.t0; t /H1.t /UH2

.t; t0/V .t; t0/: (14)

We haveH1.t I q; p/ D a.t/ � q C b.t/ � p. Using the exact Egorov formula [7] for

quadratic Hamiltonians we obtain

UH2
.t0; t / yH1.t /UH2

D yA.t/;

where A.t; z/ D H1.t; ˆH2
.t; t0/z/. Then by the characteristics method we

conclude

V.t; t0/ .t0; x/ D exp

�
i

Z t

t0

Qa.s/xsds

�
 

�
t0; x �

Z t

t0

Qb.s/ds

�
;

where
� Qa

Qb
�

D ˆH2
.t; t0/

>� a
b

�
, N> is the transposed matrix of the matrix N ,

xs D x C
R s

t
Qb.s/ds. The corollary follows. �
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4. The time-irregular case

4.1. The classical evolution. What remains true of the previous computations

for Hˇ .t / D H.t/C P̌K when ˇ in only continuous in IT ?

For the noise part P̌K the classical evolution is linear:

ˆ P̌K.t; s; z/ D ˆK.ˇt � ˇs/z:

Let z.s/ 2 R
2d be an initial data. Then zˇ .t / D ˆK.ˇt ; ˇs; zs/ is a solution in

Sussmann [21] sense of the Hamilton equation

Pzˇ .t / D P̌.t /JrzK.zˇ .t //; zˇ .s/ D z.s/: (15)

We have here

zˇ .t / D exp..ˇ.t/� ˇ.s//JSK/z:

Now let us consider the perturbed Hamiltonian Hˇ .t / D H.t/C P̌K.t/. We

want to de�ne a classical trajectory zˇ .t / D ˆHˇ
.t; s; z.s// for the perturbed

Hamilton equation

Pzˇ .t / D JrzHˇ .zˇ .t //; zˇ .s/ D z.s/: (16)

De�nition 4.1. zˇ .t / is a Sussmann solution of (16) if

(CL0) there exists a neighborhood Nˇ of ˇ in C 0.IT / such that if one has

N
1
ˇ

D Nˇ \ C 1.IT /, then Q̌ 7! z Q̌.t / is a uniformly continuous map

from N
1
ˇ

into C 0.IT ;R
2d /;

(CL1) for every " > 0, zˇ".t / solves (16) for the C 1 function ˇ";

(CL2) lim
"!0

zˇ".t / D zˇ .t / in C 0.IT ;R
d /;

C 0.IT / is equipped with its natural norm kˇk1 D sup
t2IT

jˇ.t/j.

Properties (CL0), (CL1), and (CL2) de�ne a unique mild solution of (16).

In particular zˇ .t / is independent on the C 1 approximations ˇ" of ˇ.

We have to prove that conditions (CL0), (CL1) and (CL2) are ful�lled.

Recall that H.t/ and K are quadratic forms on R
2d . If ˇ 2 C 1.IT / then it is

well known thatˆHˇ
.t; s/ is a symplectic linear transformation of the phase space

R
2d . It is convenient here to consider that the Hamiltonian Hˇ is a perturbation

of the noise term P̌K. Then it solves the following integral equation

ˆHˇ
.t; s/ D ˆK.ˇt � ˇs/C

Z t

s

ˆK.ˇt � ˇ� /JSH .�/ˆHˇ
.�; s/d�; (17)

where SH .t / is the symmetric matrix of the quadratic form H.t/.
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Now the trick is that we can solve equation (17) using the Picard �xed theorem.

Denote

C 0
R.IT / D ¹ˇ 2 C 0.IT /; kˇk1 � Rº and C 1

R.IT / D C 0
R.IT / \ C 1.IT /

(equipped with the sup-norm).

Proposition 4.2 (see also [10], Proposition 2.29). (1) There exists TR > 0 small

enough such that for T � TR and ˇ 2 C 0
R.IT /, equation 17 has a unique solution

de�ned for .t; s/ 2 IT � IT .

(2) ˇ 7! ˆHˇ
is a Lipschitzian map from C 1

R.IT / into C 0.IT � IT ; S.2d//

where S.2d/ is the space of linear symplectic maps of R2d .

(3) ˆHˇ
.t; s/ satis�es

ˆHˇ
.t; t1/ D ˆHˇ

.t; s/ˆHˇ
.s; t1/; for all t; t1; s 2 IT : (18)

In particular for any T > 0 ˆHˇ
.t; s/ can be extended to IT � IT in a unique

way such that for every z 2 R
2d , zˇ .t / D ˆHˇ

.t; s/z satis�es (CL0), (CL1),

and (CL2).

Proof. (1) is a direct application of the Picard �xed point theorem. First from a

well known estimate for linear ODE we have, for some � > 0,

kˆK.ˇt � ˇs/k � e�jˇt �ˇsj: (19)

For X 2 C 0.IT � IT ; S.2d// denote

Fˇ .X/ D ˆK.ˇt � ˇs/C

Z t

s

ˆK.ˇt � ˇ� /JSH .�/X.�; s/d�: (20)

So if ˇ 2 C 0
R.IT /, Fˇ has unique �xed point Xˇ in C 0.IT � IT ; S.2d// for

T � TR. Moreover there exists C > 0 such that

kXˇ .t; s/k � C e2�R

and if ˇ 2 C 1
R.IT / then Xˇ D ˆHˇ

.

(2) ˇ 7! ˆK.ˇt ; ˇs/ is C 1 from C 0
R.IT / into S.2d/. Choosing TR > 0 small

enough, the derivative DXFW .Xˇ / satis�es kDXFW .Xˇ /k � 1
2
. Applying the

implicit function theorem we get that ˇ 7! ˆHˇ
is also C 1.

(3) is now easy to prove using that it is true for ˇ 2 C 1. �
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We can now add the contribution of order one. We have

Hˇ .t / D H2.t /CH1.t /C P̌.K2 CK1/:

Denote

Hˇ;2.t / D H2.t /C P̌K2.t /;

Hˇ;1.t / D H1.t /C P̌K1:

Hˇ;1.t; z/ D .VH .t /C P̌VK/ � z:

We have, using the Duhamel formula, for every z 2 R
2d ,

ˆHˇ
.t; s/z D ˆHˇ;2

.t; s/z C

Z t

s

ˆHˇ;2
.t; u/J.VH .u/C P̌VK/du; (21)

ˆHˇ;2
.t; s/ solves the integral equation (17). So plugging (17) for H D H2 in (21)

and integrating by parts we get

Corollary 4.3. The map ˇ 7! ˆHˇ
.t; s/z given by (21) is C 1 from C 0.IT / into

R
2d and zˇ .t / satis�es properties (CL0), (CL1) and (CL2). In particular there

exists CR > 0 such that for all z 2 R
2d , ˇ1; ˇ2 2 CR.IT /, we have

jzˇ1
.t / � zˇ2

.t /j � CRkˇ1 � ˇ2k1jzj: (22)

4.2. The quantum evolution. Following [10] we de�ne the quantum evolution

for the Hamiltonian yHˇ .t / when ˇ 2 C 0.IT / as follows.

De�nition 4.4. t 7!  ˇ .t / 2 L2.Rd /, t 2 IT , is a mild solution of the Schrö-

dinger equation

i@t .t/ D yHˇ .t / .t/;  .t0/ D  0: (23)

if the following conditions are satis�ed:

(QM0) there exists a neighborhood Nˇ in C 0.IT / such that if one has N
1
ˇ

D

Nˇ \ C 1.IT /, then Q̌ 7!  Q̌.t / is a uniformly continuous map from N
1
ˇ

into C 0.IT ; L
2.Rd //;

(QM1) for every " > 0,  ˇ".t / solves (23) for ˇ D ˇ";

(QM2) lim
"!0

 ˇ".t / D  ˇ .t / in C 0.IT /.

Recall that ˇ� are C 1approximations of ˇ in C 0.IT /. As in the classical case

 ˇ .t / is independent on the C 1 approximations ˇ" of ˇ.
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For simplicity we shall assume that that Hˇ is homogenous of degree 2.

Adding terms of degree 1 and 0 is easy to check using the Duhamel formula as in

Corollary 4.3. As in the time-regular case we shall show now that the quantum

evolution is completely determined by the quantum evolution studied above. In

order to go from the regular to the irregular case we use the following proposition.

We use now the notation Uˇ D UHˇ
.

Proposition 4.5. For any R > 0 there exists CR > 0 and TR > 0 such that for all

ˇ; ˇ.1/; ˇ.0/ 2 C 0
R.IT R/ \ C 1.IT R/, all  2 S.Rd / and t; s 2 IT R, we have

kUˇ .t; s/ kL2.Rd / � CRk kL2.Rd /; (24)

kUˇ .1/.t; t0/ � Uˇ .0/.t; t0/ kL2.Rd / � CRkˇ.1/ � ˇ.0/k1k k
H2.Rd /: (25)

Corollary 4.6. ˇ 7! Uˇ .t; s/ can be extended in a unique way to C 0
R.IT / such

that properties (QM0), (QM1), and (QM2) are satis�ed. Moreover the Schwartz

kernel of Uˇ .t; s/ is given by the Herman–Kluk formula (12) with the generalized

classical �owˆHˇ
.t; s/ determined by (21). Notice that the linear partˆHˇ;2

.t; s/

of the a�ne map ˆHˇ
.t; s/ is a symplectic matrix denoted by

ˆHˇ;2
.t; s/ D

 
Aˇ .t; s/ Bˇ .t; s/

Cˇ .t; s/ Dˇ .t; s/

!
:

Corollary 4.7. For every k � 0 we have Uˇ .t; s/H
k.Rd / � H

k.Rd /. Moreover

there exists CR;t0;T > 0 such that for  2 H
k.Rd /, t; s 2 IT , ˇ 2 C

0
R.IT /, we

have

kUˇ .t; s/ k
Hk.Rd / � CR;t0;T k k

Hk.Rd /: (26)

Proof. This a consequence of (24) and of the Egorov property:

Uˇ .s; t / yAUˇ .t; s/ D 5A ıˆˇ .t; s/: (27)

We start by proving the corollary for k D 1 hence by induction we get the result for

any k 2 N. Consider the linear symbolA.q; p/ D a �qCb �p and let 2 H
1.Rd /.

Then using (27) and that ˆˇ .t; t0/ is an a�ne map we get that

yAUˇ .t; s/ D Uˇ .t; s/Uˇ .s; t / yAUˇ .t; s/ 2 L2.Rd /:

So Uˇ .t; s/ 2 H
1.Rd / and (26) for k D 1. �
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We shall use coherent states with the notations of [7, Chapter 1] (here we

choose the Planck constant „ D 1). The next two lemmas will be used to prove

Proposition 5.1

Lemma 4.8. There exists TR > 0 small enough, CR > 0 such that for t; s 2 IT R

and ˇ 2 C
1
R.IT R/ we have

sup
Y 2R2d

Z

R2d

jh'Y ; Uˇ .t; s/'XijdX � MR; (28)

sup
X2R2d

Z

R2d

jh'Y ; Uˇ .t; s/'X ijdY � MR: (29)

Proof. From [8], Proposition (5.7), we have

h'zCX ; Uˇ .t; s/'zi

D aˇ exp
�

�
ˇ̌
ˇz C

X

2

ˇ̌
ˇ
2

Cƒˇ

�
z C

X � iJX

2

�
�
�
z C

X � iJX

2

��
;

(30)

where

ƒˇ D .I C Fˇ /.I C Fˇ C iJ.I � Fˇ //
�1;

Fˇ D ˆHˇ
.t; s/;

aˇ D 2d det.I C Fˇ C iJ.I � Fˇ //
1=2:

Then using [8, Lemma 5.11] and (30), we have

jh'Y ; Uˇ .t; s/'0ij � exp
�

�
jY j2

2.1C �ˇ .t; s//

�
;

where �ˇ .t; s/ is the largest eigenvalue of ˆHˇ
.t; s/ˆHˇ

.t; s/>.

But we have kˆHˇ
.t; s/k � C e2�R. So for some CR > 0 we have

jh'Y ; Uˇ .t; s/'0ij � e
� jY j2

CR : (31)

But Uˇ .t; s/ is the metaplectic transformation associated with Fˇ . More precisely,

recall that we have (see [8]) Uˇ .t; s/ D yR.Fˇ / and 'X D yT .X/'0, where yR

denotes the metaplectic representation and yT the Weyl translation representation.

In particular we have the useful property

yR.Fˇ / yT .z/ yR.Fˇ /
� D yT .Fˇz/: (32)
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So we get

h'Y ; Uˇ .t; s/'X i D eg.ˇ/h'Y �FˇX ; Uˇ .t; s/'0i; (33)

where g.ˇ/ D �
2
.FˇX; Y /, �.Z; Y / D JZ � Y is the symplectic form. From (32),

(31), and (33) we get, t; s 2 IT R,

jh'Y ; Uˇ .t; s/'Xij � e
�

jY �ˆHˇ
.t;s/X j2

CR : (34)

Now choosing TR small enough we have kˆHˇ
.t; s/�1k � 2. Hence (28) follows

from (34). �

We come now to a continuity property of Uˇ in ˇ (25). For proving this

property we shall use again coherent states.

Let us denote ıU D Uˇ .1/.t; s/ � Uˇ .0/.t; s/. We have to establish an estimate

for the Bargman kernel zKıU .X; Y / WD h'Y ; ıU'Xi.

Lemma 4.9. For any R > 0 there exists CR > 0 and TR such that for all

ˇ.1/; ˇ.2/ 2 C 0
R.IT R/ \ C 1.IT R/, X; Y 2 R

2d ,

j zKıU .X; Y /j � CRkˇ.1/�ˇ.2/k1.1CjFˇ .�/X jjY jCjY �Fˇ .�/X j2/e
�

jF
ˇ.�/ X�Y j2

CR :

(35)

Proof. We use the same method as in the proof of Lemma 4.8. For � 2 Œ0; 1�

denote ˇ.�/ D �ˇ.1/ C .1� �/ˇ.0/. So we have

zKıU .X; Y / D

Z 1

0

@

@�
h'Y ; Uˇ .�/'X id�: (36)

Using (30) and known estimates on Fˇ�
we shall easily get (35). Let us begin with

the particular caseX D 0. We have to compute @
@�

h'Y ; Uˇ .�/'0i using (30). Then

applying Corollary 4.3 and (31) we get for every � 2 Œ0; 1�, CR > 0 large enough,

ˇ̌
ˇ @
@�

h'Y ; Uˇ .�/'0i
ˇ̌
ˇ � CRkˇ.1/ � ˇ.2/k1.1C jY j2/e

� jY j2

CR : (37)

Now from estimate on the derivative of g.ˇ.�//, using (33) and (34), we get the

estimate (35). �
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Proof of Proposition 4.5. The estimate (24) is a direct consequence of Lemma 4.8.

We can get (25) from estimate (35) as follows. Let us introduce the space

L2;s.R2d / D ¹u 2 L2.R2d /; hXisu.X/ 2 L2.R2d /º;

where hXis D .1C jX j2/s=2. Recall the useful estimate

hX C Y i�2 � 2hY i�2hXi2:

From (35) we can deduce that the linear operator fıU with kernel zKıU is continuous

from L2;2.R2d / into L2.R2d /. Let us consider the integral kernel K2.X; Y / D
zKıU .X; Y /hY i�2. We have to prove that K2.X; Y / is the kernel of a bound

operator TK2
in L2.R2d /. Denote

MK2
D max

²
sup
X

Z
jK2.X; Y jdY; sup

Y

Z
jK2.X; Y jdX

³
; (38)

We have the well known L2-norm estimate

kTK2
k � MK2

: (39)

Then using (35) and (39) we get that fıU is continuous fromL2;2.R2d / inL2.R2d /,

with a norm estimate as follows.

Introduce the Fourier–Bargmann transform

z .X/ D .2�/�d=2h'X ;  i;

which is well de�ned for every  2 S
0.Rd /. Recall that  7! z is an isometry

fromL2.Rd / intoL2.R2d / and that 'X is an eigenvector for the creation operators

aj D 1p
2

�
xj C @

@xj

�
with eigenvalue j̨ D

qj Cipjp
2

if X D .q; p/ 2 R
d � R

d .

Then for every k � 0 there exists Ck such that

k z kL2;k.R2d / � Ckk k
Hk.Rd /:

So we get, under the conditions of (4.9),

kıU kL2.Rd / � CRkˇ.1/ � ˇ.2/k1k k
H2.Rd /:

This proves (25). �

Finally we have proved Corollary 4.6 which is the main result of this section.
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5. Application to Strichartz estimate and NLS

In this section we give a proof for Theorem 2.6 and Theorem 2.7.

A motivation for studying linear quantum dynamics with noise is the get results

for non-linear Schrödinger equations. For that it is now well known that Strichartz

inequality is very useful. For quadratic Hamiltonian with noise ˇ this inequality

is derived from the a Mehler–Van Vleck formula for the Schwartz kernel of the

propagator UHˇ
.t; s/ for 0 < jt � sj < T , with T small enough.

5.1. A local dispersive estimate. We start with an almost explicit expression for

the kernel of the propagator valid with noise.

Proposition 5.1. If the Hypothesis 2.3 and Hypothesis 2.4 are satis�ed then for

everyR > 0 there exists TR > 0 such that for every t; s 2 �t0; t0 CTR� and every ˇ

such that kˇkC� � R the Schwartz kernel Kˇ .t; s/ of UHˇ
.t; s/ is a C1 function

of .x; y/ given by the following formula

Kˇ .t; sI x; y/ D .2i�/�d=2det�1=2.Bˇ .t; s//e
iSˇ.t;sIx;y/; (40)

where Sˇ .t; sI x; y/ is the classical action along the unique classical trajectory

joining y to x at time s.

In particular there exists  > 0 such that detBˇ .t; s/ �  jt � sjd for every

t 2 IT R.

Letpˇ .t; sI x; y/ be the momentum of the trajectory .qs; ps/ D ˆHˇ
.t; s/.q; p/.

Then we have

Sˇ .t; sI x; y/ D

Z t

s

. Pqu �pu �Hˇ .u; qu; pu//du; where p D p.t; sI x; y/: (41)

Proof. The computation is well known, the new fact here is that we need to control

the validity of this computation with the noise term in ˇ.

First of all let us remark that the action Sˇ is continuous in ˇ for the C
0

topology.

To obtain this property it is enough to assume that Hˇ .t / is quadratic. From

Euler identity we have Hˇ .t / D 1
2
.q � @qHˇ C p � @pHˇ /. So, using the Hamilton

equations, Pq D @pHˇ , Pp D �@qHˇ we have

Sˇ .t; sI x; y/ D
1

2
.pt � qt � ps � qs/ :

Recall that .qt ; pt/ D ˆHˇ
.t; s/.qs; ps/, so continuity properties in ˇ for Sˇ is a

consequence of continuity for the �ow ˆHˇ
.



972 D. Robert

Now, we shall use here computations taken from [4]. Notice that in formula (13)

and (12) the phases‰‚ and ‰‚;2 are quadratic in z. So the integral is the integral

of a Gaussian and we have to compute a Gaussian integral (a particular case

of the stationary theorem). For this computation we use the simpler notations

A D Aˇ .t; s/ and the same for B;C;D.

We choose here in (12) the complex matrices ‚.t/ D �.t/ where

�.t/ WD .C C iD/.AC iB/�1

(see Section 3). The matrix of the quadratic part of ‰‚ was computed in [4]:

@2
z;z‰ D

�
2iI C .AC iB/�1B i.AC iB/�1B

i.AC iB/�1B �.AC iB/�1B

�
: (42)

In particular we get

det.@2
z;z‰/ D det.�2i.AC iB/�1B/ (43)

and @2
z;z‰ is invertible if and only if B WD Bˇ .t; s/ is invertible.

This is checked using the following lemma (in [9, Proposition 2.30] a similar

result is proved).

Lemma 5.2. We have the following estimate of the �owˆHˇ
.t; s/, for jt�sj small

enough,

ˆHˇ
.t; s/ D I C ..ˇ.t/� ˇ.s//JSK C .t � s/JSH .s/

CO.jt � sj2 C sup
jt�uj�jt�sj

jˇ.t/� ˇ.u/j2/:
(44)

In particular if ˇ 2 C
�.IT / with � > 1

2
then we have

Bˇ .t; s/ D .t � s/@2
ppH.s/CO.jt � sj2/: (45)

Moreover if @2
q;pK D 0 then the estimate (45) remains true for any ˇ 2 C

0
R.IT R/.

In estimates (44) and (45), O.�/ is uniform for kˇkC� � R.

Using lemma 5.2 and choosing TR > 0 small enough we get that Bˇ .t; t0/ is

invertible for t 2 IT R. So under the same conditions we have that

det.@2
z;z‰.t; s// ¤ 0:

So we get (40) by computing a Gaussian integral.
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Proof of lemma 5.2. Using (17) we get

ˆHˇ
.t; s/ D e.ˇt �ˇs/JSK C

Z t

s

e.ˇt �ˇu/JSKJSH .u/e
.ˇu�ˇs/JSKdu

C

Z t

s

e.ˇt �ˇu/JSKJSH .u/

�Z s

s

e.ˇu�ˇ� /JSKˆHˇ
.�; s/d�

�
du:

(46)

The last term is clearlyO.jt � sj2/. To estimate the �rst we use the Taylor formula

euJSK D 1C uJSK C u2.JSK/
2

Z 1

0

.1� �/e�uJSK : (47)

Notice that we have

JSK D

 
LK 0

GK L>
K

!
and JSH .t / D

 
L.t / EH .t /

GH .t / LH .t /
>

!
:

Notice that EH .t / is invertible for t close to t0. Moreover JS2
K D 0 if LK D 0.

So the lemma can be easily obtained from (46) and (47). 4

This concludes the proof of Proposition 5.1. �

The next corollary is very useful in applications to get Strichartz estimates, as

explained in [15].

Corollary 5.3 (dispersive estimate). There exists a constant CR, depending only

on R such that for every t 2 IT R and every x; y 2 R
d , we have

jKˇ .t; sI x; y/j � CRjt � sj�d=2 (48)

and, for every p 2 Œ2;C1�, we have, for  2 Lp.Rd /,

kUˇ .t; s/ kLp.Rd / � CRjt � sj�d.1=2�1=p/k kLp0
.Rd /; 1=pC 1=p0 D 1: (49)

Let us notice that the principal symbol of yH.t/ is not necessary elliptic, the

important property to get the local dispersive estimate (49) is that the quadratic

form @2
p;pH is non degenerate (for dD2we may haveH.q; p/Dp2

1�p2
2Cq2

1Cq2
2).

5.2. About the proof of Theorem 2.7. As already remarked in [3, 10], using

Strichartz estimate (49) it is possible to extend the results proved in [5] concerning

non-linear Schrödinger equations for quadratic linear parts with noise. The proofs

follows closely [5] so we do not repeat the details here (see also [6, 16]) for the

regular case).
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In a �rst step the result is proved locally in time by a �xed point argument

such that ˇ 7!  ˇ .t / is continuous from C
�.IT / into L2.Rd /. Then we get the

conservation of the L2 norm (this is true for ˇ 2 C 1.IT / and also for ˇ 2 C�.IT /

by continuity). Using the conservation law we can extend the local solution in a

global solution for initial data in L2.Rd / for subcritical non-linear terms.
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