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Abstract. We prove that the number of nodal domains of eigenfunctions grows at least

logarithmically with the eigenvalue (for almost the entire sequence of eigenvalues) on

certain negatively curved surfaces. The geometric model is the same as in prior joint work

with J. Jung, where the number of nodal domains was shown to tend to in�nity. The surfaces

are assumed to be “real Riemann surfaces,” i.e. Riemann surfaces with an anti-holomorphic

involution � with non-empty �xed point set. The eigenfunctions are assumed to be even or

odd, which is automatically the case for generic invariant metrics. The logarithmic growth

rate gives a quantitative re�nement of the prior results.
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1. Introduction

In recent articles [17, 18] (see also [16]) J. Jung and the author proved that for

certain non-positively curved surfaces, the number of nodal domains of an or-

thonormal basis ¹uj º of Laplace eigenfunctions tends to in�nity with the eigen-

value along almost the entire sequence of eigenvalues. This nodal counting re-

sult built on prior work of Ghosh, Reznikov, and Sarnak [8] in the case of the

modular domain, which gave a power law lower bound on the number of nodal

domains for individual Maass–Hecke eigenfunctions. Their proof uses methods

of L-functions and assumes a certain Lindelöf hypothesis, while those of [17, 18]

use PDE methods to obtain unconditional results for a density one subsequence

of eigenfunctions. In [16], Jang and Jung used a clever Bochner positivity argu-

ment to obtain unconditional results for individual Maass–Hecke eigenfunctions

of arithmetic triangle groups. However, no growth rate was speci�ed in [17, 18] or

in [16].1 The main result of this note (Theorem 1.1) improves the qualitative result

of [17] to a quantitative logarithmic lower bound for the number of nodal domains

of a density one subsequence of even/odd eigenfunctions of the Laplacian on sur-

faces of negative curvature possessing an isometric involution. The structure of

the proof is the same as in [17] but two key estimates are sharpened. The main

new input is the logarithmic quantum ergodic result of Hezari and Rivière [13]

and X. Han [10]. At the present time, a logarithmic growth rate is the best that can

be expected due to the exponential growth rate of the geodesic �ow in negative

curvature and its impact on all remainder estimates and localization estimates on

the spectrum. Before stating the results, we recall some background and termi-

nology from [17].

Although the main result occurs in dimension 2, we start with some general

notational conventions in any dimension. Let .M; g/ be a compact C1 d -dimen-

sional manifold. We denote the Laplacian of g by � and state the eigenvalue

problem as

�u� D �� u�; ku�kL2.M / D 1:

Eigenfunctions are always assumed to be L2-normalized,
Z

M

ju�j2 dVg D 1;

where dVg is the Riemannian volume form. We often �x an orthonormal basis

¹uj º1
j D1 with �0 D 0 < �1 � �2 � � � � .

1 There are two independent di�culties in the lower bounds: (i) Obtaining a quantitative

lower bound for a density one subsequence, (ii) Obtaining even a qualitative unconditional lower

bound for the entire sequence, i.e. “for individual eigenfunctions.”
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The nodal set of an eigenfunction of the Laplacian is denoted by

Zu�
D ¹xWu�.x/ D 0º:

The key object in this note is the number N.'�/ of nodal domains of u�, i.e. the

number of connected components�j of the complement of the nodal set,

MnZu�
D

N.u�/
[

j D1

�j :

We now restrict to setting of [17], in which M is assumed to be a Riemann

surface of genus g (with complex structure J ) possessing an anti-holomorphic

involution � whose �xed point set Fix.�/ is non-empty.2 We de�ne MM;J;� to

be the space of C1 �-invariant negatively curved Riemannian metrics on a real

Riemann surface .M; J; �/. As discussed in [17], MM;J;� is an open set in the

space of �-invariant metrics, and in particular is in�nite dimensional. For each

g 2 MM;J;� , the �xed point set Fix.�/ is a disjoint union

Fix.�/ D 1 [ � � � [ n (1.1)

of 0 � n � g C 1 simple closed geodesics.

The isometry � acts on L2.M; dVg/, and we de�ne L2
even.M/, resp. L2

odd.M/,

to denote the subspace of even functions

f .�x/ D f .x/;

resp. odd elements

f .�x/ D �f .x/:

Translation by any isometry � commutes with the Laplacian� and so the even and

odd parts of eigenfunctions are eigenfunctions, and all eigenfunctions are linear

combinations of even or odd eigenfunctions. We denote by ¹'j º an orthonormal

basis of L2
even.M/ of even eigenfunctions, resp. ¹ j º an orthonormal basis of

L2
odd.M/ of odd eigenfunctions, with respect to the inner product

hu; vi D
Z

M

u Nv dVg ;

ordered by the corresponding sequence of eigenvalues �0 D 0 < �1 � �2 " 1.

We write N.'j / for N.'�j
/. In [17] we proved that for generic metrics in MM;J;� ,

the eigenvalues are simple (multiplicity one) and therefore all eigenfunctions are

either even or odd.

2 In [17], the �xed point set is assumed to be separating but this assumption is not necessary.
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The main result of this note concerns the case d D 2:

Theorem 1.1. Let .M; J; �/ be a compact real Riemann surface of genus g � 2

with anti-holomorphic involution � satisfying Fix.�/ ¤ ;. Let MM;J;� be the

space of �-invariant negatively curved C1 Riemannian metrics on M . Then for

any g 2 M.M;J;�/ and any orthonormal �-eigenbasis ¹'j º of L2
even.M/, resp.

¹ j º of L2
odd.M/, one can �nd a density 1 subset A of N and a constant Cg > 0

depending only on g such that, for j 2 A

N.'j / � Cg .log�j /
K ; for all K <

1

6
;

resp.

N. j / � Cg.log�j /
K ; for all K <

1

6
:

Remark. The constraint on K is the one in the logarithmic scale QE (quantum

ergodic) results of [13] and [10]. In [13], the authors used higher variance moments

to improve the constraint toK < 1
2d

. It should be possible to improve Theorem 1.1

in the same way, but at the expense of additional technicalities that seem out of

proportion to the improvement. The main point is that the arguments of [17] lead

to quantitative estimates, and the point seems well enough established with the

smaller value ofK. It is not yet clear what is the threshold for small scale quantum

ergodicity. An improvement from the logarithmic scale to a power scale would

imply a similar improvement for the nodal count.

Remark. In [18] the authors proved a much more general qualitative result stating

that the number of nodal domains tends tends to in�nity for surfaces of non-

positive curvature and concave boundary. As explained in a later remark, there are

several obstructions to generalizing the logarithmic lower bound to such surfaces,

although it should eventually be possible to over-come them.

1.1. Notations for eigenvalues and logarithmic parameters. To maintain no-

tational consistency with [6, 13, 10] we also denote sequences of eigenfunctions

by the semi-classical notation uhj
or just uh with h D hj D �

�1=2
j ; equiva-

lently, we �x E and put �j D h�2
j E (as in [10, 13]). Because of the homogene-

ity of the eigenvalue problem, there is no loss of generality in setting E D 1,

and then we consider eigenvalues Ej D Ej .h/ D h2�j 2 Œ1; 1 C h�, or in

homogeneous notation
p

�j 2 Œh�1; h�1 C 1� D Œ
p
�;

p
� C 1�. We denote

by N.�/ ' Cd Vol.M; g/�.d�1/=2 the number of eigenvalues in the interval3

Œ
p
�;

p
�C 1�.

3 Eigenvalues are denoted by �2 in [6] and by � here and in [17].
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We further introduce a logarithmically small parameter for a manifold M d of

dimension d

` D j loghj�K D .log�/�K ; where 0 < K <
1

3d
: (1.2)

Han [10] uses the notation ˛ D K and denotes the same quantity by

ı.h/ D j loghj�˛ D r.�j /; ˛ <
1

3d
; (1.3)

We adopt both notations. Other choices of ı.h/may arise in applications and will

be speci�ed below.

1.2. Main new steps of the proof. The main step in the proof that N.uj / ! 1
in [17, 18] was to prove that for any smooth connected arc ˇ � Fix.�/, uj jˇ has a

sign-changing zero in ˇ. To obtain logarithmic lower bounds, we need to prove the

existence of a sign-changing zero on sequences ǰ of shrinking arcs with lengths

j ǰ j D j̀ , cf. (1.2). More precisely, we partition Fix.�/ into `�1
j open intervals of

lengths j̀ and show that uj has a sign changing zero in each interval.

The quantitative improvements apply to general smooth hypersurfacesH � M

of general Riemannian manifolds of any dimension d . Later we specialize the

results to the surfaces in Theorem 1.1 in dimension d D 2 and with H D Fix.�/:

In general dimensions, the partitions are de�ned by choosing a cover of H by

C`�1 balls of radius ` with centers ¹xkº � H at a net of points of H so that

H �
R.`/
[

kD1

B.xk; C `/ \H: (1.4)

Here and hereafter, C or Cg denotes a positive constant depending only on

.M; g;H/ and not on �j . The cover may be constructed so that each point of

H is contained in at most Cg of the double balls B.xk; 2`/. The number of such

balls satis�es the bounds,

c1`
�dC1 � R.`/ � C2`

�dC1:

There were three analytic ingredients in the proof of existence of a sign chang-

ing zero in every arc ˇ in [17]. Two of them need to be improved to give logarithmic

lower bounds.
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(i) One needs to prove a QER (quantum ergodic restriction) theorem in the sense

of [6] on the length scale O. j̀ /, which says (roughly speaking) that there

exists a subsequence of eigenfunctions ujn
of density one so that matrix ele-

ments of the restricted eigenfunctions tend to their Liouville limits simulta-

neously for all the covering balls of (1.4). Since there are .log�/K such balls,

the scale of the QER theorem is constrained by (1.2). To be more precise,

we only need a weaker result giving lower bounds rather than asymptotics,

as stated in Proposition 1.

(ii) One needs to prove a small scale Kuznecov asymptotic formula in the sense of

[23, 11], to the e�ect that there exists a subsequence of density one for which
R

ˇ ujk
is of order jˇj��1=4

j .log�j /
1=3 when4 jˇj ' j̀ : Again, one needs to

show that there is a subsequence of density one for which this estimate holds

simultaneously for all the balls of the cover.

(iii) The sup-norm estimate

kuj k1 D O
� �

1=4
j

p

log�j

�

of Bérard [3] used in [17] does not need to be modi�ed.

For background on QE (quantum ergodicity) theorems we refer to [25] (and to

the origins, [20]). We assume here the reader’s familiarity with the basic notions

and with the QER (quantum ergodic restriction) problem (see [6]).

Remark. In order to obtain the logarithmic lower bound on nodal domains, one

needs to prove the QER theorem and the Kuznecov bound on shrinking balls with

the same radius j̀ . In fact, one can shrink intervals much more in the Kuznecov

bound since the estimates involve the principal term in an asymptotic expansion

rather than the remainder term. This remark will be explained at the end of the

proof of Proposition 3.

A logarithmic scale QE theorem asserts, roughly speaking, that matrix el-

ements hOph.a`/ujk
; ujk

i of eigenfunctions with respect to logarithmically di-

lated symbols a`.x; �/ D a
�

x�x0

`
; ���0

`

�

are asymptotic to their Liouville aver-

ages
ª

S�M
a`d�L (see [10] for the precise formulation of the symbols). For nodal

domain counting, as for nodal bounds in [13] it is crucial to have some kind of uni-

formity of the limits as the base point .x0; �0/ varies. The simplest version would

4 The power 1
3

in .log �j /1=3 is chosen for later convenience. It could be any power < 1
2
.
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be that the QE limits are uniform in the symbol and the base point, but such a

uniform result is lacking at this time. Instead there exist uniform upper and lower

bounds on the mass of the eigenfunctions in all of the logarithmically shrinking

balls of the cover (1.4) (see Theorem 8 and Theorem 10). We will adapt these

bounds to the QER problem.

The small scale QER statement is the following ‘uniform comparability result,’

based on Proposition 3.1 of [13] (see Proposition 8) and Corollary 1.9 of [10].

Proposition 1. Let .M; g/ be a compact negatively curved manifold of dimension

d without boundary, and let H � M be a smooth hypersurface and let dSg

denote surface measure on H . Let ` D j̀ be de�ned by (1.2). Then, for any

orthonormal basis of eigenfunctions ¹uj º, and K as in (1.2), there exists a full

density subsequence ƒK of N so that for j 2 ƒK and for every 1 � k � R.`/;

and centers xk of (1.4),

Z

B.xk ;C j̀ /\H

.juj j2 C j��1=2
j @�uj j2/ dSg � a1`

d�1
j D a1.log�j /

�.d�1/K ;

where a1; a2 > 0 depend only on g and K is de�ned in (1.2).

Here, and hereafter, @� denotes a �xed choice of normal derivative along H .

We apply the result when dimM D 2 and H D Fix.�/, and the eigenfunctions

are even or odd. We write dSg D ds, the arc-length measure. In that case, one of

the two terms above drops and we get,

Corollary 2. Let .M; J; �; g/ be a negatively curved surface with isometric involu-

tion. Then for any orthonormal basis of even eigenfunctions ¹'j º, resp. odd eigen-

functions ¹ j º, there exists a full density subsequenceƒK so that for jn 2 ƒK ,

Z

B.xk ;C j̀ /\H

j'jn
j2 ds � a1.log�jn

/�K

and
Z

B.xk ;C j̀ /\H

j��1=2
j @� jn

j2 ds � a1.log�jn
/�K

uniformly in k.

The statement is termed a uniform comparability result (by Han and Hezari

and Rivière) because it does not assert uniform convergence of the sequences as

k varies but only gives uniform upper and lower bounds. The loss of asymptotics

is just due to the passage from smooth test functions to characteristic functions of
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balls. We only state the lower bound because it is the one which is relevant for

nodal counts.

The next step is to prove a uniform logarithmic scale Kuznecov period bound

in the sense of [23, 11]. It is also a general result, but for the sake of simplicity,

and because it is the case relevant to this note, we assume dimM D 2. As above,

we denote dSg on the curve H by ds.

Proposition 3. In the notation of Proposition 1, let H D Fix.�/, let K be as

in (1.2) and ¹xkº the centers of (1.4). Then for a subsequence of ƒK � N of

density one, if j 2 ƒK ,

ˇ

ˇ

ˇ

ˇ

Z

B.xk ;C j̀ /\H

'j ds

ˇ

ˇ

ˇ

ˇ

� C0 j̀�
�1=4
j .log�j /

1=3

D C0.log�j /
�K�

�1=4
j .log�j /

1=3;

resp.
ˇ

ˇ

ˇ

ˇ

Z

B.xk ;C j̀ /\H

�
�1=2
j @� j ds

ˇ

ˇ

ˇ

ˇ

� C0 j̀�
�1=4
j .log�j /

1=3

D C0.log�j /
�K�

�1=4
j .log�j /

1=3;

uniformly in k.

Remark. As mentioned in a remark above, one could improve the result by letting

` D ��" for suitable ". But the improvement is not useful for nodal counts until

(or if) one can improve the small-scale quantum ergodicity result to scales of the

form ��"; such a bound would open the possibility of improving the nodal count

to a power of �.

1.3. Completion of proof. Granted the Propositions, the proof of existence of

a sign-changing zero is the same as in [17, 18]. We give a sketch here for even

eigenfuntions to orient the reader, with fuller details in §4.2. Combining the sup-

norm estimate (iii) and the QER lower bound (i) of Proposition 1, there exists a

subsequence S 2 ZC of density one and C > 0 so that for j 2 S,

C j̀ <

Z

B.xk ;C j̀ /\H

j'j j2 ds �
�

1=4
j

p

log�

Z

B.xk ;C j̀ /\H

j'j j ds:

follows that
Z

B.xk ;C j̀ /\H

j'j j ds � �
�1=4
j .log�j /

1=2
j̀ :
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But by the Kuznecov upper bound (iii) of Proposition 3,
ˇ

ˇ

ˇ

ˇ

Z

B.xk ;C j̀ /\H

'j

ˇ

ˇ

ˇ

ˇ

ds � �
�1=4
j j̀ .log�j /

1=3:

Hence,
ˇ

ˇ

ˇ

ˇ

Z

B.xk ;C j̀ /\H

'j ds

ˇ

ˇ

ˇ

ˇ

<

Z

B.xk ;C j̀ /\H

j'j j ds;

and thus 'j jB.xk ;C j̀ /\H has a sign changing zero. A similar argument works for

the Cauchy data of odd eigenfunctions.

The remainder of the argument is identical to that of [17, 18]. For the rest of

this note we only discuss Propositions 1 and 3.

Remark. We use the same scale j̀ in both the quantum ergodic restriction result

and the Kuznecov formula. As a result, it cancels out from the inequalities.

We could use a smaller scale in the Kuznecov bound. But the size of jˇj is

constrained by the more delicate QER result, so there is no gain if we shrink the

interval in the Kuznecov formula.

Remark. As mentioned above, there are two aspects of the proof that are di�cult

to generalize to surfaces of negative curvature and concave boundary. First, the

logarithmic QE result of [13, 10] is at present only proved in the boundaryless case.

Second, the sup norm estimate (iii) has not been proved at this time for negatively

curved surfaces with concave boundary. We conjecture that both obstacles can

be overcome and that the logarithmic growth rate of nodal domains holds in the

setting of [18].

Acknowledgements. We thank H. Hezari, G. Rivière and X. Han for comments

on earlier versions of this article, in particular on uniformity of the log scale QE

results as the centers of the balls of the cover (1.4) vary. We thank J. Jung for

correcting some typos and J. Toth for discussions of cuto�s and [5]. Particular

thanks are due to the referee for pointing out numerous typos and for insisting on

more details on the use of quantum ergodic restriction theorems for polynomial

symbols of degree � 0.

2. Energy localization and estimates of Cauchy data of eigenfunctions

In this section, we review some known results on Cauchy data of eigenfunctions

that are will be used in §3.4. We assume throughout that @M D ; and letH � M

be a smooth orientable hypersurface. The relevant case is where H � Fix.�/ and

dimH D 2 so that H is a closed geodesic in the union (1.1).
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As in the introduction, we denote by u� any L2-normalized eigenfunction of

� on M and by ¹uj º an orthonormal basis of eigenfunctions. De�ne the Cauchy

data of the eigenfunctions uj on H as

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

Dirichlet data: ub
j D uj jH ;

Neumann data: ub
j D �

�1=2
j @�uj jH

Tangential Neumann data: ubT
j WD .1� ��1

j �H /
1=2uj jH :

We are only concerned with Cauchy data of even eigenfunctions 'j , resp. odd

eigenfunctions  j , on a component H of Fix.�/ of an involution � . Dirichlet

and tangential Neumann data thus refers to even eigenfunctions, Neumann data

to odd eigenfunctions. Here, �H is the Laplacian along H and @� is a choice of

unit normal. Later we also denote it by Dxd in Fermi normal coordinates where

xd D 0 on H .

2.1. Semi-classical cuto� to the energy sphere. With the semi-classical nota-

tion h D hj D �
�1=2
j , the eigenvalue equation takes the form .�h2� � 1/uh D 0.

A sequence of increasingly precise results say that uh is micro-supported on the

unit co-sphere bundle S�
gM WD ¹.x; �/W j�jg D 1º in T �M . This is the character-

istic variety of the semiclassical Laplacian I C h2�. The rigorous statements are

in [25] and in Section 3.1 of [5]; we brie�y summarize what we need from [5]. Let

A."/ WD
°

.x; �/W
�

1 � "

10

�

< j�jg < 1C "

10

±

be an “annulus” in T �M around S�
gM . If Q� 2 C1

0 .T �M/ is a cuto� equal to

1 on A.2"0/ and supported in A.4"0/, and if Q�.h/ is the quantization of Q� as a

semi-classical pseudo-di�erential operator, then

k.I � Q�.h//uhkL2.M / D O.h1/: (2.1)

Consequently, we can replace uh by Q�.h/uh in matrix elements relative to uh.

More re�ned cuto�s are designed in [5] and give sharper localizations to S�
gM .

We refer to [5] (3.2) and [25] for further background.

2.2. Fermi normal coordinates near H . In preparation for the Rellich identity,

we introduce convenient coordinates near H and re-state the energy localization

of eigenfunctions (2.1) for the Cauchy data of eigenfunctions on H . We follow

[4, 6] in the following discussion.
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H locally separatesM into two componentsMC;M�, and separatesM glob-

ally when M is a separating hypersurface, as with the separating �xed point sets

in [17]. We introduce Fermi normal coordinates .x0; xd / aroundH , in whichH is

de�ned by xd D 0. Thus, x D expx x
d�x0 where x0 are coordinates onH and �x0

is the unit normal pointing to MC. In the tubular neighborhood

H."/ WD ¹.x0; xd / 2 U � R; jxd j < "º; (2.2)

the Riemannian integration measures are given by

dVg D
p

c.x/ dx0 dxd ; dSg D
p

c.x/dx0;

and the Laplacian in normal coordinates has the form,

� D 1
p

c.x/
@xd

p

c.x/@xd C R.x0; xd ; Dx0/; (2.3)

whereR.0; x0; hDx0/ D �h2�H is the induced tangential semiclassical Laplacian

onH ; i.e.�H is the Laplacian onH for the metric induced by g. When dimM D2

and H is totally geodesic as in (1.1), then x0 D s (the arc-length coordinate) and

dSg D ds.

2.3. Energy localization of Cauchy data. De�ne the elliptic (E), hyperbolic

.H/, resp. glancing .G/ sets in T �H by

E D ¹.x0; � 0/WR.x0; � 0; 0/ > 1º D ¹.x0; � 0/W k� 0kg > 1º;

G D ¹.x0; � 0/WR.x0; � 0; 0/ D 1º D ¹.x0; � 0/W k� 0kg D 1º;

H D ¹.x0; � 0/WR.x0; � 0; 0/ < 1º D ¹.x0; � 0/W k� 0kg < 1º:

Here, H [ G is the projection of S�
gM and E is the exterior of the projection.

Cauchy data of eigenfunctions are microsupported in the image of the projec-

tion to

S�M �! T �H;

i.e. to the energy ball

B�H D ¹.x0; � 0/W j� 0jg � 1º:

If A is a semi-classical pseudo-di�erential operator onH supported in the elliptic

region E then kAub
j kH s.@M / ! 0: This is parallel to (2.1) on M .
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Although it is not used in our results, we mention that there is a more re�ned

localization result recently proved in [5]. For for any " > 0 and for ı � 2
3

� ", the

microlocal L2 mass of uh outside B�
.1Chı/

H is O.h1/. To prove this, the authors

introduce a partition of unity of the form

�in C �tan C �out;

with �in supported in H and equal to 1 up to a small shell around G, where �tan is

a cuto� to a small shell around G and where �out is supported in E. Each cuto�

function �.x0; � 0/ is rescaled to �ı;h.x
0; � 0/ WD .�.h�ı.R.x0; � 0/ � 1//. We refer

to [5] (p. 1641) for further details of the cuto� functions (see also �gure 1). In (3.3)

of Section 3.1, in Proposition 3.1, and in Corollary 3.2 of [5] it is proved that

k.�out/
w
h;ıu

b
hkC k.H/ D O.h1/:

For our purposes it is only necessary to cuto� the in�nite exterior region E.

2.4. Rellich identity and energy localization. In this section we review the

Rellich identity for various choices of pseudo-di�erential operators on M and

on H . We refer to [12, 4, 6, 5] for further background.

Let A.x; hDx/ 2 ‰0
sc.M/ be an order zero semiclassical pseudodi�erential

operator on M (see [6]). By Green’s formula we get the Rellich identity,

i

h

Z

MC

.Œ�h2�;A.x; hDx/�uh.x//uh.x/ dVg

D
Z

H

.hD�A.x
0; xd ; hDx/uhjH /SuhjH dSg

C
Z

H

.A.x0; xd ; hDx/uhjH /hDxduhjH dSg :

(2.4)

Here,

Dxj
D 1

i

@

@xj
; Dx0 D .Dx1 ; : : : ; Dxd�1/; Dxd jH D 1

i
@� ;

where @� is the interior unit normal to MC. In the integral

i

h

Z

MC

.Œ�h2�;A.x; hDx/�uh.x//uh.x/ dVg (2.5)

on the left side of (2.4), the commutator is h times a second degree polynomial in

hDxj
; thus, the extra factor cancels the factor of 1

h
outside the integral. Using (2.3)

and (3.8), the principal symbol of the commutator is given by

p: s:.Œ�h2�;A.x; hDx/� D ¹.�d /2 CR.xd ; x0; � 0/; a.x; xd ; � 0; �d /º:
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There are two complications in applying the Rellich formula to semi-classical

limits of matrix elements. One is that the integral over H on the right side

involves terms with two normal derivatives of uh, which are not tangential pseudo-

di�erential operators and do not give Neumann data of uh. But the second

order term in the normal derivative hDxd can be eliminated using the eigenvalue

equation. A second complication is caused by the fact that the symbol of� on the

left side is a second order polynomial in �, giving rise to terms of positive order

in � in the commutator. Results on interior matrix elements on M of zeroth order

semi-classical pseudo-di�erential operators do not a priori apply to such terms.

But we can exploit energy localization on S�
gM on the left side and in B�H on

the right side to show that both symbols can be cuto� to compactly supported

symbols with only an h1 remainder on both sides.

Using (2.1), we can replace the semi-classical pseudo-di�erential operator

A D Oph.a/ on M in the left side by

A Q� WD Q��.h/Oph.a/ Q�.h/; (2.6)

modulo errors of orderO.h1/. The same cuto� changesA on the right side toA Q�,

whose complete symbol is supported in the ball bundle B�
3H of radius 3 in H .

We record the known bounds on the Cauchy data on H which exploit the

energy localization.

2.5. Bounds on Neumann data of odd (Dirichlet) eigenfunction. The �rst

result is that if .M; g/ is a smooth Riemannian manifold and H � M is a smooth

embedded orientable separating hypersurface, then there existsM > 0 so that for

any L2-normalized eigenfunction '�,

k��1=2@�u�kL2.H/ � Cg :

We only need the estimate for odd eigenfunctions. When H is a separating

hypersurfaces it follows from the well-known estimate for Dirichlet eigenfunctions

on manifolds with boundary using the Rellich identity. See e.g. [1, 12] and its

references to the earlier literature. In the boundaryless case, a new proof is given

in Theorem 1.1 of [5] for general eigenfunctions.

2.6. Bounds on Dirichlet data of even eigenfunctions. In general,

ku�jH kL2.H/ � Cg�
1=2

and the estimate is achieved for certain eigenfunctions on a surface of revolution.
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When u� is a Neumann eigenfunction on a Euclidean domain � with boundary,

then ku�kL2.@�/ � �1=6: As discussed in [6, 2] and elsewhere, the most relevant

analogue for even/Neumann eigenfunctions of Neumann data of odd/Dirichlet

eigenfunctions is the “tangential Neumann” data

ubT
j WD .1� ��1

j �@�/
1=2
C uj :

Here, the C represents the Riesz mean, i.e. one takes the square root on the part

of subspace of L2.H/ where .I C h2�H / � 0 and de�nes the operator to be zero

on the orthogonal complement.

In Remark 4.1 of [5] it is pointed out that

h.I C h2�H /u
b
h; u

b
hiL2.H/ D O.1/;

and in particular this applies to even eigenfunctions in our setting.

For QER eigenfunctions, the Neumann data is bounded for the quantum er-

godic sequence.

3. Proof of Proposition 1

The purpose of this section is to prove the uniform lower bound of Proposition 1.

We use the Rellich identity argument of [6] to extract a logarithmic scale QER

(quantum ergodic restriction) result from the global ones of [13] and [10]. How-

ever, as mentioned above, a key new issue is to obtain uniformity in the centers

¹xkº of the covering balls (1.4). In principle, one would like to prove existence of a

subsequence of eigenfunctions of density one for which one has Liouville weak*

limits with uniform remainders in all the balls B.xk; C `/ \ H , but this has not

yet been established globally in [13, 10]. For the proof of Theorem 1.1, it is only

necessary to obtain the uniform lower bounds in Proposition 1.

The proof of Proposition 1 is based on estimates of variances of restricted ma-

trix elements with respect to logarithmic scale pseudo-di�erential operators onH ,

and then on extraction of density one subsequences by feeding variance bounds

into Chebyshev inequalities. The variance bounds are obtained by applying Rel-

lich identities as in [6] between variance sums on M and on H .We then use the

small scale global variance bounds of [13, 10]. We begin by de�ning the variance

sums on M and on H , and then review the results of [13, 10] before going on to

the proof of Proposition 1.
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3.1. Variance sums on M and on H . Given a semi-classical symbol a on T �M
and its semi-classical Weyl quantization Oph.a/ D aw on L2.M/, we de�ne the

variance sum on M to be

V2.h;Oph.a// WD V2.h; a/

WD hd�1
X

Ej 2Œ1;1Ch�

jhOph.a/uj ; uj i � !.a0/j2

WD 1

N.�/

X

j W
p

�j 2Œ
p

�;
p

�C1�

jhOp.a/uj ; uj i � !.a0/j2
(3.1)

where !.a0/ D
ª

S�M a0d�L is average of a0 relative to normalized Liouville

measure and a0 is the principal symbol of a. For background on semi-classical

symbols and pseudo-di�erential operators we refer to [6, 25].

The restricted variance sums onH have a somewhat di�erent from (3.1). First,

in place of the Liouville integral of a one has the restricted state,

!H .a/ WD
Z

B�H

a.y0; � 0/.1� j� 0j2/1=2 dy0 d� 0:

The notation !H is adopted from [15, 6] and we refer there for further discussion.

Secondly, the restriction QER analogue of the matrix element hOph.a/uj ; uj i is

the matrix element of the Cauchy data

CD.uhjH / D .uhjH ; h@�uhjH /

of u on H . with respect to a semi-classical pseudo-di�erential operator Oph.a/

on L2.H/:

hOph.a/CD.uhjH /; CD.uhjH /iL2.H/

WD hOph.a/h@�uhjH ; h@�uhjH iL2.H/

C hOph.a/.1C h2�H /uhjH ; uhjH iL2.H/:

We therefore de�ne restricted variance sums by

V2;H .h; a/ WD hd�1
X

Ej 2Œ1;1Ch�

jhOph.a/CD.uhjH /; CD.uhjH /iL2.H/ � !H .a/j2

WD 1

N.�/

X

j W
p

�j 2Œ
p

�;
p

�C1�

jhOp.a/CD.uj /; CD.uj /i � !H .a/j2

(3.2)

Here we use the two di�erent notations that are employed in [17, 6].
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As above, we introduce Fermi normal coordinates .x0; xd / aroundH , in which

H is de�ned by xd D 0. For a given k, we center coordinates x0
k

at the centers

xk of the cover (1.4). We then consider restricted symbols of the form fk.`
�1x0

k
/

where fk is obtained by transplanting to B.xk; C `/ a �xed C1 cuto� function on

R
d which equals 1 on the ball B.0; 1/ of radius 1 and zero on the complement of

twice the ball. That is, with ` de�ned in (1.2),

fk.`
�1x0

k/ D the pullback of the `�1 dilate of fk under the chart x0
k : (3.3)

We often drop the subscript k on the chart. As in [6] (see the discussion around

e.q. (3.8)) we convert the multiplication operator on H de�ned by fk.`
�1x0

k
/ to

an associated pseudo-di�erential operator on M given by

Ak.x
0; xd ; hDx/ D �

�xd

"

�

hDxdfk.`
�1x0/; (3.4)

where � is a C1
0 cuto� equal to 1 near 0, and " is a parameter to be chosen later.

We further introduce the cuto� (2.6).

The following Proposition asserts that the restricted Cauchy data matrix ele-

ments (3.2) with respect to fk.`
�1x0/ onH are asymptotic to the globalized matrix

elements on M , with a certain dependence on the parameters `; h:

Proposition 4. Let dimM D d and let H be a hypersurface. Let ¹xkº denote

the centers of the cover (1.4) and let f D fk 2 C1
0 .B.xk; 2C`/ be de�ned as

in (3.3). Let V2.h; fk/ be the restricted variance sum (3.2), letA be as in (3.4) and

let V2;h.A/ be as in (3.1). Then,

V2;H .h; fk/ D V2;h.A.x
0; xd ; hDx//CO.`�2h/CO."�2h/CO."�1`�1h/; h ! 0;

uniformly in k.

If one picks " D ` (1.2) then the remainder is O.j loghj2Kh/.

We then apply the the global small scale variance estimates on M in [13, 10],

which are recalled below in Proposition 7 and Proposition 9. Their results imply

that, for any 5 ˇ > 0,

V2;h.A.x
0; xd ; hDx// � C

j log�j.1�ˇ/
: (3.5)

5 The exponent is written 1 � 2Kˇ in Proposition 2.1 of [13]. We drop the 2K since ˇ is an

arbitrarily small positive quantity.
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Since the remainders in Proposition 4 are smaller than the right side of (3.5),

we obtain:

Corollary 5. With the same notations and assumptions as in Proposition 4,

for any ˇ > 0,

V2;H .h; fk/ � C

j log�j.1�ˇ/
:

The Corollary implies Proposition 1. The main application of the result is

to even resp. odd eigenfunctions of the negatively curved surface .M; g/ with

orientation reversing involution � . For even eigenfunctions, the @�'h term is zero,

while for odd eigenfunctions the .1C h2�/'h term is zero. Hence we have,

Corollary 6. Let .M; J; �; g/ be a negatively curved surface as in Theorem 1.1.

Then for any ˇ > 0, the variances for the even eigenfunctions satisfy

hd�1
X

Ej 2Œ1;1Ch�

jhfk.`
�1x0

k/.1C h2�H /'j jH ; 'j jH iL2.H/ � !H .a/j2

� C

j log�j j.1�ˇ/
;

resp. the variances of the odd eigenfunctions satisfy

hd�1
X

Ej 2Œ1;1Ch�

jhf .`�1x0
k/hD� j jH ; hD� j jH iL2.H/ � !H .a/j2

� C

j log�j j.1�ˇ/
:

Both remainders are uniform in k.

In §3.6 we use Corollary 6 to extract density one subsequences for which one

has uniform QER lower bounds as stated in Corollary 2, following the analogous

results of [13, 10].

3.2. Review of QE on the logarithmic scale. In this section we review the

results of [13, 10]. The �rst result is Proposition 2.1 of [13]. Given x0 2 M and6

0 < " <
inj.M;g/

10
/, de�ne

�x0;" D �
�k exp�1

x0
.x/kx0

"

�

:

6 inj.M; g/ denotes the injectivity radius.
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Let ¹uj º denote an orthonormal basis of eigenfunctions and let

V�.x0; "/ WD 1

N.�/

X

j W�j ��

ˇ

ˇ

ˇ

ˇ

Z

M

�x0;"juj j2 dVg �
Z

M

�x0;" dVg

ˇ

ˇ

ˇ

ˇ

2

:

Proposition 7. If .M; g/ has negative sectional curvature, ˇ>0 and7 0<K< 1
2d

,

then

V�.x0; .log�/�K/ � C

j log�j.1�2Kˇ/
:

Note that the symbols �x0;" are very special in this result, particularly because

they are independent of the � variable and thus do not involve dilations in �.

In Section 3.1 of [13], the authors coverM ,

M �
R."/
[

kD1

B.xk; "/;

with balls ¹B.xk; "/ºR."/

kD1
of radius

" D j log�j�K ; (3.6)

The cover has the property that each point of M is contained in Cg many of

the double balls B.xk; 2"/. The number of such balls satis�es the bounds,

c1"
�d � R."/ � C2"

�d :

The main QE result of [13] gives uniform upper and lower bounds:

Theorem 8. Let .M; g/ have negative sectional curvature. Let " be de�ned

by (3.6), with K is constrained by (1.2). Then, given any orthonormal basis of

eigenfunctions ¹uj º, there exists a full density subsequence ƒK of N so that for

j 2 ƒK , and for every 1 � k � R."/;

a1"
d �

Z

B.xk ;"/\H

juj j2 dSg �
Z

B.xk ;50"/\H

juj j2 dSg � a2"
d ;

where a1; a2 > 0 depend only on g.

A key point is the uniformity of the estimates in the centers xk . We will go

over the argument in §3.6 when we adapt it to the QER setting.

7 The 1
2d

constraint on K in the variance estimate is weaker than the constraint 1
3d

in the

uniform QE (and QER) theorems stated in (1.2). See §3.6.
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3.3. Review of the result of X. Han. X. Han [10] proves a more general small

scale QE theorem for semi-classical pseudo-di�erential operators with ı.h/-mi-

crolocalized symbols, where ı.h/ depends on the way symbols are dilated. The-

orem 1.5 of [10] is the main result on small-scale quantum ergodicity. It applies

to small scale pseudo-di�erential operators Op.a/ where a satis�es symbol esti-

mates of the form

sup jD˛
xD

ˇ

�
aj � C˛;ˇ ı.h/

�j˛j�jˇ jh�i�jˇ j;

were ı.h/ D j loghj�˛ for ˛ > 0 satisfying the constraints in (1.3).

De�ne the associated variance sums by

V2.h; a// WD hd�1
X

Ej 2Œ1;1Ch�

jhOph.a/uj ; uj i � !.ab
.x0;�0//j2:

In Theorem 1.5, Han proves the following result:

Proposition 9. Let .M; g/ be negatively curved and let a be a small scale pseudo-

di�erential symbol with ı.h/ D j loghj�˛ . Then

V2.h; a/ D O.j loghj�1C"/; for all " > 0:

Han states the estimate as O.j loghj�ˇ / for ˇ < 1 when ˛ > 0. When ˛ D 0,

one can let ˇ D 1 and then the result agrees with [24] for non-dilated symbols.

The symbols we will be using have the form

ab1;b2
x0

.x; �I h/ D ı.h/�db1

�x � x0

ı.h/

�

b2.x; �/�.j�jg � 1/; (3.7)

where x0 will be chosen to be a center xk of one of the balls of (1.4). Here, b1 is

called the ‘base symbol’. The rescaled symbols are called ı.h/-localized symbols

in [10]. Special cases have the form

ab
x0
.x; �I h/ D ı.h/�db

�x � x0

ı.h/

�

�.j�g j � 1/:

Theorem 1.7 of [10] shows that for ˛ < 1
2d

, ˇ < 1� 2˛d , then

V2.h; a
b
x0
/ D Ob.ı.h/

2d j loghj�ˇ /; h ! 0;

uniformly in x0.

Han’s uniform comparability result (Corollary 1.9 of [10]) is analogous to

Theorem 8.
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Theorem 10. Let .M; g/ be negatively curved and of dimension d . Then for any

orthonormal basis ¹uj º of eigenfunctions, there exists a density one subsequence

ujn
and a uniform constant C > 0 so that for all xk as in (1.4), and with r.�jn

/

de�ned in (1.2),

Z

B.xk ;r.�jn //

jujn
j2 dVg � CVol.B.xk; r�jn

//:

There is a slight di�erence between the integral in Theorem 10 and the matrix

elements above, namely that we are replacing a smooth symbol by the character-

istic function of a ball. This is possible by the Portmanteau theorem for weak*

convergence, i.e. the statement that if a sequence �j ! � as continuous linear

functionals on C 0.X/ then �j .E/ ! �.E/ for all sets E with �.@E/ D 0. How-

ever in the use of this theorem, rates of approach to the limit get destroyed, and

as in Theorem 10 one can conclude an inequality rather than an asymptotic with

a remainder.

3.4. Rellich identity and proof of Proposition 4. We now start the proof of

Proposition 4 and of Proposition 1. We begin by recalling the Rellich identity as

in [6] (based ideas of [7, 4]) to convert global QE statements into restricted QER

statements. With no loss of generality, we assumeH is a separating hypersurface,

so that H is the boundary H D @MC of a smooth open submanifold MC � M .

As in §2.2, we let x D .x1; : : : ; xd�1; xd / D .x0; xd / be Fermi normal

coordinates in a small tubular neighbourhoodH."/ ofH (see (2.2)) de�ned near a

center xk of a ball in the cover (1.4). To lighten the notation we drop the subscript

in xk . Thus, x D expx x
d�x0 where x0 are coordinates on H and �x0 is the unit

normal pointing to MC. We let � 2 C1
0 .R/ be a cuto� with �.t/ D 0 for jt j � 1

and �.t/ D 1 for jt j � 1=2: The main result of this section is,

Lemma 11. Let f 2 C1.H/. Let " > 0 and de�ne ` as in (1.2). With the above

Fermi normal coordinates around each center xk of the balls of (1.4),

hf .`�1x0/h@�'hjH ; h@�uhjH iL2.H/ C hf .`�1x0/.1C h2�H /uhjH ; uhjH iL2.H/

D
D

Oph

�°

.�d /2 CR.xd ; x0; � 0/; �
�xd

"

�

�df .`�1x0/
±� Q�

uh; uh

E

L2.MC/

C O.`�2h/C O."�2h/C O."�1`�1h/;

where the remainders are uniform in k.
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On the right side,

Oph

�°

.�d /2 CR.xd ; x0; � 0/; �
�xd

"

�

�df .`�1x0/
±� Q�

is de�ned in (2.6) and as discussed in §2.4, the complete symbol is compactly

supported in T �M and in particular is bounded.

Remark. Throughout the proof, as above, we implicitly cuto� the symbol us-

ing (2.6) to j�j � 3. To simplify the notation we do not include the cuto� Q� on the

left side in all of the computations.

Proof. We introduce a small parameter " and choose the pseudo-di�erential

operator (3.4) in (2.4), namely

A.x0; xd ; hDx/ D �
�xd

"

�

hDxdf .`�1x0/: (3.8)

We then cut it o� to A Q� (2.6). We temporarily suppress the cuto� Q� to simplify

notation. Since �.0/ D 1 it follows that the second term on the right side of (2.4)

is just

˝

f .`�1x0/hDxduhjH ; hDxduhjH
˛

: (3.9)

The �rst term on right hand side of (2.4) equals

Z

H

hDxd

�

�
�xd

"

�

hDxdf .`
�1x0/uh

�ˇ

ˇ

ˇ

xd D0
uh

ˇ

ˇ

ˇ

xd D0
dS

D
Z

H

�

�
�xd

"

�

f .`�1x0/.hDxd /
2uh

C h

i"
�0

�xd

"

�

hDxdf .`
�1x0/uh

�ˇ

ˇ

ˇ

xd D0
Suh

ˇ

ˇ

ˇ

xd D0
dS

D
Z

H

�

�
�xd

"

�

f .`�1x0/.1�R.xd ; x0; hD0//uh

�ˇ

ˇ

ˇ

xd D0
Suh

ˇ

ˇ

ˇ

xd D0
dS;

(3.10)

since �0.0/ D 0 and ..hDxd /2 C R CO.h//uh D uh in these coordinates. Thus,

the left side of the stated formula follows from (2.4)-(3.10).

To compute the integral (2.5) on the left side, we recall that its principal symbol

is given by (3.11) and with our choice of A it equals

p: s:.Œ�h2�;A.x; hDx/�/ D
°

.�d /2 CR.xd ; x0; � 0/; �
�xd

"

�

�df .`�1x0/
±

(3.11)

The cuto� Q� as in (2.6) essentially multiplies this expression and makes the

complete symbol compactly supported in j�j � 3.
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The quantization of the principal symbol symbol is simply the naive one taking

�j ! hDxj
in the ordering speci�ed by (2.3). The additional non-principal

terms are of one higher order in h but may involve two derivatives of �
�

xd

"

�

, two

derivatives of f .`�1x0/ or a product of one mixed derivatives of these functions.

This accounts for the remainder and completes the proof of the Lemma. �

The fact that the remainders are uniform in k is evident from the proof of

the variance estimates, and is stated explicitly in Proposition 2.1 of [13] and

Theorem 1.7 of [10].

This completes the proof of Proposition 4. The conclusion is the following

result.

Corollary 12. We have

V2;H .h; fk/ D V2;h

�

h;
°

.�d /2 CR.xd ; x0; � 0/; �
�xd

"

�

�df .`�1x0/
±�

C O.`�2h/C O."�2h/C O."�1`�1h/; h ! 0:

The remainders are uniform in k.

3.5. Decomposition of the global variance sums. The variance sums on the

right side of Corollary 12 can be simpli�ed and made more explicit, because only

one term in the Poisson bracket of (3.11) dominates. To see this, we observe that

°

.�d /2 CR.xd ; x0; � 0/; �
�xd

"

�

�df .`�1x0/
±

D 2
°

�d ; �
�xd

"

�±

.�d /2f .`�1x0/

C ¹R.xd ; x0; � 0/; �d º�
�xd

"

�

f .`�1x0/

C ¹R.xd ; x0; � 0/; f .`�1x0/º�d�
�xd

"

�

D �
�xd

"

�

f .`�1x0/R3.x
0; xd ; � 0/;

C 2

"
�0

�xd

"

�

.�d /2f .`�1x0/

C `�1�
�xd

"

�

f 0.`�1x0/�dR2.x
0; xd ; � 0/

D I C II C III,

(3.12)
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where R2; R3 are zero order symbols which are polynomial of degree � 2 in �.

The new type of term not encountered in [6] is the term III in which one takes the

Poisson bracket ¹R.xd ; x0; � 0/; f .`�1x0/º, where � 0 is paired with x0.

Remark. As remarked above, when we introduce the cuto� Q� as in (2.6),

it multiplies these expressions and cuts each one o� to j�j � 3.

We introduce a further small parameter ı and �2.t / 2 C1.R/ satisfying

�2.t / D 0 for t � �1=2, �2.t / D 1 for t � 0, and �0
2.t / > 0 for �1=2 < t < 0,

and let � be a boundary de�ning function for MC, i.e. MC D ¹� � 0º, � D 0 on

@MC D H and d� 6D 0 onH . For instance one may take � D xd . By construction,

�2.�=ı/ D 1 onMC and D 0 outside a ı=2 neighbourhood ofH inM� D MnMC.

We choose �2; ı so that �2

�

�
ı

�

�
�

xd

"

�

D 1.

Further, �0� xn

"

�ˇ

ˇ

MC
D Q�0�xn

"

�

for a smooth function Q� 2 C1.M/ satisfying

Q� D 1 in a neighbourhood of M n MC and zero inside a neighbourhood of H .

The purpose of the cuto� Q� is to express matrix elements on MC as matrix

elements on M , a manifold without boundary.

In summary, we now have four small parameters: h; `; "; ı with h; ` related

by (1.2) and cuto�s

� �
�

xd

"

�

, where �.t/ D 0 for jt j � 1 and �.t/ D 1 for jt j � 1=2I
� �2

�

�
ı

�

(� D xd ), �2.t / D 0 for t � �1=2, �2.t / D 1 for t � 0, and �0
2.t / > 0

for �1=2 < t < 0;
� Q�

�

xd

"

�

, Q� 2 C1.M/ satisfying Q� D 1 in a neighbourhood of M n MC and

zero inside a neighbourhood of H .

Further, we will be applying Proposition 9 to the following types of small-scale

symbols (3.7).

� The base symbol of (3.7) has the form b1 D f .`�1x0/; or b1 D f 0.`�1x0/,
or b1 D �

�

xd

"

�

(or its derivative).

� We choose b2 to be one of the symbols b2 D R3; R2; resp. .�d /2 de�ned

in (3.12).

� The base symbols only involve rescaling in the x variables, while the factors

R3; R2; .�
d /2 are classical un-scaled symbols.

The variance sums on the right side of Corollary 12 are bounded above by the

sum of the three sub-sums involving I, II, and III. Proposition 9 applies to all of

them. We are interested in the variance sums where fk is centered at the center xk

of a ball in the cover (1.4). In addition, there are the parameters "; ı. We introduce

some new notation to emphasize this dependence.
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We also explicitly put in the cuto� Q� (2.6) to emphasize that all the symbols

are compactly supported.

3.5.1. Term I. We �x k and center the coordinates x0 at xk as discussed above.

Then we let

b1 D �
�xd

"

�

f .`�1x0/;

where x0 is a local coordinate around xk giving xk the value 0 and where b2 D
R3.x; �

0/:

We then de�ne (writing x D .x0; xd / as above as Fermi coordinates centered

at xk)

VarI.h; xk; "; ı/

WD V2.h; �.x
d="/f .`�1x0/R3.x; �

0//

WD hd�1
X

Ej 2Œ1;1Ch�

ˇ

ˇ

ˇ

ˇ

D

Op
�

�
�xd

"

�

f .`�1x0/R3.x; �
0/

� Q�
uh; uh

E

L2.MC/

�
«

S�M

�
�xd

"

�

f .`�1x0/R3.x; �
0/ d�L

ˇ

ˇ

ˇ

ˇ

2

By the estimate of Proposition 9,

VarI.h; xk; "; ı/ D Ob1;f .j loghj�1C"/:

Moreover,

«

S�M

�.xd="/f .`�1x0/R3.x; �
0/ d�L D O."`d�1/:

Due to the factor of ", these matrix elements will make a negligible contribution

to the limit h ! 0.

3.5.2. Term II. We de�ne

VarII.h; xk; "; ı/

WD hd�1
X

Ej 2Œ1;1Ch�

ˇ

ˇ

ˇ

ˇ

D�2

"
�0

�xd

"

�

f .`�1x0/.�d /2
� Q�
uh; uh

E

L2.MC/

�
«

S�M

2

"
�0

�xd

"

�

f .`�1x0/.�d /2/ d�L

ˇ

ˇ

ˇ

ˇ

2

:
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Note that

D�1

"
�0

�xd

"

�

.�d /2f .`�1x0/
� Q�
uh; uh

E

L2.MC/

D
D�1

"
Q�0

�xd

"

�

.�d /2f .`�1x0/
� Q�
uh; uh

E

L2.M /
:

Again by Proposition 9,

VarII.h; xk; "; ı/ D Ob1;f .j log hj�1C"/:

But the presence of 1
"

in 1
"
�0�xd

"

�

ensures that the matrix elements in this variance

sum have non-trivial limits. Indeed,

Z

S�M

2

"
�0

�xd

"

�

f .`�1x0/.�d /2 d�L

' `d�1

Z

B�H

f .y0/.1� j� 0j2/1=2 dy0 d� 0:

3.5.3. Term III. We de�ne

VarIII.h; xk; "; ı/

WD hd�1
X

Ej 2Œ1;1Ch�

ˇ

ˇ

ˇ

ˇ

`�1
D

Oph

�

�
�xd

"

�

f 0.`�1x0/R2.x
0; xd ; � 0/

� Q�
uh; uh

E

MC

� `�1

«

S�M

�
�xd

"

�

f 0.`�1x0/R2.x
0; xd ; � 0/ d�L

ˇ

ˇ

ˇ

ˇ

2

:

Again by Proposition 9,

VarIII.h; xk; "; ı/ D Ob1;f .j loghj�1C"/:

The matrix elements in the variance sum III a priori have non-zero limits due

to the factor `�1 in

`�1
D

Oph

�

�
�xd

"

�

f 0.`�1x0/R2.x
0; xd ; � 0/

� Q�
uh; uh

E

MC

:

The power of ` is one higher than in the other terms. However, the factor of " can

be chosen here (and consistently elsewhere) to be ` and then the term balances

the term II. Moreover,
R

Rd�1 f
0.y0/dy0 D 0, so the limit vanishes and the matrix

elements in this term are of order o.`d�1/.
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In summary, the means have the following asymptotics:

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

I:

Z

S�M

�
�xd

"

�

f .`�1x0/R3.x; �
0/ d�L

' "`d�1

Z

S�M

�.yd /f .y0/R3."y
d ; `y0/ d�L;

II:

Z

S�M

2

"
�0

�xd

"

�

f .`�1x0/.�d /2/ d�L

' 2`d�1

Z

S�M

�0.yd /f .y0/.�d /2 d�L;

III: `�1

Z

S�M

�
�xd

"

�

f 0.`�1x0/R2.x
0; xd ; � 0/ d�L

' "`d�1

Z

S�M

�.yd /f 0.y0/R2.0; 0; �
0/ d�L:

3.6. Uniform lower bounds in the centers xk of the cover: proof of Proposi-

tion 1. To complete the proof of Proposition 1, we employ the diagonal argument

of [13] (Section 3.1) or [10] (Proof of Corollary 1.9) to extract a subsequence of

density one for which the lower bound of Proposition 1 is valid. The main point

is that one is intersecting j log hj subsequences, and one needs to use the rate of

variance decay to construct a subsequence of density one satisfying all j loghj
conditions. Since the argument is given in Section 3.1 of [13] or in Section 5.2

of [10], we only sketch it and explain the modi�cations necessary for the proof of

Proposition 1.

To clarify the logic of the �nal argument, we are applying the Chebychev

inequality to the three variance sums I, II, and III above. We use it to extract a

subsequence of indices j of density one so that the j th summand tends to zero at

a certain rate uniformly in k. Since there are .log jhj/K values of k, the radii r.�j /

of the shrinking balls must be slightly larger than would be the case for one �xed k.

More precisely as in (1.2), r.�j / D .log�j /
�K , where 0 < K < 1

3d
, as opposed

to K < 1
2d

for one �xed k. (Compare Corollary 1.8 and Corollary 1.9 of [10] or

the discussion on page 3266). Once one has extracted the subsequence, one goes

back to the analysis of the means in I, II, and III to see that II contributes the

dominant asymptotics of the matrix elements. This determines the asymptotics of

the restricted matrix elements by Lemma 11.
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We work separately with the three variance sums VarI;VarII;VarIII of §3.5.

Proposition 9 applies to all of them, with remainders uniform in xk.

In the notation of [10] (Step 2, p. 3283), the logarithmic dilation scale is set

as in (1.3) at ı.h/ D .j loghj/�˛ D r.�j / where ˛ < 1
3d

. Also �x ˇ > 0.

We consider a symbol a of the form (3.7), or more precisely one of the symbols

that arises in I, II, and III above, and de�ne the ‘exceptional sets’8

ƒb
xk
.h/ WD ¹j WEj 2 Œ1; 1C h�; jhOpb

h.a
b
xk
/uj ; uj i � �L.a

b
xk
/j2

� ı.h/2d j log hj�2ˇ º:

Remark. In [13] the exceptional set is de�ned by the condition,

ˇ

ˇ

ˇ

ˇ

Z

M

�xk
juj j2 dVg �

Z

M

�xk
dVg

ˇ

ˇ

ˇ

ˇ

� j loghj�Kˇ

Z

M

�xk
dVg ;

where ˇ > 0. The de�nitions are equivalent because

Z

M

�xk
dVg ' ı.h/d :

We then apply Chebyshev’s inequality

Prob¹X � C º � 1

C
EX

with

X D jhOpb
h.a

b
xk
/uj ; uj i � �L.a

b
xk
/j2

respect to normalized counting measure of Ej 2 Œ1; 1C h� and with

C D ı.h/2d j loghj�2ˇ :

The variance estimate of Proposition 9 says that the expected valued of X is

O.j log hj�1C"/. It follows that

#ƒb
xk
.h/

N.h/
� .j log hj/2d˛j loghj2ˇ j log hj�1C":

Remark. In (7) of [13], with p D 1 the authors get C j log hjK.4ˇC2d/�1; which is

equivalent since ˛ of [10] isK of [13] and because ˇ is an arbitrarily small number

whose exact de�nition changes in each occurrence.

8 The exceptional sets are denoted by Jk;K.h/ and the generic sets are denoted ƒk;K in [13].
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The key point is to obtain uniform upper bounds as xk varies. For 0 < ˛ < 1
3d

,

de�ne

ƒb.h/ D
N.h/
[

kD1

ƒb
xk
.h/; N.h/ � C j loghj˛d :

We further de�ne the ‘generic sets’

�b.h/ WD ¹j WEj 2 Œ1; 1C h�ºnƒb.h/:

Adding the Chebychev upper bounds for the j loghj˛d exceptional sets gives

#ƒb.h/

N.h/
� .j loghj/˛d .j loghj/2d˛j loghj2ˇ j loghj�1C";

hence

#�b.h/

#¹j WEj 2 Œ1; 1C h�º � 1 � C

j loghj�˛..4ˇC2d/Cd/j log hj ;

as stated in ([13], above Lemma 3.1; [10], p. 3263), and with j log hj D log�.

The remainder tends to zero if

�˛..4ˇ C 2d/C d/C 1 > 0:

Since ˇ is arbitrarily small, this requires

�˛3d C 1 > 0 or ˛ D K <
1

3d
:

In this case,

#�b.h/

#¹j WEj 2 Œ1; 1C h�º �! 1; h ! 0;

thus giving a subsequence of density one.

If j 2 �b.h/ then for any ˇ > 0,

jhOph.a
b
xk
/uj ; uj i � �L.a

b
xk
/j � Cı.h/d j log hj�ˇ

uniformly for all xk.

We now let b be one of the symbols occurring in I, II, and III and denote by

�I .h/; �II.h/; resp. �III.h/ the associated index sets. Recalling that

ı.h/ D .j loghj/�˛ D r.�j /
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where ˛ < 1
3d

, and that ˇ D 1 � " is a positive number < 1 and arbitrarily close

to 1 (cf. Theorem 1.5 of [10]), we have

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

I: j 2 �I.h/ ()
ˇ

ˇ

ˇ

ˇ

D�

�
�xd

"

�

f .`�1x0/R3.x; �
0/

� Q�
uh; uh

E

L2.MC/

�
«

S�M

�
�xd

"

�

f .`�1x0/R3.x; �
0/ d�L

ˇ

ˇ

ˇ

ˇ

� C.j loghj/�d˛j log hj�ˇ ;

II: j 2 �II.h/ ()
ˇ

ˇ

ˇ

ˇ

D2

"
�0

�xd

"

�

f .`�1x0/.�2
d /

Q�uh; uh

E

L2.MC/

�
«

S�M

2

"
�0

�xd

"

�

f .`�1x0/.�d /2/ d�L

ˇ

ˇ

ˇ

ˇ

� C.j loghj/�d˛j log hj�ˇ ;

III: j 2 �III.h/ ()
ˇ

ˇ

ˇ

ˇ

`�1
D

Oph

�

�
�xd

"

�

f 0.`�1x0/R2.x
0; xd ; � 0/

� Q�
uh; uh

E

MC

� `�1

«

S�M

�
�xd

"

�

f 0.`�1x0/R2.x
0; xd ; � 0/ d�L

ˇ

ˇ

ˇ

ˇ

� C.j loghj/�d˛j log hj�ˇ :

(3.13)

All three conditions hold for indices in �I.h/\�II.h/\�III.h/ and the estimates

are uniform in k. Thus, there exists a subsequence of density one so that the above

asymptotics and remainders are valid.

3.7. Implications for restricted matrix elements

Lemma 13. If j 2 �I.h/ \ �II.h/ \ �III.h/; then

ˇ

ˇ

ˇ

ˇ

hf .`�1x0/CD'hjH ; CD'hjH iL2.H/ �
Z

B�H

fk.`
�1x0/.1 � j� 0j2/1=2 dx0 d� 0

ˇ

ˇ

ˇ

ˇ

D O.`d /:
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Proof. We use Lemma 11 to convert the restricted matrix elements into global

ones. We then set " D `. By Lemma 13, the remainders are of smaller order than

the means, as we now verify by evaluating the means asymptotically. Throughout

we use that ` D j log hj�K with K < 1
3d

, hence the integrals are of order

j log hj�.d�1/K > j log hj�.d�1/=.3d/, thus are larger than the remainder.

We claim that the means have the following asymptotics:

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

I:

Z

S�M

�
�xd

"

�

f .`�1x0/R3.x; �
0/ d�L

' "`d�1

Z

S�M

�.yd /f .y0/R3."y
d ; `y0/ d�L;

II:

Z

S�M

2

"
�0

�xd

"

�

f .`�1x0/.�d /2 d�L

' 2`d�1

Z

S�M

�0.yd /f .y0/.�d /2 d�L;

III: `�1

Z

S�M

�
�xd

"

�

f 0.`�1x0/R2.x
0; xd ; � 0/ d�L

' "`d�1

Z

S�M

�.yd /f 0.y0/R2.0; 0; �
0/ d�L:

When we set " D `, we �nd that the mean in II has the leading order, thus the

restricted matrix element is asymptotic to the mean of II.

First we consider the sequence of matrix elements for term I. The mean value

of the matrix elements is
Z

S�M

�
�xd

"

�

f .`�1x0/R3.x; �
0/ d�L D O."`d�1/:

We may (and will) set " D ` and then the mean is O.`d /, while the square root of

the variance estimate in (3.13) is .j loghj/�d˛j loghj�ˇ D O.`d j log hj�ˇ /, which

is smaller. It follows that with " D `,

D�

�
�xd

"

�

f .`�1x0/R3.x; �
0/

� Q�
uh; uh

E

L2.MC/
D O.`d /:

3.7.1. Term II. Note that

D�1

"
�0

�xd

"

�

.�d /2f .`�1x0/
� Q�
uh; uh

E

L2.MC/

D
D�1

"
Q�0

�xd

"

�

.�d /2f .`�1x0/
� Q�
uh; uh

E

L2.M /
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Again with " D `, we get
Z

S�M

2

"
�0

�xd

"

�

f .`�1x0/.�d /2 d�L ' `d�1

Z

B�H

f .y0/.1� j� 0j2/1=2 dy0 d� 0:

Since this is larger than the variance bound, we obtain

D�1

"
�0

�xd

"

�

.�d /2f .`�1x0/
� Q�
uh; uh

E

' `d�1

Z

B�H

f .y0/.1 � j� 0j2/1=2 dy0 d� 0:

3.7.2. Term III. Setting " D ` and changing variables shows that
Z

Rd�1

f 0.y0/ dy0 D 0;

so the limit vanishes and the matrix elements of term II are of order O.`d /.

Thus, the full matrix element on H is asymptotic to the mean of term II plus

a remainder of order `d . �

Specializing to the special surfaces and applying the Rellich identities, we

conclude:

Corollary 14. Let .M; J; �; g/ be a negatively curved surface with isometric

involution. Then If j 2 �I.h/\�II.h/\�III.h/; and if 'j is an orthonormal basis

of even eigenfunctions, resp. ¹ j º is an orthonormal basis of odd eigenfunctions,

then for the center xk of every ball in (1.4),

hfk.`
�1x0/.1C h2�H /'hjH ; 'hjH iL2.H/

D
Z

B�H

fk.`
�1x0/.1� j� 0j2/1=2 dx0 d� 0j CO.`2/;

hfk.`
�1x0/hDxd jH ; hDxd hjH iL2.H/

D
Z

B�H

fk.`
�1x0/.1� j� 0j2/1=2 dx0 d� 0 CO.`2/:

uniformly in k.

3.8. Completion of the proof of Proposition 1. Next we show that we can

eliminate the �H in the operator .1C h2�H / in at the expense of getting a lower

bound.

Let �j be a positive microlocal lift of uj jH to B�H in the sense that d�j are

positive measures and9

hOph.a/uj jH ; uj jH i '
Z

B�H

ad�j :

9 Sometimes referred to as a Wigner measure.
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In particular,

hfk.`
�1x0/.1C h2�H /uj jH ; uj jH iL2.H/ '

Z

B�H

.1� j� 0j2/ d�j :

If CD.uj /jH is quantum ergodic on the logarithmic scale at all centers xk

of (1.4), then

hfk.`
�1x0/.1C h2�H /uj jH ; uj jH iL2.H/ C

Z

H

fk.`
�1x0/j��1=2

j @�uj j2 dSg

'
Z

B�H

fk.`
�1x0/.1 � j� 0j2/ d�j :

(3.14)

Since
Z

H

fk.`
�1x0/u2

j dSg D
Z

B�H

fk.`
�1x0/ d�j

�
Z

B�H

fk.`
�1x0/.1� j� 0j2/ d�j

' hfk.`
�1x0/.1C h2�H /uhjH ; uhjH iL2.H/;

it follows from (3.14) that for all xk and large enough �j ,

Z

H

fk.`
�1x0/u2

j dSg C
Z

H

fk.`
�1x0/j��1=2

j @�uj j2 dSg

�
Z

B�H

fk.`
�1x0/.1� j� 0j2/1=2 dx0 d� 0:

(3.15)

Proposition 1 is an immediate consequence of this inequality. Also Corollary 2

is an immediate consequence of Corollary 14 and this inequality.

Remark. As J. Toth also observed,
Z

H

fk.`
�1x0/j.uj jH /j2dSg � hfk.I C h2�H /uj ; uj iH

since h2�H � 0: Thus we could also use that
Z

H

fk.`
�1x0/u2

j D
Z

B�H

fk.`
�1x0/ d�j

� hfk.`
�1x0/.1C h2�H /uj jH ; uj jH iL2.H/

'
Z

B�H

fk.`
�1x0/.1� j� 0j2/ d�j :
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4. Proof of Proposition 3

The proof is similar to that in [18] but we must keep track of the dependence of

the remainder estimate on `, i.e. on the number of derivatives of fk.x=`/.

Let f 2 C1.H/ and consider

N.
p
�; fk.`

�1x0// WD
X

j W
p

�j �
p

�

ˇ

ˇ

ˇ

ˇ

Z

H

f .`�1s/ub
j jH .s/ dS.s/

ˇ

ˇ

ˇ

ˇ

2

:

Proposition 15. we have

N.
p
�; fk.`

�1x0// D �1=2

Z

H

f 2
` dS CO.��1=2C / for all  > 0:

This is proved by the standard Tauberian method. LetE.t; x; y/ denote the ker-

nel of cos t
p

��. We further denote by Eb.t; q; q0/ the Dirichlet, resp. Neumann

data of the wave kernel on H . First we consider the cosine transform of

dN.
p
�; fk.`

�1x0// WD
X

j

ˇ

ˇ

ˇ

ˇ

Z

H

fk.`
�1s/ub

j jH .s/ dS.s/
ˇ

ˇ

ˇ

ˇ

2

ıp
�j
;

given by

Sfk.`�1x0/.t / WD
Z

H

Z

H

Eb.t; q; q0/fk.`
�1q/fk.`

�1q0/ dS.q/ dS.q0/

D
X

j

cos t
q

�j

ˇ

ˇ

ˇ

ˇ

Z

H

fk.`
�1q/ub

j .q/ dS.q/

ˇ

ˇ

ˇ

ˇ

2

:

We then introduce a smooth cuto� � 2 S.R/ with supp O� � .�"; "/, where O� is the

Fourier transform of �, and consider

Sfk.`�1x0/.
p
�; �/ D

Z

R

O�.t/ Sfk.`�1x0/.t /e
it

p
� dt:

Lemma 16. If supp O� is contained in a su�ciently small interval around 0, with

O� � 1 in a smaller interval, then for both Dirichlet and Neumann data ub
j ,

Sfk
.
p
�; �/ D �

2

X

j

�
�
p
� �

p
�j

�

jhub
j ; fk.`

�1x0/ij2

D kfk.`
�1x0/k2

L2.H/
CO.��1=2C /; for all  > 0:
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Proof. Until the end, the proof is the same as in [17, 18]. In [18] we assumed that

the boundary ofM was (weakly) concave and here we assume that the curveH is

a geodesic.

By wave front set considerations (see [23, 11]), there exists ı0 > 0 so that the

sing suppSfk.`�1x0/.t / \ .�ı; ı/ D ¹0º:

The singular times t 6D 0 are the lengths ofH -orthogonal geodesics, i.e. geodesics

which intersect H orthogonally at both endpoints. The singularities at t 6D 0 are

of lower order than the singularity at t D 0.

We now determine the singularity at t D 0 when we introduce the small-

scale f`, using a Hörmander-style small time parametrix for the even wave kernel

E.t; x; q/.There exists an amplitude A so that modulo smoothing operators,

E.t; x; q/ �
Z

T �
q X

A.t; x; q; �/ exp.i.hexp�1
q .x/; �i � t j�j// d�:

The amplitude has order zero. We then take the Cauchy data on H .

Changing variables � !
p
��, the trace may be expressed in the form,

�

Z

R

Z

H

Z

H

Z

T �
q X

O�.t/eit
p

��q.�/

A.t; q0; q; ��/ exp
�

i
p
�.hexp�1

q .q0/; �i � t j�j/
�

fk.`
�1q/fk.`

�1q/ d� dt dS.q/ dS.q0/:

(4.1)

We now compute the asymptotics by the stationary phase method. As in [17],

we calculate the expansion by putting the integral over T �
q X in polar coordinates,

Z

R

Z 1

0

Z

H

Z

H

Z

S�
q X

O�.t/eit
p

��q.�/A.t; q
0; q/

exp
�

i
p
�r.hexp�1

q .q0/; !i � t /
�

fk.`
�1q/fk.`

�1q0/rn�1 dr d! dt dS.q/ dS.q0/;

and in these coordinates the phase becomes,

‰.q; �; t; !; q0/ WD t C rhexp�1
q .q0/; !i � t r:

We get a non-degenerate critical point in the variables .t; r/ when r D 1,

t D hexp�1
q .q0/; !i:

We are mainly interested in the singularity at t D 0 and consider that �rst.

If t D 0 then hexp�1
q .q0/; !i D 0. Since ! is an arbitrary unit co-vector at q, this

implies q D q0. Due to this constraint we need to consider the stationary phase
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asymptotics of the full integral, and �nd that there is a non-degenerate critical

manifold given by the diagonal diag.H � H/ � S�
qM . We write ! D .� 0; �d /

where �d D
p

1� j� 0j2� where � is the unit normal to H .

When H is totally geodesic (our main application being a closed geodesic of

a negatively curved surface), then exp�1
q q0 integral over the unit coball bundle

B�H of H and replace ! D .� 0; �d / by � 0. Rescaling, our integral for �xed q is

1p
�

Z 1

0

Z

R

Z

B�H

ei
p

�.tCrhexp�1
q .q0/;� 0i�tr/

�q.!/ zA.t; q0; q; r!/fk.`
�1q/fk.`

�1q0/ O�.t/ d� 0 dS.q0/ dt dr;

for another amplitude zA. We �x q and consider the oscillatory integral in

.q0; � 0; t; r/.

In addition to the non-degenerate .r; t / block there is the .q0; � 0/ block, which

is non-degenerate and has Hessian determinant one. Thus, the singularity at t D 0

produces the term,

(4.1) D
Z

H

A.0; q; q; �q/jfk.`
�1q/j2 dS.q/CO.��1=2.log�/M /;

for some M > 0.

The remainder estimate in the method of stationary phase [14] has two contri-

butions. To localize near the critical point, one needs to integrate by parts, and

each time one gets O.`�1��1=2/. Thus, when ` is given by (1.2), this part of the

remainder is O.��1=2C / for any  > 0. Secondly the remainder in the stationary

phase

expansion to leading order is

O.��1=2kfk.`
�1q/kC 6/ D O.��1=2`�6/ D O.��1=2C /; for all  > 0:

Thus, the remainders are as stated in the Lemma. �

Proposition 15 then follows by a standard Tauberian theorem [19] (Appen-

dix B).

4.1. Uniformity for small balls. As in the logarithmic QER proof, we need to

extract a density one subsequence for which the Kuznecov bounds hold uniformly

for all xk . We use the same Chebyshev argument as in §3.6, but based on

Proposition 16 rather than on variance sums. The terms are positive and therefore

the same Chebyshev argument gives a subsequence of density one for which the

limits.
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We only consider Dirichlet data of Neumann eigenfunctions, since the same

argument is valid for Neumann data of Dirichlet eigenfunctions. In the notation

of [10] (Step 2, p. 3283) we de�ne the ‘exceptional sets’

ƒxk
.h/ WD ¹j W Ej 2 Œ1; 1C h�;

jhub
j ; fk.`

�1x0
k/ij2 � .log�j /

1=3�
�1=2
j kfk.`

�1.q/k2
L2.H/

º:

We again apply Chebyshev’s inequality

Prob¹X � C º � 1

C
EX

with

X D
jhub

j ; fk.`
�1x0

k
/ij2

kf`k2
L2.H/

with respect to normalized counting measure of Ej 2 Œ1; 1C h� and with10

C D �
�1=2
j j log�j j1=3:

The Kuznecov sum estimate of Proposition 15 says that the expected valued of X

is O.��1/. It follows that

#ƒb
xk
.h/

N.h/
� .j log�j/�1=3:

For 0 < ˛ < 1
3d

de�ne

ƒ.h/ D
N.h/
[

kD1

ƒxk
.h/; N.h/ � C j loghj˛d ;

and

�.h/ WD ¹j WEj 2 Œ1; 1C h�ºnƒ.h/:

Adding the Chebychev upper bounds for the j log hj˛d exceptional sets gives

#ƒ.h/

N.h/
� .j loghj/˛d j loghj�1=3;

hence
#�.h/

#¹j WEj 2 Œ1; 1h�
� 1 � .j loghj/˛d�1=3:

10 Here, the choice of 1=3 is rather arbitrary: it could be any number < 1
2
. We pick it to be 1

3

to obtain the same constraints on ˛ as for variance sums.
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Again if ˛ < 1
3d

we obtain a subsequence of density one.

If j 2 �.h/ then

jhuj ; fk.`
�1x0

k/ij2 � .log�j /
1=3�

�1=2
j kf`k2

L2.H/

uniformly for all xk.

This completes the proof of Proposition 3.

4.2. Conclusion of the proof. We now restrict to the surfaces of Theorem 1.1

in dimension d D 2, and conclude the proof along the lines sketched in §1.3

of the Introduction. We only consider Dirichlet data of even eigenfuntions 'j ;

the proof for Neumann data of odd eigenfunctions is the same. The lower bound

of Proposition 3 and 8 proves that for a density one subsequence,
Z

B.xk ; j̀ /\H

j'j j2dSg � Cg j̀ :

Combining with the sup norm estimate

j'j jL1 � Cg

�1=4

p

log�
;

we �nd that along the density one subsequence,
Z

B.xk ; j̀ /\H

j'j j � �
�1=4
j

q

log�j j̀ : (4.2)

But by Proposition 3, along the density one subsequence
ˇ

ˇ

ˇ

ˇ

Z

B.xk ; j̀ /\H

'jds

ˇ

ˇ

ˇ

ˇ

� C0 j̀�
�1=4
j .log�j /

1=3: (4.3)

Comparing (4.2) and (4.3) shows that
Z

B.xk ; j̀ /\H

j'j jdSg >

Z

B.xk ; j̀ /\H

'jdSg

for all balls in the cover (1.4) for su�ciently large j in the density one subse-

quence. It follows that 'j jB.xk ;`/\H must have a zero for every k.

The rest of the proof of Theorem 1.1 is the same as in [17].
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