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Resonances for asymptotically hyperbolic manifolds:

Vasy’s method revisited

Maciej Zworski1
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Abstract. We revisit Vasy’s method ([27] and [28]) for showing meromorphy of the

resolvent for (even) asymptotically hyperbolic manifolds. It provides an e�ective de�nition

of resonances in that setting by identifying them with poles of inverses of a family of

Fredholm di�erential operators. In the Euclidean case the method of complex scaling

made this available since the 70’s but in the hyperbolic case an e�ective de�nition was not

known till [27] and [28]. Here we present a simpli�ed version which relies only on standard

pseudodi�erential techniques and estimates for hyperbolic operators. As a byproduct we

obtain more natural invertibility properties of the Fredholm family.
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1. Introduction

We present a version of the method introduced by András Vasy [27] and [28] to

prove meromorphic continuations of resolvents of Laplacians on even asymptoti-

cally hyperbolic spaces – see (1.2). That meromorphy was �rst established for any

asymptotically hyperbolic metric by Mazzeo and Melrose [22]. Other early con-

tributions were made by Agmon [1], Fay [9], Guillopé and Zworski [13], Lax and

Phillips [20], Mandouvalos [21], Patterson [24], and Perry [25]. Guillarmou [11]

showed that the evenness condition was needed for a global meromorphic contin-

uation and clari�ed the construction given in [22].

1 Partial support by the National Science Foundation under the grant DMS-1500852 is

gratefully acknowledged.
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Vasy’s method is dramatically di�erent from earlier approaches and is related

to the study of stationary wave equations for Kerr–de Sitter black holes – see [27]

and [8, §5.7]. Its advantage lies in relating the resolvent to the inverse of a family of

Fredholm di�erential operators. Hence, microlocal methods can be used to prove

results which have not been available before, for instance existence of resonance

free strips for non-trapping metrics [28]. Another application is the work of

Datchev and Dyatlov [3] on the fractal upper bounds on the number of resonances

for (even) asymptotically hyperbolic manifolds and in particular for convex co-

compact quotients of Hn. Previously only the case of convex co-compact Schottky

quotients was known [12] and that was established using transfer operators and

zeta function methods. In the context of black holes the construction has been

used to obtain a quantitative version of Hawking radiation [4], exponential decay

of waves in the Kerr–de Sitter case [5], the description of quasi-normal modes for

perturbations of Kerr–de Sitter black holes [6] and rigorous de�nition of quasi-

normal modes for Kerr–Anti de Sitter black holes [10]. The construction of the

Fredholm family also plays a role in the study of linear and non-linear scattering

problems – see [2], [15], [16], and references given there.

A related approach to meromorphic continuation, motivated by the study of

Anti-de Sitter black holes, was independently developed by Warnick [30]. It is

based on physical space techniques for hyperbolic equations and it also provides

meromorphic continuation of resolvents for even asymptotically hyperbolic met-

rics [30, §7.5].

We should point out that for a large class of asymptotically Euclidean mani-

folds an e�ective characterization of resonances has been known since the intro-

duction of the method of complex scaling by Aguilar and Combes, Balslev and

Combes, and Simon in the 1970s – see [8, §4.5] for an elementary introduction

and references and [31] for a class asymptotically Euclidean manifolds to which

the method applies.

In this note we present a direct proof of meromorphic continuation based

on standard pseudodi�erential techniques and estimates for hyperbolic equations

which can found, for instance, in [18, §18.1] and [18, §23.2] respectively. In particu-

lar, we prove Melrose’s radial estimates [23] which are crucial for establishing the

Fredholm property. A semiclassical version of the approach presented here can

be found in [8, Chapter 5] – it is needed for the high energy results [3] and [28]

mentioned above.

We now de�ne even asymptotically hyperbolic manifolds. Suppose that xM is

a compact manifold with boundary @M ¤ ; of dimension n C 1. We denote by

M the interior of xM . The Riemannian manifold .M; g/ is even asymptotically
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hyperbolic if there exist functions y0 2 xC1.M I @M/ and1 y1 2 xC1.M I .0; 2//,

y1j@M D 0, dy1j@M ¤ 0, such that

xM � y�1
1 .Œ0; 1�/ 3 m 7�! .y1.m/; y

0.m// 2 Œ0; 1� � @M (1.1)

is a di�eomorphism, and near @M the metric has the form,

gjy1�1 D
dy2

1 C h.y2
1/

y2
1

; (1.2)

where Œ0; 1� 3 t 7! h.t/, is a smooth family of Riemannian metrics on @M .

For the discussion of invariance of this de�nition and of its geometric meaning

we refer to [11, §2].

Let ��g � 0 be the Laplace–Beltrami operator for the metric g. Since the

spectrum is contained in Œ0;1/ the operator ��g � �.n � �/ is invertible on

H 2.M; d volg/ for Re � > n. Hence we can de�ne

R.�/ WD .��g � �.n � �//�1WL2.M; dvolg/ �! H 2.M; dvolg /; Re � > n:

(1.3)

We note that elliptic regularity shows that R.�/W PC1.M/ ! C1.M/, Re � > n.

We also remark that as a byproduct of the construction we will show the well

known fact that R.�/WL2 ! H 2 is meromorphic for Re � > n=2: the poles

correspond to L2 eigenvalues of ��g and hence lie in .n=2; n/.

We will prove the result of Mazzeo and Melrose [22] and Guillarmou [11]:

Theorem 1. Suppose that .M; g/ is an even asymptotically hyperbolic manifold
and that R.�/ is de�ned by (1.3). Then

R.�/W PC1.M/ �! C
1.M/;

continues meromorphically from Re � > n to C with poles of �nite rank.

The key point however is the fact that R.�/ can be related to P.i.� � n=2//�1,

where

� 7�! P.i.� � n=2//

is a family of Fredholm di�erential operators – see §2 and Theorem 2. That

family will be shown to be invertible for Re � > n which proves the meromorphy

1 We cannot write a paper about Vasy’s method without some footnotes: we follow the

notation of [18, Appendix B] where xC1.M / denotes functions which are smoothly extendable

across @M and PC1. xM / functions which are extendable to smooth functions supported in xM ;

see §3.
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of P.i.� � n=2//�1 – see Theorem 3. We remark that for Re � > n
2
, R.�/ is

meromorphic as an operator L2.M/ ! L2.M/ with poles corresponding to

eigenvalues of ��g .

The paper is organized as follows. In §2 we de�ne the family P.�/ and the

spaces on which it has the Fredholm property. That section contains the main

results of the paper: Theorems 2 and 3. In §3 we recall the notation from the

theory of pseudodi�erential operators and provide detailed references. We also

recall estimates for hyperbolic operators needed here. In §4 we prove Melrose’s

propagation estimates at radial points and in §5 we use them to show the Fredholm

property. §6 gives some precise estimates valid for Im� � 1. Finally §7 we

present invertibility of P.�/ for Im� � 1 and that proves the meromorphic

continuation. Except for references to [18, 18.1] and [18, 23.2] and some references

to standard approximation arguments [8, Appendix E] (with material readily

available in many other places) the paper is self-contained.

Acknowledgements. I would like to thank Semyon Dyatlov and András Vasy for

helpful comments on the �rst version of this note. I am particularly grateful to

Peter Hintz for many suggestions and for his help with the proof of Proposition 8

and to the anonymous referee whose careful reading lead to many improvements.

2. The Fredholm family of di�erential operators

Let y0 2 @M denote the variable on @M . Then (1.2) implies that near @M , the

Laplacian has the form

��g D .y1Dy1
/2 C i.nC y2

1.y
2
1 ; y

0//y1Dy1
� y2

1�h.y2
1

/; (2.1)

where

.t; y0/ WD �@t
Nh.t/= Nh.t/; Nh.t/ WD deth.t/; D WD 1

i
@:

Here�h.y2
1

/ is the Laplacian for the family of metrics on @M depending smoothly

on y2
1 and  2 C1.Œ0; 1� � @M/. (The logarithmic derivative de�ning  is

independent of of the density on @M needed to de�ne the determinant Nh.)

In §6 we will show that the unique L2 solutions to

.��g � �.n � �//u D f 2 PC1.M/; Re � > n;

satisfy

u D y
�
1
xC1.M/ and y

��
1 ujy1<1 D F.y2

1 ; y
0/; F 2 xC1.Œ0; 1�� @M/.
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Eventually we will show that the meromorphic continuation of the resolvent

provides solutions of this form for all � 2 C that are not poles of the resolvent.

This suggests two things:

� to reduce the investigation to the study of smooth solutions we should con-

jugate ��g � �.n� �/ by the weight y
�
1 ;

� the desired smoothness properties should be stronger in the sense that the

functions should be smooth in .y2
1 ; y

0/.

Motivated by this we calculate,

y
��
1 .��g � �.n � �//y

�
1 D x1P.�/; x1 D y2

1 ; x
0 D y0; � D i.� � n

2
/; (2.2)

where, near @M ,

P.�/ D 4.x1D
2
x1

� .�C i/Dx1
/ ��h C i.x/

�

2x1Dx1
� � � i n�1

2

�

: (2.3)

The switch to � is motivated by the fact that numerology is slightly lighter on the

�-side for ��g and on the �-side for P.�/.

To de�ne the operator P.�/ geometrically we introduce a new manifold using

coordinates (1.1) and x1 D y2
1 for y1 > 0:

X D Œ�1; 1�x1
� @M t .M n y�1..0; 1///: (2.4)

We note that X1 WD X \ ¹x1 > 0º is di�eomorphic to M but xX1 and xM have

di�erent C1-structures.2

We can extend x1 ! h.x1/ to a family of smooth non-degenerate metrics on

@M on Œ�1; 1�. Using (2.1) that provides a natural extension of the function 

appearing (2.2).

The Laplacian ��g is a self-adjoint operator on L2.M; d volg /, where near

@M and in the notation of (2.1),

d volg D y�n�1
1

Nh.y2
1 ; y

0/dy1dy
0;

where dy0 in a density on @M used to de�ne the determinant Nh D deth. The

conjugation (2.2) shows that for � 2 R (� 2 n
2

C iR) x1P.�/ is formally self-

adjoint with respect to x�1
1

Nh.x/dx1dx
0 and consequently P.�/ is formally self-

adjoint for

d�g D Nh.x/dx: (2.5)

2 This construction appeared already in [13, §2] and P.�/ D Q.n=4 � i�=2/ where Q.�/

was de�ned in [13, (2.6) and (3.12)]. However the signi�cance of Q.�/ did not become clear

until [27].
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This will be the measure used for de�ning L2.X/ in what follows. In particular

we see that the formal adjoint with respect to d�g satis�es

P.�/� D P. N�/: (2.6)

We can now de�ne spaces on which P.�/ is a Fredholm operator. For that we

denote by xH s.Xı/ the space of restrictions of elements of H s on an extension of

X across the boundary to the interior of X – see [18, §B.2] and §3.2 – and put

Ys WD xH s.Xı/; Xs WD ¹u 2 YsC1WP.0/u 2 Ysº: (2.7)

Since the dependence on� inP.�/ occurs only in lower order terms we can replace

P.0/ by P.�/ in the de�nition of X.

Motivation. Since for x1 < 0 the operator P.�/ is hyperbolic with respect

to the surfaces x1 D a < 0 the following elementary example motivates the

de�nition (2.7). Consider P D D2
x1

�D2
x2

on Œ�1; 0�� S1 and de�ne

Ys WD ¹u 2 xH s.Œ�1;1/� S
1/W suppu � Œ�1; 0� � S

1º;

Xs WD ¹u 2 YsC1WPu 2 Ysº:

Then standard hyperbolic estimates – see for instance [18, Theorem 23.2.4] – show

that for any s 2 R, the operator P WXs ! Ys is invertible. Roughly, the support

condition gives 0 initial values at x1 D 0 and hence Pu D f can be uniquely

solved for x1 < 0.

We can now state the main theorems of this note:

Theorem 2. Let Xs;Ys be de�ned in (2.7). Then for Im� > �s � 1
2

the operator

P.�/W Xs �! Ys;

has the Fredholm property, that is

dim¹u 2 XsWP.�/u D 0º < 1; dim Ys=P.�/Xs < 1;

and P.�/Xs is closed.

The next theorem provides invertibility of P.�/ for Im� > 0 and that shows

the meromorphy of P.�/�1 – see [8, Theorem C.4]. We will use that in Propo-

sition 8 to show the well known fact that, in addition to Theorem 1, R.n
2

� i�/ is

meromorphic on L2.M; dvolg/ for Im� > 0.
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Theorem 3. For Im� > 0, �2 C .n
2
/2 … Spec.��g/ and s > � Im� � 1

2
,

P.�/W Xs �! Ys

is invertible. Hence, for s 2 R and Im� > �s � 1
2
, � 7! P.�/�1W Ys ! Xs ;

is a meromorphic family of operators with poles of �nite rank.

For interesting applications it is crucial to consider the semiclassical case, that

is, uniform analysis as Re� ! 1 – see [8, Chapter 5] – but to indicate the basic

mechanism behind the meromorphic continuation we only present the Fredholm

property and invertibility in the upper half-plane.

3. Preliminaries

Here we review the notation and basic facts need in the proofs of Theorems 2

and 3.

3.1. Pseudodi�erential operators. We use the notation of [18, §18.1] and for

X , an open C1-manifold we denote by ‰m.X/ the space of properly supported
pseudodi�erential operators of order m. (The operator AWC1

c .X/ ! D0.X/ is

properly supported if the projections from support of the Schwartz kernel of A

in X � X to each factor are proper maps, that is inverse images of compact sets

are compact. The support of the Schwartz kernel of any di�erential operator is

contained in the diagonal in X �X and clearly has that property.)

For A 2 ‰m.X/ we denote by �.A/ 2 Sm.T �X n 0/=Sm�1.T �X n 0/ the

symbol of A, sometimes writing �.A/ D a 2 Sm.T �X n0/with an understanding

that a is a representative from the equivalence class in the quotient.

We will use the following basic properties of the symbol map: if A 2 ‰m.X/

and B 2 ‰k.X/ then

�.AB/ D �.A/�.B/ 2 SmCk=SmCk�1;

�.i ŒA; B�/ D H�.A/�.B/ 2 SmCk�1=SmCk�2;

where for a 2 Sm, Ha is the Hamilton vector �eld of a.

For any operator P 2 ‰m.X/ we can de�ne WF.P / � T �X n 0 (the smallest

subset outside of which A has order �1 – see [18, (18.1.34)]). We also de�ne

Char.P / the smallest conic closed set outside of which P is elliptic – see [18,

De�nition 18.1.25]. A typical application of the symbolic calculus and of this

notation is the following statement [18, Theorem 18.1.240]: if P 2 ‰m.X/ and V
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is an open conic set such that xV \ Char.P / D ; then there exists Q 2 ‰�m.X/

such that

WF.I � PQ/\ V D WF.I �QP/ \ V D ;: (3.1)

This means that Q is a microlocal inverse of P in V .

We also recall that the operators in A 2 ‰m.X/ have mapping properties

AWH s
loc.X/ �! H s�m

loc .X/; AWH s
comp.X/ �! H s�m

comp.X/; s 2 R:

Combined with (3.1) we obtain the following elliptic estimate: if A;B 2 ‰0.X/

have compactly supported Schwartz kernels, P 2 ‰m.X/ and

WF.A/ \ .Char.B/ [ Char.P // D ;;

then for any N there exists C such that

kAukH sCm � CkBPukH s C CkukH �N : (3.2)

3.2. Hyperbolic estimates. If X is a smooth compact manifold with bound-

ary we follow [18, §B.2] and de�ne Sobolev spaces of extendible distributions,
xH s.Xı/ and of supported distributions PH s.X/. Here X D Xı t@X andXı is the

interior ofX . These are modeled on the case ofX D xRn
C,Rn

C WD ¹x 2 RnW x1 > 0º

in which case

xH s.Rn
C/ D ¹uW there exists U 2 H s.Rn/ such that u D U jx1>0º;

PH s.xRn
C/ WD ¹u 2 H s.Rn/W suppu � xRn

Cº:

The key fact is that the L2 pairing (de�ned using a smooth density on X)

PC1.X/ � xC1.Xı/ 3 .u; v/ 7�!

Z

X

u.x/ Nv.x/dx;

extends by density to .u; v/ 2 PH�s.X/ � xH.Xı/ and provides the identi�cation

of dual spaces,

. xH s.Xı//� ' PH�s.X/; s 2 R: (3.3)

Suppose that P D D2
t C P1.t; x;Dx/Dt C P0.t; x;Dx/, x 2 N , where N

is a compact manifold and Pj 2 C1.Rt I‰
2�j .N //, is strictly hyperbolic with

respect to the level surfaces t D const – see [18, §23.2]. For any T > 0 and s 2 R,

we de�ne

zH s.Œ0; T / �N/ D ¹uWu D U jŒ0;T /�N ; U 2 H s.R �N/; suppU � Œ0;1/� N º;
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with the norm de�ned as in�mum ofH s norms over all U 2 H s with uŒ0;T / D U .

(These spaces combines the PH s space at the t D 0 with xH s at t D T .)

Then

for all f 2 zH s.Œ0; T / �N/

there exists a unique u 2 zH sC1.Œ0; T / � N/

such that Pu D f;

(3.4)

and

kuk zH sC1.Œ0;T /�N / � Ckf k zH s.Œ0;T /�N /; (3.5)

see [18, Theorem 23.2.4].

If we de�ne

Ys WD zH s.Œ0; T / � N/; Xs WD ¹u 2 YsC1WPu 2 Ysº

then P WXs ! Ys is invertible. In our application we will need the following

estimate which follows from the invertibility of P : if u 2 xH s..0; T /�N/ then for

any ı > 0,

kuk xH sC1..0;T /�N / � CkPuk xH s..0;T /�N / C Ckuk xH sC1..0;ı//�N /: (3.6)

The operator P.�/ de�ned in (2.3) is of the form

x1.D
2
x1

� P1.x/Dx1
C P0.x;Dx0//;

where P1 2 C1 and P0 is elliptic with a negative principal symbol for �1 �

x1 < �" < 0, for any �xed ". That means that for t D 1 C x1 and T D 1 � " or

t D �" � x1, T D 1 � ", the operator is (up to the non-zero smooth factor x1) is

of the form to which estimates (3.5) and (3.6) apply.

We will also need an estimate valid all the way to x1 D 0:

Lemma 1. Suppose that u 2 PC1.X \ ¹x1 � 0º/ and P.�/u D 0. Then u � 0.

As pointed out by András Vasy this follows from general properties of the

de Sitter wave equation [29, Proposition 5.3] but we provide a simple direct proof.

Proof. We note that if ujx1��" D 0 for some " > 0 then u � 0 by (3.5).

That follows from energy estimates. We want to make that argument quantitative.

We will work in Œ�1;�"� � @M and de�ne d WC1.@M/ ! C1.@M I T �@M/ to

be the di�erential. We denote by d� its Hodge adjoint with with respect to the

(x1-dependent) metrics h, d�
h

WC1.@M I T �@M/ ! C1.@M/. Then

P.�/ D 4x1D
2
x1

C d�
h d � 4.�C i/Dx1

� i.x/.2x1Dx1
� � � i n�1

2
/:
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Since for f 2 C1.@M/ and any �xed x1, h D h.x1/,
Z

@M

d�
h .vdu/

Nf dvolh D

Z

@M

hvdu; df ih dvolh

D

Z

@M

.hdu; d. Nvf /ih � hdu; d Nvih
Nf /dvolh

D

Z

@M

.vd�
hdu � hdu; d Nvi/ Nf dvolh;

we conclude that d�
h
.vdu/ D vd�

h
du � hdu; d Nvih. From this we derive the

following form of the energy identity valid for x1 < 0:

@x1
.jx1j�N .�x1j@x1

uj2 C jduj2h C juj2//C jx1j�Nd�
h .Re. Nux1

du//

D 2Re jx1j�N Nux1
P.�/uCN jx1j�N �1.�x1jux1

j2 C jduj2h C juj2/

C jx1j�NR.�; u/;

where R.�; u/ is a quadratic form in u and du, independent of N . We now �x

ı > 0 and apply Stokes’s theorem in Œ�ı;�"��M . ForN large enough (depending

on �) that gives
Z

@M

.jux1
j2 C jduj2h/jx1D�ı d volh � C"�N

Z

@M

.jux1
j2 C jduj2h/jx1D�" d volh

� CK"
�N CK ;

for any K, as " ! 0C (since u vanishes to in�nite order at x1 D 0). By choosing

K > N we see that the left hand side is 0 and that implies that u is zero. �

4. Propagation of singularities at radial points

To obtain meromorphic continuation of the resolvent (1.3) we need propagation

estimates at radial points. These estimates were developed by Melrose [23] in the

context of scattering theory on asymptotically Euclidean spaces and are crucial in

the Vasy approach [27]. A semiclassical version valid for very general sinks and

sources was given in Dyatlov and Zworski [7] (see also [8, Appendix E]).

To explain this estimates we �rst review the now standard results on propa-

gation of singularities due to Hörmander [17]. Thus let P 2 ‰m.X/, with a real

valued symbol p WD �.P /. Suppose that in an open conic subset of U � T �X n0,

�.U / b X (� WT �X ! X),

p.x; �/ D 0; .x; �/ 2 U H) Hp and �@� are linearly independent at .x; �/.

(4.1)
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Here Hp is the Hamilton vector �eld of p and �@� is the radial vector �eld.

The latter is invariantly de�ned as the generator of the RC action on T �X n 0

(multiplication of one forms by positive scalars).

The basic propagation estimate is given as follows: suppose that A;B; B1 2

‰0.X/ and WF.A/[ WF.B/ � U , WF.I � B1/ \ U D ;.

We also assume that that WF.A/ is forward controlled by { Char.B/ in the

following sense: for any .x; �/ 2 WF.A/ there exists T > 0 such that

exp.�THp/.x; �/ … Char.B/; exp.Œ�T; 0�Hp/.x; �/ � U: (4.2)

The forward control can be replaced by backward control, that is we can demand

existence of T < 0. That is allowed since the symbol is real.

The crucial estimate is then given by

kAukH sCm�1 � CkB1PukH s C CkBukH sCm�1 C CkukH �N ; (4.3)

where N is arbitrary and C is a constant depending on N . A direct proof can be

found in [17]. The estimate is valid with u 2 D0.X/ for which the right hand side

is �nite – see [8, Exercise E.28].

We will consider a situation in which the condition (4.1) is violated. We will

work on the manifold X given by (2.4), near x1 D 0. In the notation of (4.1) we

assume that, near x1 D 0,

P 2 Di�2.X/; p D �.P / D x1�
2
1 C q.x; � 0/; q.x1; x

0; � 0/ WD j� 0j2h.x1;x0/;

(4.4)

.x0; � 0/ 2 T �@M , .x; �/ 2 T �X n 0. The Hamilton vector �eld is given by

Hp D �1.2x1@x1
� �1@�1

/C @x1
q.x; � 0/@�1

CHq.x1/; (4.5)

where Hq.x1/ is the Hamilton vector �eld of .x0; � 0/ 7! q.x1; x
0; � 0/ on T �@M .

We see that the condition (4.1) is violated at

� D ¹.0; x0; �1; 0/W x
0 2 @M; �1 2 R n 0º � T �X n 0; (4.6)

that is

� D N �Y n 0; Y WD ¹x1 D 0º:

In fact, HpjN �Y D ��1.�@� jN �Y /. Nevertheless Propositions 2 and 3 below

provide propagation estimates valid in spaces with restricted regularity.
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We note that � D p�1.0/ \ ��1.Y / and that near ��1.Y /, † DW p�1.0/ has

two disjoint connected components:

† D †C t†�; �˙ WD †˙ \ �; (4.7)

where

†˙ \ ¹jx1j < 1º WD ¹.�q.x; � 0/=�2; x0; �; � 0/W ˙� > 0; jx1j < 1º:

The set �C is a source and �� is a sink for the �ow projected to the sphere at

in�nity – see Figure 1.

A

@x�C

B1

@xT �X

A

@x��

B1

B

@xT �X

Figure 1. An illustration of the behaviour of the Hamilton �ows for radial sources and

for radial sinks and of the localization of operators in the estimates (4.10) and (4.13)

respectively. The horizontal line on the top denotes the boundary, @xT �X , of the �ber-
compacti�ed cotangent bundle xT �X . The shaded half-discs then correspond to conic

neighbourhoods in T �X . In the simplest example of X D .�1; 1/ � R=Z, and p D

x1�
2
1

C �2
2
, Hp D �1.2x1@x1

� �1@�1
/ C 2�2@x2

, x2 2 R=Z. Near @x�˙ explicit

(projective) compacti�cations is given by r D 1=j�1j, (so that @xT �X D ¹r D 0º),

� D �2=j�1j, with x (the base variable) unchanged. In this variables, near @x�˙ (boundaries

of compacti�cations of �˙ we check that r@r D ��1@�1
� �2@�2

and �@� D � 0@�0 . Hence

near �˙, Hp D ˙r.�@� C r@r C 2x1@x1
C 2�@x2

/ and (after rescaling) we see a source

and a sink.

We now write P as follows:

P D P0 C iQ; P0 D P �
0 ; Q D Q�; (4.8)

where the formal L2-adjoints are taken with respect to the density dx1d volh.

We can now formulate the following propagation result at the source.

We should stress that changing P to �P changes a source into a sink and the

relevant thing is the sign of �.Q/ 2 S1=S0 which then changes – see (4.9) below.
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We �rst state a radial source estimate:

Proposition 2. In the notation of (4.7) and (4.8) put

sC D sup
�C

j�1j�1�.Q/� 1
2
; (4.9)

and take s > sC. For any B1 2 ‰0.X/ satisfying WF.I � B1/ \ �C D ; there
exists A 2 ‰0.X/ with Char.A/ \ �C D ; such that for u 2 C1

c .X/

kAukH sC1 � CkB1PukH s C CkukH �N ; (4.10)

for any N .

Remarks. 1. The supremum in (4.9) should be understood as being taken at the

�-in�nity or as sC D supx02@M lim�1!1 j�1j�1�.Q/.0; x0; �1; 0/ � 1
2
.

2. An approximation argument – see [8, Lemma E.42] for a textbook presentation

and also [14], [27], and [23] – shows that (4.10) is valid for u 2 H�N , suppu \

@X D ;, such that B1u 2 H sC1, B1Pu 2 H s.

3. Using a regularization argument – see for instance [17, §3.5] or [8, Exer-

cises E.28 and E.33] – (4.10) holds for all u 2 D0.X/, suppu � K where K

is a �xed compact subset of Xı, such that B1u 2 H r for some r > sC C 1.

In particular, when combined with the hyperbolic estimate (3.6), that gives

Pu 2 xC1.X/; u 2 xH r.X/; r > sC C 1 H) u 2 xC1.X/: (4.11)

In fact, the smoothness near x1 D 0 is obtained from the estimate (4.10) and

elliptic estimates applied to �u, � 2 C1
c .X/ and then the hyperbolic estimates

show smoothness for x1 < �". We also need use Proposition 2 applied to �P ,

at the sinks of P , noting that for di�erential operator sC will not change.

4. To see that the threshold (4.9) is essentially optimal for (4.11) we consider

X D .�1; 1/ � R=Z and P D x1D
2
x1

� i.� C 1/Dx1
� D2

x2
, x2 2 R=Z, � 2 R.

In this case sC D �� � 1
2
. Put u.x/ WD �.x1/.x1/

��
C , � … �N, and and note that

.x1D
2
x1

� i.�C 1/Dx1
/.x1/

��
C D 0:

Hence Pu 2 C1
c .X/ and u 2 H��C 1

2 � nH��C 1
2 .

The radial sink estimate requires a control condition similar to that in (4.2).

There is also a change in the regularity condition.
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Proposition 3. In the notation of (4.7) and (4.8) put

s� D sup
��

j�1j�1�.Q/ � 1
2
; (4.12)

and take s > s�. For any B1 2 ‰0.X/ satisfying WF.I � B1/ \ �� D ; there
exist A;B 2 ‰0.X/ such that

Char.A/ \ �� D ;; WF.B/ \ �� D ;

and for u 2 C1
c .X/,

kAukH �s � CkB1PukH �s�1 C CkBukH �s C CkukH �N ; (4.13)

for any N .

Remark. A regularization method – see [8, Exercise 34] – shows that (4.13) is

valid for u 2 D0.Xı/, suppu � K where K b Xı is a �xed set, and for which the

right hand side of (4.13) is �nite.

Proof of Proposition 2. The basic idea is to produce an operator Fs 2 ‰sC 1
2 .X/,

elliptic on WF.A/ such that for s > sC and u 2 C1
c .X/, we have

kFsuk2

H
1
2

� CkB1PukH s kFsuk
H

1
2

C CkB1uk2

H
sC 1

2

C Ckuk2
H �N : (4.14)

This is achieved by writing, in the notation of (4.8),

ImhPu; F �
s Fsui D h i

2
ŒP0; F

�
s Fs �u; ui C RehQu; F �

s Fsui; (4.15)

and using the �rst term on the right hand side to control the left hand side

of (4.14). We note here that since WF.Fs/ \ WF.I � B1/ D ;, then in any

expression involving Fs we can replace u and Pu by B1u and B1Pu respectively

by introducing errors O.kukH �N / for anyN . Hence from now on we will consider

estimates with u only.

To construct a suitable Fs we take  1 2 C1
c ..�2ı; 2ı/I Œ0; 1�/,  1.t / D 1,

for jt j < ı, t 0
1.t / � 0, and  2 2 C1.R/,  2.t / D 0 for t � 1,  2.t / D 1, t � 2,

and propose

Fs WD  1.x1/ 1.��h=D
2
x1
/ 2.Dx1

/D
sC 1

2
x1

2 ‰sC 1
2 .X/;

�.Fs/ DW fs.x; �/ D  1.x1/ 1.q.x; �
0/=�2

1 / 2.�1/�
sC 1

2

1 :

We note that because of the cut-o�  2, D
sC 1

2
x1

and ��h=D
2
x1

are well de�ned.
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For j�j large enough (which implies that �1 > j�j=C on the support of fs if ı

is small enough) we use (4.5) to obtain

Hpfs.x; �/ D �
sC 3

2

1 .2x1 
0
1.x1/ 1.�2=�1/C 2 1.x1/.q.x; �

0/=�2
1 / 

0
1.q.x; �

0/=�2
1 /

� .s C 1
2
/ 1.x1/ 1.q.x; �

0/=�2
1 // 2.�1/

� �.s C 1
2
/�1fs:

(4.16)

In particular,

fsHpfs C .s C 1
2
/�1f

2
s � 0; j�j > C0: (4.17)

The inequality (4.17) is important since �. i
2
ŒP0; F

�
s Fs �/ D fsHpfs. Hence

returning to (4.15), using (4.17), the sharp Gårding inequality [18, Theorem

18.1.14] and the fact that F �
s ŒQ; Fs� 2 ‰2sC1.X/, we see that

ImhPu; F �
s Fsi D h i

2
ŒP0; F

�
s Fs �u; ui C hQFsu; Fsui C hF �

s ŒQ; Fs�u; ui

� h i
2
ŒP0; F

�
s Fs �u; ui C hQFsu; Fsui C Ckuk2

H
sC 1

2

� h.�.s C 1
2
/Dx1

CQ/Fsu; Fsui C Ckuk2

H
sC 1

2

:

SinceDx1
is elliptic (and positive) on WF.Fs/we can use (3.1) to see that if s > sC

(where sC is given in (4.9)) then

kFsuk2

H
1
2

� � ImhPu; F �
s Fsui C Ckuk2

H
sC 1

2

� kPukHs kF �
s FsukH �s C Ckuk2

H
sC 1

2

� 2kPuk2
Hs

C 1
2
kFsuk2

H
1
2

C Ckuk2

H
sC 1

2

:

Recalling the remark made after (4.15) this gives (4.14). Choosing A so that

Fs 2 ‰sC 1
2 is elliptic on WF.A/ we obtain

kAukH sC1 � CkB1PukH s C CkB1uk
H

sC 1
2
CkukH �N : (4.18)

It remains to eliminate the second term on the right hand side. We note that

WF.B1/ \ Char.A/ forward controlled by { Char.A/ in the sense of (4.2). Since

condition (4.1) is satis�ed on WF.B1/ \ Char.A/ we apply (4.3) to obtain

kB1uk
H

sC 1
2

� CkB2Puk
H

s� 1
2

C CkAuk
H

sC 1
2

C CkukH �N

� CkB2PukH s C 1
2
kAukH s C C 0kukH �N ; s C 1

2
> �N;

(4.19)
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where B2 has the same properties as B1 but a larger microsupport. (Here we used

an interpolation estimate for Sobolev spaces based on

t sC 1
2 �  t s C �2N �2s�1t�N ; t � 0:

That follows from rescaling � sC 1
2 � � s C ��N , � � 0.)

Combining (4.18) and (4.19) gives (4.10) with B1 replaced by B2. Relabeling

the operators concludes the proof. �

Proof of Proposition 3. The proof of (4.13) is similar to the proof of Proposi-

tion 2. We now use Gs 2 ‰�s� 1
2 .X/ given by the same formula:

Gs WD  1.x1/ 1.��h=D
2
x1
/ 2.Dx1

/D
�s� 1

2
x1

2 ‰�s� 1
2 .X/;

�.Gs/ DW gs.x; �/ D  1.x1/ 1.q.x; �
0/=�2

1 / 2.�1/�
�s� 1

2

1 :

However now,

gsHggs.x; �/ D �
�sC 1

2

1 gs.x; �/.2x1 
0
1.x1/ 1.�2=�1/

C 2 1.x1/.q.x; �
0/=�2

1 / 
0
1.q.x; �

0/=�2
1 /

� .s C 1
2
/ 1.x1/ 1.q.x; �

0/=�2
1 // 2.�1/

� �.s C 1
2
/j�1jg2

s C C0j�1j�2sb.x; �/2;

where b D �.B/ is chosen to control the terms involving t 0
1.t / (which now have

the “wrong" sign compared to (4.16)). The proof now proceeds in the same way

as the proof of (4.10) but we have to carry over the kBukH s terms. �

5. Proof of Theorem 1

We �rst show that kerXs
P.�/ is �nite dimensional when Im � > �s � 1

2
. Using

standard arguments this follows from the de�nition (2.7) and the estimate (5.1)

below. To formulate it suppose that

� 2 C
1
c .X/; �jx1<�2ı � 0; �jx1>�ı � 1;

where ı > 0 is a �xed (small) constant. Then for u 2 Xs and s > � Im� � 1
2
,

kuk xH sC1.Xı/ � CkP.�/uk xH s.Xı/ C k�ukH �N .X/: (5.1)
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Proof of (5.1). If �C 2 C1
c , supp�C � ¹x1 > 0º then elliptic estimates show that

k�CukH sC1 � k�CukH sC2 � CkPukH s C Ck�ukH �N :

Near x1 D 0 we use the estimates (4.10) (valid for u 2 Xs) – see Remark 2 after

Proposition 2) which give for, for �0 2 C1
c , supp�0 � ¹jx1j < ı=2º

k�0ukH sC1.X/ � CkP.�/uk xH s.X/ C Ck�ukH �N .X/: (5.2)

To prove (5.2) we microlocalize to neighbourhoods of ¹˙�1 > j�j=C º and

use (4.10) for P.�/ and �P.�/ respectively – from (2.3) we see that

sC D � Im� �
1

2
for P D P.�/

and

sC D � Im� �
1

2
for P D �P.�/

(a rescaling by a factor of 4 is needed by comparing (2.3) with (4.4)). Elsewhere

the operator is elliptic in jx1j < ı.

Finally if �� is supported in ¹x1 < �ı=2º then the hyperbolic estimate (3.6)

shows that

k��uk xH sC1.X/ � CkP.�/uk xH s.X/ C Ck�0ukH sC1.X/:

Putting these estimates together gives (5.1). �

To show that the range of P on Xs is of �nite codimension (and hence closed

[18, Lemma 19.1.1]) we need the following

Lemma 4. The cokernel of P.�/ in PH�s.X/ ' Y
�
s (see (3.3))

cokerXs P.�/ WD ¹v 2 PH�s.X/W for all u 2 Xs ; hP.�/u; vi D 0º;

is equal to the kernel of P. N�/ on PH�s.X/: cokerXs P.�/ D ker PH �s.X/ P.
N�/ .

Proof. In view of (2.6) we have, for u 2 xC1.Xı/ and v 2 PH�s.X/,

hP.�/u; vi D hu; P. N�/vi:

Since xC1.Xı/ is dense in Xs (see for instance Lemma [8, Lemma E.42]) it follows

that hP.�/u; vi D 0 for all u 2 Xs if and only if P. N�/v D 0. �
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Hence to show that cokerXs
is �nite dimensional it su�ces to prove that the

kernel of P. N�/ is �nite dimensional. We claim an estimate from which this

follows:

u 2 ker PH �s.X/
P. N�/ H) kuk PH �s.X/

� Ck�ukH �N .X/; s > � Im� � 1
2
;

(5.3)

where � is the same as in (5.1).

Proof of (5.3). The hyperbolic estimate (3.5) shows that if P. N�/u D 0 for u 2
PH�s.X/ (with any � 2 C or s 2 R) then ujx1<0 � 0. We can now apply (4.13)

with P D P.�/ near �� andP D �P.�/ near�C. We again see that the threshold

condition is the same at both places: we require that s > � Im� � 1
2
. Since u

vanishes in x1 < 0 there WF.Bu/ \ CharP.�/ D ; and hence (using (3.1))

kBuk PH �s.X/ � Ck�uk�N . Hence (4.13) and elliptic estimates give (5.3). �

6. Asymptotic expansions

To prove Theorem 3 we need a regularity result for L2 solutions of

.��g � �2 � .n
2
/2/�1u D f 2 C

1
c .M/; Im� > n

2
: (6.1)

To formulate it we recall the de�nition of X given in (2.4) and of

X1 WD X \ ¹x1 > 0º:

We also de�ne j WM ! X1 to be the natural identi�cation, given by

j.y1; y
0/ D .y2

1 ; y
0/

near the boundary. Then we have:

Proposition 5. For Im � � 1 and � … iN, the unique L2-solution u to (6.1)

satis�es

u D y
�i�C n

2

1 j �U; U 2 xC1.X1/: (6.2)

In other words, near the boundary, u.y/ D y
�i�C n

2

1 U.y2
1 ; y

0/whereU is smoothly
extendible.

Remark. Once Theorem 3 is established then the relation between P.�/�1 and

the meromorphically continued resolvent R.n
2

� i�/ shows that

y�s
1 R.s/W PC1.M/ �! j �xC1.X1/



Vasy’s method revisited 1105

is meromorphic away from s 2 N – see §7. That means that away from exceptional

points (6.2) remains valid for u D R.n
2

� i�/.

To give a direct proof of Proposition 5 we need a few lemmas. For that we

de�ne Sobolev spacesH k
g .M; d volg/ associated to the Laplacian ��g :

H k
g .M/ WD ¹uW y

j˛j
1 D˛

yu 2 L2.M; dvolg/; j˛j � kº; ` 2 N: (6.3)

(In invariant formulation can be obtained by taking vector �elds vanishing at @M ;

see [22].) Let us also put

Q.�2/ WD ��g � �2 � .n
2
/2: (6.4)

Lemma 6. With H k
g .M/ de�ned by (6.3) and Q.�2/ by (6.4) we have for any

k � 0,
Q.�2/�1WH k

g .M/ �! H kC2
g .M/; Im� > n

2
: (6.5)

Proof. Using the notation from the proof of (2.1) and Lemma 1 we write

Q.�2/ D .y1Dy1
/2 C y2

1d
�
h d � i.nC y2

1.y
2
1 ; y

0//y1Dy1

so that for u 2 C1
c .M/ supported near @M , and with the inner products in

L2
g D L2.M; d volg/,

hQ.�2/u; uiL2
g

D

Z

M

.jy1Dy1
j2 C y2

1 jduj2h/d volg :

Hence we obtain kukH 1
g

� CkQ.�2/ukL2
g

C CkukL2
g
. Using this and expanding

hQ.�/u;Q.�/uiL2
g

we see that

kukH 2
g

� CkQ.�2/ukL2
g

C CkukL2
g
; u 2 C

1
c .M/:

Since C1
c .M/ is dense in H 2

g .M/ it follows that for Im� > n
2
,

Q.�/2WL2
g �! H 2

g :

Commuting y1V , where V 2 xC1.M I TM/, with Q.�2/ gives the general esti-

mate,

kuk
H

kC2
g

� CkQ.�2/ukH k
g

C CkukL2
g
; u 2 C

1
c .M/;

and that gives (6.5). �

Lemma 7. For any ˛ > 0 there exists c.˛/ > 0 such that for Im� > c.˛/,

y˛
1Q.�

2/�1y�˛
1 WL2

g.M/ �! H 2
g .M/: (6.6)
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Proof. We expand the conjugated operator as follows:

y˛
1Q.�

2/y�˛
1 D Q.�2 C ˛2/ � ˛.2iy1Dy1

� n � y2
1.y

2
1 ; y

0//

D .I CK.�; ˛//�1Q.�2 C ˛2/;
(6.7)

where

K.�; ˛/ WD ˛.2iy1Dy1
� n � y2

1.y
2
1 ; y

0//Q.�2 C ˛2/�1:

The inverse of Q.�2 C ˛2/ exists due to the following bound provided by the

spectral theorem (since Spec.��g/ � Œ0;1/) and (6.5) (with k D 0):

kQ.�2/�1kL2
g!H k

g
�

.1C C j�j/k=2

d.�2; Œ�.n
2
/2;1//

; k D 0; 2: (6.8)

It follows that for Im � > c.˛/, I C K.�; ˛/ in (6.7) is invertible on L2
g . Hence

we can invert y˛
1Q.�

2/y�˛
1 with the mapping property given in (6.6). �

Proof of Proposition 5. The �rst step of the proof is a strengthening of Lemma 6

for solutions of (6.1). We claim that if u solves (6.1) and u 2 L2
g then, near the

boundary @M ,

V1 � � �VNu 2 L2
g ; Vj 2 xC1.M; TM/; Vjy1jy1

D 0; (6.9)

for any N . The condition on Vj means that Vj are tangent to the boundary @M

(for more on spaces de�ned by such conditions see [18, §18.3]).

To obtain (6.9) we see that if V is a vector �eld tangent to the boundary of @M

then

Q.�2/V u D F WD Vf C Œ.y1Dy1
/2; V �uC y2

1 Œ�h.y2
1

/; V �

� i Œ.nC y2
1.y//y1Dy1

; V �

D Vf C y2
1Q2uC y1Q1u;

where Qj are di�erential operators of order j . Lemma 6 shows that F 2 L2
g .

From Lemma 6 we also know that y1V u 2 L2
g . Hence,

y1V u � y1Q.�
2/�1F 2 L2

g ; Q.�2/y�1
1 .y1V u � y1Q.�

2/�1F / D 0:

But for Im� > c0, Lemma 7 shows that

Q.�2/y�1
1 v D 0; v 2 L2.M; dvolg/ H) v D 0: (6.10)

Hence V u D Q.�2/�1F 2 L2
g . This argument can be iterated showing (6.9).
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We now consider P.�/ as an operator on X1, formally selfadjoint with respect

to d� D dx1d volh. Since we are on open manifolds the two C1 structures agree

and we can consider P.�/ as operator on C1.M/. Since

Q.�2/ D y
�i�C n

2

1 y2
1P.�/y

i�� n
2

1 D x
� i�

2 C n
4

1 x1P.�/x
i�
2 � n

4

1 ;

we can de�ne

T .�/ WD x
i�
2 � n

4

1 Q.�2/�1x
� i�

2 C n
4 C1

1 ; Im� > n
2
; (6.11)

which satis�es

P.�/T .�/f D f; f 2 C
1
c .X1/; (6.12)

where

T .�/W x
� �

2 � 1
2

1 L2 �! x
� �

2 C 1
2

1 L2; � WD Im � > n
2
:

Here we used the fact that 2dy1=y1 D dx1=x1 and that

L2.y�n�1
1 dy1dvolh/ D L2.x

� n
2 �1

1 dx1dvolh/ D x
n
4 C 1

2

1 L2;

where

L2 WD L2.dx1dvolh/:

Proposition 5 is equivalent to the following mapping property of T .�/:

T .�/WC1
c .X1/ �! xC1.X1/; Im� � c0; � … iN: (6.13)

To prove (6.13) we will use a classical tool for obtaining asymptotic expansions,

the Mellin transform. Thus let u D T .�/f , f 2 C1
c .X1/. By replacing u by

�.x1/u, � 2 C1
c ..�1; 1/I Œ0; 1�/, � D 1 near 0, we can assume that

u 2 C
1..0; 1/ � @M/ \ x

�
�
2 C 1

2

1 L2; P.�/u D f1 2 C
1
c ..0; 1/� @M/; � > n

2
;

where smoothness for x1 > 0 follows from Lemma 6. In addition (6.9) shows that

V1 � � �VNu 2 x
� �

2 C 1
2

1 L2.dx1dvolh/; Vj 2 xC1.X1; TX1/; Vjx1jx1
D 0:

(6.14)

In particular, for any k

xN
1 u 2 C k.Œ0; 1�� S

1/ (6.15)

if N is large enough.
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We de�ne the Mellin transform (for functions with support in Œ0; 1/) as

Mu.s; x0/ WD

Z 1

0

u.x/xs
1

dx1

x1

:

This is well de�ned for Re s > �=2:

kMu.s; x0/k2
L2.dvolh/

D

Z

S1

ˇ

ˇ

ˇ

ˇ

Z 1

0

x
sC i�

2 � 1
2

1 .x
� i�

2 � 1
2

1 u.x1; x
0//dx1

ˇ

ˇ

ˇ

ˇ

2

dvolh

�

� Z 1

0

t��C2 Re s�1dt

�

kx
�
2 � 1

2

1 ukL2

D .2Res��/�1kx
�
2 � 1

2

1 ukL2 :

In view of (6.9) s 7�! Mu.s; x2/ is a holomorphic family of smooth functions in

Re s > �=2. We claim now thatMu.s; x0/ continues meromorphically to all of C.

In fact, from (2.3) we see that for f2 WD 1
4
f1,

M.x1f2/.s; x
0/ D M.1

4
x1P.�/u/.s; x

0/

D �s.s C i�/Mu.s; x0/CM.Q2u/.s C 1; x0/;

where Q2 is a second order di�erential operator built out of vector �elds tangent

to the boundary of X1. In view of (6.14) Q2u 2 x
� �

2 C 1
2

1 L2 which implies that

M.Q2u/.s; x
0/ is holomorphic in Re s > �=2. Also, s 7! M.x1f2/.s; x

0/ is entire

as f1 vanishes near x1 D 0. Hence

Mu.s; x0/ D
1

s.s C i�/
M.Q2u/.s C 1; x0/ �

1

s.s C i�/
M.x1f2/.s; x

0/; (6.16)

which means that s 7! Mu.s; x0/ is meromorphic in Re s > �=2 � 1. Melrose’s

indicial operator, I.s/w D x�s
1 Q2.x

s
1w/jx1D0, w 2 C1.@M/, is a di�erential

operator in x0 with polynomial coe�cients in s and

M.Q2u/.s C 1; x0/ D I.s/Mu.s C 1; x0/CM. zQ2u/.s C 2; x0/:

where zQ2 is a second order operator built from vector �elds tangent to @M .

Hence (6.16) can be iterated and that gives the meromorphic continuation of

Mu.s; x0/ with possible poles at �i� � k, k 2 N.

The Mellin transform inversion formula, a contour deformation and the residue

theorem (applied to simple poles thanks to our assumption that i� … Z) then give

u.x/ ' xi�
1 .b0.x

0/Cx1b1.x
0/C� � � /Ca0.x

0/Cx1a1.x
0/C� � � ; aj ; bj 2 C

1.@M/;
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where the regularity of remainders comes from (6.15). (The basic point is that

M.xa
1�.x1//.s/ D .s C a/�1F.s/; F.s/ D �

Z

xaCs
1 �0.x1/dx1;

so that F.s/ is an entire function with F.�a/ D 1.)

Since Pu.x/ D 0 for 0 < x1 < " the equation shows that bk is determined by

b0; � � �bk�1. We claim that bk � 0: if b0 ¤ 0 then

jx
�
2 � 1

2

1 uj D x
� 1

2

1 jb0.x
0/j C O.x

1
2

1 / … L2.dx1dvolh/:

contradicting (6.14). It follows that u 2 xC1.X1/ proving (6.13) and completing

the proof of Proposition 5. �

7. Meromorphic continuation

To prove Theorem 3 we recall that .��g � �2 � .n
2
/2/�1 is a holomorphic family

of operators on L2
g for �2 C .n

2
/2 … Spec.��g/ and in particular for Im � > n

2
.

Proof of Theorem 3. We �rst show that for Im� > 0, �2 C 1
4

… Spec.��g/,

P.�/u D 0; u 2 Xs; s > � Im� � 1
2

H) u � 0: (7.1)

In fact, from (4.11) we see that u 2 xC1.X/. Then putting

v.y/ WD y
�i�C n

2

1 j �.ujX1
/; j WM �! X1;

equation (2.3) shows that .��g ��2 � .n
2
/2/v D 0. For Im� > 0 we have v 2 L2

g

and hence from our assumptions, v � 0. Hence ujX1
� 0, and u 2 xC1.X/.

Lemma 1 then shows that u � 0 proving (7.1).

In view of Lemma 4 we now need to show that P.�/�w D 0, w 2 PH�s.X/,

implies that w � 0. It is enough to do this for � … iN and Im � � 1 since

invertibility at one point shows that the index of P.�/ vanishes. Then (7.1) shows

invertibility for all Im � > 0, �2 C .n
2
/2 2 Spec.��g/.

Hence suppose that P.�/�w D 0, w 2 PH�s.X/. Estimate (3.5) then shows

that suppw � xX1. (For �1 < x1 < 0 we solve a hyperbolic equation with zero

initial data and zero right hand side.) We now show that suppw \X1 ¤ ; (that is

there is some support in x1 > 0; in fact by unique continuation results for second

order elliptic operators, see for instance [18, §17.2], this shows that suppw D xX1).

In other words we we need to show that we cannot have suppw � ¹x1 D 0º.
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Since WF.w/ � N �@X1 we can restrict w to �xed values of x0 2 @M and the

restriction and is then a linear combination of ı.k/.x1/. But

P. N�/.ı.k/.x1// D .kC1� N�=i/ı.kC1/.x1/� i.x/.2i.kC1/� N�� i n�1
2
/ı.k/.x1/;

and that does not vanish for Im� > 0.

Mapping property (6.13) and the de�nition of P.�/ show that for any f 2

C1
c .X1/ (that is f supported in x1 > 0) there exists u 2 xC1.X1/ such that

P.�/u D f inX1. Then (withL2 inner products meant as distributional pairings),

hf; wi D hP.�/u; wi D hu; P.�/�wi D 0:

Since w 2 PD.X1/ and u 2 xC1.X1/ the pairing is justi�ed. In view of support

properties of w, we can �nd f such that the left hand side does not vanish. This

gives a contradiction. �

Remark. Di�erent proofs of the existence of � with P.�/ invertible can be

obtained using semiclassical versions of the propagation estimates of §4. That

is done for Im �0 � hRe�0i in [28] and for Im�0 � 1 in [8, §5.5.3].

Theorem 3 guarantees existence of the inverse at many values of �. Then

standard Fredholm analytic theory (see for instance [8, Theorem C.5]) gives

P.�/�1W Ys ! Xs is a meromorphic family of operators in Im � > �s � 1
2
.

(7.2)

Proof of Theorem 1. We de�ne

V.�/WC1
c .M/ �! C

1
c .X/; f .y/ 7�! Tf .x/ WD

8

<

:

x
i�
2 � n

4 �1

1 .j�1/�f; x1 > 0;

0; x1 � 0;

and

U.�/W xC1.X/ �! C
1.M/; u.x/ 7�! y

�i�C n
2

1 j �.ujX1
/;

where j WM ! X1 is the map de�ned by j.y/ D .y2
1 ; y

0/ near @M . Then, for

Im � > n
2
, (2.2) and (2.3) show that

R.n
2

� i�/ D U.�/P.�/�1V.�/: (7.3)

Since P.�/�1W xC1.X/ ! xC1.X/ is a meromorphic family of operators in C,

Theorem 1 follows. �



Vasy’s method revisited 1111

Remarks. 1. The structure of the residue of P.�/�1 is easiest to describe when

the pole at �0 is simple and has rank one. In that case,

P.�/ D
u˝ v

� � �0

CQ.�; �0/; u 2 xC1.X/; v 2
\

s>� Im �0� 1
2

PH�s. xX1/;

P.�0/u D 0; P. N�0/v D 0;

and where Q.�; �0/ is holomorphic near �0. We note that u 2 C1.X/ because

of (4.11). The regularity of v 2 PH�s, s > � Im�0 � 1
2

just misses the threshold

for smoothness – in particular there is no contradiction with Theorem 3!

2. The relation (7.3) between R.n
2

� i�/ and P.�/ shows that unless the

elements of the kernel of P. N�/ are supported on @X1 D ¹x1 D 0º then the

multiplicities of the poles of R.n
2

� i�/ agree.

For completeness we conclude with the proof of the following standard fact:

Proposition 8. If R.�/ WD .��g � �.n � �//�1 for Re � > n then

R.�/WL2.M; dvolg/ �! L2.M; dvolg/; (7.4)

is meromorphic for Re � > n
2

with simple poles where �.n � �/ 2 Spec.��g/.

Proof. The spectral theorem implies that R.�/ is holomorphic on L2
g in

¹Re � > n
2
º n Œn

2
; n�. In the �-plane that corresponds to ¹Im� > 0º n i Œ0; n

2
�.

From (6.11) and (6.12) we see that boundedness of R.n
2

� i�/ on L2
g.M/ is

equivalent to

P.�/�1W x
�

�
2 � 1

2

1 L2.X1/ �! x
�

�
2 C 1

2

1 L2.X1/; � WD Im �: (7.5)

We will �rst prove (7.7) for 0 < � � 1. From Theorem 3 we know that except at a

discrete set of poles, P.�/�1W xH s.X1/ ! xH sC1.X1/, s > �� � 1
2
. We claim that

for �1 � s < �1
2

xs
1L

2.X1/ ,�! xH s.X1/; xH sC1.X1/ ,�! xsC1
1 L2.X1/: (7.6)

By duality the �rst inclusion follows from the inclusion

PH r.X1/ ,�! xr
1L

2; 0 � r � 1: (7.7)

Because of interpolation we only need to prove this for r D 1 in which case

it follows from Hardy’s inequality,
R 1

0 jx�1
1 u.x1/j

2dx1 � 4
R 1

0 j@2
x1
u.x1/j

2dx1.
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The second inclusion follows from (7.7) and the fact that xH r .X1/ D PH r.X1/ for

0 � r < 1
2

– see [26, Chapter 4, (5.16)]. We can now take s D ��
2
�1

2
in (7.6) which

for 0 < � � 1 is in the allowed range. That proves (7.5) for 0 < Im� � 1, except at

the poles and consequently establishes (7.4) for n
2
< Re s � n

2
C1. We can choose

a polynomial p.s/ such that p.s/R.s/WC1
c .M/ ! C1.M/ is holomorphic near

Œn
2
; n�. The maximum principle applied to hp.s/R.s/f; gi, f; g 2 C1

c .M/ now

proves that p.s/R.s/ is bounded on L2
g.M/ near Œn

2
; n� concluding the proof. �
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