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1. Introduction and statement of results

Let � � Rd , d � 2, be a bounded, connected domain with a C1 smooth

boundary � D @�. A complex number � 2 C; � ¤ 0; will be called an interior

transmission eigenvalue (ITE) if the following problem has a non-trivial solution:
8
ˆ̂̂
<
ˆ̂̂
:

.rc1.x/r C �n1.x// u1 D 0 in �;

.rc2.x/r C �n2.x// u2 D 0 in �;

u1 D u2; c1@�u1 D c2@�u2 on �;

(1.1)

where � denotes the exterior Euclidean unit normal to �, cj ; nj 2 C1.x�/,
j D 1; 2 are strictly positive real-valued functions. The spectral problem for (ITE)

is related to a non self-adjoint operator A (see Section 3) and in the isotropic case

c1.x/ D c2.x/ D 1 the boundary problem (1.1) is not parameter-elliptic. For these

reasons many well-known techniques developed for self-adjoint operators or for

parameter-elliptic boundary problems are not applicable. The positive (ITE) are

related to the inverse scattering problems . More precisely, if � D k2 is a real

(ITE), then the far-�eld operator F.�/WL2.Sd�1/ �! L2.Sn�1/ with kernel the

scattering amplitude s.k; �; !/ is not injective and its range is not dense. This

is crucial for the so-called linear sampling method (see [5], [1]) which works

if we avoid the real (ITE). For this reason the problem of the existence and the

discreteness of (ITE) draw the attention of many authors (see the survey [3] for a

comprehensive review and a more complete list of references). Secondly, it was

proved that we can determine the (ITE) from the far-�eld operator. Finally, it was

established that in some cases the knowledge of all complex (ITE) determines

the index of refraction of the scattering obstacle (see [3], [6]). This explains the

increasing interest toward (ITE) and the fact that a lot of papers concerning the

existence and the spectral properties of (ITE) in relation with the inverse scattering

problems of reconstruction have been recently published.

On the other hand, the analysis of the (ITE) leads to some interesting and

di�cult mathematical spectral problems for non self-adjoint operators. These

problems are connected with two major questions:

(A) describe the eigenvalue-free regions in the complex plane;

(B) �nd a Weyl asymptotic of the counting function of the eigenvalues.

In contrast to the case of self-adjoint operators these questions are much more

di�cult and there are no general results. As far as the Weyl asymptotics are

concerned, one may study the leading term of the counting function and one can

search an optimal remainder. On the other hand, even in the case of boundary
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problems for non self-adjoint operators which are parameter-elliptic, the Weyl

asymptotics in the literature concern mainly the leading term (see [2] for some

results in this direction for non self-adjoint operators).

Question (A) has been investigated by the second author in [27] (see also [10]

for a weaker result) and the result in [27] plays an important role in our analysis.

In the present paper our purpose is to study question (B). Under some conditions

the (ITE) form a discrete set in C n ¹0º and they have as an accumulation point

only in�nity (see for instance [11], [24]). Introduce the counting function

N.r/ WD ]¹�j 2 C n ¹0ºW�j is (ITE); j�j j � r2º; r > 1;

where the eigenvalues are counted with their multiplicity (see Section 3 for the

precise de�nition of the multiplicity). Recently, many works concerning the Weyl

asymptotics of N.r/ have been published both in the isotropic .c1 � c2 � 1/ and

anisotropic cases (see [19], [8], [20], [13], [15], [16], [18], and [9]). In [18] the case

when � D ¹x 2 Rd W jxj � 1º and c1 � c2 � 1; n1 � 1; n2 D const ¤ 1 has

been investigated and for d D 1 an asymptotics of N.r/ with remainder has been

established (see also [25]). In all other works only the leading term of N.r/ was

obtained. We should mention that in [13] the anisotropic case has been studied

and the asymptotics of N.r/ with a remainder is stated. However, the proof has a

gap and only the asymptotics with leading term seems to be correct. The isotropic

case is more di�cult since the boundary problem is not parameter-elliptic and

the tools for elliptic boundary problems cannot be applied. In the isotropic case

when n1.x/ � 1, n2.x/ > 1, for all x 2 N�, it has been recently established in [9]

and [20] the asymptotics

N.r/ � .�1 C �2/r
d ; r ! C1; (1.2)

where �1 and �2 are de�ned below. It is important to remark that in [9] and [20]

the analysis is based on the study of some trace class operators leading to an

asymptotics

X

j

1

j�j jp C t
D ˛t�1C d

2p C o.t�1C d
2p /; t ! C1; (1.3)

where p 2 N is su�ciently large. Combining this asymptotics with the Tauberian

theorem of Hardy and Littlewood, one obtains (1.2) and the remainder is given by

the principal part divided by a logarithmic factor. To obtain a sharper remainder

one could apply a �ner Tauberain theorem (see [17]), but for this purpose it is

necessary to establish asymptotics like (1.3) with sharper remainder for t lying on

certain parabola in C. This, however, seems to be a very di�cult problem.
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In the present work we follow another approach inspired by the paper [4],

where asymptotics have been established for the number of the resonances as-

sociated to an exterior transmission boundary problem. The purpose is to study

the asymptotic behavior of N.r/ under the condition

c1.x/n1.x/ ¤ c2.x/n2.x/; for all x 2 �: (1.4)

Our main result is the following

Theorem 1.1. Assume (1.4) ful�lled. Assume also either the condition

c1.x/ D c2.x/; @�c1.x/ D @�c2.x/; for all x 2 �; (1.5)

or the condition

c1.x/ ¤ c2.x/; for all x 2 �: (1.6)

Then, the (ITE) form a discrete set in C and we have the asymptotics

N.r/ D .�1 C �2/r
d C O".r

d��C"/; r ! C1; (1.7)

for every 0 < " � 1, where

�j D !d

.2�/d

Z

�

�nj .x/
cj .x/

�d=2
dx;

!d being the volume of the unit ball in Rd , and � D 1
2

if (1.5) holds, � D 2
5

if (1.6)

holds. Moreover, if in addition to (1.6) we assume either the condition

n1.x/

c1.x/
¤ n2.x/

c2.x/
; for all x 2 �; (1.8)

or the condition
n1.x/

c1.x/
D n2.x/

c2.x/
; for all x 2 �; (1.9)

then (1.7) holds with � D 1
2
.

To prove this theorem we use in an essential way the eigenvalue-free regions

obtained in [27]. In fact, we prove in the present paper a more general result saying

that if there are no interior transmission eigenvalues in a region of the form

¹� 2 CW jIm�j � C.jRe�j C 1/1� �
2 º; C > 0; 0 < � � 1; (1.10)

then the asymptotics (1.7) with remainder O�.r
d��C�/ is true. On the other hand,

it is proved in [27] that under the assumptions of Theorem 1.1, we have indeed
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an eigenvalue-free region (1.10) with � replaced by � � �, where � is given by

Theorem 1.1. Note that the parametrix construction and the results concerning the

Dirichlet–to–Neumann map in [22], Section 11, suggest that for strictly concave

domains there are reasons to expect that (1.10) is true with � D 2
3
. It is also worth

noticing that if we have an eigenvalue-free region of the form (1.10) with � D 1�",
for all ", we get asymptotics with an almost optimal remainder term O".r

d�1C"/
in (1.7). The existence of such an eigenvalue-free region with � D 1 � " has

been established recently by the second author [28] for strictly concave domains

assuming (1.5) ful�lled. According to our result, the problem of bounding the

remainder in the Weyl formula for the (ITE) is reduced to that of getting an

eigenvalue-free region in C, and a larger eigenvalue-free region yields a sharper

bound for the remainder. To our best knowledge, it seems that our paper is the �rst

one where such a relationship is established.

For reader’s convenience, in what follows in this section we will discuss the

main steps in the proof of Theorem 1.1. The starting point of our argument is a

trace formula (see Section 3 and (3.5)) which allows us to relate the number of

the (ITE) with the number of the eigenvalues, �j , of two self-adjoint operators

for which the Weyl asymptotics are known to hold, together with a trace of an

operator given by an integral involving a meromorphic operator-valued function,

T .�/, and its inverse T �1.�/ (see formula (3.6)). The main problem to deal with

is to estimate the trace of this integral and it yields the bound O�.r
d��C�/ of the

remainder. We apply this formula to obtain an asymptotics for the di�erence

N.r/ � N.r=
p
2/; r ! C1, and by a standard argument it is easy to see that

this is su�cient to prove (1.7).

Since it is more convenient to work in the semi-classical setting, we reduce our

problem to a semi-classical one by introducing a small parameter h D
p
2
r
; r � 1.

Thus we are going to count the number of points ¹zkº, zk

h2 being an (ITE), in a

region of the form

¹z 2 CW 1� Ah��� � jRe zj � 2C Ah���; jIm zj � h���º; A > 0;

provided we have an eigenvalue-free region (1.10) with � � � in place of �

(see Proposition 3.7). This requires to make a change of variables � D z=h2

in the trace formula (3.6) and to study the behavior of the integral term when

0 < h � h0.�/ and

z 2 Z D ¹z 2 C W 1=2 < j Re zj < 3; j Im zj < 1º:

Next we construct a meromorphic function gh.z/ with poles among the points

¹h2�j º and such that if an (ITE), �k , does not belong to the set ¹�j º, then h2�k is a
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zero of gh.z/ and the multiplicities of the corresponding zeros of gh.z/ and (ITE)

agree. It should be mentioned that the construction of the function gh.z/ is not

trivial and it requires to build a semi-classical parametrix for the corresponding

Dirichlet–to–Neumann map N.z; h/ in the elliptic zone. This is carried out in

Section 2 by using the parametrix construction in [27].

The estimate of the remainder is reduced to that of the integral

1

2�i

Z


0

d

dz
loggh.z/dz; (1.11)

where 
0 � Z is a suitable closed contour chosen so that on 
0 we have neither

zeros nor poles of gh.z/. The main property of the function gh.z/ is the estimate

log jgh.z/j � C�h
1�d��; for all 0 < � � 1;

provided the distance between z and the set ¹h2�j º is greater than hM , M > 0

being arbitrary (see Lemma 3.4). This estimate plays a crucial role in the estimate

of (1.11). Next in Lemma 3.5 we show that for z 2 Z; j Im zj � h���; we also

have

log
1

jgh.z/j
� C"h

1�d�"; for all 0 < " � 1:

Moreover, the function loggh.z/ is holomorphic in z 2 Z, jIm zj � h��� and

satis�es the bound ˇ̌
ˇ d
dz

loggh.z/
ˇ̌
ˇ � C�h

1�d�2�

jImzj (1.12)

in the domain

W WD
°
z 2 CW 2

3
� jRe zj � 5

2
; 2h��� � jIm zj � 1

2

±
:

The next step consists of choosing a closed contour 
0 D 
1[ 
3[ 
2[ 
4, where


3 � W; 
4 � W are linear segments parallel to the real axis. For the integrals

over 
j ; j D 3; 4; we apply (1.12) and one gets

ˇ̌
ˇ̌
Z


j

d

dz
loggh.z/dz

ˇ̌
ˇ̌ � C�h

1�d�3�; j D 3; 4: (1.13)

We take 
j D Œw�
j ; zw�

j � [ Q
j [ Œ zwC
j ; w

C
j �; j D 1; 2 with suitable contours Q
j

(see Section 3 for the notation). The estimates of the imaginary parts of the

integrals over Q
j ; j D 1; 2; are more delicate since these contours cross the

positive real axis and we must avoid the points ¹h2�kº. Our argument is similar to
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the choice of the contour in [4] and the details are given in Section 3. The main

point is Lemma 3.8, where the contours Q
j are constructed so that

ˇ̌
ˇ̌Im

Z

Q
j

d

dz
log gh.z/dz

ˇ̌
ˇ̌ � C�h

�dC��2�; j D 1; 2: (1.14)

Combining this with (1.13), we obtain the statement of Proposition 3.7 and by

scaling we get the asymptotics of N.r/ �N.r=
p
2/:

Acknowledgment. Thanks are due to the referee for the comments and remarks

concerning the initial version of the paper.

2. Parametrix of the Dirichlet–to–Neumann map in the elliptic zone

Let f 2 H 1.�/ and consider the problem

8
<
:
.P.h/� z/u D 0 in �;

u D f on �;
(2.1)

where

P.h/ D � h2

n.x/
rc.x/r;

0 < h � 1, z 2 Z D ¹z 2 CW 1
2
< jRe zj < 3; jIm zj < 1º, c; n 2 C1.x�/ being

strictly positive functions. The Dirichlet–to–Neumann map is de�ned by

N.z; h/f WD 
D�uWHmC1.�/ �! Hm.�/;

where m � 0, D� D �ih@� and 
 denotes the restriction on �. Denote by

GD the Dirichlet self-adjoint realization of the operator �n�1rcr on the Hilbert

space H D L2.�; n.x/dx/. It is well-known that the spectrum of GD consists

of a discrete set of positive eigenvalues which are also poles of the resolvent

.� �GD/�1. Moreover, if �k 2 specGD , we have

.� �GD/�1 D …k

� � �k

modulo an operator-valued function holomorphic at �k , where …k is a �nite

rank projection. The multiplicity of �k is de�ned as being the rank of …k . Let

V.h/ WD ¹�k 2 specGDW h2�k 2 Zº. The following properties of the Dirichlet–

to–Neumann map are more or less well-known but we will give a proof for the

sake of completeness.
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Lemma 2.1. The Dirichlet–to–Neumann mapN.z; h/ is a meromorphic operator-

valued function in z 2 Z with poles at h2�k , �k 2 V.h/. Moreover,

N.z; h/ D
z…k.h/

z � h2�k
(2.2)

modulo an operator-valued function holomorphic at h2�k , where z…k.h/ is of rank

� mult.�k/. If ı.z; h/ WD min¹1; dist¹z; spech2GDºº > 0, then we have the bound

kN.z; h/kHmC1.�/!Hm.�/ � Ch

ı.z; h/
; (2.3)

where C > 0 is a constant which may depend on m.

Proof. Clearly, there exists an extension operator EmWHmC1.�/ ! HmC3=2.�/
such that 
Emf D f and Emf is supported near �. If f 2 HmC1.�/ and z=h2

does not belong to specGD , it is easy to see that the solution u of (2.1) can be

expressed by the formula

u D Emf � .h2GD � z/�1.P.h/ � z/Emf:

Hence

N.z; h/f D 
D�Emf � 
D�.h
2GD � z/�1.P.h/� z/Emf: (2.4)

It follows from (2.4) that N.z; h/ is a meromorphic operator-valued function in

z 2 Z with poles among the poles of .h2GD � z/�1 and that (2.2) holds with

z…k.h/ D 
D�…k.P.h/� h2�k/Em:

This implies rank z…k.h/ � rank…k as desired. By (2.4) we also have

kN.z; h/f kHm.�/

� Chkf kHmC1.�/

C Chk.h2GD � z/�1kHmC3=2.�/!HmC3=2.�/kEmf kHmC3=2.�/

C Chk.h2GD � z/�1kHm�1=2.�/!HmC3=2.�/kP.h/Emf kHm�1=2.�/:

Clearly, we have

kEmf kHmC3=2.�/ � Ckf kHmC1.�/;

kP.h/Emf kHm�1=2.�/ � Ch2kEmf kHmC3=2.�/ � Ch2kf kHmC1.�/:
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On the other hand, the coercive estimate

kvkH sC2.�/ � C kGDvkH s.�/ C C kvkH s.�/ ; for all v 2 D.GD/ \H s.�/

implies the bounds

k.h2GD � z/�1kHmC3=2.�/!HmC3=2.�/

� Ck.h2GD � z/�1kL2.�/!L2.�/

� C

ı.z; h/
;

k.h2GD � z/�1kHm�1=2.�/!HmC3=2.�/

� Ck.GD � i/.h2GD � z/�1kHmC3=2.�/!HmC3=2.�/

� k.GD � i/�1kHm�1=2.�/!HmC3=2.�/

�
eC

h2ı.z; h/
:

Therefore, (2.3) follows from the above estimates and the proof is complete. �

Let .x0; � 0/ be coordinates on T �� and denote by r0.x
0; � 0/ the principal symbol

of the Laplace-Beltrami operator, ��� , on � equipped with the Riemannian

metric induced by the Euclidean one inRd . It is well-known that r0 is a polynomial

function in � 0, homogeneous of order 2, and C2j� 0j2 � r0.x
0; � 0/ � C1j� 0j2 with

constants C2 > C1 > 0. Set m.x/ D n.x/
c.x/

. Let � 2 C1.R/, �.�/ D 1 for j� j � 1,

�.�/ D 0 for j� j � 2, and set

�.x0; � 0/ D �.ı0r0.x
0; � 0//;

where 0 < ı0 � 1. For .x0; � 0/ 2 supp .1� �/, introduce the function

�.x0; � 0; z/ D i
p
r0.x0; � 0/ � 
m.x0/z D i

p
r0

�
1� z 
m

r0

�1=2
:

Since

jzj
m
r0

� 1

2
; for all z 2 Z; .x0; � 0/ 2 supp .1 � �/;

the functions � and ��1 are holomorphic in z 2 Z and

Im �.x0; � 0; z/ � C
p
r0.x0; � 0/

with some constant C > 0. In what follows in this section we will construct a

parametrix for the operator N.z; h/Oph.1 � �/, where Oph.1 � �/ denotes the
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h � ‰DO with symbol 1 � �. In fact, this construction is carried out in [27]

and here we will only recall the main points. First, notice that it su�ces to make

the construction locally and then to glue up all pieces by using a partition of the

unity on �. Given an arbitrary point x0 2 �, there exists a small neighborhood

O.x0/ � x� of x0 and local normal coordinates .x1; x
0/ 2 O.x0/ such that

x0 D .0; 0/, � \ O.x0/ is de�ned by x1 D 0, x0 being coordinates in � \ O.x0/,

x1 > 0 in � \ O.x0/, and in these coordinates the operator

P.z; h/ D � h2

c.x/
rc.x/r � z

n.x/

c.x/

can be written in the form

P.z; h/ D D
2
x1

C r.x;Dx0/ � zm.x/C hq.x;Dx/C h2 Qq.x/:

Here we have set Dx1
D �ih@x1

, Dx0 D �ih@x0 , r.x; � 0/ D hR.x/� 0; � 0i,
R D .Rij / being a symmetric .d�1/�.d�1/matrix-valued function with smooth

real-valued entries, q.x; �/ D hq.x/; �i, q.x/ and Qq.x/ being smooth functions.

Moreover, we have r.0; x0; � 0/ D r0.x
0; � 0/, r0.x0; � 0/ being the principal symbol

of ��� written in the coordinates .x0; � 0/. Let  .x0/ 2 C1
0 .� \ O.x0//,  D 1

in a neighborhood of x0. In [27], it was constructed a parametrix, Qu , of (2.1)

satisfying the condition Qu jx1D0 D Oph.1� �/ f and having the form

Qu .x/ D .2�h/�dC1
Z Z

e
i
h
'.x;y0;� 0;z/�

�x1
ı1

�
a.x; � 0; z; h/f .y0/dy0d� 0;

where � is as above and ı1 > 0 is a small constant independent of x; � 0; h; z.
The phase ' is a complex-valued function such that

'jx1D0 D �hx0 � y0; � 0i; @x1
'jx1D0 D �; Im ' � x1Im �=2;

and the amplitude a satis�es ajx1D0 D  .x0/.1 � �.x0; � 0//. More generally,

the functions ' and a are of the form

' D �hx0 � y0; � 0i C
N�1X

kD1
xk1'k.x

0; � 0; z/ D �hx0 � y0; � 0i C Q';

a D
N�1X

kD0

N�1X

jD0
xk1h

jak;j .x
0; � 0; z/;

N � 1 being an arbitrary integer. The phase ' satis�es the eikonal equation mod

O.xN1 /:

.@x1
'/2 C r.x;rx0'/ �m.x/z D xN1 ‰N .x; �

0; z/ (2.5)
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and a satis�es the equation

e� i
h
'
P.z; h/e

i
h
'a D xN1 AN .x; �

0; z; h/C hNBN .x; �
0; z; h/; (2.6)

where ‰N , AN and BN are smooth functions. It was shown in Section 4 of [27]

that ak;j 2 S�j , j � 0, k � 1, @kx1
AN 2 S2, @kx1

BN 2 S1�N , k � 0, uniformly

in z 2 Z and 0 < x1 � ı1. Recall that Sk are the spaces of all functions

a 2 C1.T ��/ satisfying the estimates

j@˛x0@
ˇ

� 0a.x
0; � 0/j � C˛;ˇ h� 0ik�jˇ j; h� 0i D .1C j� 0j2/1=2

for all multi-indices ˛ and ˇ. Moreover, the functions ak;j , AN , BN are polyno-

mials in �, ��1 and z, and therefore they are holomorphic in z 2 Z. As in [27],

it is easy to see that

P.z; h/ Qu D Oph.p /f;

where the function

p D e
i
h

hx0;� 0i
h
P.z; h/; �

�x1
ı1

�i
e� i

h
hx0;� 0ie

i
h

Q'a C e
i
h

Q'�
�x1
ı1

�
.xN1 AN C hNBN /

is holomorphic in z and satis�es the bounds

j@˛xp j � C˛;N

� h

h� 0i
�N�`�j˛j

for j˛j � N � ` (2.7)

with some ` independent of N and ˛. The parametrix, zN .z; h/, of the operator

N.z; h/Oph.1 � �/ is de�ned by

Dx1
Qu jx1D0 D zN .z; h/f D Oph.� /f;

where

� D a
@'

@x1

ˇ̌
ˇ̌
x1D0

� ih
@a

@x1

ˇ̌
ˇ̌
x1D0

D  .1� �/� � ih
N�1X

jD0
hja1;j ;

a1;0 D � i
2
q.0; x0; 1; � 0=�/ � 1

2�
hR.0; x0/� 0;rx0 .x0/i:

Since
1

�
D 1

i
p
r0

�
1� z


m

r0

��1=2
D 1

i
p
r0

C O.h� 0i�3/;
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we deduce that mod S�2 the function a1;0 is given by the expression

a1;0 D �1
2
q.0; x0; 1; � 0=

p
r0/ C i

2
p
r0

hR.0; x0/� 0;rx0 .x0/i

D
D irx0c.0; x0/

2c.0; x0/
;
� 0

p
r0

E
 C i@x1

c.0; x0/

2c.0; x0/
 C q0.x

0; � 0/

(2.8)

with some function q0 2 S0 independent of the functions c and n.

Let ¹ j ºJjD1 be a partition of the unity on �. Set

p D
JX

jD1
p j

; � D
JX

jD1
� j

; Qu D
JX

jD1
Qu j

:

The operator

zN.z; h/ D
JX

jD1

zN j
.z; h/ D Oph.�/

is an h�‰DO on � with a principal symbol �.1��/, holomorphic in z 2 Z. Let

u j
be the solution of (2.1) with u j� D Oph.1 � �/ f . Then u D

PJ
jD1 u j

is the solution of (2.1) with uj� D Oph.1 � �/f . Moreover, it is easy to see that,

if z=h2 does not belong to specGD, we have

u D Qu � .h2GD � z/�1 c
n
P.z; h/ Qu

which yields the identity

N.z; h/Oph.1� �/f D zN.z; h/f � 
D�.h
2GD � z/�1 c

n
Oph.p/f: (2.9)

It follows from (2.7) that if N is taken large enough, the operator

F.z; h/ WD N.z; h/� zN.z; h/ D N.z; h/Oph.�/ � 
D�.h
2GD � z/�1 c

n
Oph.p/

is meromorphic with values in the space of trace class operators on L2.�/.

Let �j .F / be the characteristic values of F . Recall that �j .F / are de�ned as

being the eigenvalues of the self-adjoint operator .F �F /1=2.

Lemma 2.2. If z=h2 does not belong to specGD, then for every integer 0 � m �
N=4 we have the bound

�j .F.z; h// � C

ı.z; h/
.hj 1=.d�1//�2m; for all j; (2.10)

where the constant C > 0 depends on m and N but is independent of z, h, j , and

ı.z; h/ is de�ned in Lemma 2.1
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Proof. We will use the well-known fact that the characteristic values of the

Laplace-Beltrami operator on a compact Riemannian manifold without boundary

(in our case �, dim� D d � 1) satisfy

�j ..1���/�m/ � Cmj
�2m=.d�1/ for all j; (2.11)

for every integer m � 0. On the other hand, by using the trace theorem and

Lemma 2.1, we obtain

kF.z; h/kL2.�/!H2m.�/

� kN.z; h/kH2mC1.�/!H2m.�/kOph.�/kL2.�/!H2mC1.�/

C Chk.h2GD � z/�1kH2mC3=2.�/!H2mC3=2.�/kOph.p/kL2.�/!H2mC3=2.�/

� Ch

ı.z; h/
kOph.�/kL2.�/!H2mC1.�/ C Ch

ı.z; h/
kOph.p/kL2.�/!H2mC3=2.�/:

Since the function � is compactly supported, we have the bound

kOph.�/kL2.�/!H2mC1.�/ � Cmh
�2m�1: (2.12)

In view of (2.7) we also have

kOph.p/kL2.�/!H2mC3=2.�/ � Cm;N h
N�2m�`1 (2.13)

with some `1 independent ofm andN , provided 0 � m � N=4 andN being large

enough. By (2.12) and (2.13) we conclude

kF.z; h/kL2.�/!H2m.�/ � Cmh
�2m

ı.z; h/
: (2.14)

Clearly, (2.10) follows from (2.11) and (2.14) and the proof is complete. �

3. Analysis of the transmission eigenvalues

For � 2 C n ¹0º de�ne the operator R.�/v D u, where u D .u1; u2/ and

v D .v1; v2/ solve the problem
8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
:̂

�
� 1

n1.x/
rc1.x/r � �

�
u1 D v1 in �;

�
� 1

n2.x/
rc2.x/r � �

�
u2 D v2 in �;

u1 D u2; c1@�u1 D c2@�u2 on �:

(3.1)
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Denote by G
.j /
D , j D 1; 2, the Dirichlet self-adjoint realization of the operator

�n�1
j rcjr on the Hilbert space Hj D L2.�; nj .x/dx/. Set H D H1 ˚H2 and

de�ne also the operators Kj .�/f D u, where u is the solution of the problem

8
<̂

:̂

�
� 1

nj .x/
rcj .x/r � �

�
u D 0 in �;

u D f on �:

(3.2)

Di�erentiating this equation with respect to �, one obtains easily the identity

dKj .�/

d�
D .G

.j /
D � �/�1Kj .�/: (3.3)

Introduce the operator

T .�/ WD c1
@�K1.�/ � c2
@�K2.�/:

Proposition 3.1. If T .�/�1 is a meromorphic operator-valued function with

residue of �nite rank, the same is true for R.�/ and we have the formula

R.�/ D
�
R11.�/; R12.�/

R21.�/; R22.�/

�
WH �! H; (3.4)

where

R11.�/ D .G
.1/
D � �/�1 �K1.�/T .�/

�1c1
@�.G
.1/
D � �/�1;

R22.�/ D .G
.2/
D � �/�1 CK2.�/T .�/

�1c1
@�.G
.2/
D � �/�1;

R12.�/ D K1.�/T .�/
�1c1
@�.G

.2/
D � �/�1;

R21.�/ D �K2.�/T .�/�1c2
@�.G.1/D � �/�1:

Moreover, if 
0 � C is a simple closed positively oriented curve which avoids the

eigenvalues of G
.j /
D , j D 1; 2, as well as the poles of T .�/�1, then we have the

identity

� trH .2�i/
�1

Z


0

R.�/d�C
2X

jD1
trHj

.2�i/�1
Z


0

.G
.j /
D � �/�1d�

D trL2.�/ .2�i/
�1

Z


0

T .�/�1
dT .�/

d�
d�:

(3.5)
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Proof. Clearly, if .uj ; vj / satis�es (3.1) and � does not belong to

specG
.1/
D [ specG

.2/
D ;

we have

uj D .G
.j /
D � �/�1vj CKj .�/f;

where f D 
u1 D 
u2. The boundary condition in (3.1) implies the identity

0 D c1@�u1 � c2@�u2

D T .�/f C c1
@�.G
.1/
D � �/�1v1 � c2
@�.G.2/D � �/�1v2:

Hence

uj D.G.j /D � �/�1vj
�Kj .�/T .�/�1.c1
@�.G.1/D � �/�1v1 � c2
@�.G

.2/
D � �/�1v2/

which clearly implies (3.4). Moreover, if T .�/�1 is meromorphic, so are the

operatorsRij .�/, and by (3.4) the operatorR.�/ is meromorphic, too. Using (3.3)

and the cyclicity of the trace (see Lemma 2.2 of [23]), we get

trH .2�i/
�1

Z


0

R.�/d�

D trH1
.2�i/�1

Z


0

R11.�/d�C trH2
.2�i/�1

Z


0

R22.�/d�

D trH1
.2�i/�1

Z


0

.G
.1/
D � �/�1d�C trH2

.2�i/�1
Z


0

.G
.2/
D � �/�1d�

� trH1
.2�i/�1

Z


0

K1.�/T .�/
�1c1
@�.G

.1/
D � �/�1d�

C trH2
.2�i/�1

Z


0

K2.�/T .�/
�1c2
@�.G

.2/
D � �/�1d�

D trH1
.2�i/�1

Z


0

.G
.1/
D � �/�1d�C trH2

.2�i/�1
Z


0

.G
.2/
D � �/�1d�

� trL2.�/ .2�i/
�1

Z


0

T .�/�1c1
@�.G
.1/
D � �/�1K1.�/d�

C trL2.�/ .2�i/
�1

Z


0

T .�/�1c2
@�.G
.2/
D � �/�1K2.�/d�
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D trH1
.2�i/�1

Z


0

.G
.1/
D � �/�1d�C trH2

.2�i/�1
Z


0

.G
.2/
D � �/�1d�

� trL2.�/ .2�i/
�1

Z


0

T .�/�1c1
d
@�K1.�/

d�
d�

C trL2.�/ .2�i/
�1

Z


0

T .�/�1c2
d
@�K2.�/

d�
d�

which implies (3.5). �

If R.�/ is a meromorphic operator-valued function with residue of �nite rank,

we de�ne the multiplicity of a pole �k 2 C of R.�/ by

mult .�k/ D rank .2�i/�1
Z

j���k jD"
R.�/d�; 0 < " � 1:

Let the curve 
0 be as in Proposition 3.1 and denote byM
0
andM

.j /

0

, j D 1; 2, the

number (counted with the multiplicity) of the poles of R.�/ and the eigenvalues

of G
.j /
D , respectively, in the interior of 
0. Proposition 3.1 implies the following

Corollary 3.2. We have the identity

M
0
D M .1/


0
CM .2/


0
C trL2.�/ .2�i/

�1
Z


0

T .�/�1
dT .�/

d�
d�: (3.6)

Proof. It is easy to see thatR.�/ D .A��/�1, where the operator A is de�ned by

A

�
u1

u2

�
D

0
BB@

� 1

n1.x/
rc1.x/ru1

� 1

n2.x/
rc2.x/ru2

1
CCA

with domain

D.A/ D ¹.u1; u2/ 2 HW rc1.x/ru1 2 L2.�/; rc2.x/ru2 2 L2.�/;

u1 D 
u2; c1
@�u1 D c2
@�u2º:

Hence the �nite-rank operator

�.2�i/�1
Z

j���k jD"
R.�/d� D .2�i/�1

Z

j���k jD"
.� � A/�1d�

is in fact a projection (e.g. see [12]), and therefore the rank coincides with the

trace. Thus, (3.6) follows from (3.5). �
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Let z and h be as in the previous section and denote byNj , zNj , Fj , j D 1; 2, the

operators de�ned by replacing in the de�nition of N, zN, F introduced in Section 2

the pair .c; n/ by .cj ; nj /. Clearly, we have the relationship

hT .z=h2/ D c1N1.z; h/ � c2N2.z; h/
D c1F1.z; h/� c2F2.z; h/C c1 zN1.z; h/� c2 zN2.z; h/:

(3.7)

In what followsH s
h

will denote the Sobolev spaceH s.�/ equipped with the semi-

classical norm.

Lemma 3.3. There exist an invertible, bounded operator

E.z; h/WH s
h �! H sCk

h
D O.1/;

with an inverse

E.z; h/�1WH s
h �! H s�k

h D O.1/;

for all s 2 R, and trace class operators Ll .z; h/ and Lr.z; h/ such that

E.z; h/.c1 zN1.z; h/� c2 zN2.z; h// D I C Ll.z; h/; (3.8)

.c1 zN1.z; h/� c2 zN2.z; h//E.z; h/ D I C Lr.z; h/; (3.9)

where k D �1 if (1.5) holds, k D 1 if (1.6) holds. Moreover, the operators

E;E�1; Ll ; Lr are holomorphic with respect to z for z 2 Z:

Proof. Set mj D nj

cj
, �j D i

p
r0 � z
mj ; j D 1; 2; and let the real-valued

function �; 0 � � � 1 be as in Section 2, with a su�ciently large support.

It follows from the parametrix construction in Section 2 that c1 zN1 � c2 zN2 D
Oph.b/ with a symbol b D

PN
jD0 h

j bj , where bj 2 S1�j are holomorphic in

z 2 Z, and

b0 D .c1�1 � c2�2/.1� �/:
Let �0 2 C1.T ��/ be a real-valued compactly supported function such that

0 � �0 � 1 and �0 D 1 on supp�. It su�ces to show that the operator Oph.�0Cb/
is invertible. Indeed, this would imply (3.8) and (3.9) with E D .Oph.�0 C b//�1

and Ll D EOph.�0/, Lr D Oph.�0/E.

An easy computation shows that

b0 D Qc.x0/.c0.x0/r0.x0; � 0/ � z/
c1�1 C c2�2

.1 � �.x0; � 0//;

where Qc and c0 are the restrictions on � of the functions

c1n1 � c2n2 and
c21 � c22

c1n1 � c2n2
;
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respectively. Let us see that

C1h� 0ik � j�0 C b0j � C2h� 0ik (3.10)

with some constants C1; C2 > 0, where k D �1 if c0.x
0/ � 0 and k D 1 if

c0.x
0/ ¤ 0, for all x0 2 �. Since

b0 D Qc.c0r0 � z/
i.c1 C c2/

p
r0
.1� �/.1C O.h� 0i�1//;

we have with some positive constants zC , zC1, zC2,

2j�0 C b0j � j�0 C Re b0j C jIm b0j

� �0 � jRe b0j C jIm b0j

� �0 C
zC1

h� 0i jc0r0 � zj.1 � �/.1� O.h� 0i�1//

� �0 C zC2h� 0ik.1� �/

� zC h� 0ik

which yields the lower bound in (3.10). The upper bound is obvious.

It follows from (3.10) that .�0 C b0/
�1 2 S�k. Moreover, when c1 � c2,

@�c1 � @�c2 on �, by (2.8) one concludes that b1 2 S�2. Hence the operator

Oph.�0 C b/ is invertible with an inverse which is an h � ‰DO with a symbol

belonging to the class S�k. In particular, we have

.Oph.�0 C b//�1WH s
h �! H sCk

h
D O.1/;

Oph.�0 C b/WH s
h �! H s�k

h D O.1/;

for all s 2 R. �

Set

Vj .h/ WD ¹�k 2 specG
.j /
D W h2�k 2 Zº; j D 1; 2:

De�ne the operator K as follows:

K.z; h/ D E.z; h/.c1F1.z; h/� c2F2.z; h//C Ll .z; h/ if k D �1;

K.z; h/ D .c1F1.z; h/� c2F2.z; h//E.z; h/C Lr .z; h/ if k D 1:
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We obtain easily that

E.c1N1 � c2N2/ D I C K if k D �1;

.c1N1 � c2N2/E D I C K if k D 1:

Clearly, the operator K is trace class and meromorphic in z 2 Z with poles

¹wkº, wk=h2 2 V1.h/ [ V2.h/, and residue of �nite rank, so we can de�ne the

meromorphic function

gh.z/ WD det.I C K.z; h//:

Lemma 3.4. For all z 2 Z such that

ı].z; h/ WD min¹1; dist¹z; spech2G
.1/
D [ spech2G

.2/
D ºº > 0

we have the bound

log jgh.z/j � C"h
1�dı].z; h/�"; for all 0 < " � 1: (3.11)

Proof. It follows from Lemma 2.2 and the properties of the characteristic values

that �j .K/ satisfy the bound (2.10) with a new constant C > 0 and ı replaced by

ı]. In fact, for k D �1 we have

�j1Cj2�1.K/ � �j1
..E.z; h/.c1F1.z; h/ � c2F2.z; h///C �j2

.Ll.z; h//:

Since the operator E.x; h/ is bounded, for the �rst term on the right hand side

we apply Lemma 2.2. On the other hand, �j2
.EOph.�0// � C�j2

.Oph.�0// and

for �j2
.Oph.�0// we obtain easily (2.10) with ı.z; h/ D 1 since �0 has compact

support. Next, if j D j1Cj2�1, then we have j1 � .j C1/=2 or j2 � .j C1/=2:

The case k D 1 is similar.

Therefore, we have

log jgh.z/j �
1X

jD1
log.1C �j .K//

�
1X

jD1
log.1C Cı].z; h/�1h�2mj�2m=.d�1//

�
Z 1

0

log.1C Cı].z; h/�1h�2mt�2m=.d�1//dt

D Cmh
�dC1.ı].z; h//�

d�1
2m

Z 1

0

log.1C t�2m=.d�1//dt

� zCmh�dC1ı].z; h/�
d�1
2m :

(3.12)

Now, given any 0 < " � 1;we can takem � d�1
2"

andN � 4m, and (3.11) follows

from (3.12). �
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The next lemma is an almost direct consequence of the results of [27].

Lemma 3.5. Let � be as in Theorem 1.1. Then, given any 0 < � � 1; the operator

I C K.z; h/ is invertible on L2.�/ for z 2 Z, jIm zj � h���; and its inverse

satis�es in this region the bound

k.I C K.z; h//�1kL2!L2 � Ch�` (3.13)

with some constants C; ` > 0. For these values of z we also have

log
1

jgh.z/j
� C"h

1�d�"; for all 0 < " � 1: (3.14)

Moreover, the function log gh.z/ is holomorphic in z 2 Z, jIm zj � h��� and

satis�es the bound
ˇ̌
ˇ d
dz

loggh.z/
ˇ̌
ˇ � C�h

1�d�2�

jIm zj (3.15)

in W WD
®
z 2 CW 2

3
� jRe zj � 5

2
; 2h��� � jIm zj � 1

2

¯
.

Proof. It follows from the analysis in Section 5 of [27] that, under the assumptions

of Theorem 1.1, the operator c1N1.z; h/ � c2N2.z; h/ is invertible for z 2 Z,

jIm zj � h��� and

k.c1N1.z; h/� c2N2.z; h//�1kH1
h

!L2 � Ch�` if k D �1;

k.c1N1.z; h/� c2N2.z; h//�1kL2!H1
h

� Ch�` if k D 1:

Now (3.13) follows from these bounds and Lemma 3.3 because

.I C K/�1 D .c1N1 � c2N2/�1E�1 if k D �1;

.I C K/�1 D E�1.c1N1 � c2N2/
�1 if k D 1:

The bound (3.14) can be obtained in precisely the same way as (3.11) by us-

ing (3.13) and the formula

1

gh.z/
D det.I � .I C K.z; h//�1K.z; h//:

Note that the norm k.I C K.z; h//�1k will add a factor h� l.d�1/
2m which for su�-

ciently large m yields a factor O.h��/.
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Clearly, it follows from the Fredholm theorem that, under the assumptions

of Theorem 1.1, the operator-valued function .I C K.z; h//�1 WL2.�/ ! L2.�/

is meromorphic in Z with �nite rank residue and holomorphic with respect

to z 2 Z for jIm zj � h���. Therefore the functions gh.z/ and 1
gh.z/

are

holomorphic in z 2 Z, jIm zj � h���, and hence so is loggh.z/. Fix an

arbitrary w 2 W . Then the function f .z/ D log gh.z/
gh.w/

is holomorphic in z 2 Z,

jIm zj � h��� and f .w/ D 0. It follows from the bounds (3.11) and (3.14) that

Ref .z/ � O�.h
1�d�2�/ for z 2 Z, jIm zj � h��� In particular, the later estimate

holds on the circle Cw D
®
z 2 CW jz � wj D jImwj

2

¯
since for every z 2 Cw we

have j Im zj � j Imwj
2
: Applying the Caratheodory theorem (e.g. see 5.5 in [26]),

we get

jf 0.z/j D O�.h
1�d�2�/jImwj�1 for jz � wj � jImwj

3
:

This implies (3.15) because f 0.z/ D d
dz

loggh.z/. �

Let 
0 � Z be a simple closed positively oriented curve which avoids the

eigenvalues of h2G
.j /
D , j D 1; 2, as well as the poles of T .z=h2/�1. Denote by

M
0
.h/ the number of the poles, ¹�kº, of R.�/ such that h2�k are in the interior

of the domain !0 with boundary 
0. Similarly, we denote byM
.j /

0
.h/ the number

of the eigenvalues, ¹�kº, of G
.j /
D such that h2�k are in !0. Corollary 3.2 implies

the following

Lemma 3.6. We have the identity

M
0
.h/ D M .1/


0
.h/CM .2/


0
.h/C 1

2�i

Z


0

d

dz
log gh.z/dz: (3.16)

Proof. We apply (3.6) and use the identities

hT .z=h2/ D E�1.z; h/.I C K.z; h//;

.hT .z=h2//�1 D .I C K.z; h//�1E.z; h/

combined with the analyticity of E.z; h/ in z and the following well-known

formula

tr .I C K.z; h//�1
dK.z; h/

dz
D d

dz
log det.I C K.z; h//:

The above formula for log det.ICK.z; h// is classical for �nite rank perturbations

of the identity. For trace class ones this formula follows by an approximation with

�nite rank operators (see for example, Section 5 in [21]). �
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It follows from (3.16) that z0 2 Z n spec.h2G
.1/
D / [ spec.h2G

.2/
D / is a zero

of gh.z/ if and only if z0 is a pole of R.z=h2/ (and hence z0=h
2 is an interior

transmission eigenvalue) and the multiplicities coincide. Similarly, one can see

that if Qz0 is a pole of gh.z/ with multiplicity zm0, then Qz0 2 spec.h2G
.1/
D / [

spec.h2G
.2/
D / and zm0 � zm1 C zm2, where zmj is the multiplicity of Qz0=h2 as an

eigenvalue of G
.j /
D . In what follows we will use the formula (3.16) to prove the

following

Proposition 3.7. For every 0 < � � 1 and A > 0, independent of h, we have the

asymptotics

I.h/ WD ]
®
zk; zk=h

2 is (ITE)W 1� Ah���� jRe zkj � 2C Ah���; jIm zkj � h���¯

D .2d=2 � 1/.�1 C �2/h
�d C O�;A.h

�dC��3�/; 0 < h � h0.�; A/:

(3.17)

Proof. We will consider only the case Re zk > 0, since the case Re zk < 0

is similar (and even simpler since the function gh.z/ does not have poles in

Re z < 0). Consider the points w˙
1 D 1 � Ah��� ˙ i

3
, w˙

2 D 2 C Ah��� ˙ i
3
,

zw˙
1 D 1 � Ah��� ˙ i3h���, zw˙

2 D 2C Ah��� ˙ i3h��� and set

‚1 D ¹z 2 C W 1 � 2.AC 1/h��� � Re z � 1C h���; jIm zj � 4h���º;

‚2 D ¹z 2 C W 2 � h��� � Re z � 2C 2.AC 1/h���; jIm zj � 4h���º:

The following lemma will be proved later on.

Lemma 3.8. There exist positively oriented piecewise smooth curves Q
1 � ‚1

and Q
2 � ‚2, where Q
1 connects the point zw�
1 with zwC

1 , while Q
2 connects the

point QwC
2 with zw�

2 , such that

ˇ̌
ˇ̌Im

Z

Q
j

d

dz
log gh.z/dz

ˇ̌
ˇ̌ � C�h

�dC��2�; j D 1; 2: (3.18)

Now we apply Lemma 3.6 with a contour 
0 D 
1[
3[
2[
4, where 
3 � W

is the segment ŒwC
1 ; w

C
2 � on the line passing through the points wC

1 and wC
2 , and


4 � W is the segment Œw�
2 ; w

�
1 � on the line passing through the points w�

2 and

w�
1 . Next, 
1 D Œw�

1 ; zw�
1 � [ Q
1 [ Œ zwC

1 ; w
C
1 �, 
2 D ŒwC

2 ; zwC
2 � [ Q
2 [ Œ zw�

2 ; w
�
2 �

(see Figure 1).
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0

1=3

�1=3

‚1 ‚2


1 
2


3


4

wC
1 wC

2

w�
1 w�

2

Q
1

Q
2

zwC
1

zwC
2

zw�
1

zw�
2

1

Figure 1. Contour 
0.

Since 
j � W , j
j j D O.1/, j D 3; 4, by (3.15) we have

ˇ̌
ˇ̌
Z


j

d

dz
loggh.z/dz

ˇ̌
ˇ̌ �

Z


j

ˇ̌
ˇ̌ d
dz

loggh.z/

ˇ̌
ˇ̌jdzj

� C�h
�dC1�2�

Z


j

jdzj

� C�h
�dC1�2�; j D 3; 4:

(3.19)

Applying (3.15) once more, we have

ˇ̌
ˇ̌
Z

Œw˙
j
; zw˙

j
�

d

dz
log gh.z/dz

ˇ̌
ˇ̌ � C�h

�dC1�2�
Z 1=2

3h���

d�

�

� C�h
�dC1�3�; j D 1; 2:

(3.20)
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On the other hand, since the counting function of the eigenvalues ofG
.j /
D satis�es

the Weyl law, we deduce

M .j /

0
.h/ � ]¹�k 2 specG

.j /
D W 1� 2.AC 1/h��� � h2�k � 2C 2.AC 1/h���º

D �j

� 2
h2

C 2.AC 1/h���

h2

�d=2
� �j

� 1
h2

� 2.AC 1/h���

h2

�d=2
C O�.h

�dC1/

D .2d=2 � 1/�jh�d C O�;A.h
�dC���/

and similarly

M .j /

0
.h/ � ]¹�k 2 specG

.j /
D W 1C h��� � h2�k � 2 � h���º

D .2d=2 � 1/�jh
�d � O�.h

�dC���/:

Consequently,

M .j /

0
.h/ D .2d=2 � 1/�jh

�d C O�;A.h
�dC���/: (3.21)

Taking together (3.16), (3.18), (3.19), (3.20), and (3.21), we obtain

M
0
.h/ D .2d=2 � 1/.�1 C �2/h

�d C O�;A.h
�dC��3�/: (3.22)

Thus, to establish (3.17), it remains to show that the counting function I.h/

satis�es

jI.h/ �M
0
.h/j � C�;Ah

�dC��3�: (3.23)

Given a parameter � > 0, independent of h, introduce

B˙
j .�/ D ¹z 2 CW jz � zw˙

j j � �h���º:

Clearly, there exists �0 > 0 such that ‚j � BC
j .�/ [ B�

j .�/, for all � � �0,

j D 1; 2. Let ¹z˙;j
k

º be the zeros (repeated with their multiplicities) of gh.z/ in

B˙
j .2�0/ and let ¹y˙;j

k
º be the poles (repeated with their multiplicities) of gh.z/

in B˙
j .4�0/. Therefore the function

f
˙;j
h

.z/ D gh.z/
Y

k

.z � y˙;j
k

/

is holomorphic in the interior of B˙
j .4�0/. Obviously, ¹y˙;j

k
º are among the

eigenvalues of the operators G
.1/
D and G

.2/
D in an interval of the form

Œ1 � O.h���/; 1C O.h���/�[ Œ2 � O.h���/; 2C O.h���/�:
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Hence, by the Weyl law for the counting function of these eigenvalues, as in the

proof of (3.21), we get

]¹y˙;j
k

º � C�;Ah
�dC���; j D 1; 2: (3.24)

By (3.14) and (3.24), we have

log jf ˙;j
h

. zw˙
j /j D log jgh. zw˙

j /j C
X

k

log j zw˙
j � y˙;j

k
j

� �C�h�dC1�� � ]¹y˙;j
k

ºC log
1

h

� �2C�;Ah�dC��2�:

(3.25)

On the other hand, applying (3.11) and (3.24), for z 2 B˙
j .�/; �0 < � < 4�0,

jz � y
˙;j
k

j � hM , M � 1, we obtain

log jf ˙;j
h

.z/j D log jgh.z/j C
X

k

log jz � y
˙;j
k

j

� C�h
�dC1�� C ]¹y˙;j

k
ºM log

1

h

� 2C�;Ah
�dC��2�:

(3.26)

We claim that there exists 3�0 < �1 < 4�0 such that the distance between ¹y˙;j
k

º
and the circle @B˙

j .�1/ is greater than hM , provided M � d . Indeed, if we

suppose the contrary, this would imply that the length of the interval

J˙
j WD R \ .B˙

j .4�0/ n B˙
j .3�0//

is upper bounded by ]¹y˙;j
k

2 J˙
j ºhM D O.hM�d /, which is impossible if

M is taken large enough. This proves the claim. Thus, by (3.26) we have the

estimate log jf ˙;j
h

.z/j D O�.h
�dC��2�/ on @B˙

j .�1/, which in turn implies

log jf ˙;j
h

.z/j D O�.h
�dC��2�/ on B˙

j .3�0/. Combining this with (3.25) and the

Jensen theorem (see for example 3.6 in [26]), yields for the zeros z
˙;j
k

in B˙
j .2�0/

the following bound

]¹z˙;j
k

W z˙;j
k

2 B˙
j .2�0/º � C�;Ah

�dC��2�: (3.27)

Since the left-hand side of (3.23) is upper bounded by the number of the zeros

and the poles of the function gh.z/ in BC
1 .�0/ [ B�

1 .�0/ [ BC
2 .�0/ [ B�

2 .�0/, the

estimate (3.23) follows from (3.24) and (3.27). �
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Remark 3.9. The bound (3.27) of the number of the zeros z
˙;j
k

of gh.z/ in

B˙
j .2�0/ does not depend on the statement of Lemma 3.8 but only on the

application of the Jensen theorem based on (3.25) and (3.26). We will use (3.27)

in the proof of Lemma 3.8 below.

Proof of Lemma 3.8. We will consider only the case j D 1, since the case j D 2

is similar. Introduce the function

�h.z/ WD gh.z/
Y

w2M1

.z �w/�1
Y

w2M2

.z �w/ ;

where M1 D ¹zC;1
k

º [ ¹z�;1
k

º is the set of all zeros of gh.z/ in B�
1 .2�0/[BC

1 .2�0/

and M2 D ¹yC;1
k

º [ ¹y�;1
k

º is the set of all poles of gh.z/ in B�
1 .4�0/[BC

1 .4�0/.

Since �h.z/ does not have zeros and poles in B�
1 .2�0/ [ BC

1 .2�0/, the function

log �h.z/ is holomorphic in B�
1 .2�0/ [ BC

1 .2�0/. We need the following

Lemma 3.10. The function �h.z/ satis�es the bound

log j�h.z/j � C�h
�dC1�2� for all z 2 B�

1 .�/ [ BC
1 .�/; (3.28)

for every 0 < � < 2�0 independent of h.

Proof. SetU D
S
w2M¹z 2 CW jz�wj � hM º, whereM � d andM D M1[M2.

Clearly, U D
S
� U� , where every U� is a domain with a piecewise smooth

boundary and U� \ U� D ; if � ¤ �. Moreover, we have

X

�

measure.@U�/ � 2�hM ]¹w 2 Mº � ChM�d :

Let � < �1 < 2�0 be independent of h. Let ¹U˙
�i

º be the set of all U� such that

U� \ @B˙
1 .�1/ ¤ ;:We now construct a closed curve, ˇ˙

1 .�1/ as follows: we keep

all arcs on @B˙
1 .�1/ having no common points with ¹U˙

�i
º and replace the arc

@B˙
1 .�1/\U˙

�i
with arcs on @U˙

�i
connecting the corresponding end points. Thus

we can guarantee that ˇ˙
1 .�1/ belongs to an O.hM�d / neighborhood of @B˙

1 .�1/

and, moreover, the distance between ˇ˙
1 .�1/ and the set M is greater than hM .

In the same way, as in the proof of (3.25) and (3.26) above, by using (3.11), (3.14),

(3.24), and (3.27), we get

log j�h.z/j � C�h
�dC1�2� for all z 2 ˇ˙

1 .�1/: (3.29)

Since B˙
1 .�/ is in the interior of the domain bounded by ˇ˙

1 .�1/, the esti-

mate (3.29) implies (3.28). 4
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We will now construct the curve Q
1. Let ¹U�i
º be the set of all U� such that

U� \ Œ zw�
1 ; zwC

1 � ¤ ;: We keep all segments on Œ zw�
1 ; zwC

1 � having no common

points with ¹U�i
º and replace the segments on Œ zw�

1 ; zwC
1 � \ U�i

with arcs on @U�i

connecting the corresponding end points. Thus we get a piecewise smooth curve

Q
1 belonging to an O.hM�d / neighborhood of Œ zw�
1 ; zwC

1 � and the distance between

Q
1 and the set M is greater than hM . Hence Q
1 � ‚1. Now we can write

Z

Q
1

d

dz
log gh.z/dz D

Z

Œ zw�
1
; zwC

1
�

d

dz
log �h.z/dz C

X

w2M1

Z

Q
1

.z � w/�1dz

�
X

w2M2

Z

Q
1

.z �w/�1dz:
(3.30)

We will show that
ˇ̌
ˇ̌ d
dz

log �h.z/

ˇ̌
ˇ̌ � C�h

�dC1���� for all z 2 ‚1; (3.31)

ˇ̌
ˇ̌Im

Z

Q
1

.z � w/�1dz

ˇ̌
ˇ̌ � 3� for all w 2 M: (3.32)

Since the length of the interval j zw�
1 ; zwC

1 � is 6h���, the estimate (3.31) implies

that the absolute value of the �rst integral on the right-hand side of (3.30) is

O�.h
�dC1�2�/. Thus, (3.18) would follow from (3.30), (3.31), (3.32), and the

bounds (3.24) and (3.27).

To prove (3.31), we apply the Caratheodory theorem (see 5.5 in [26]) for

the derivative of the function f˙.z/ D log �h.z/

�h. zw˙
1
/
. Note that log j�h. zw˙

1 /j can

be bounded from below in the same way as in (3.25) above. Therefore, apply-

ing (3.28), we get for the real part of f˙.z/ the estimate

Ref˙.z/ D log j�h.z/j � log j�h. zw˙
1 /j � Ch�dC1�2� for all z 2 @B˙

1

�3
2
�0

�
:

Since f˙. zw˙
1 / D 0, we conclude by the Caratheodory theorem that jf 0

˙.z/j D
O�.h

�dC1����/ in the disc B˙
1 .�0/, which clearly implies (3.31).

To establish (3.32), observe that if w does not lie on the line connecting the

points zw�
1 and zwC

1 and if �0 > 0 denotes the distance from w to this line, after a

suitable change of variables, we have

ˇ̌
ˇ̌Im

Z zwC
1

zw�
1

.z �w/�1dz
ˇ̌
ˇ̌ D

Z b

a

�0d�

�20 C �2
�

Z 1

�1

d�

1C �2
D �: (3.33)



28 V. Petkov and G. Vodev

Since the integral in the left-hand side of (3.32) di�ers from the integral in the left-

hand side of (3.33) either by 0 or 2�i , the estimate (3.33) implies (3.32) in this

case. If w lies on the line connecting the points zw�
1 and zwC

1 , then the integral on

the left-hand side of (3.32) is a limit of integrals of the �rst kind, and hence (3.32)

will be true in this case, too. This completes the proof of Lemma 3.8. �

Proof of Theorem 1.1. Let � be as described in Theorem 1.1. Let A1 and A2

be arbitrary real numbers, independent of h, and let A > max¹jA1j; jA2jº be

independent of h. It follows from the proof of Proposition 3.7 (see (3.27)) that

]¹zk; zk=h2 is (ITE)W 1� Ah��� � jRe zk j � 1C Ah���; jIm zkj � O.h���/º

D O�;A.h
�dC��2�/;

]¹zk; zk=h2is (ITE)W 2� Ah��� � jRe zkj � 2C Ah���; jIm zkj � O.h���/º

D O�;A.h
�dC��2�/:

Therefore, by (3.17) we get for every 0 < � � 1

]¹zk; zk=h2 is (ITE)W 1� A1h��� � jRe zk j � 2C A2h
���; jIm zkj � O.h���/º

D .2d=2 � 1/.�1 C �2/h
�d C O�;A1;A2

.h�dC��3�/; 0 < h � h1.A1; A2; �/:

Choose h D
p
2
r
; r � 1: The above asymptotics yields

°
� 2 CW� is (ITE),

r2

2
� A1r2��C��jRe�j�r2 C A2r

2��C�; jIm�j � r2��C�
±

D .1� 2�d=2/.�1 C �2/r
d C O�;A1;A2

.rd��C3�/; r � r1.A1; A2; �/:

Recall that according to the results in [27], there are no (ITE) in the region

°
� 2 CW r

2

2
� j�j � r2; jIm�j � r2��C�

±

for every 0 < � � 1, provided r � r0.�/ � 1. On the other hand, it is clear that

the region
°
� 2 CW r

2

2
� j�j � r2; jIm�j � r2��C�

±

is contained in the region

°
� 2 C W r

2

2
� r2��C� � jRe�j � r2; jIm�j � r2��C�

±
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and contains the region

°
� 2 CW r

2

2
� jRe�j � r2 � r2��C�; jIm�j � r2��C�

±
:

Thus we get the asymptotics

N.r/ �N.r=
p
2/ D .1� 2�d=2/.�1 C �2/r

d C O".r
d��C"/ r � r0.�/; (3.34)

for every 0 < " � 1. Here we replace 3� by �, which is not important since our

argument works for every 0 < � � 1: The asymptotics (3.34) yields

N.r=2k=2/ �N.r=2.kC1/=2/

D .2�kd=2 � 2�.kC1/d=2/.�1 C �2/r
d C 2�kd=2

O".r
d��C"/

(3.35)

for every integer k � 0 such that r2�k=2 � r0.�/. Let k0.r/ 2 N be the smallest

integer such that r2�k0.r/=2 < r0.�/. It is clear that we have

N.r=2.k0.r/C1/=2/ � N.r0.�// D R0.�/ (3.36)

with a constant R0.�/ > 0 independent of r: Moreover,

.2�.k0.r/C1/=2r/d � .r0.�//
d D R1.�/

with R1.�/ > 0 independent of r . Summing up the asymptotics (3.35) and

using (3.36), we get (1.7). Thus the proof of Theorem 1.1 is complete. �

References

[1] L. Audibert and H. Haddar, A generalized formulation of the linear sampling method

with exact characterization of targets in terms of far�eld measurements. Inverse

Problems 30 (2014), no. 3, article id. 035011. MR 3168273 Zbl 1291.35377

[2] K. Kh. Boimatov and A. G. Kostyuchenko, Spectral asymptotics of nonselfadjoint

elliptic systems of di�erential operators in bounded domains. Mat. Sb. 181 (1990),

no. 12, 1678–1693. In Russian. English translation, Math. USSR-Sb. 71 (1992), no. 2,

517–531. MR 1099521 Zbl 0776.35041

[3] F. Caconi and H. Haddar, Transmission eigenvalues in inverse scattering theory. In

G. Uhlmann (ed.) Inverse problems and applications: inside out. II. Mathematical

Sciences Research Institute Publications, 60. Cambridge University Press, Cam-

bridge, 2013, 529–580. MR 3135766 Zbl 1316.35297

[4] F. Cardoso, G. Popov, and G. Vodev, Asymptotics of the number of resonances in

the transmission problem. Comm. Partial Di�erential Equations 26 (2001), no. 9-10,

1811–1859. MR 1865946 Zbl 1086.35012

http://www.ams.org/mathscinet-getitem?mr=3168273
http://zbmath.org/?q=an:1291.35377
http://www.ams.org/mathscinet-getitem?mr=1099521
http://zbmath.org/?q=an:0776.35041
http://www.ams.org/mathscinet-getitem?mr=3135766
http://zbmath.org/?q=an:1316.35297
http://www.ams.org/mathscinet-getitem?mr=1865946
http://zbmath.org/?q=an:1086.35012


30 V. Petkov and G. Vodev

[5] D. Colton and A. Kirsch, A simple method for solving inverse scattering problems

in the resonance region. Inverse Problems 12 (1996), no. 4, 383–393. MR 1402098

Zbl 0859.35133

[6] D. Colton and Y. J. Leung, Complex eigenvalues and inverse spectral problem for

transmission eigenvalues. Inverse Problems 29 (2013), no. 10, article id. 104008.

MR 3116203 Zbl 1305.34027

[7] M. Dimassi and J. Sjöstrand, Spectral asymptotics in semi-classical limit. London

Mathematical Society Lecture Note Series, 268. Cambridge University Press, Cam-

bridge, 1999. MR 1735654 Zbl 0926.35002

[8] M. Dimassi and V. Petkov, Upper bound for the counting function of interior trans-

mission eigenvalues. Preprint 2013 arXiv:1308.2594 [math.SP]

[9] M. Faierman, The interior transmission problem: spectral theory. SIAM J. Math.

Anal. 46 (2014), no. 1, 803–819. MR 3165910 Zbl 1294.35049

[10] M. Hitrik, K. Krupchyk, P. Ola, and L. Päivärinta, The interior transmission problem

and bounds on transmission eigenvalues. Math. Res. Lett. 18 (2011), no. 2, 279–293.

MR 2784672 Zbl 1241.47057

[11] M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, Transmission eigenvalues for el-

liptic operators. SIAM J. Math. Anal. 43 (2011), no. 6, 2630–2639. MR 2873234

Zbl 1233.35148

[12] T. Kato, Perturbation theory for linear operators. Die Grundlehren der mathematis-

chen Wissenschaften, 132. Springer-Verlag New York, New York, 1966. MR 0203473

Zbl 0148.12601

[13] E. Lakshtanov and B. Vainberg, Remarks on interior transmission eigenvalues, Weyl

formula and branching billiards. J. Phys. A 45 (2012), no. 12, article id. 125202.

MR 2902328 Zbl 1245.81290

[14] E. Lakshtanov and B. Vainberg, Bounds on positive interior transmission eigen-

values. Inverse Problems 28 (2012), no. 10, article id. 105005. MR 2987908

Zbl 1256.35036

[15] E. Lakshtanov and B. Vainberg, Applications of elliptic operator theory to the

isotropic interior transmission eigenvalue problem. Inverse Problems 29 (2013),

no. 10, article id. 104003. MR 3116198 Zbl 1285.35059

[16] E. Lakshtanov and B. Vainberg, Weyl type bound on positive interior transmis-

sion eigenvalues. Comm. Partial Di�erential Equations 39 (2014), no. 9, 1729–1740.

MR 3246041 Zbl 1301.35078

[17] P. Malliavin, Un théorème taubérien relié aux estimations des valeurs propres. Sémi-

naire Jean Leray (1962–1963), p. 234-231.

http://www.numdam.org/item?id=SJL_1962-1963____224_0

[18] H. Pham and P. Stefanov, Weyl asymptotics of the transmission eigenvalues for

a constant index of refraction. Inverse Probl. Imaging 8 (2014), no. 3, 795–810.

MR 3295945 Zbl 06377647

http://www.ams.org/mathscinet-getitem?mr=1402098
http://zbmath.org/?q=an:0859.35133
http://www.ams.org/mathscinet-getitem?mr=3116203
http://zbmath.org/?q=an:1305.34027
http://www.ams.org/mathscinet-getitem?mr=1735654
http://zbmath.org/?q=an:0926.35002
http://arxiv.org/abs/1308.2594
http://www.ams.org/mathscinet-getitem?mr=3165910
http://zbmath.org/?q=an:1294.35049
http://www.ams.org/mathscinet-getitem?mr=2784672
http://zbmath.org/?q=an:1241.47057
http://www.ams.org/mathscinet-getitem?mr=2873234
http://zbmath.org/?q=an:1233.35148
http://www.ams.org/mathscinet-getitem?mr=0203473
http://zbmath.org/?q=an:0148.12601
http://www.ams.org/mathscinet-getitem?mr=2902328
http://zbmath.org/?q=an:1245.81290
http://www.ams.org/mathscinet-getitem?mr=2987908
http://zbmath.org/?q=an:1256.35036
http://www.ams.org/mathscinet-getitem?mr=3116198
http://zbmath.org/?q=an:1285.35059
http://www.ams.org/mathscinet-getitem?mr=3246041
http://zbmath.org/?q=an:1301.35078
http://www.numdam.org/item?id=SJL_1962-1963____224_0
http://www.ams.org/mathscinet-getitem?mr=3295945
http://zbmath.org/?q=an:06377647


Interior transmission eigenvalues 31

[19] L. Robbiano, Spectral analysis of the interior transmission eigenvalue problem. In-

verse Problems 29 (2013), no. 10, article id. 104001. MR 3116196 Zbl 1296.35105

[20] L. Robbiano, Counting function for interior transmission eigenvalues. Math. Control

Relat. Fields 6 (2016), no. 1, 167–183. MR 3448675 Zbl 1332.35242

[21] J. Sjöstrand, Lectures on resonances.

http://sjostrand.perso.math.cnrs.fr/Coursgbg.pdf

[22] J. Sjöstrand, Weyl law for semi-classical resonances with randomly perturbed poten-

tials. Mém. Soc. Math. Fr. (N.S.) 136 (2014). MR 3288114 Zbl 1304.35010

[23] J. Sjöstrand and G. Vodev, Asymptotics of the number of Rayleigh resonances. Math.

Ann. 309 (1997), no. 2, 287–306. MR 1474193 Zbl 0890.35098

[24] J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact

operators. SIAM J. Math. Anal. 44 (2012), no. 1, 341–354. MR 2888291 Zbl 1238.81172

[25] J. Sylvester, Transmission eigenvalues in one dimension. Inverse Problems 29 (2013),

no. 10, article id. 104009. MR 3116204 Zbl 1294.34079

[26] E. C. Titchmarsh, The theory of functions. Second Edition, Oxford University Press,

Oxfori, 1939. JFM 65.0302.01

[27] G. Vodev, Transmission eigenvalue-free regions. Comm. Math. Phys. 336 (2015),

no. 3, 1141–1166. MR 3324140 Zbl 1323.35110

[28] G. Vodev, Transmission eigenvalues for strictly concave domains. To appear in Math.

Ann. doi:10.1007/s00208-015-1329-2

Received September 20, 2014; revised December 14, 2014

Vesselin Petkov, Université de Bordeaux, Institut de Mathématiques de Bordeaux,

351, Cours de la Libération, 33405 Talence, France

e-mail: petkov@math.u-bordeaux1.fr

Georgi Vodev, Université de Nantes, Département de Mathématiques,

2, rue de la Houssinière, 44322 Nantes Cedex, France

e-mail: vodev@math.univ-nantes.fr

http://www.ams.org/mathscinet-getitem?mr=3116196
http://zbmath.org/?q=an:1296.35105
http://www.ams.org/mathscinet-getitem?mr=3448675
http://zbmath.org/?q=an:1332.35242
http://sjostrand.perso.math.cnrs.fr/Coursgbg.pdf
http://www.ams.org/mathscinet-getitem?mr=3288114
http://zbmath.org/?q=an:1304.35010
http://www.ams.org/mathscinet-getitem?mr=1474193
http://zbmath.org/?q=an:0890.35098
http://www.ams.org/mathscinet-getitem?mr=2888291
http://zbmath.org/?q=an:1238.81172
http://www.ams.org/mathscinet-getitem?mr=3116204
http://zbmath.org/?q=an:1294.34079
http://zbmath.org/?q=an:65.0302.01
http://www.ams.org/mathscinet-getitem?mr=3324140
http://zbmath.org/?q=an:1323.35110
http://dx.doi.org/10.1007/s00208-015-1329-2
mailto:petkov@math.u-bordeaux1.fr
mailto:vodev@math.univ-nantes.fr

	Introduction and statement of results
	Parametrix of the Dirichlet–to–Neumann map in the elliptic zone
	Analysis of the transmission eigenvalues
	References

