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The trimmed Anderson model at strong disorder:

localisation and its breakup
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Abstract. We explore the properties of discrete random Schrödinger operators in which

the random part of the potential is supported on a sub-lattice (the trimmed Anderson

model). In this setting, Anderson localisation at strong disorder does not always occur;

alternatives include anomalous localisation and, possibly, delocalisation. We establish two

new su�cient conditions for localisation at strong disorder as well as a su�cient condition

for its absence, and provide examples for both situations. The main technical ingredient is

a pair of Wegner-type estimates which are applicable when the covering condition does not

hold. Finally, we discuss a coupling between random operators at weak and strong disorder.

This coupling is used in an heuristic discussion of the properties of the trimmed Anderson

model for sparse sub-lattices, and also in a new rigorous proof of a result of Aizenman

pertaining to weak disorder localisation for the usual Anderson model.
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1. Introduction

In this paper we collect several observations pertaining to the spectral properties of

random Schrödinger operators in the absence of the so-called covering condition,

which stipulates that the random potential is supported on the entire lattice. Let

ƒ be a lattice of bounded connectivity � �, and let

H.g/ D ��C V0 C gV (1.1)

1 Supported in part by NSF under grant DMS-1210982.

2 Supported in part by NSF under grant PHY-1305472.
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be the operator acting on `2.ƒ/ by

ŒH.g/ �.x/ D
X

y�x

. .x/ �  .y//C .V0.x/C gV.x// .x/; x 2 ƒ: (1.2)

Here we assume that V0W ƒ ! R is a deterministic background potential,

V W .��/ƒ ! R is a random potential that assumes independent identically dis-

tributed entries with distribution � on a sublattice � � ƒ, and g � 0 is a coupling

constant. Following [8], we call (1.1) a �-trimmed random Schrödinger operator

on ƒ. The usual Anderson model is recovered when � D ƒ D Z
d .

Recall that the Anderson model exhibits localisation at strong disorder: for

g � 1, the spectrum is pure point and the eigenfunctions are exponentially lo-

calised. Two strategies of proof are available: the �rst one, called multi-scale

analysis, was devised by Fröhlich and Spencer [10] and the second one, the frac-

tional moment method,— by Aizenman and Molchanov [2]. Both have many

variants and rami�cations, too numerous to be listed here, and surveyed, for

example, by Figotin and Pastur [17, Chapter 15C], Kirsch [14], and Stolz [20].

We also mention the work of Imbrie [11] in which an iterative scheme to diago-

nalise the random operator is suggested.

It is expected, on physical grounds [16], that, as the strength of the disorder

decreases, the Anderson model undergoes a phase transition, and the absolutely

continuous component of the spectrum emerges. From the mathematical physics

perspective, the proof of such actuality remains one of the greatest challenges in

the �eld.

The variant of the Anderson model which we consider in this work is character-

ized by two parameters: the strength g of the disorder as in the standard Anderson

model, and the sublattice � of Zd in which we insert the random potential.

For � D Z
d we recover the usual Anderson model with almost sure pure

point spectrum for large g. We mainly consider the case when � is a periodic

sublattice of Zd , and explore the dependence of the spectral properties at strong

disorder g � 1 on the geometry of �: when � is su�ciently dense (in the sense

de�ned in Theorem 2 below), the behaviour is similar to that of the usual Anderson

model (Anderson localisation), whereas for a sparser � new phenomena appear,

see discussion below.

Another direction (which we do not explore in depth here) is to choose � at

random, according to the product probability measure (site percolation). Then

the case g D 1 is known as quantum percolation (see the paper of Veselić [21]

for a survey of results). Finite g > 0 leads to a model which combines the

features of the Anderson model with those of quantum percolation. Thus one may
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expect an interesting phase diagram as one varies both the strength of disorder

g and the relative density1 of �; the results of the current paper indicate how

parts of this phase diagram should look. In particular, our results suggest that the

delocalisation part of the phase diagram for such models may be more amenable

to analysis than in the usual Anderson model.

Our initial interest in the trimmed Anderson model was triggered by the fol-

lowing question. The known proofs of localisation make use of a priori estimates

on the resolvent (Wegner-type bounds), and these in turn require that the support

of the potential is the entire lattice (covering condition). One may ask whether

localisation at strong disorder still holds when the covering condition is violated.

In the continuum setting, an a�rmative answer to this question was established

at the bottom of the spectrum using the unique continuation principle (UCP),

[15, 19] (Wegner bounds for such models were �rst established in [6]). Although

UCP is not applicable for the lattice Schrödinger operators, Rojas-Molina [18]

and Klein with the �rst author [8] developed Wegner estimates adjusted for the

trimmed Anderson model. These estimates allowed to prove localisation in the

strong disorder regime, at the bottom of the spectrum. In [18], the case of zero

background V0 D 0 was considered, whereas [8] handled arbitrary bounded

background potentials.

We make a further contribution in this direction, and prove (Theorems 1 and 2)

localisation at strong disorder in several additional situations (not necessarily at

the bottom of the spectrum).

Further, we explore the possible alternatives to localisation which may occur

at strong disorder.

In certain situations, we prove (Theorem 3) that su�ciently high moments as-

sociated with the Green function diverge. Although this phenomenon occurs only

at a discrete set of special energies, it implies (Lemma 1.4) the divergence of high

moments associated with the quantum dynamics, which is in turn incompatible

with strong forms of Anderson localisation. This anomalous behaviour has previ-

ously been rigorously observed only in one-dimensional models, cf. Jitomirskaya,

Schulz-Baldes, and Stolz [13].

One possibility is the emergence of an absolutely continuous component of the

spectral measure about the special energies. While we currently can not rigorously

rule out this possibility, we �nd the following alternative (anomalous localisation)

more plausible: the spectral measure is pure point, however, the localisation length

of the eigenvectors diverges at the special energies with a power-law singularity.

1 e.g. lim supR!1
jB.0;R/\�j=jB.0;R/j, where B.0;R/ is a ball of radiusR as in (1.7).



90 A. Elgart and S. Sodin

The quantum dynamics picks up the contribution from all eigenvectors, therefore

the position of the quantum particle is a heavy-tailed random variable, and its high

moments diverge as the time grows.

A naïve classical analogue of this phenomenon (ignoring the subtleties of

quantum dynamics and also the presence of multiple channels) is the following: a

particle moves along a circle of length L with unit velocity, where L is a heavy-

tailed random variable. While this is a case of localisation in any possible sense,

su�ciently high moments of the distance from the origin at time t diverge as t

grows to in�nity.

Finally, in certain spectral regions the trimmed Anderson model at strong

disorder can be coupled to a weak disorder Anderson-type model, and this leads

us to believe that in these regions the model exhibits delocalisation in dimension

d � 3.

Now let us state the results in more detail. Throughout the paper, we make the

following three

Assumptions

Inv) ƒ is the d -dimensional lattice Z
d ; the sublattice � and the background

potential V0 are invariant under a co�nite subgroup G � Z
d .

Reg1) The distribution� is ˛-regular for some ˛ > 0, meaning that, for any � > 0

and t 2 R, �Œt � �; t C �� � C�˛ .

Reg2) � has a �nite q-moment for some q > 0, meaning that

Mq D

Z

jt jqd�.t/ < 1:

The invariance assumption Inv) is introduced mainly for convenience, and to

inscribe the problem into the familiar setting of ergodic (metrically transitive)

random operators; it can be mostly omitted or relaxed. The regularity assumptions

Reg1) and Reg2) are essentially used in the arguments.

1.1. Anderson localisation. Denote by GzŒH � D .H � z/�1 the resolvent of a

self-adjoint operator H acting on `2.Zd /. If the fractional moment bound

sup
�>0

sup
x2Zd

X

y2Zd

EjG�Ci�ŒH �.x; y/j
se�kx�yk < 1 (1.3)

holds for some 0 < s < 1 and � > 0, we say thatH exhibits Anderson localisation

at � 2 R. Here k � k stands for the graph distance (i.e. the `1 distance) on Z
d :



The trimmed Anderson model at strong disorder: localisation and its breakup 91

The methods developed by Aizenman [1] (see further [3]) show that if (1.3)

holds for all values of � in an interval I � R, then one has the following more

physical dynamical localisation for the spectral restrictionH jI D PI ŒH �H PI ŒH �

of the operator H to I :

sup
x2Zd

E sup
t�0

X

y2Zd

jeitH jI .x; y/j2e Q�kx�yk < 1: (1.4)

These methods do not require major modi�cation in the context of the current

paper, therefore we focus on single-energy bounds (1.3).

Following the previous work [8], we are interested in the following question:

under which conditions on � and � does Anderson localisation hold at strong

disorder, g � 1? As observed in [8], the restriction

H� D P�cHP �
�c

ofH to the complement of � plays an important rôle (here P�c W `2.Z
d / ! `2.�

c/

denotes coordinate projection).

Theorem 1. Let H.g/ be a �-trimmed random Schrödinger operator on Z
d

satisfying the Assumptions. Suppose � … �.H�/. Then there exist 0 < s < 1

and g0 > 0 so that (1.3) holds for all g � g0.

Remark 1.1. It was shown in [8] that infE2�.H� / E > infE2�.H.g// E almost

surely, which implies that the statement above is non empty.

In section 4.1, we prove the more general Proposition 4.1, and deduce Theo-

rem 1. The proof is a relatively straightforward application of the fractional mo-

ment method of [2].

The condition � … �.H�/ is however not necessary for Anderson localisation.

To illustrate this, consider the case when the complement of � is a union of �nite

connected components. The following theorem implies that, if the connected

components are separated by a double layer of of sites in � (“double insulation”),

Anderson localisation holds at all energies, including the eigenvalues of H� .

Theorem 2. Let H.g/ be a �-trimmed random Schrödinger operator on Z
d

satisfying the Assumptions. If �c is the union of �nite connected components Bj

such that dist.Bi ; Bj / � 3 for i ¤ j , then there exist 0 < s < 1 and g0 > 0 such

that (1.3) holds for all g � g0 and all � 2 R.
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The proof of Theorem 2 appears in Section 4.2; it is also based on the fractional

moment method, and makes use of a Wegner-type estimate which we prove in

Section 3.1.

The reason due to which double insulation forces localisation has to do with the

fact that it rules out the existence of non-trivial formal solutions forH which are

supported on �c . Therefore, in the case when the complement of � is a union of

�nite connected components, the following conjecture would be a generalisation

of both Theorem 1 and Theorem 2.

Conjecture 1.2. Suppose that the complement of � is a union of �nite connected

components, and that � 2 R is such that the eigenvalue equation

H.0/ D � (1.5)

has no non-trivial formal solution  supported on �c . Then (1.3) holds for

su�ciently large g.

1.2. Anomalous localisation. The situation is di�erent when the eigenvalue

equation (1.5) has a solution supported on �c . Let us �rst consider the case when

all the connected components of �c are �nite. We believe that, generically, in this

situation

lim
�!C0

X

y2Zd

�2EjG�Ci�ŒH �.x; y/j
2kx � ykp (1.6)

is in�nite for su�ciently large p > 0. The following theorem con�rms this belief

under additional hypotheses.

Theorem 3. LetH.g/ be a trimmed random Schrödinger operator satisfying the

Assumptions, with arbitrary g > 0, so that all the connected components of Zd n�

are �nite. Fix x 2 Z
d , and suppose that there exist a sequence of connected �nite

subgraphs Bn � Z
d and a pair of constants C; c > 0 such that

(1) B.x; Rn/ � Bn � B.x; .Rn/
C /, where Rn < RnC1 < .Rn/

C and

B.x; R/ D ¹y 2 Z
d W ky � xk � RºI (1.7)

(2) there exists y 2 Bn such that kx � yk � .Rn/
c , and the spectral projection

P¹�ºŒHn.0/� onto the eigenspace of the restriction Hn.0/ D PBn
H.0/P �

Bn

corresponding to � satis�es

ˇ

ˇP¹�ºŒHn.0/�.x; y/
ˇ

ˇ � .Rn/
�C I (1.8)
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(3) Range P¹�ºŒHn.0/� � `2.�c/ ;

(4) min ¹j�0 � �j j �0 2 �.Hn.0// n ¹�ºº � .Rn/
�C .

Then (1.6) D 1 for su�ciently large p.

Remark 1.3. The second and third assumptions state that there exist non-trivial

formal solutions of (1.5) on large boxes, and that all these solutions are supported

on �c . These conditions imply in particular the existence of a non-trivial formal

solution on the entire lattice. The condition (1.8) implies that these formal solu-

tions exhibit at most power-law spatial growth, i.e. they are generalized eigenfunc-

tions ofH.0/, whereas the last assumption of the theorem asserts that the spectral

gap between � and the rest of the spectrum decreases as a power of the size of the

system, which is a generic condition for a periodic Schrödinger operator. Finally,

the �rst assumption is a mild regularity condition on the growth of the boxes.

The proof of Theorem 3 appears in Section 5.

Let us present a couple of examples for the case of zero background potential

V0 D 0 in two dimensions d D 2. One can also construct examples in higher

dimension along the same lines.

The �rst example is

�1.k;m/ D
®

x 2 Z
2 j x1 2 kZ or x2 2 mZ

¯

;

where k;m � 2 is a pair of �xed natural numbers. In this case, any eigenfunction

of the Dirichlet Laplacian in the rectangular fundamental cell ¹x1 2 ¹1; : : : ; k�1º,

x2 2 ¹1; : : : ; m � 1ºº can be extended (by re�ection) to a periodic eigenfunction

of the Laplacian on Z
2 which vanishes on �1.k;m/.

The same is true for

�2.k/ D
®

x 2 Z
2 j x1 2 kZ or x2 � x1 2 2Z

¯

when k � 2. In this example the fundamental cell is a parallelogram.

Although Theorem 3 proves the divergence of (1.6) at a single energy only, this

is su�cient to imply that su�ciently high moments

Mp.x; t / D
X

y2Zd

EjeitH .x; y/j2kx � ykp

associated with the unitary evolution (quantum dynamics) eitH also diverge.

Indeed, the following lemma holds (see Section 5 for the proof).
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Lemma 1.4. For any � 2 R, � > 0, and x 2 Z
d ,

Z 1

0

�e��tMp.x; t /dt �
X

y2Zd

E�2jG�Ci�ŒH �.x; y/j
2kx � ykp: (1.9)

Thus, in the setting of Theorem 3, the moments Mp.x; t / are unbounded

(as t ! 1) for su�ciently large t . We emphasise that this behaviour is not

necessarily a sign of delocalisation. If, as we assumed, all the components of �c

are �nite, a solution  of (1.5) supported on �c may exist only for a discrete set of

energies �. It is plausible that the operatorH.g/ at strong disorder has pure point

spectrum with exponentially decaying eigenfunctions, and that the anomalous

behaviour (1.6) re�ects the divergence of the localisation length at the special

energies. If this is the case, it is an instance of a phenomenon sometimes referred

to as anomalous localisation, cf. the survey of Izrailev, Krokhin, and Makarov [12].

To establish anomalous localisation (as opposed to, say, the presence of con-

tinuous spectrum in the vicinity of �), one needs to complement Theorem 3 with

an upper bound on (1.6) for small p > 0. We have not been able to accomplish

this task. To the best of our knowledge, anomalous localisation has to date only

been proved in several one-dimensional models; we refer in particular to the work

of Jitomirskaya, Schulz-Baldes and Stolz [13].

1.3. Delocalisation. The third possibility that can occur in the invariant setting

Inv) is that �c is connected (or at least has an in�nite connected component), and

� lies in a band of absolutely continuous spectrum of the periodic operator H� .

Conjecture 1.5. Let g � 1, and let I be an interval in the absolutely continuous

spectrum of H� . If d D 2, H.g/ exhibits localisation (1.3); when d � 3, H.g/

has absolutely continuous spectrum on I .

To support this conjecture, we introduce in Section 6.1 a (rigorous) coupling

between random operators at strong and weak disorder. Similar ideas have been

applied in di�erent context by Wang [22].

In Section 6.2 we provide an heuristic argument (making use of this coupling)

in favour of Conjecture 1.5: a trimmed Anderson operator at strong disorder is

coupled to an Anderson-type operator at weak disorder in the same dimension.

If the Anderson-type operator exhibits localisation at d D 2 and delocalisation

at d D 3 (as one may believe based on the conjectures for the usual Anderson

model [16]), the same properties are inherited by the trimmed Anderson operator

from which we started.
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1.4. Other topics. The following topics are also discussed in this paper.

First, the proofs of Theorems 2 and 3 require somewhat non-standard Wegner-

type estimates, which we prove in Sections 3.1 and 3.2.

Second, as an additional application of the strong-to-weak disorder coupling

of Section 6.1, we provide a new proof of a theorem of Aizenman [1] (labelled here

as Theorem 4) on localisation at the spectral edges at weak disorder.

2. Preliminaries

2.1. Notation. Two sites x; y 2 ƒ are adjacent, x � y, if they are connected by

an edge.

If B � ƒ is a subset of the lattice, the boundary @B is the set of edges .x; y/

with x 2 B and y … B; denote by @inB and @outB its projections onto the x- and

y-coordinate, respectively. PB and PBc denote the coordinate projections onto B

and its complement, respectively.

Denote by �.A/ the spectrum of an operator A, and by GzŒA� D .A� z/�1 the

resolvent of A (de�ned for z … �.A/). If A acts on `2.ƒ/, denote by

GzŒA�.x; y/ D hıx ; .A� z/�1ıyi; x; y 2 ƒ;

the matrix elements of the resolvent (the Green function).

If A is self-adjoint and J � R is a Borel set, we denote by PJ ŒA� the spectral

projection on J . Sometimes we use the notation

QJ ŒA� D PJ c ŒA� D 1 � PJ ŒA�:

Finally, we denote by C a su�ciently large positive constant, and by c a

su�ciently small positive constant; the values of C and c may change from line

to line.

2.2. Properties of the resolvent. The following two formulæ are especially

useful for computing the Green function. The �rst one is the Schur–Banachiewicz

formula: if A is an invertible operator acting on `2.ƒ/, X � ƒ, then

PXA
�1P �

X D
�

PXAP
�
X � PXAP

�
Xc

1

PXcAP �
Xc

PXcAP �
X

��1

: (2.1)
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The second one is the resolvent identity, valid when A is an operator of the

form A D ��C U (the potential U need not be real):

GzŒA�.x; y/

D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

X

X3u0�u2Xc

GzŒA�.x; u
0/GzŒAX �.u; y/; x 2 X; y … X;

X

Xc3u�u02X

GzŒAX �.x; u/GzŒA�.u
0; y/; x … X; y 2 X;

X

Xc 3u�u02X;

X3v0�v2Xc

GzŒAX �.x; u/GzŒA�.u
0; v0/GzŒAX �.v; y/; x; y … X:

(2.2)

Next, we shall make use of the Combes–Thomas estimate [7], which states

that if A D �� C U is a Schrödinger operator (U is now real) on a lattice ƒ of

bounded connectivity, and z … �.H/, then jGz ŒA�.x; y/j decays exponentially in

dist.x; y/:

jGzŒA�.x; y/j � C exp.�c dist.x; y// .z … �.A//; (2.3)

where the constants C; c > 0 depend only on the distance from z to the spectrum

of A and on the connectivity of the lattice. A version with a sharp dependence

of c on the distance from the spectrum was proved by Barbaroux, Combes, and

Hislop [4].

2.3. Fractional moments: auxiliary estimates. Here we cite two estimates

which commonly appear in the applications of the fractional moment method,

and go back to the original work of Aizenman and Molchanov [2].

The �rst one is a decoupling inequality for rational functions. We cite it in the

form of [9, Proposition 3.1], which is slightly more general than the original one

of [2, Appendix III] (where fractional-linear functions were considered).

Lemma 2.1. Let � be a probability measure on R satisfying the assumptions

Reg1) and Reg2). Let a1; : : : ; al ; b1; : : : ; bm 2 C, and let s; r > 0 be such that

rm < ˛ and q � .sl C rm/ ˛
˛�rm

. Then

Z

Ql
jD1 jv � aj js

Qm
iD1 jv � bi jr

d�.v/ �

Ql
jD1.1C jaj j/s

Qm
iD1.1C jbi j/r

;

where the "�" sign means that LHS � C RHS � C 0 LHS, and the numbers

C; C 0 > 0 do not depend on the aj and bi .
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The following Wegner-type estimates are a restatement of those in [2, Appen-

dix II]:

Lemma 2.2. Let A be a random self-adjoint operator acting on `2.ƒ/, and let

x; y 2 ƒ.

(1) If A.x; x/ is sampled from a measure � obeying Reg1) independently of all

the other entries of A, then

EjGzŒA�.x; x/j
s < Cs < 1

for any s < ˛, uniformly in z … R.

(2) If both A.x; x/ and A.y; y/ are sampled from a measure � obeying Reg1)

independently of each other and of the other entries of A, then also

EjGzŒA�.x; y/j
s < Cs < 1:

2.4. Fractional moments: decay of the resolvent. It is convenient to express

the decay of the o�-diagonal elements of the resolvent, and, more generally, of a

kernelA W X�X ! C, in terms of the following quantity �, which was introduced

by Aizenman [1], and which quanti�es the exponential decay of a kernel with

respect to a metric. If � is a metric on X � ƒ, set

��.A/ D sup
x2X

X

y2X

e�.y;x/jA.y; x/j:

The expression jAjs will denote a point-wise power of the point-wise absolute

value of the kernel A, thus

��.jAjs/ D sup
x2X

X

y2X

e�.y;x/jA.y; x/js:

We denote

k�k D sup
x�y

�.x; y/

and assume (here and forth) that this quantity is �nite.

The resolvent identity (2.2) implies the bounds

��.PXcGzŒA�P
�
Xc / � �2e2k�k�2�.GzŒAX �/��.PXGzŒA�P

�
X / (2.4)

and

��.GzŒA�/ � �ek�k��.GzŒAX �/.1C �ek�k��.GzŒAX �/��.PXGzŒA�P
�
X //: (2.5)

The next statement is a translation of [2, Lemma 2.1] to the �-notation of [1].

We now set X D ƒ, and let Ao�-diag denote the o�-diagonal part of a kernel A.
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Lemma 2.3 (Aizenman–Molchanov). Let A be an operator acting on `2.ƒ/,

and let V W ƒ ! R be an independent identically distributed random potential

satisfying the decoupling inequality

E
jV.y/ � ajs

jV.y/ � bjs
� C�1

s E
1

jV.y/ � bjs
; a; b 2 C; b … R: (2.6)

for some 0 < s < 1 and Cs > 0. Let � be a metric on ƒ such that ��.jA
o�-diagjs/

is �nite. Then, for

gs > Cs��.jA
o�-diagjs/;

one has

��.EjGzŒAC gV �js/ �
Cs

gs � Cs��.jAjs/
:

Proof of Lemma 2.3. Let x; y 2 ƒ. According to the de�nition of the resolvent,

Gz ŒAC gV �.gV C A � z1/ D 1, which can be written as

GzŒAC gV �.x; y/.gV .y/C A.y; y//

D �
X

u¤y

GzŒAC gV �.x; u/A.u; y/C ı.x � y/:

Taking expectation of the s-moment and applying the inequality ja C bjs �

jajs C jbjs , we obtain

EjGzŒAC gV �.x; y/jsjgV.y/C A.y; y/js

�
X

u¤y

EjGzŒAC gV �.x; u/jsjA.u; y/js C ı.x � y/:

As a function of V.y/, the expression GzŒAC gV �.x; y/ has the form

GzŒAC gV �.x; y/ D a.V .y/ � b/�1;

where a; b may be random but do not depend on V.y/. Therefore the decoupling

estimate (2.6) yields the inequality

EjGzŒAC gV �.x; y/jsjgV.y/C A.y; y/js � C�1
s gsEjGzŒAC gV �.x; y/js ;

which implies

EjGzŒAC gV �.x; y/js �
Cs

gs

°

X

u¤y

EjGzŒAC gV �.x; u/js jA.u; y/js C ı.x � y/
±

:

Multiplying both sides by e�.x;y/ and summing over y 2 ƒ, we obtain

��.EjGzŒAC gV �js/ �
Cs

gs
¹��.EjGzŒAC gV �js/ ��.jA

o�-diagjs/C 1º: �
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Remark 2.4. Lemma 2.1 provides examples of distributions satisfying (2.6), here

and in Theorem 4 below.

3. Wegner estimates

In this section we prove two Wegner-type estimates.

3.1. First Wegner estimate. We start from a general property of discrete Schrö-

dinger operators, cf. Bourgain and Klein [5, §2.2].

Lemma 3.1. Let B � Z
d be a �nite box, and let @inB � B 0 � B . If  is an

eigenvector of a random Schrödinger operator ��jB C U on B with eigenvalue

�, and x 2 B is a site with �rst coordinate

x1 D max
y2B

y1 � n;

then

j .x/j �
X

y2B0

j .y/j
X

S2Sxy

Y

u2S

jU.u/C 2d � �j;

where

Sxy � ¹u 2 B j u1 > x1º ;
X

y

#Sxy � .2d/n;

every S 2 Sxy is of cardinality #S � n, and #S \ B 0 � 1.

Proof. With the convention that an empty product is equal to one, the estimate

holds for n D 0 and, more generally, for x 2 B 0. If x … B 0, we proceed by

induction. The eigenvalue equation at x0 D x C e1 yields

j .x/j � j2d C U.x0/ � �jj .x0/j C
X

w�x0;w¤x

j .w/j;

whence the claim follows with

Sxy D ¹S [ ¹x0º j S 2 Sx0yº [
[

w�x0;w¤x

Swy : �

In the context of trimmed random Schrödinger operators, Lemma 3.1 implies:

Corollary 3.2. Let B � Z
d be a �nite box such that @inB � �. Then, for

su�ciently small s, the restriction H.g/jB D PBH.g/P
�
B of an operator H.g/

satisfying the assumptions Reg1) and Reg2) admits the estimate

EkGzŒH.g/jB �k
s � C.B; g/; z … R:
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Proof. Let ¹ º 2‰ be the eigenfunctions of H.g/jB . Then, for every x 2 B ,

1 D
X

 2‰

j .x/j2 � C 0
B

X

y2@inB

j .y/j2
X

S2Sxy

Y

u2S

jU.u/C 2d � �j2;

where U D V0 C gV , hence for <w D <z D �

= trGw ŒH.g/jB �

� C 0
B

X

y2@inB

j .y/j2
X

S2Sxy

Y

u2S

jU.u/C 2d � �j2= trP@inBGw ŒH.g/jB �P
�
@inB

:

The proof is concluded by taking the s-th moment with su�ciently small

s > 0 (note that it is su�cient to establish the bound for � in a compact inter-

val depending on B and g). �

Corollary 3.2 yields the bound

EjGzŒH.g/jB �.x; y/j
s � C.B; g/: (3.1)

The constant C.B; g/ grows exponentially in the diameter of B , and as 1C gs in

g. Note that, for x; y 2 � \ B , Lemma 2.2 yields the better estimate

E jGzŒH.g/jB �.x; y/j
s

� Cg�s (3.2)

(note that the factor g�s is due to the normalisation, which is di�erent from that

of Lemma 2.2).

3.2. Second Wegner estimate. The next deterministic lemma holds for any

H.g/ D H.0/C gV with V supported on �.

Let B � Zd be a �nite box, and let H.g/jB D PBH.g/P
�
B be the restriction

of H.g/ to B . Denote by mult� the multiplicity of � in the spectrum of H.0/jB ,

and by gap� the distance from � to �.H.0/jB/ n ¹�º.

Lemma 3.3. Suppose all the eigenvectors of H.0/jB corresponding to � are

supported on B n�. If � is a normalised eigenvector ofH.g/jB corresponding to

�0, where j� � �0j � gap� =3 such that � ? Ker.H.0/jB � �/, then

k�jB\�k �
gap�

3gkV jBk1

: (3.3)

Proof of Lemma 3.3. If (3.3) fails,

k.H.0/jB � �/�k � k.� � �0/�k C k.H.0/jB �H.g/jB/�k

� gap� =3C gap� =3 < gap�;

in contradiction with the assumption. Thus (3.3) is proved. �



The trimmed Anderson model at strong disorder: localisation and its breakup 101

Lemma 3.4. Assume that H.g/ satis�es Reg1) and Reg2), and that all the

eigenvectors of H.0/jB corresponding to � are supported on B n �. Then, for

all � � gap� =3 and su�ciently small s > 0,

P ¹H.g/jB has > mult� eigenvalues in .� � �; �C �/º �
C�sgs

gap2s
�

.#B \ �/2 :

Proof. Suppressing the dependence of the spectral projectors on the operator

H.g/jB , we have

tr PŒ���;�C�� D tr P¹�ºPŒ���;�C�� C tr Q¹�ºPŒ���;�C��

� tr P¹�º C 2�= tr Q¹�ºPŒ���;�C��G�Ci�ŒH.g/jB �PŒ���;�C��Q¹�º

� mult� C
18�g2kV jBk21

gap2
�

= trP�G�Ci�ŒH.g/jB �P
�
� ;

where we used Lemma 3.3 and the expansion

= trG�Ci�ŒH.g/jB � D
X

j

X

x2B

�j j .x/j
2

.�j � �/2 C �2

over eigenvectorsH.g/jB j D �j j .

Let

N D tr PŒ���;�C�� � mult�; (3.4)

then

N �
18�g2kV jBk21

gap2
�

= trP�G�Ci�ŒH.g/jB �P
�
�

�
18�g2kV jBk22

gap2
�

X

x2B\�

jG�Ci�ŒH.g/jB �.x; x/j:

Therefore

N s �
18s�sg2s

gap2s
�

X

x;y2B\�

jV.y/j2s jG�Ci�ŒH.g/jB �.x; x/j
s
:

Integrating over the distribution of V.x/ and using the Cauchy–Schwarz inequality

to decouple the potential from the Green function and then the Wegner-type

estimate in the �rst item of Lemma 2.3 in conjunction with Lemma 2.1 to bound

the latter, we conclude that

P ¹N � 1º � EN s �
C�sgs

gap2s
�

.#� \ B/2 : �
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We furthermore obtain:

Corollary 3.5. Assume that H.g/ satis�es Reg1) and Reg2), and that all the

eigenvectors of H.0/jB corresponding to � are supported on B n �. Then, for

su�ciently small s0 > 0 and any 0 < s < s0,

EkQ¹�ºG�Ci�ŒH.g/jB �Q¹�ºk
s �

Cgs0.#� \ B/2

gap
2s0
�

C
C

gap
s0
�

:

Proof. We have

EkQ¹�ºG�Ci�ŒH.g/jB �Q¹�ºk
s D

Z 1

0

P¹kQ¹�ºG�Ci�ŒH.g/jB �Q¹�ºk
s � tºdt:

For t � .3= gap�/
s0 we bound the integrand by 1, and for larger t we use

Lemma 3.4 (with s0 in place of s). �

4. Localisation

4.1. Outside the spectrum of H� . In this section we prove Theorem 1. It will be

convenient to drop the assumption Inv), and to work on a general lattice ƒ which

we only assume to have bounded connectivity � �.

If X � ƒ, let TX W `2.Xc/ ! `2.X/ be the adjacency operator,

TX.x; y/ D

´

1 for x � y;

0 otherwise.

The condition for localisation is expressed in terms of the kernel

K D .P��P
�
� C T�GzŒH� �T

�
� /

o�-diag: (4.1)

Proposition 4.1. Let H.g/ be a �-trimmed random Schrödinger operator satis-

fying Reg1) and Reg2) on a lattice ƒ of connectivity � �. For any 0 < s <

˛.1 C 2˛q�1/�1 there exists Cs > 0 that may depend on s and the constants in

Reg1) and Reg2), such that the following holds: if

gs > Cs��.jKjs/;

then

��.EjGzŒH.g/�j
s/

�
Cs�e

k�k

gs � Cs��.jKjs/
��.jGzŒH� �j

s/¹1C �ek�k��.jGzŒH� �j
s/º:
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Let us show that Proposition 4.1 implies Theorem 1.

Proof of Theorem 1. Suppose H.g/ satis�es the Assumptions. According to the

Combes–Thomas estimate (2.3), GzŒH� � decays exponentially for � … �.H�/,

therefore ��ŒjGzŒH� �j
s � is �nite when � is a small multiple of the graph metric on

Z
d , and hence so is

��.jKjs/ � �ek�k C �2e2k�k��.jGzŒH� �j
s/:

According to Proposition 4.1, ��.EjGzŒH.g/�j
s/ is �nite for su�ciently large g,

therefore (1.3) holds. �

Now we prove Proposition 4.1.

Proof of Proposition 4.1. Using the Schur–Banachiewicz formula (2.1) we get

P�GzŒH �P
�
� D GzŒgV j� �D �K�;

where D CK is the decomposition of

P��P
�
� � V0j� C T�GzŒH� �T

�
�

into diagonal and o�-diagonal parts (this notation is consistent with (4.1)).

According to the Aizenman–Molchanov estimate (Lemma 2.3), for

gs > Cs��.jK
o�-diagjs/

we have

��.P�GzŒH �P
�
� / �

Cs

gs � Cs��.jKo�-diagjs/

(the assumption (2.6) is satis�ed according to Lemma 2.1.) The proposition now

follows from the corollary (2.5) of the resolvent identity. �

4.2. Double insulation

Proof of Theorem 2. Let us partition the lattice Z
d into disjoint pieces B:

Z
d D

]

B2B

B;

such that diamB � const and @inB � � for every B 2 B. We do not make any

additional assumptions on the shape of B 2 B.

Let x; y 2 Z
d . Applying the resolvent identity (2.2), we can represent

Gz ŒH �.x; y/ as a sum of terms of the form

GzŒH jB1
�.x; u1/GzŒH jB2

�.u0
1; u2/GzŒH jB3

�.u0
2; u3/ : : :GzŒH jBn

�.u0
n�1; y/;
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where B1 3 ¹x; u1º, B2 3 ¹u0
1; u2º, . . . , Bn 3 ¹u0

n�1; yº are distinct boxes, and uj

is adjacent to u0
j . In particular, uj ; u

0
j�1 2 @inBj � �.

Taking fractional moments, we obtain:

EjGzŒH �.x; y/j
s

�
X

EjGzŒH jB1
�.x; u1/j

s

n�1
Y

jD2

EjGzŒH jBj
�.u0

j�1; uj /j
s
EjGzŒH jBn

�.u0
n�1; y/j

s:

For small s > 0, we bound the �rst and last term by C.Bj ; g/ using (3.1), and all

the other terms by constg�s using (3.2). For large g � g0, the resulting expansion

converges, and is exponentially decaying in kx � yk. �

5. Anomalous localisation

Proof of Theorem 3. Set P¹�º D P¹�ºŒHn.0/�, and Q¹�º D Q¹�ºŒHn.0/�, and let

G˙
n D G�˙i�ŒHn.g/�; G<

n D
GC
n CG�

n

2
; G=

n D
GC
n �G�

n

2i
:

Suppose in contrapositive that the assertion of the theorem is false. Then, for

any p > 0, one can �nd a sequence �j & 0 such that the inequality

EjG�Ci�ŒH.g/�.x; v/j
s � Mp�

�skx � vk�sp=2

holds for all � D �j and all x; v 2 Z
d . For any A > 0 we can �nd n D nj so that

.Rn/
�CA � � � .Rn/

�A. We shall choose the value of A in the sequel.

For a �xed x 2 Z
d , consider a site y 2 Z

d that satis�es kx � yk � .Rn/
c.

Using the �rst resolvent identity, we can estimate

EjG=
n .x; y/j

s

� EjG�Ci�ŒH.g/�.x; y/j
s C

X

hv;ui2@Bn

EjG�Ci�ŒH.g/�.x; v/j
sjGC

n .u; y/j
s

� EjG�Ci�ŒH.g/�.x; y/j
s C 2d��s

X

v2@inBn

EjG�Ci�ŒH.g/�.x; v/j
s

� Mp¹��s.Rn/
�csp=2 C 2d��2s.Rn/

�sp=2º:

(5.1)
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On the other hand, according to Assumption 2 of the theorem, there exists y

which satis�es kx � yk � .Rn/
c and

EjG=
n .x; y/j

s D EjP¹�ºG
=
nP¹�º.x; y/C Q¹�ºG

=
nQ¹�º.x; y/j

s

� jP¹�ºG
=
nP¹�º.x; y/j

s � EjQ¹�ºG
=
nQ¹�º.x; y/j

s :
(5.2)

According to Assumption 3 of the theorem,

f .Hn.g//P¹�ºŒHn.0/� D f .�/P¹�ºŒHn.0/�

for any function f , therefore the assumption (1.8) allows to bound the �rst term

of (5.2) from below by ��sR�C
n . If A is chosen to be su�ciently large, Corol-

lary 3.5 implies that the second term is bounded from above by one half of this

quantity. Therefore

EjG=
n .x; y/j

s � ��s.Rn/
�C=2:

For su�ciently large p, this lower bound is in contradiction with the upper

bound (5.1). �

We conclude this section with the

Proof of Lemma 1.4. We start from the identity

Z 1

0

eit.H��Ci�/dt D iG��i�ŒH �;

which implies:

jG��i�ŒH �.x; y/j �

Z 1

0

jeitH .x; y/je��tdt:

Taking the expectation and applying the Cauchy–Schwarz inequality, we obtain:

�2EjG��i�ŒH �.x; y/j
2 �

Z 1

0

�e��t
EjeitH .x; y/j2dt:

This proves (1.9), since the sign of � does not a�ect the absolute value. �

6. Strong-to-weak disorder coupling

In this section we construct a coupling between a random operator at strong

disorder and another one at weak disorder. A similar coupling appears in the

work of Wang [22], who used it to construct examples of long-range operators

with exponentially decaying Green function.
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6.1. The hedgehog lattice. Let ƒ be a lattice. Construct the hedgehog lattice

ƒ
Ш D ƒ � ¹0; 1º with bonds de�ned by

.x; i/ � .y; j / ()

´

either x D y and i D 1 � j

or x � y and i D j D 0
:

Given an operator H.0/ on ƒ and a potential U W ƒ ! C, consider the operator

HШ on `2.ƒШ/, de�ned by

HШ

�

 1

 0

�

D

�

U �1

�1 H.0/

��

 1

 0

�

: (6.1)

Observe thatHШ (or rather,HШC1) is a .ƒ�¹1º/-trimmed random Schrödinger

operator on `2.ƒШ/, if the values of U are independent and real.

The Schur–Banachiewicz formula (2.1) relates the resolvent of HШ to the

resolvents of H D H.0/ C U #
z , U #

z D .z � U/�1, on ƒ � ¹0º, and H 0 D

�GzŒH.0/� C U on ƒ � ¹1º. Namely, set P0 D Pƒ�¹0º, P1 D Pƒ�¹1º. Then

P0GzŒH
Ш�P �

0 D GzŒH.0/C U #
z �; (6.2a)

P1GzŒH
Ш�P �

1 D GzŒ�GzŒH.0/�C U �: (6.2b)

The �rst application of the relations (6.2) is a new derivation of a theorem

of Aizenman [1] which provides a su�cient condition for localisation at weak

disorder near the spectral edges.

Let V W ƒ ! R be a random potential, and consider the operator H.g/ D

H.0/C gV on `2.ƒ/.

Theorem 4 (Aizenman). Fix 0 < s < 1, and suppose the random potential

V W ƒ ! R satis�es the decoupling property

E
jV.y/ � ajs

jV.y/ � bjs
� C�1

s E
1

jV.y/ � bjs
; a; b 2 C; b … R: (6.3)

Let � be a metric on ƒ so that

� D lim sup
�!C0

��.jG�Ci�ŒH.0/�j
s/ < 1:

Then, for g�s > C��, one has

lim sup
�!C0

��.EjG�Ci�ŒH.0/C gV �js/ �
C��

2e2k�k�2

g�s � C��
:
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Proof. Let U D �C i� � 1
gV

, and construct the operator HШ associated with U

as in (6.1). We have: U #
�Ci�

D gV , therefore the second half of (6.2) yields:

P1G�Ci�ŒH
Ш

� �P
�
1 D G�Ci�Œ�G�Ci�ŒH.0/�C U �:

By Lemma 2.3, if

g�s > C���.jG�Ci�ŒH.0/�j
s/;

we have:

��.EjP1G�Ci�ŒH
Ш

� �P
�
1 js/ �

C�

g�s � C���.jG�Ci�ŒH.0/�js/
:

According to the corollary (2.4) of the resolvent identity,

��.EjP0G�Ci�ŒH
Ш

� �P
�
0 js/

� �2e2k�k�2�.G�Ci�ŒH.0/�/��.EjP1G�Ci�ŒH
Ш

� �P
�
1 js/

�
C��

2e2k�k�2�.G�Ci�ŒH.0/�/

g�s � C���.jG�Ci�ŒH.0/�js/
:

Applying the �rst half of (6.2) and taking the upper limit as � ! C0, we conclude

the proof. �

6.2. Trimmed random Schrödinger operators. In this short section, we use

the strong-to-weak disorder coupling to provide non-rigorous support for Conjec-

ture 1.5.

We apply the strong-to-weak disorder relations (6.2) in the direction opposite

to that of Section 6.1. First consider the hedgehog lattice (ƒ � ¹1º)-trimmed

operator HШ C 1 corresponding to U D gV , g � 1. The �rst part of (6.2)

relates the resolvent of HШ to the resolvent of the operatorH.0/C .gV /#z .

Now consider the operator H.0/ C .gV /#
�

for � in the absolutely continuous

spectrum of H.0/ . It is an Anderson-type random operator at weak disorder,

which is known to exhibit localisation in dimension d D 1 (see Figotin and

Pastur [17, Chapter 15A]), and is conjectured (in fact universally accepted by

physicists, cf. [16]) to exhibit localisation in dimension d D 2, and delocalisation

in dimension d � 3. Thus the same properties should hold for the trimmed random

Schrödinger operator HШ C 1.

Finally observe that the above reasoning is not limited to the hedgehog lat-

tice, and can be extended to more realistic lattices (such as Z
d ). Indeed, the

Schur–Banachiewicz formula can still be applied, relating the resolvent of H.g/,

g � 1, to the resolvent of a more complicated Anderson-type operator at

weak coupling, which should share the phenomenological properties of the usual

Anderson model.
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