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Rotations of eigenvectors under unbounded perturbations

Michael Gil’

Abstract. Let A be an unbounded selfadjoint positive de�nite operator with a discrete spec-

trum in a separable Hilbert space, and zA be a linear operator, such that k.A � zA/A��k<1
.0 < � � 1/. It is assumed that A has a simple eigenvalue. Under certain conditions zA also

has a simple eigenvalue. We derive an estimate for ke.A/ � e. zA/k, where e.A/ and e. zA/

are the normalized eigenvectors corresponding to these simple eigenvalues of A and zA,

respectively. Besides, the perturbed operator zA can be non-selfadjoint. To illustrate that

estimate we consider a non-selfadjoint di�erential operator. Our results can be applied in

the case when A is a normal operator.
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1. Introduction and statement of the main result

The literature devoted to perturbations and approximations of the eigenvectors of

various operators is rather rich. Mainly, the perturbations are assumed bounded,

and the given operator and perturbed one are selfadjoint or normal. In particu-

lar, in the paper [3] Davis and Kahan considered bounded perturbations of in-

variant projections and eigenvectors in the case when the given operator and per-

turbed one are selfadjoint. Besides the spectrum can be continuous and discrete.

The results from [3] were extended to normal operators (see [2] and references

therein). In the paper, [10] approximations of Schrödinger eigenfunctions are ex-

plored by canonical perturbation theory. In [5] the author investigates eigenvec-

tors of Toeplitz matrices under higher order three term recurrence and circulant

perturbations. The paper [8] deals with approximations of eigenfunctions of the
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periodic Schrödinger operators. The paper [14] introduces an algorithm to nu-

merically approximate eigenfunctions of Sturm-Liouville problems correspond-

ing to eigenvalues in a given region. In the papers [1, 11, 12, 13], the authors inves-

tigate stability and approximation properties of the eigenfunctions of Neumann

and Dirichlet Laplacians. In particular, the lowest nonzero eigenvalue and corre-

sponding eigenfunction is studied. The papers [6] and [7] deal with bounded and

unbounded operators of the form A D S C K, where K is a compact operator S

is a normal one, having a compact resolvent. Approximations of the eigenvectors

of A, corresponding to simple eigenvalues are considered. Certainly, we could not

survey the whole subject here and refer the reader to the above listed publications

and references given therein.

In the present paper we investigate rotations of eigenvectors of operators with

a discrete spectrum under unbounded perturbations. Besides, the perturbed oper-

ators can be non-selfadjoint.

Let H be a separable Hilbert space with a scalar product .:; :/, the norm

k:k D
p

.:; :/ and the unit operator I . For a linear unbounded operator B in H ,

Dom.B/ is the domain, �.B/ denotes the spectrum of B , R�.B/ D .B � I�/�1

.� 62 �.B// is the resolvent; if B is bounded, then kBk means its operator norm.

Denote also �.c; r/ WD ¹z 2 CW jz � cj � rº .c 2 C; r > 0/.

Let A be a selfadjoint positive de�nite operator in H with a discrete spectrum,

and zA be a linear operator with Dom.A/ D Dom. zA/, such that for a � 2 .0; 1�, the

condition

q� WD k.A � zA/A��k < 1 (1.1)

holds. Let �k.A/ .k D 1; 2; : : : / be the eigenvalues of A enumerated with their

multiplicities in the increasing order. Suppose that for some integer m � 1, �m.A/

is a simple eigenvalue:

dm D inf
k¤m

j�k.A/ � �m.A/j=2 > 0: (1.2)

That is,

d1 D �2.A/ � �1.A//=2 > 0

and

dm D 1

2
max¹�mC1.A/ � �m.A/; �m.A/ � �m�1.A/º .m � 2/:

Now we are in a position to formulate our main result.
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Theorem 1.1. For some integer m � 1, let conditions (1.1), (1.2), and

2q���
mC1.A/ < dm (1.3)

be satis�ed. Then zA has in �.�m.A/; dm/ a simple eigenvalue, say �. zA/. More-

over, the eigenvector e.A/ of A corresponding to �m.A/ and the eigenvector e. zA/

of zA; corresponding to �. zA/ with ke.A/k D ke. zA/k D 1 satisfy the inequality

ke.A/ � e. zA/k �
2q���

mC1.A/

dm � 2q���
mC1.A/

:

This theorem is proved in the next two sections.

If A is a non positive de�nite selfadjoint operator, with �1 < inf �.A/ D
�c0 < 0, then Theorem 1.1 can be applied to the operator A C cI for any

c > c0. If A is a normal operator, then Theorem 1.1 can be applied to the operator

AR D .A C A�/=2, since AR commutes with A and therefore AR and A have joint

eigenvectors.

2. Preliminaries

Lemma 2.1. Let T1 be a normal invertible operator in H and T2 be a linear

operator in H with Dom.T2/ D Dom.T1/, such that for a � 2 .0; 1�, the condition

Oq� D k.T1 � T2/T ��
1 k < 1 (2.1)

holds. Assume, in addition, that for a � 62 �.T1/, the inequality

Oq�kT �
1 R�.T1/k < 1; (2.2)

is ful�lled. Then � 62 �.T2/,

kR�.T2/k � kR�.T1/k
1 � Oq�kT �

1 R�.T1/k (2.3)

and

kR�.T2/ � R�.T1/k � Oq�kT �
1 R�.T1/kkR�.T1/k

1 � Oq�kT �
1 R�.T1/k : (2.4)
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Proof. Indeed,

R�.T1/ � R�.T2/ D R�.T2/.T2 � T1/R�.T1/

D R�.T2/.T2 � T1/T ��
1 T �

1 R�.T1/:

Hence it follows that

kR�.T2/ � R�.T1/k � kR�.T2/k Oq�kT �
1 R�.T1/k: (2.5)

Now (2.2) implies (2.3). So � 62 �.T2/. Moreover, (2.5) and (2.3) imply (2.4), as

claimed. �

It is simple to show that the previous lemma is valid for operators in a Banach

space, provided T1 is a sectorial invertible operator.

Let P be a projection in H . Denote by e.P / the eigenvector of P with

ke.P /k D 1. We need the following result.

Lemma 2.2. Let P1; P2 be two projections in H satisfying

kP1 � P2k � ı with ı < 1: (2.6)

In addition, let P1 be one-dimensional. Then P2 is also one-dimensional (due to

[9, p. 156, Problem III.2.1]). Moreover,

ke.P2/ � e.P1/k � 2ı

1 � ı
:

Proof. For simplicity put e.Pk/ D ek .k D 1; 2/. Due to (2.6) and the equality

ke.P1/k D 1 we can write P2e1 ¤ 0, since P1e1 D e1. Thanks to the relation

P2e1 D P2.P2e1/, P2e1 is an eigenvector of P2. Put � D kP2e1k. Then

e2 D 1
�
P2e1 is a normalized eigenvector of P2. So

e1 � e2 D P1e1 � 1

�
P2e1 D e1 � 1

�
e1 C 1

�
.P1 � P2/e1:

But

� � kP1e1k � k.P1 � P2/e1k � 1 � ı:

Hence 1
�

� .1 � ı/�1 and

ke1 � e2k �
�1

�
� 1

�

ke1k C 1

�
kP1 � P2kke1k

� .1 � ı/�1 � 1 C .1 � ı/�1ı

D 2ı.1 � ı/�1;

as claimed. �
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3. Proof of Theorem 1.1

For simplicity put �k.A/ D �k. Denote

C WD @�.�m; dm/ D ¹z 2 C W jz � �mj D dmº;

and

P.A/ WD � 1

2�i

Z

C

R�.A/d� and P. zA/ D � 1

2�i

Z

C

R�. zA/d�:

That is, P.A/ and P. zA/ are the Riesz projections onto the eigenspaces of A

and zA, respectively, corresponding to the points of the spectra, which belong to

�.�m; dm/. We have

kP.A/ � P. zA/k � 1

2�

Z

C

kRz. zA/ � Rz.A/kjdzj � dm sup
z2C

kRz. zA/ � Rz.A/k:

Since A is selfadjoint, one has

kRz.A/k D ��1.A; �/; (3.1)

where �.A; �/ D infs2�.A/ j� � sj - the distance between � 2 C and �.A/.

Inequality (2.5) implies

kP.A/ � P. zA/k � q�dm sup
z2C

kRz. zA/kkA�Rz.A/k � dmq�l0b� ; (3.2)

where

l0 D sup
z2C

kRz. zA/k; b� D sup
z2C

kA�Rz.A/k D sup
t2Œ0;2��

kA�R�mCdmeit .A/k:

Since A is selfadjoint, we have

b� D sup
t2Œ0;2��

sup
j

��
j

j�j � �m � dmeit j � sup
j

��
j

jj�j � �mj � dmj :

Recall that j�j � �mj � 2dm .j ¤ m/. Put

sj D
��

j

jj�j � �mj � dmj :

So sm D ��
m=dm. Let j � m � 1. Then

sj D
��

j

�m � �j � dm

� ��
m�1

�m � �m�1 � dm

� sm:
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Now let j � m C 1. Then

sj D
��

j

�j � �m � dm

D 1

�1��
j � .�m C dm/���

j

� 1

�1��
j � .�m C dm/���

mC1

� 1

�1��
mC1 � .�m C dm/���

mC1

D
��

mC1

�mC1 � �m � dm

�
��

mC1

dm

:

So

b� � smC1 D
��

mC1

dm

:

Furthermore, condition (1.3) implies

q�smC1 D
q���

mC1

dm

< 1 (3.3)

and therefore,

q�kA�R�.A/k �
q���

mC1

dm

< 1 .� 2 C /:

Consequently, by Lemma 2.1 and (3.1),

kR�. zA/k � kR�.A/k
1 � q�b�

� 1

dm.1 � q�smC1/

D 1

dm

�

1 �
q���

mC1

dm

�

D 1

dm � q���
mC1

.� 2 C /:

(3.4)
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Due to (3.2) we thus have proved:

Lemma 3.1. Under the hypothesis of Theorem 1.1 one has

kP.A/ � P. zA/k �
q���

mC1

dm � q���
mC1

< 1:

The assertion of Theorem 1.1 follows from Lemmas 2.2 and 3.1.

4. Example

Consider in L2.0; 1/ the problem

�u00.x/ C a.x/u0.x/ D �u.x/ .� 2 CI 0 < x < 1/I u.0/ D u.1/ D 0;

where a.x/ .0 � x � 1/ is a bounded complex valued function. Take

A D � d 2

dx2

with

Dom.A/ D ¹v 2 L2.0; 1/W v00 2 L2.0; 1/; v.0/ D v.1/ D 0º;
and � D 1=2. De�ne zA by

. zAu/.x/ D �u00.x/ C a.x/u0.x/ (4.1)

with Dom. zA/ D Dom.A/.

Obviously, �j .A/ D �2j 2 .j D 1; 2; : : : / and

q1=2 D k.A � zA/A�1=2k D sup
x

ja.x/j sup
f 2Dom.A/;kf kD1

k.A�1=2f /0
xk:

But for f 2 Dom.A/,

.A�1=2f /.x/ D
1

X

kD1

1

�
1=2
j .A/

.f; ek/ek.x/ D 1

�

1
X

kD1

1

j
.f; ek/ek.x/;

where ek.x/ D
p

2 sin �.kx/. Thus

d

dx
.A�1=2f /.x/ D d

dx

1
X

kD1

1

�
1=2
j .A/

.f; ek/ek.x/

D
p

2

1
X

kD1

.f; ek/ cos �.kx/:
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Hence,

k.A�1=2f /0
xk2 D

1
X

kD1

j.f; ek/j2 D kf k2:

Therefore, q1=2 D sup0�x�1 ja.x/j. In particular, for m D 1 we have d1 D 3�2=2.

Condition (1.3) takes the form

2q1=2�
1=2
2 .A/ D 4q1=2� < 3�2=2:

Or

8q1=2 D 8 sup
x

ja.x/j < 3�: (4.2)

Under this condition, by Theorem 1.1, the operator zA de�ned by (4.1) has in the

disc jz � �2j � 3�2=2 a simple eigenvalue and the corresponding normalized

eigenvector satis�es the inequality

ke. zA/ �
p

2 sin .�x/k � 8q1=2

3� � 8q1=2

;

provided (4.2) holds.

References

[1] R. Banuelos and M. M. H. Pang, Stability and approximations of eigenvalues

and eigenfunctions for the Neumann Laplacian. I. Electron. J. Di�erential Equa-

tions 2008, article no. 145. MR 2448900 Zbl 1173.35614

[2] R. Bhatia, Matrix analysis. Graduate Texts in Mathematics, 169. Springer-Verlag,

New York, 1997. MR 1477662 Zbl 0863.15001

[3] C. Davis and W. Kahan, The rotation of eigenvectors by a perturbation. III. SIAM

J. Numer. Anal. 7 (1970), 1–46. MR 0264450 Zbl 0198.47201

[4] D. Xiaqi and L. Peizhu, Finite element approximation of an integro-di�erential op-

erator. Acta Math. Sci. Ser. B Engl. Ed. 29 (2009), no. 6, 1767–1776. MR 2589104

Zbl 1211.47089

[5] D. Fortin, Eigenvectors of Toeplitz matrices under higher order three term recur-

rence and circulant perturbations. Int. J. Pure Appl. Math. 60 (2010), no. 2, 217–228.

MR 2655988 Zbl 1194.15028

[6] M. I. Gil’, Perturbations of simple eigenvectors of linear operators. Manuscripta

Math. 100 (1999), no. 2, 213–219. MR 1721633 Zbl 0941.47012

[7] Gil’, M.I., Simple eigenvectors of unbounded operators of the type “normal plus

compact.” Opuscula Math. 35 (2015), no. 2, 161–169. MR 3286350 Zbl 1332.47010

http://www.ams.org/mathscinet-getitem?mr=2448900
http://zbmath.org/?q=an:1173.35614
http://www.ams.org/mathscinet-getitem?mr=1477662
http://zbmath.org/?q=an:0863.15001
http://www.ams.org/mathscinet-getitem?mr=0264450
http://zbmath.org/?q=an:0198.47201
http://www.ams.org/mathscinet-getitem?mr=2589104
http://zbmath.org/?q=an:1211.47089
http://www.ams.org/mathscinet-getitem?mr=2655988
http://zbmath.org/?q=an:1194.15028
http://www.ams.org/mathscinet-getitem?mr=1721633
http://zbmath.org/?q=an:0941.47012
http://www.ams.org/mathscinet-getitem?mr=3286350
http://zbmath.org/?q=an:1332.47010


Rotations of eigenvectors under unbounded perturbations 199

[8] E. Hunsicker, V. Nistor, and J. O. Sofo, Analysis of periodic Schrödinger operators:

regularity and approximation of eigenfunctions. J. Math. Phys. 49 (2008), no. 8,

article id. 083501. MR 2440699 Zbl 1152.81481

[9] T. Kato, Perturbation Theory for Linear Operators. Corrected printing of the 2nd ed.

Grundlehren der mathematischen Wissenschaften, 132. Springer-Verlag, Berlin etc.,

1980. MR 1335452 Zbl 0435.47001

[10] F. Nardini, Approximation of Schrödinger eigenvalues and eigenfunctions by canon-

ical perturbation theory: The periodically driven quantum rotator, J. Math. Phys. 30

(1989), no. 11, 2599–2606. MR 1019005 Zbl 0693.46067

[11] M. M. H. Pang, Approximation of ground state eigenvalues and eigenfunctions

of Dirichlet Laplacians. Bull. London Math. Soc. 29 (1997), no. 6, 720–730.

MR 1468060 Zbl 0969.35102

[12] M. M. H. Pang, Stability and approximations of eigenvalues and eigenfunctions

for the Neumann Laplacian. II. J. Math. Anal. Appl. 345 (2008), no. 1, 485–499.

MR 2422666 Zbl 1167.35027

[13] M. M. H. Pang, Stability and approximations of eigenvalues and eigenfunctions of

the Neumann Laplacian. III. Electron. J. Di�erential Equations 2011, article no. 100.

Zbl 1228.35155

[14] G. Wang and J. Sun, Approximations of eigenvalues of Sturm–Liouville problems in

a given region and corresponding eigenfunctions. Pac. J. Appl. Math. 3 (2011), no. 1-2,

73–94. MR 2918556 Zbl 1285.65051

Received October 13, 2014

Michael Gil’, Department of Mathematics, Ben Gurion University of the Negev,

P.0. Box 653, Beer-Sheva 84105, Israel

e-mail: gilmi@bezeqint.net

http://www.ams.org/mathscinet-getitem?mr=2440699
http://zbmath.org/?q=an:1152.81481
http://www.ams.org/mathscinet-getitem?mr=1335452
http://zbmath.org/?q=an:0435.47001
http://www.ams.org/mathscinet-getitem?mr=1019005
http://zbmath.org/?q=an:0693.46067
http://www.ams.org/mathscinet-getitem?mr=1468060
http://zbmath.org/?q=an:0969.35102
http://www.ams.org/mathscinet-getitem?mr=2422666
http://zbmath.org/?q=an:1167.35027
http://zbmath.org/?q=an:1228.35155
http://www.ams.org/mathscinet-getitem?mr=2918556
http://zbmath.org/?q=an:1285.65051
mailto:gilmi@bezeqint.net

	Introduction and statement of the main result
	Preliminaries
	Proof of Theorem 1.1
	Example
	References

