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Superlevel sets and nodal extrema

of Laplace–Beltrami eigenfunctions

Guillaume Poliquin1

Abstract. We estimate the volume of superlevel sets of Laplace–Beltrami eigenfunctions

on a compact Riemannian manifold. The proof uses the Green’s function representation and

the Bathtub principle. As an application, we obtain upper bounds on the distribution of the

extrema of a Laplace–Beltrami eigenfunction over its nodal domains. Such bounds have

been previously proved by L. Polterovich and M. Sodin in the case of compact surfaces.

Our techniques allow to generalize these results to arbitrary dimensions. We also discuss

a di�erent approach to the problem based on reverse Hölder inequalities due to G. Chiti.
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1. Introduction and main results

1.1. Notation. Let .M n; g/ be a compact, connected n�dimensional Riemannian

manifold with or without boundary. Let �g W C 1.M/ ! C 1.M/ denote the

negative Laplace–Beltrami operator on M . In local coordinates ¹xiºn
iD1, we write

�g D �1
p

det.g/

X @

@xi

�

p

det.g/gij @

@xj

�

; (1.1.1)

where the matrix .gij / is the inverse matrix of g D .gij /.

1 Research supported by a NSERC scholarship.
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We consider the closed eigenvalue problem,

�gu� D �u�; (1.1.2)

and when M has a boundary, we impose Dirichlet eigenvalue problem,

8

<

:

�gu D �u in M;

u D 0 on @M:
(1.1.3)

In both settings, �g has a discrete spectrum,

0 � �1.M; g/ � �2.M; g/ � : : : % C1;

where �1.M; g/ > 0 if @M 6D ;. Let k:kp be the usual k:kLp.M / norm and let �

be the Riemannian volume form on M and let Volg .M/ denote the Riemannian

volume of M . We normalize u in such a way that kuk2
2 D 1. If M has no boundary,

we require that
R

M
ud� D 0.

1.2. Volume of superlevel sets. We de�ne a nodal domain A of an eigenfunction

u� on M as a maximal connected open subset of ¹u� 6D 0º. We denote by A.u�/

the collection of all its nodal domains.

Let us �rst consider the Euclidean case. It is known that nodal domains can

not be too small. For instance, this can be seen by the Faber–Krahn inequality,

stating that given Ai 2 A.u�/,

Vol.Ai/ � �1.B/n=2 Vol.B/��n=2; (1.2.1)

where B denotes a n-dimensional ball. Denote by V i
ı

D ¹x 2 Ai W ju�.x/j �
ıku�kL1.Ai /º the ı-superlevel sets of the restriction of an eigenfunction to one of

its nodal domain. The next result can be seen as a re�nement of that observation.

Indeed, each ı-superlevel set of an eigenfunction can not be too small:

Lemma 1.2.2. Let n � 3. For all ı 2 .0; 1/, we have that

Vol.V i
ı / � .1 � ı/n=2.2.n � 2//n=2˛n��n=2; (1.2.3)

where ˛n stands for the volume of the n-dimensional unit ball.

The preceding lemma and its proof were suggested by F. Nazarov and M. Sodin,

see [16].
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Letting ı ! 0 in (1.2.3) yields that

Vol.V i
0 / D Vol.Ai/ � Cn��n=2;

which is an inequality à la Faber–Krahn comparable to (1.2.1). However, the

constant is not optimal when compared to Faber–Krahn inequality since Cn;ı tends

to Cn D .2.n � 2//n=2˛n as ı ! 0.

The proof of Lemma 1.2.2 is based on the maximum principle, applied to a

precise linear combination of the eigenfunction u� and of a certain function w.

The function w is de�ned as the solution of the following Poisson problem:

�w D ���V i
ı
u�;i in R

n;

where �V i
ı

denotes the characteristic function associated to V i
ı

and u�;i denotes the

restriction of u� to Ai . An upper bound on the function w is required to apply the

maximum principle. The bound is proved using decreasing rearrangement of func-

tions, as done in [26, p. 185]. The next result is a generalization of Lemma 1.2.2,

adapted to manifolds of arbitrary dimension:

Theorem 1.2.4. Let ı 2 .0; 1/ and n � 2. There exist �0 > 0 and kg;ı;�0
> 0

such that for all � � �0, we have that

Volg.V i
ı / � kg;ı;�0

��n=2; for all i: (1.2.5)

The proof of Theorem 1.2.4 for n � 3 is similar to the proof of its R
n

counterpart. The key idea is to choose a speci�c linear combination involving

u�;i and the solution of the following Poisson problem,

�w D ���V i
ı
u�;i in M:

In order to apply the maximum principle, it is required to bound the function w

in terms of � and of the volume of V i
ı
. The method used to do so di�ers from the

one used in R
n since decreasing rearrangement of functions no longer works on

arbitrary manifolds. Instead, we use an upper bound for Green functions on M in

conjunction with a certain form of the bathtub principle (see [12, Theorem 1.14]),

that is an upper bound for the integral of a non-negative decreasing radial function:
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Lemma 1.2.6. Let x0 2 M . Let r.x/ D dg .x0; x/ the Riemannian distance

between x and x0. Let f .r/ denote a non-negative strictly decreasing function.

Given �xed positive constant C > 0, then

sup
��M; Volg.�/DC

Z

�

f .r/d� D
Z

��

f .r/d�;

where �� is the geodesic ball centered at x0 of radius R, where R is such that

Vol.�/ D Vol.��/.

Lemma 1.2.6 can also be seen as a weaker form of decreasing rearrangement

that has the advantage of being applicable in a more general setting.

For compact surfaces, using a slight adaptation of the result proved in [14,

Section 3], it is possible to obtain a lower bound on the density of the ı-superlevel

set V i
ı

of an eigenfunction u�:

Proposition 1.2.7. Let .M; g/ be a Riemannian surface and let ı 2 .0; 1/. For

any p such that u�.p/ D mAi
, there exists a positive constant kg;ı such that the

ball Bp.kg;ı��1=2/ is included in V i
ı
. In particular, this implies that

��.V i
ı / � kg;ı��1=2 for all i;

where ��.V i
ı

/ denotes the inner radius of the ı-superlevel set V i
ı

of the eigenfunc-

tion u�.

Proposition 1.2.7 implies Theorem 1.2.4 in the two dimensional case.

1.3. Nodal extrema on closed manifolds. The second objective of the paper is

to study the distribution of so called nodal extrema, de�ned as follows:

mAi
WD max

x2Ai

ju�.x/j;

where Ai 2 A.u�/. Nodal extrema on compact surfaces were previously studied

in [22]. We consider the more general case of compact Riemannian manifolds of

arbitrary dimension. Since the proofs given in [22] rely on the classi�cation of

surfaces and the existence of conformal coordinates, no direct generalization of

their results is possible.

Our �rst main result in that direction is the following:

Theorem 1.3.1. Let .M n; g/ be a compact closed manifold with n � 2. If � is

large enough, then there exists kg > 0 such that

jA.u�/j
X

iD1

m
p
Ai

� kg�
n
2

Cpı.p/; (1.3.2)
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holds for any p � 2. Here, ı.p/ corresponds to

ı.p/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

n � 1

4

�1

2
� 1

p

�

; 2 � p � 2.n C 1/

n � 1
;

n

2

�1

2
� 1

p

�

� 1

4
;

2.n C 1/

n � 1
� p � C1.

(1.3.3)

Note that ı.p/ is C. Sogge’s classical Lp bounds, kukp � C �ı.p/kuk2

([17, Chapter 5]). The proof of Theorem 1.3.1 is an application of Theorem 1.2.4.

As an immediate corollary of Theorem 1.3.1, we have the following:

Corollary 1.3.4. Let .M n; g/ be a compact closed manifold. If � is large enough,

then there exists kg > 0 such that

jA.u�/j
X

iD1

mAi
� kg�n=2: (1.3.5)

Indeed, a consequence of Weyl’s law and Courant’s theorem is that the number

of nodal domains jA.u�/j is bounded by kg�n=2 (see for instance [7, 3]). Using

the latter fact and then applying Cauchy-Schwartz inequality yield

jA.u�/j
X

iD1

mAi
�

�

jA.u�/j
X

iD1

m2
Ai

�
jA.u�/j

X

iD1

1
�1=2

� kg�n=4jA.u�/j1=2 � kg�n=2;

which is the desired result.

Remark 1.3.6. For p D 1; 2, it is easy to see that the inequalities are sharp on T
n

(
Q

sin.nxi /; � D n2). For p > 2.n C 1/=.n � 1/, extremals are zonal spherical

harmonics. Otherwise, the extremals are highest weight spherical harmonics.

One can visualise inequalities expressed in Theorem 1.3.1 and in Corollary 1.3.4

by considering “�ne” dust particles on a vibrating membrane. Indeed, where the

membrane’s velocity is high, Bernoulli’s equation tells us that the air pressure is

low. Since the dust particles are most in�uenced by air pressure, they are swept

by the pressure gradient near nodal extrema (see [6] for some �gures illustrating

nodal extrema and for more information on such experiments).
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Remark 1.3.7. One can easily obtain bounds on mAi
using the classical Horman-

der–Levitan–Avakumovic L1 bound (see for instance [17]). Indeed, it implies

that there exists a constant kg > 0 such that ku�kL1.Ai / � kg�.n�1/=4. Therefore,

we have that

jA.u�/j
X

iD1

ku�kL1.Ai / � kg jA.u�/j�.n�1/=4 � kg�
3n�1

4 ;

which is not optimal when compared to the sharp inequality given in Corol-

lary 1.3.4.

We also obtain a generalization of [22, Corollary 1.7]. The result is the follow-

ing:

Corollary 1.3.8. Given a>0, consider nodal domains such that mAi
�a�.n�1/=4.

If � is large enough, then there exists kg > 0 such that the number of such nodal

domains does not exceed kga�2.nC1/=.n�1/. In particular, for �xed a, it remains

bounded as � ! 1.

Indeed, letting N� denote the number of such nodal domains, using (1.3.2)

with p D 2.nC1/
n�1

, we have that

N�.a�.n�1/=4/2.nC1/=.n�1/ �
N�
X

iD1

m
2.nC1/=.n�1/
Ai

� kg�.nC1/=2;

yielding the conclusion.

1.4. Elliptic operators on Euclidean domains. We obtain analogous results to

Theorem 1.3.1. More precisely, we obtain bounds on the distribution of nodal

extrema of eigenfunctions associated to the Dirichlet problem of general second

order elliptic operators in the divergence form on an Euclidean bounded domain �.

Consider the following Dirichlet eigenvalue problem:

8

<

:

L.u/ D �u in �;

u D 0 on @�;
(1.4.1)

where we consider a general elliptic operator L de�ned as

L.u/ WD �
n

X

i;j D1

@

@xi

�

aij

@u

@xj

�

C cu:
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Here, the coe�cients aij .x/ are real measurable functions such that aij D aj i ,

for all 1 � i; j � n. We assume that c.x/ is a bounded measurable function

such that c.x/ � 0. Note that the non negativity of c can be assumed without

loss of generality (see [9, Remark 1.1.3, p. 3]). For convenience, we normalize

the coe�cients in such a way that 1 is the lower ellipticity constant. Thus, the

assumption reads

n
X

i;j D1

aij �i �j � j�j2; for all � 2 R
n: (1.4.2)

We are ready to state the result:

Theorem 1.4.3. Consider u� an eigenvalue of (1.4.1) associated to the eigen-

value �, then
jA.u�/j

X

iD1

mAi
� Kn;1 Vol.�/1=2�n=2; (1.4.4)

and
jA.u�/j

X

iD1

m2
Ai

� K2
n;2�n=2: (1.4.5)

The constant Kn;p depends on n and on p and is given by

Kn;p D 21�n=2.n˛n/�1=p

�
�n

2

�

� Z jn=2�1

0

rp�np=2Cn�1J
p

n=2�1
.r/dr

�1=p
: (1.4.6)

The main tool to prove Theorem 1.4.3 is Chiti’s reverse Hölder inequality

satis�ed by any elliptic operator in divergence form with Dirichlet boundary

conditions.

Remark 1.4.7. Since Theorem 1.4.3 can be applied to general elliptic operators

such as the Laplace–Beltrami operator in local coordinates as de�ned in (1.1.1),

it can also be used with a Laplacian eigenfunction on compact Riemannian man-

ifolds provided that all its nodal domains can always be included in a single chart

of M .

Remark 1.4.8. A notable feature of [22, Theorem 1.3] is that the bounds on the

distribution of the nodal extrema hold for a larger class of functions de�ned on

compact surfaces, including eigenfunctions associated to the bi-laplacian clamped

plate problem. Both approaches can not be extended to the bi-laplacian case since

they rely on the maximum principle, which is known not to hold for such operators.
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1.5. Neumann boundary conditions in the planar case. Let � be a bounded

planar domain with piecewise analytic boundary. We consider the Neumann

eigenvalue problem on �, namely

8

<

:

�u D �u in �;

@u

@n
D 0 on @�:

(1.5.1)

Using an argument of [23] based on a result of [27], it is possible to bound the

number of nodal domains touching the boundary of � by C�
p

�. By doing so, it

is an easy matter to obtain the following:

Theorem 1.5.2. Let � be a bounded planar domain with piecewise analytic

boundary, then there exists C� > 0 and K� > 0 such that

jA.u�/j
X

iD1

mAi
� C��; (1.5.3)

and
jA.u�/j

X

iD1

m2
Ai

� K��: (1.5.4)

1.6. Manifolds with Dirichlet boundary conditions. In order to obtain similar

results for manifolds with boundary conditions, one has to use Sogge-Smith’s

adapted bounds for such setting (see [18]). For the sake of clarity, we recall these

results here.

Let .M n; g/ be a compact Riemannian manifold with boundary. Let u� denote

a Dirichlet eigenfunction associated to �, then there exists kg > 0 such that

ku�kp � kg�n.1=2�1=p/=2�1=4ku�k2; (1.6.1)

for p � 4 if n � 4, and p � 5 if n D 3. One can easily adapt the proof of

Theorem 1.3.1 using Sogge-Smith results to get:

Theorem 1.6.2. Let .M n; g/ be a compact Riemannian manifold with boundary.

If � is large enough, there exists kg > 0 such that

jA.u�/j
X

iD1

mAi
� kg�n=2; (1.6.3)

and
jA.u�/j

X

iD1

m2
Ai

� kg�n=2: (1.6.4)
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Moreover, we have the following

jA.u�/j
X

iD1

m
p
Ai

� kg�n=2Cnp.1=2�1=p/=2�p=4; (1.6.5)

for any p � 4 if n � 4, and p � 5 if n D 3.

In [18], it is conjectured that the following bound holds:

kukp � C �˛.p/kuk2;

where

˛.p/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

�2

3
C n � 2

2

��1

4
� 1

2p

�

; 2 � p � 6n C 4

3n � 4
;

n

2

�1

2
� 1

p

�

� 1

4
;

6n C 4

3n � 4
� p � C1.

(1.6.6)

Hence, a version of Theorem 1.6.2 without the restrictions could be obtained

if one showed these latter bounds:

Conjecture 1.6.7. Let .M n; g/ be a manifold with boundary. If � is large enough,

then there exists kg > 0 such that

jA.u�/j
X

iD1

m
p
Ai

� kg�n=2Cp˛.p/; (1.6.8)

for any p � 2.

We also obtain a generalization of [22, Corollary 1.7] in the case of manifolds

with boundary. Using (1.6.5) with p D 6nC4
3n�4

, we get the following:

Corollary 1.6.9. Given a > 0, consider nodal domains such that mAi
�

a�.n�1/=4. If � is large enough, then there exists kg > 0 such that the number of

such nodal domains does not exceed kga�.6nC4/=.3n�4/. In particular, for �xed a,

it remains bounded as � ! 1.

1.7. Bounds for the p-Laplacian. For 1 < p < 1, the p�Laplacian of a

function f on an open bounded Euclidean domain � is de�ned by

�pf D div.jrf jp�2rf /:
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We consider the following eigenvalue problem:

�pu C �jujp�2u D 0 in �; (1.7.1)

where we impose the Dirichlet boundary conditions. We say that � is an eigen-

value of ��p if (1.7.1) has a nontrivial weak solution u�;p 2 W
1;p

0 .�/. That is,

for any v 2 C 1
0 .�/,

Z

�

jru�jp�2ru� � rv � �

Z

�

ju�jp�2u�v D 0: (1.7.2)

The function u� is then called an eigenfunction of ��p associated to the eigen-

value �. The function u� is then called an eigenfunction of ��p associated to �.

Note that if p D 2, the p-Laplacian corresponds to the usual Laplacian and is

linear. Otherwise, we say that the p-Laplacian is “half-linear” in the sense that it

is .p � 1/-homogeneous but not additive.

It is known that the �rst eigenvalue of the Dirichlet eigenvalue problem of the

p-Laplace operator, denoted by �1;p, is characterized as

�1;p D min
0¤u2C 1

0
.�/

8

ˆ

ˆ

<

ˆ

ˆ

:

Z

�

jrujpdx

Z

�

jujpdx

9

>

>

=

>

>

;

: (1.7.3)

The in�mum is attained for a function u1;p 2 W
1;p

0 .�/. In addition, �1;p is simple

and isolated. Moreover, the eigenfunction u1 associated to �1;p does not change

sign, and it is the only such eigenfunction.

Via, for instance, the Lyusternick–Schnirelmann maximum principle, it is

possible to construct �k;p for k � 2 and hence obtain an increasing sequence

of so-called variational eigenvalues of (1.7.1) tending to C1. There exist other

variational characterizations of these eigenvalues. However, no matter which

variational characterization one chooses, it always remains to show that all the

eigenvalues obtained that way exhaust the whole spectrum of �p.

Less is known about nodal geometry of eigenfunctions for the p-Laplace op-

erator. For instance, it is not clear if the the interior of the set ¹x 2�W u�.x/D0º
is empty or not for p-Laplacian eigenfunctions. For more details on nodal geom-

etry of the p-Laplace operator, see for instance [11, 20, 21].

Nevertheless, using a L1 bound obtained in [13, Lemma 4.1], one can still

obtain an extension of (1.4.4) for the p-Laplace operator.
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Theorem 1.7.4. Let � be a smooth bounded open set in R
n. Consider up;� an

eigenfunction of the Dirichlet p-Laplacian eigenvalue problem associated to the

eigenvalue �. Let kup;�kp;� D 1, then we have the following:

jA.u�/j
X

iD1

mAi
� 4n Vol.�/1�1=p�n=p: (1.7.5)

Notice that if p D 2, this result corresponds to what we expect in the case of

the usual Laplace operator.

The Courant nodal theorem combined with the Weyl Law yield that the num-

ber of nodal domains of a Dirichlet eigenfunction associated to an elliptic opera-

tor L does not exceed C �n=2. For the p-Laplacian case, the number of nodal do-

mains N� associated to an arbitrary eigenfunction is known to be bounded, see [8].

It is also shown in [8] that the number of nodal domains of an eigenfunction

uk associated to a variational eigenvalue is bounded by 2k � 2. Moreover,

it is known that there exists two positive constants depending on � such that

ckp=n � �k;p � C kp=n (see [2]). Combining both results yields that N� � C �n=p

if � is a variational eigenvalue. We show that a similar result holds even for non-

variational eigenvalue:

Corollary 1.7.6. For any eigenfunction of (1.7.1) and any a > 0, there exists a

positive constant C > 0 such that the number of nodal domains A 2 A.f / with

mA � a does not exceed Ca�1�n=p.

Indeed, letting N� denote the number of such nodal domains, using (1.7.5),

we have that

N�a �
N�
X

iD1

mAi
� C �n=p;

yielding the conclusion.

1.8. Structure of the paper. In Section 2, we prove the main results, namely

we start with Lemma 1.2.2 in R
n and then we prove Theorem 1.2.4 for arbitrary

compact Riemannian manifolds. This leads to the proof of Theorem 1.3.1 which

is an application of Theorem 1.2.4. In Section 3, we prove Theorems 1.4.3, 1.5.2

and 1.7.4.
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2. Proofs of main results

2.1. Proof of Lemma 1.2.2. Before proving Theorem 1.2.4 that holds for com-

pact Riemannian manifolds, we give a proof of such result in the Euclidean case

to give the intuition behind the proof more clearly.

In order to prove Lemma 1.2.2, we need a technical result concerning Poisson

equation. Let � � R
n; n � 3, denote a bounded domain of Rn and consider the

following problem:

�w D f�� in R
n; (2.1.1)

where �� is the characteristic function of � and kf .x/kL1.�/ D 1. It is well

known that the solution of such problem is given by w.x/ D .f�� �ˆ/.x/, where

ˆ.x � y/ D 1

n.n � 2/˛n

jx � yj2�n

is the fundamental solution of the Laplace operator.

Proposition 2.1.2. Let � � R
n; n � 3 and kf .x/kL1.�/ D 1. Then, we have

that

kwkL1.�/ � 1

2.n � 2/˛
2=n
n

Vol.�/2=n:

Moreover, equality holds if f � 1 and if � is a ball.

Before we give a proof, we give a quick overview of classical rearrangements

of functions. Let u be a measurable function de�ned on an open set �. We can

form the distribution function of u, denoted by �.t/, the decreasing rearrangement

of u, u�.s/ into Œ0; C1� and the spherically symmetric rearrangement of u, u?.

The distribution function of u

�.t/ D meas¹x 2 �W ju.x/j > tº;

is a right-continuous function of t , decreasing from �.0/ D j supp.u/j to

�.C1/ D 0 as t increases. The decreasing rearrangement of u, a positive, left

continuous function into Œ0; C1�, is de�ned as

u�.s/ D inf¹t � 0W �.t/ < sº:

The spherically symmetric rearrangement of u is a function u? from R
n into

Œ0; C1� whose level sets ¹x 2 R
nW u?.x/ > tº are concentric balls with the same

measure as the level sets ¹x 2 �W ju.x/j > tº. More precisely, u? is de�ned as

u?.x/ D u�.˛njxjn/ D inf¹t � 0W �.t/ < ˛njxjnº:
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Note that kuk1 D u�.0/ D u?.0/. We refer to [25] for more details on rearrange-

ments of functions.

Proof of Proposition 2.1.2. Let us consider �rst the case where f � 1 and if � is

a ball centered at x of radius R. Straightforward computation shows that

ˇ

ˇ

ˇ

ˇ

Z

Rn

��.y/ˆ.x � y/dy

ˇ

ˇ

ˇ

ˇ

D 1

n.n � 2/˛n

Z

�

jx � yj2�ndy

D 1

.n � 2/

Z R

0

r2�nrn�1dr

D 1

2.n � 2/
R2

D 1

2.n � 2/˛
2=n
n

Vol.BR/2=n:

Now, for the general case, notice that

jw.x/j D
ˇ

ˇ

ˇ

ˇ

Z

Rn

f .y/��.y/ˆ.x � y/dy

ˇ

ˇ

ˇ

ˇ

� 1

n.n � 2/˛n

Z

Rn

jf .y/j��.y/jx � yj2�ndy

� 1

n.n � 2/˛n

Z

Rn

��.y/jx � yj2�ndy:

The following is a classical result of Hardy and Littlewood that can be found

in [10]:
Z

Rn

u.x/v.x/dx �
Z

Rn

u?.x/v?.x/dx:

Therefore, since ˆ D ˆ?, we get that

jw.x/j �
Z

Rn

��.y/ˆ.x � y/dy

�
Z

Rn

��?.y/ˆ?.x � y/dy

D 1

n.n � 2/˛n

Z

�?

jx � yj2�ndy;

where �? denotes a ball centered at x of same volume of �. By the previous case,

one gets the desired result. �
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Remark 2.1.3. The last step of the proof of Proposition 2.1.2 is to show that

Z

�

ˆ.x � y/dy �
Z

�?

ˆ.x � y/dy: (2.1.4)

A generalization of (2.1.4) is given by Lemma 1.2.6.

That being done, we can start the main proof of this section.

Proof of Lemma 1.2.2. Renormalize u� such that ku�k1 D1. Consider ı 2 .0; 1/.

We want to show that there exists a constant Cn;ı > 0 such that

Vol.V i
ı / � Cn;ı��n=2:

Let g D u � ı. We have that �g D �u�;i D �u�;i in V i
ı
. By Proposition 2.1.2,

there exists w.x/ satisfying (2.1.1) with f D ��u�;i and � D V i
ı

such that

kwk1 � 1

2.n � 2/˛
2=n
n

� Vol.V i
ı /2=n:

Consider the function g C w on V i
ı
. On the boundary, we have that

g C w � 1

2.n � 2/˛
2=n
n

� Vol.V i
ı /2=n:

Consider x0 in V i
ı

such that u�;i .x0/ D 1 D ku�k1. Thus, we have that

.g C w/.x0/ � .1 � ı/ � 1

2.n � 2/˛
2=n
n

� Vol.V i
ı /2=n:

Moreover, since �.g C w/ D �u�;i � �u�;i D 0, we can use the maximum

principle on g C w. This implies that

.1 � ı/ � 1

2.n � 2/˛
2=n
n

� Vol.V i
ı /2=n � 1

2.n � 2/˛
2=n
n

� Vol.V i
ı /2=n

() Vol.V i
ı /2=n � 1

2
.1 � ı/

� �

2.n � 2/˛
2=n
n

��1

;

yielding that Vol.V i
ı
/ � .1 � ı/n=2.2.n � 2//n=2˛n��n=2. �
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2.2. Proof of Theorem 1.2.4. The proof of Theorem 1.2.4 for manifolds of

dimension n � 3 is in the same spirit as the proof for Rn. The main di�erence

is that we can not use Proposition 2.1.2 which relies on the fundamental solution

of the Laplace operator on R
n. We consider instead the Green’s representation of

the solution to the Poisson problem on M .

Let � be a compact smooth domain of .M n; g/ where n � 3. It is known that

there exists a Green’s function (see for instance [19]), namely a smooth function

G de�ned on � � � n ¹.x; x/W x 2 �º such that

� G.x; y/ D G.y; x/, for all x ¤ y;

� for �xed y, �xG.x; y/ D 0, for all x ¤ y;

� G.x; y/ � 0 and G vanishes on the boundary of �;

� as x ! y for �xed y, G.x; y/ � �.x; y/2�n.1 C o.1//; n � 3, where �.x; y/

is the geodesic distance between x and y (see [19, p. 81]).

Moreover, if we consider the following problem,

8

<

:

�gw D f in �;

w D 0 on @�;
(2.2.1)

its unique solution is given by

w.y/ D
Z

�

G.x; y/f .x/d�:

Proposition 2.2.2. Let n � 3, ku�k1 D 1 and ı 2 .0; 1/. Let Ai denote a nodal

domain of u� and V i
ı

D ¹x 2 Ai W ju�.x/j � ımAi
º. There exist �0 and kg;�0

> 0

such that for all � > �0 and for any x0 2 V i
ı
, we have that

jw.x0/j � kg;�0
� Volg .V i

ı /2=n;

where w is the solution of problem (2.2.1) with � D V i
ı

and f D ��u�.

We want to prove an analogous result to Proposition 2.1.2. To do so, we treat

split the argument into two cases depending on if the volume of V i
ı

is “large”

or “small.” We de�ne “small V i
ı
” in such a way that we can apply normal

coordinates. This becomes handy since Green functions on M behaves roughly

like the fundamental solution of the Laplace operator on R
n. Using Lemma 1.2.6,

it is then possible to bound w like claimed.
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Proof of Proposition 2.2.2. Let Ai a nodal domain of u� and let x0 be any point

such that u�.x0/ D mAi
.

Let Bx0
.r/ WD expx0

.B0.r// denote the geodesic ball of radius r centered at x.

It is known that for r small enough, we have that

Volg.Bx0
.r// D rn Vol.B0.1//

�

1 � scalg .x0//

6.n C 2/
r2 C o.r2/

�

;

where scalg.x0/ denotes the scalar curvature at x0. Therefore, there exists � 2.0; 1/

such that for all 0 < r � � � injrad.M; g/, there exist Ag > 0 and Bg > 0 such

that

Agrn � Volg.Bx0
.r// � Bgrn: (2.2.3)

Renormalize u� such that ku�k1 D 1. Fix a nodal domain Ai and x0 2 Ai .

Let �0 D B
�2=n
g ��2. Notice that if � � �0 and if Volg.V i

ı
/ > Volg.Bx0

.�//,

the result holds with kg D Ag=Bg .

On the other hand, if � � �0, but Volg.V i
ı

/ � Volg.Bx0
.�//, it is always

possible to pick R such that Volg.V i
ı

/ D Volg.BR.x0// and R � � hold.

Let us now work to get an upper bound on jw.x0/j. We have that

jw.x0/j D
ˇ

ˇ

ˇ

ˇ

�

Z

V i
ı

G.x; x0/u�.x/d�

ˇ

ˇ

ˇ

ˇ

� �

Z

V i
ı

G.x; x0/d�:

Using upper bounds on the Green function (see bounds proved in [24]), we have

that there exists Cg > 0 such that

G.x; x0/ � Cg�.x; x0/2�n; for all x ¤ x0;

implying that

jw.x0/j � Cg�

Z

V
j

ı

�.x; x0/2�nd�:

As it was done in R
n, we need to integrate on a ball to obtain a straightforward

computable integral. To do so, we use Lemma 1.2.6 whose proof can be found in

Section 2.4. Applying Lemma 1.2.6, we get the following:

Cg�

Z

V
j

ı

�.x; x0/2�nd� � Cg�

Z

.V i
ı

/�

�2�nd�;

where .V i
ı

/� D Bx0
.R/ D expx0

.B0.R//.
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Using Gauss’s Lemma, we now have that

jw.x0/j � Cg�

Z

.V i
ı

/�

�2�n
�

1 � 1

6
Rklx

kxl C O.jxj3/
�

dx1dx2 : : : dxn

� Cg�
�n!n

2
R2 � n!n Scalg.x0/

6

R4

4
C O.R5/

�

� Cg�
n!n

2
R2

�

1 � Scalg.x0/

6

R2

2
C O.R3/

�

� CgBgEg� Volg.Bx0
.R//2=n

D kg;�0
� Volg.V i

ı /2=n: �

The last step to prove Theorem 1.2.4 is very similar to the last step in the proof

of Lemma 1.2.2.

Proof of Theorem 1.2.4. Renormalize u� such that ku�k1 D 1. Let g D u�ıCw.

On the boundary of V i
ı
, we have that g D ı�ı D 0. Consider any x0 in V i

ı
such

that u�;i .x0/ D 1. By Proposition 2.2.2, we have that

g.x0/ � .1 � ı/ � Cg;�0
� Vol.V i

ı /2=n:

Moreover, since �g D �u�;i C �w D �u�;i � �u�;i D 0 in V i
ı
, we can use

the maximum principle on g. This implies that

.1 � ı/ � Cg;�0
� Volg.V i

ı /2=n � 0 () Volg.V i
ı / � kg;�0

.1 � ı/n=2��n=2: �

We now prove Proposition 1.2.7 which implies Theorem 1.2.4 in the two di-

mensional case.

Proof of Proposition 1.2.7. The proof essentially follows [14, Section 3]. It is

shown in [14] that given a nodal domain Ai , there exists a ball Bp.kg��1=2/ � Ai

centered at any point p such that u�.p/ D mAi
. This implies that

��.Ai / � kg��1=2:

The proof of this fact uses harmonic measure techniques to get a bound on

the distance from a point of a set, namely the point p where u�.p/ D mAi
, to its

boundary. Instead of working on a nodal set Ai of a given eigenfunction u�, one

can run the argument on a connected component of the ı-superlevel set containing

p. Such a modi�cation will only in�uence the constants in the estimates obtained

in [14, Section 3]. Thus, arguing in a similar way, one obtains

��.V ı
i / � k0

g;ı��1=2;

which completes the proof of the proposition. �
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2.3. Proof of Theorem 1.3.1 . Let ı 2 .0; 1/ and � be large enough. Recall that

A.u/ D ¹AiºjA.u�/j
iD1 is the collection of the nodal domains of u�. Consider

u� D
jA.u�/j

X

iD1

u�;i where u�;i D
´

u� if x 2 Ai ;

0 elsewhere.
(2.3.1)

Observe that � D �1.Ai/ since u�;i does not vanish in Ai (see [3] or [9]). Apply

Theorem 1.2.4 in order to get the following:
Z

Ai

ju�;i jpd� �
Z

V i
ı

ıpm
p
Ai

d� D ıpm
p
Ai

Volg.V i
ı / � kg;ı;�0

m
p
Ai

��n=2:

If we sum over all nodal domains, we get that

Z

M

ju�jpd� D
jA.u�/j

X

iD1

Z

Ai

ju�;i jpd� � kg;ı;�0
��n=2

jA.u�/j
X

iD1

m
p
Ai

: (2.3.2)

To obtain (1.3.2), simply use Sogge’s Lp bounds ku�kp � �ı.p/ku�k2

in (2.3.2).

Notice that one can read o� (1.3.5) using the latter argument. Indeed, since

Z

M

ju�jd� � Volg .M/1=2

� Z

M

ju�j2d�

�1=2

D Volg.M/1=2;

if we take p D 1 in (2.3.2), we get

Volg .M/1=2 �
Z

M

ju�jd� � kg;ı;�0
��n=2

jA.u�/j
X

iD1

mAi
;

yielding (1.3.5).

2.4. Proof of Lemma 1.2.6. The proof of Lemma 1.2.6 is an application of the

bathtub principle [12, Theorem 1.14]:

Theorem 2.4.1 (bathtub principle). Let f be a real-valued, measurable function

on a sigma �nite measure space .X; †; �/ such that �.¹xW f .x/ < tº/ is �nite

for all t 2 R. Fix G > 0 and consider the class of measurable functions on X

de�ned by

C D
²

0 � g � 1W
Z

X

gd� D G

³

:

Then, the minimization problem

I D inf
g2C

Z

X

f .x/g.x/d�.x/
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is solved by g D �¹f <sº.x/ C cs�.¹xW f .x/ D sº/; where s is such that

s D sup
t

¹�.¹xW f .x/ < tº/ � Gº;

and c is such that

c�.¹xW f .x/ D sº/ D G � �.¹xW f .x/ < sº/:

The minimizer is unique if I is �nite and if

G D �.¹xW f .x/ < sº/ or G D �.¹xW f .x/ � sº/:

Under the assumptions of Lemma 1.2.6, f is a smooth, non negative, strictly

decreasing real valued radial function. We prove an equivalent version of

Lemma 1.2.6 for strictly increasing functions. In order to obtain the statement

for strictly decreasing functions as stated in Lemma 1.2.6, it su�ces to replace f

by �f .

Recall that r.x/ D dg .x; x0/ is the Riemannian distance between x and some

�xed point x0 2 M . In that setting, notice that �.¹xW f .r.x// � tº/ is �nite for

all t 2 R. Moreover, the function t ! Volg .¹xW f .r.x// � tº/ is continuous

and strictly increasing on Œ0; 1/. In particular, for all positive constants G, there

exists t > 0 such that Volg.¹xW f .r.x// � tº/ D G. Therefore, the solution of

the minimization problem stated in the bathtub principle under these assumptions

is given by g D �¹f �Rº; where R is such that Volg.�/ D
R

�¹f .r.x//�Rºd� .

Notice that �¹f .r.x//�Rº is the characteristic function of the ball BR.x0/ of radius

R centered at x0 that has the same Riemannian volume as �. Thus,

I D inf
g2C

Z

�

f .r.x//g.x/d� D
Z

BR

f .r.x//d�;

yielding the desired result.

3. Proof of Theorems 1.4.3, 1.5.1, and 1.7.4

3.1. Proof of Theorem 1.4.3. We present the background required to obtain

Theorem 1.4.3. For any �xed positive �, we consider the n�ball,

Bn
� D ¹x 2 R

nW jxj � jn=2�1��1=2º; (3.1.1)

where jn=2�1 is the �rst positive zero of the Bessel function Jn=2�1. It is easy to

see that the following problem,
8

<

:

�z D �z in Bn
�

;

z D 0 on @Bn
�

;
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has its �rst eigenvalue equal to �, and that the corresponding eigenfunction is

given by

z.x/ D jxj1�n=2Jn=2�1.�1=2jxj/: (3.1.2)

We use the following result, due to G. Chiti (see [4, 5]), in the proof:

Proposition 3.1.3 ([4, Theorem 2]). Let u be a function satisfying (1.4.1) and

consider z, the eigenfunction to the Dirichlet eigenvalue problem on Bn
�

de�ned

above. Then, for any p � 1,

kuk1

� Z

�

jujp
��1=p

� kzk1

� Z

Bn
�

zp

��1=p

; (3.1.4)

with equality if and only if � is a ball, c D 0, aij D ıij , � is equal to the

�rst eigenvalue of the equality in (1.4.1) and j�j D jBn
�

j, where jEj denotes the

Lebesgue measure of the set E.

Remark that we can compute the right hand side of (3.1.4) to obtain the

following isoperimetric inequality,

kuk1 � Kn;p�n=.2p/kukp; (3.1.5)

where Kn;p is the constant de�ned in (1.4.6). Indeed, start by computing kzk1.

The fact that rn=2�1Jn=2�1.r/ attains its maximum at r D 0 follows from Poisson’s

integral (see [28, Section 3.3]). Thus, we have that

z.0/ D lim
jxj!0

Jn=2�1.�1=2jxj/
jxjn=2�1

D �n=4�1=2

2n=2�1�.n
2
/
: (3.1.6)

Since z is a radial function, we get that

� Z

Bn
�

zp

��1=p

D .nCn/�1=p�1=2�n=4Cn=.2p/

� Z jn=2�1

0

rp�np=2Cn�1J
p

n=2�1
.r/dr

��1=p

:

(3.1.7)

Combine (3.1.6) and (3.1.7), and plug them into (3.1.4) to get (3.1.5).

Proof of Theorem 1.4.3. We start by obtaining (1.4.5). Let us decompose u� the

following way,

u� D
jA.u�/j

X

iD1

ui where ui D

8

<

:

u� if x 2 Ai ,

0 elsewhere.
(3.1.8)
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Since supp.ui / \ supp.uj / D ¿ for i ¤ j , we note that

1 D ku�k2
L2.M /

D
Z

�

jA.u�/j
X

iD1

u2
i D

jA.u�/j
X

iD1

Z

Ai

u2
i D

jA.u�/j
X

iD1

kuik2
L2.Ai /

: (3.1.9)

Recall that each ui corresponds to an eigenfunction of the Dirichlet problem

on these nodal domains. Indeed, since ui does not vanish in Ai , it corresponds to

the �rst eigenfunction on Ai and �1.Ai/ D � by a corollary of Courant’s theorem

(see [9]).

Thus, we can apply (3.1.5) with p D2 to each ui so that for all 1� i �jA.u�/j,
we obtain that

kuikL1.Ai / � Kn;2�n=4kuikL2.Ai /:

Therefore, we get that

mAi
D sup

x2Ai

jui .x/j � Kn;2�n=4kuikL2.Ai /:

Squaring each side and summing over all nodal domains yield that

jA.u�/j
X

iD1

m2
Ai

� K2
n;2�n=2

jA.u�/j
X

iD1

kui k2
L2.Ai /

;

and we obtain (1.4.5) by applying (3.1.9) to the latter equation. In order to

get (1.4.4), we use (3.1.5) with p D 1, to get

kuikL1.Ai / � Kn;1�n=2kui kL1.Ai /:

If we sum over all nodal domains and keep in mind that supp.ui / \ supp.uj / D ¿

for i ¤ j , we then get

jA.u�/j
X

iD1

mAi
� Kn;1�n=2

jA.u�/j
X

iD1

kui kL1.Ai /

D Kn;1�n=2ku�kL1.�/

� Kn;1�n=2ku�kL2.�/ Vol.�/1=2:

The last line follows from Cauchy-Schwartz inequality. Since ku�kL2.�/ D 1,

the proof is completed. �

3.2. Proof of Theorem 1.5.1. Let I1 denote the family of indexes of nodal

domains touching the boundary of � and let I2 D jA.u�/j n I1. Let us start

by obtaining (1.5.4)
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Notice that nodal domains whose index is in I2 are such that the eigenfunc-

tion u restricted to them corresponds to the �rst eigenfunction of the Dirichlet

eigenvalue problem on such Ai , so that � D �1.Ai/. Therefore, it is possible to

use (3.1.5) with p D 2 as done in the proof of Theorem 1.4.3 in order to get that

X

i2I2

m2
Ai

� C�:

As for nodal domains whose index is in I1, since by the Hormander-Levitan-

Avakumovic L1 bound, we have that mAi
� C�1=4, we get that

X

i2I1

m2
Ai

� C
p

� � .�1=4/2 D C�;

yielding (1.5.4).

The same reasoning can be applied to obtain (1.5.3), namely

X

i2I1

mAi
C

X

i2I2

mAi
� C

p
� � �1=4 C C� � C 0�;

yielding (1.5.3).

3.3. Proof of Theorem 1.7.4. The proof is based on the following result:

Lemma 3.3.1 (Lemma 4.1 in [13]). Let up;1 denote the �rst eigenfunction of

the Dirichlet p-Laplacian eigenvalue problem on a bounded Euclidean domain

� � R
n, then

kup;1kL1.�/ � 4n�n=pkup;1kL1.�/:

Note that the constant term 4n is not sharp.

Remark 3.3.2. One di�erence between Chiti-type inequalities and the preceding

lemma is that Chiti-type inequalities apply to any eigenfunction of the Dirichlet

eigenvalue problem rather than only to the �rst one. However, the generalization

of Chiti’s results to the p-Laplace operator (see [1]) is of the form

kukr � K.r; q; p; n; �/kukq;

where u is any eigenfunction associated to eigenvalue �, 0 < q < r � C1. It is

important to notice that the constant K.r; q; p; n; �/ is not explicit (since we can

not compute the eigenfunctions of the ball explicitly). Thus, we cannot use it as it

was done for the Laplace operator.

We are ready to prove Theorem 1.7.4.
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Proof. Let kup;�kp D 1. Consider Ai � � a nodal domain of up;�. Let us

decompose up;� the following way,

up;� D
jA.u�/j

X

iD1

ui where ui D

8

<

:

up;� if x 2 Ai ,

0 elsewhere.
(3.3.3)

Since ui corresponds to the �rst eigenfunction of the Dirichlet p-Laplacian eigen-

value problem on Ai , Lemma 3.3.1 yields that

kuik1;Ai
� 4n�n=pkuik1;Ai

; for all 1 � i � jA.u�/j:

Therefore, after summing over all nodal domains, we get that

jA.u�/j
X

iD1

kui kL1.Ai / D
jA.u�/j

X

iD1

mAi

� 4n�n=p

jA.u�/j
X

iD1

kuikL1.Ai /

� 4n�n=pkup;�kL1.�/

� 4n Vol.�/1�1=p�n=pkup;�kLp.�/

D 4n Vol.�/1�1=p�n=p: �
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