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1. Introduction

Let H1 and H2 be Hilbert spaces and consider a block operator matrix acting in

the direct sum H ´ H1 ˚ H2, i.e. an operator of the form

M0 D
�

A B

C D

�

;

where, e.g. A is an operator in H1 and B an operator from H2 to H1. Such

operators play an important role in many spectral problems and their applications;

see, e.g. the monograph [30] and the references cited therein. In recent years,

many papers have studied and described spectral properties of such block operator

matrices in terms of their entries A, B , C and D. In particular, spectral enclosures

and variational principles for characterising eigenvalues, often in a gap in the

essential spectrum, have received a great deal of attention; see, e.g. [1, 3, 4, 5, 9,

13, 15, 17, 19, 21, 24, 25, 26, 28, 29]. In many of these papers the case was studied

when A and D are self-adjoint and C D B�, in which case M0 is a symmetric

operator in H, and often even essentially self-adjoint.

In the present paper we consider the situation when A and D are self-adjoint

and C D �B�. In this case the operator M0 is J -symmetric where J D
�

I 0
0 �I

�

;

this means that JM0 is a symmetric operator in H, or in other words, the operator

M0 is symmetric in the Krein space K ´ H1 ˚ H2 with inde�nite inner product

Œx; y� ´ hJ x; yi, where h� ; �i denotes the inner product in the Hilbert space H.

Every bounded self-adjoint operator in a Krein space can be written as a block

operator matrix with A, D self-adjoint and C D �B�. However, this is not true

in general for unbounded operators. Moreover, for given self-adjoint A, D and

C D �B� it is not guaranteed that M0 has a closure that is self-adjoint in the

Krein space. Even if the latter is true, it is not clear whether this closure has non-

empty resolvent set.

We consider two classes of unbounded block operator matrices: certain upper

dominant matrices (where the operators in the top row, i.e. A and B are stronger

than those in the bottom row in the sense that the latter are relatively bounded

with respect to the former) and certain diagonally dominant matrices (where the

stronger operators are the diagonal operators A and D). In these situations the

operator M0 is closable, its closure M is J -self-adjoint, i.e. self-adjoint in the

Krein space, and it has non-empty resolvent set. Certain diagonally dominant J -

self-adjoint block operator matrices, often with bounded B or some other extra

assumptions, have been investigated, e.g. in [1, 3, 4, 15, 19, 20, 21, 29]. However,

to our knowledge, upper dominant J -self-adjoint block operator matrices have

been studied only in few papers; see [15, 28].
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Since in both cases that we consider (upper and diagonally dominant case)

the operator A is stronger in some sense than C D �B�, there exist a 2 R and

b � 0 such that kB�xk2 � akxk2 C bhAx; xi for all x 2 dom.A/. Using these

constants a; b and the location of the spectra of A and D we prove enclosures for

the spectrum of M. In particular, the non-real spectrum is always contained in a

compact set and hence the resolvent set is non-empty; see Theorem 4.13. We also

give a su�cient condition for the spectrum of M being real, namely condition

(A) introduced in De�nition 4.5. In the latter situation we can give an enclosure

that consists of one interval (in a limiting case) or of two disjoint intervals (in

the generic case). The main tool for proving these enclosures is the quadratic

numerical range W 2.M/ � C, which was introduced in [26] and whose closure

contains the spectrum in many situations; see De�nition 4.1 and Proposition 4.12.

The second set of results concerns the characterisation of certain eigenvalues

with variational principles. Instead of the classical Rayleigh quotient we use

either a functional that is connected with the quadratic numerical range (see

Theorem 5.12) or a generalised Rayleigh functional that is associated with the

Schur complement of the block operator matrix (see Theorem 5.6); the Schur

complement is formally given by

S.z/ D A � z C B.D � z/�1B�

and is an operator function acting only in the �rst componentH1. With the help of

these variational principles we also prove enclosures for eigenvalues of M as well

as asymptotic enclosures under the extra assumption that A has compact resolvent.

Further, we prove some results concerning the properties ofM considered as an

operator in a Krein space. In particular, we prove that spectral points in a certain

interval are of positive type, and therefore there exists a local spectral function

for the operator M. If A has compact resolvent, then M is de�nitisable. Finally,

we discuss some examples with di�erential operators as entries to illustrate our

results.

Let us give a brief synopsis of the paper. In Section 2 we de�ne the operator

M, which is the closure of the block operator matrix M0, describe its domain

and action and show that it is J -self-adjoint. The Schur complement S of M

is introduced and studied in Section 3. In particular, in Theorem 3.6 we show

that the spectra of M and S coincide on the set where S is de�ned. In Section 4

the quadratic numerical range W 2.M/ of M is introduced and used to show that

the spectrum of M is contained in the set B that is de�ned in De�nition 4.5; see

Theorem 4.13. A number � 2 R also plays an important role in the de�nition of

B (real parts of non-real points in B are bounded from above by �) and in later

sections. Section 5 is devoted to the characterisation of eigenvalues in .�; 1/ via
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variational principles: Theorems 5.6 and 5.12 use functionals that are connected

with the Schur complement and the quadratic numerical range, respectively. These

characterisations are used in Section 6 to obtain enclosures for eigenvalues in the

interval .�; 1/. In Section 7 we prove that spectral points in .�; 1/ are of positive

type, we show that if a strict version of condition (A) is satis�ed, thenM�
 is non-

negative in the Krein space for certain 
 , and we prove that M is de�nitisable if A

has compact resolvent. Finally, in Section 8 we apply our results to some examples

where the entries of the block operator matrix are di�erential and multiplication

operators.

Notation. For a linear operator T we denote its spectrum by �.T / and its resolvent

set by �.T /. In addition, we de�ne the essential spectrum, point spectrum, discrete

spectrum, approximate point spectrum and the numerical range as follows:

�ess.T / ´ ¹z 2 CW T � z is not Fredholmº;

�p.T / ´ ¹z 2 CW ker.T � z/ ¤ ¹0ºº;

�dis.T / ´ ¹z 2 �p.T / W T � z is Fredholm and z is isolated in �.T /º;

�app.T / ´ ¹z 2 CW there exist xn 2 dom.T / such that

kxnk D 1; .T � z/xn ! 0º;

W.T / ´ ¹hT x; xiW x 2 dom.T /; kxk D 1º:

The square root of a real number is de�ned such that
p

t � 0 for t 2 Œ0; 1/ and

Im
p

t > 0 for t 2 .�1; 0/. Moreover, we use the notation .t /C ´ max¹t; 0º for

t 2 R.

2. J -self-adjoint operator matrices

Throughout this paper let H1 and H2 be Hilbert spaces with inner products h� ; �i;
we also denote the inner product in H ´ H1 ˚ H2 by h� ; �i. Moreover, let A

be a self-adjoint operator acting in H1 which is bounded from below; let B be a

densely de�ned and closable operator acting from H2 to H1; and let D be a self-

adjoint operator acting in H2 which is bounded from above. Let a and d be the

closed quadratic forms associated with the operators A and D, respectively, and

set

˛� ´ min �.A/; ıC ´ max �.D/: (2.1)
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We shall be concerned with the spectral properties of (the closure of) the block

operator matrix

M0 ´
�

A B

�B� D

�

WH1 ˚ H2 �! H1 ˚ H2 (2.2)

with dom.M0/ D .dom.A/ \ dom.B�// � .dom.B/ \ dom.D//. We consider two

classes of matrices, which are introduced in the following assumption.

Assumption 2.1. Let A, B , D and M0 be as above. We assume that one of the

following conditions is satis�ed:

(I) dom.a/ � dom.B�/; dom.B/ � dom.D/, dom.B/ is a core for D;

(II) dom.a/ � dom.B�/; dom.d/ � dom.B/.

Under Assumption 2.1.(I) the block operator matrix M0 is upper dominant in

the sense that the operators in the second row are relatively bounded with respect

to the operators in the �rst row; see [30, De�nition 2.2.1]. If Assumption 2.1.(II)

is satis�ed, then M is diagonally dominant. As we shall see below, M0 is closed

in case (II) and closable in case (I). In both cases, we denote the closure of M0

by M.

The condition dom.a/ � dom.B�/ (which is satis�ed in both cases (I) and (II))

ensures the existence of constants a 2 R and b � 0 such that

kB�xk2 � akxk2 C baŒx� for all x 2 dom.a/: (2.3)

Clearly, one can choose a and b such that both are non-negative, but we allow a

to be negative to have more �exibility in our estimates. Moreover, let b0 be the

relative bound, i.e.

b0 ´ inf
®

b � 0 W there exists an a 2 R such that (2.3) holds
¯

: (2.4)

However, for many theorems, in particular, in later sections, we �x one pair a; b

such that (2.3) holds.

Remark 2.2. Relation (2.3) implies that, for x 2 dom.a/n¹0º,

0 � kB�xk2

kxk2
� a C b

aŒx�

kxk2
:

Taking the in�mum of the right-hand side over all x 2 dom.a/n¹0º we obtain

a C b˛� � 0: (2.5)
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In the following we shall often use the boundedness of certain operators. Let

� < min �.A/. The condition dom.a/ � dom.B�/ and the closed graph theorem

imply that B�.A��/�1=2 is bounded and everywhere de�ned. Hence .A��/�1=2B

is bounded and densely de�ned and

..A � �/�1=2B/� D B�.A � �/�1=2; (2.6)

.A � �/�1B D .A � �/�1=2.A � �/�1=2B (2.7)

hold.

Remark 2.3. If the operator B�.A � �/�1=2 is compact for some � < min �.A/,

then B� is .A � �/
1=2-bounded with relative bound 0; see, e.g. [10, Corol-

lary III.7.7]. This implies that (2.3) holds for arbitrary b > 0 (see, e.g. [16, §V.4.1])

and hence b0 D 0 in this case.

In the next theorem we explicitly describe the domain and the action of the

closure M of M0. In the proof we reduce the problem to a situation with a self-

adjoint operator in a Hilbert space. To this end, de�ne the matrix

J ´
�

I 0

0 �I

�

WH1 ˚ H2 ! H1 ˚ H2: (2.8)

Theorem 2.4. If Assumption 2.1.(I) is satis�ed, then JM0 is essentially self-

adjoint and M0 is closable with closure M.

If Assumption 2.1.(II) is satis�ed, then JM0 is self-adjoint and M0 is closed

with domain dom.A/ � dom.D/ and hence equal to M.

Let � < min �.A/ be arbitrary. In both cases (I) and (II) we have

dom.M/ D
²�

x

y

�

W y 2 dom.D/; x C .A � �/�1By 2 dom.A/

³

; (2.9)

M

�

x

y

�

D
�

.A � �/.x C .A � �/�1By/ C �x

�B�x C Dy

�

;

�

x

y

�

2 dom.M/: (2.10)

If .x; y/T 2 dom.M/, then x 2 dom.a/. Moreover, for .x; y/T 2 dom.M/ and

. Ox; Oy/T 2 dom.a/ � H2 we have

�

M

�

x

y

�

;

� Ox
Oy

��

D aŒx; Ox� C hy; B� Oxi � hB�x; Oyi C hDy; Oyi: (2.11)

Proof. For the self-adjointness of JM0 in Case (II) see [30, Theorems 2.2.7 and

2.6.6]. The other assertions in this case are straightforward.
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Now assume that Assumption 2.1.(I) is satis�ed. We have

JM0 D
�

A B

B� �D

�

which, by [30, Theorem 2.3.6], is essentially self-adjoint with

dom.JM0/ D
²�

x

y

�

W y 2 dom.D/; x C .A � �/�1By 2 dom.A/

³

and

JM0

�

x

y

�

D
�

.A � �/.x C .A � �/�1By/ C �x

B�x � Dy

�

where � < min �.A/ is arbitrary. Since J is an involution, M0 is closable and

M D M0 D JJM0 D J JM0, which shows (2.9) and (2.10).

It follows also from [30, Theorem 2.3.6] that .x; y/T 2 dom.M/ implies that

x 2 dom.a/.

In order to show (2.11), let .x; y/T 2 dom.M/ and . Ox; Oy/T 2 dom.a/ � H2.

From (2.10) and (2.7) we obtain

�

M

�

x

y

�

;

�

Ox
Oy

��

D h.A � �/.x C .A � �/�1=2.A � �/�1=2By/ C �x; Oxi
C h�B�x C Dy; Oyi

D h.A � �/
1=2x C .A � �/�1=2By; .A � �/

1=2 Oxi
C �hx; Oxi � hB�x; Oyi C hDy; Oyi

D .a � �/Œx; Ox� C hy; B�.A � �/�1=2.A � �/
1=2 Oxi

C �hx; Oxi � hB�x; Oyi C hDy; Oyi

D aŒx; Ox� C hy; B� Oxi � hB�x; Oyi C hDy; Oyi;

which proves (2.11). �

From (2.11) we can deduce the following: if .x; y/T 2dom.M/ andM
�

x
y

�

D
�

u
v

�

,

then

aŒx� C hy; B�xi D hu; xi; (2.12)

�hB�x; yi C dŒy� D hv; yiI (2.13)

this follows by setting . Ox; Oy/T D .x; 0/T and . Ox; Oy/T D .0; y/T , respectively,

in (2.11).
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Remark 2.5. If we introduce the inner product

��

x

y

�

;

�

Ox
Oy

��

D
�

J

�

x

y

�

;

�

Ox
Oy

��

D hx; Oxi � hy; Oyi;
�

x

y

�

;

�

Ox
Oy

�

2 H1 ˚ H2;

(2.14)

with J from (2.8), then H1 ˚ H2 becomes a Krein space with fundamental

symmetry J , and M is self-adjoint in this Krein space. This implies that �.M/ is

symmetric with respect to the real axis; see, e.g. [8, Corollary VI.6.3]. We come

back to the properties of M in the Krein space in Section 7. For basic properties

of Krein spaces see, e.g. [8].

We can also describe the adjoint of the operator M in the Hilbert space H.

Corollary 2.6. The adjoint M� of the operator M from Theorem 2.4 is equal to

the closure of the operator
�

A �B

B� D

�

with domain
�

dom.A/ \ dom.B�/
�

�
�

dom.B/ \ dom.D/
�

; the operator M
� is

given explicitly by

dom.M�/ D
²�

x

y

�

W y 2 dom.D/; x � .A � �/�1By 2 dom.A/

³

; (2.15a)

M
�

�

x

y

�

D
�

.A � �/.x � .A � �/�1By/ C �x

B�x C Dy

�

;

�

x

y

�

2 dom.M�/:

(2.15b)

Proof. We have

JM0 D .JM0/� D .JM0/� D M
�J � D M

�J

and hence M
� D JM0J . Therefore (2.15) holds. �

3. The Schur complement

In this section we de�ne and study the (�rst) Schur complement S of the block

operator matrix M, which is an operator function acting in the �rst component

H1. Formally, S is given by

S.z/ D A � z C B.D � z/�1B�; z 2 �.D/:
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However, the domain of S.z/ may be too small, and therefore we de�ne S.z/ via

quadratic forms and for z in a (possibly) smaller set. The main result of this section

is a spectral equivalence of the operator M and the operator function S , which is

explained further below.

De�nition 3.1. Let b0 be as in (2.4) and set

U ´ ¹z 2 CW dist.z; �.D// > b0º:

Moreover, de�ne the family of sesquilinear forms

s.z/Œx; y� ´ aŒx; y� � zhx; yi C
˝

.D � z/�1B�x; B�y
˛

;

z 2 U; x; y 2 dom.s.z// ´ dom.a/:

Lemma 3.2. Suppose that Assumption 2.1 is satis�ed. Then s.�/ is a holomorphic

family of type (a), i.e. dom.s.z// is independent of z, s.z/ is sectorial and closed

for every z 2 U, and s.�/Œx� is holomorphic on U for every x 2 dom.a/.

Proof. Evidently, for any x 2 dom.a/, the function s.�/Œx� W U ! C is holomor-

phic. We must show that s.z/ is closed and sectorial for every z 2 U. Let z 2 U;

then there exist a 2 R, b � 0 such that (2.3) and

b0 < b < dist.z; �.D// (3.1)

hold. For x 2 dom.a/ we obtain from (2.3) that

ˇ

ˇ

˝

.D � z/�1B�x; B�x
˛ˇ

ˇ � kB�xk2

dist.z; �.D//

� a

dist.z; �.D//
kxk2 C b

dist.z; �.D//
aŒx�:

(3.2)

This, together with (3.1), implies that h.D � z/�1B�� ; B�� i is relatively bounded

with respect to a with relative bound less than one. Hence s.z/ is closed and

sectorial by [16, Theorem VI.1.33]. �

It follows from Lemma 3.2 and [16, Theorem VI.2.7] that, for each z 2 U,

there corresponds an m-sectorial operator S.z/ to the form s.z/ in the sense that

s.z/Œx; y� D hS.z/x; yi; x 2 dom.S.z// � dom.a/; y 2 dom.a/: (3.3)
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The family S.�/ is called the Schur complement of M and is a holomorphic family

of type (B); see [16, Theorem VI.4.2]. The spectrum, essential spectrum, point

spectrum and resolvent set of the Schur complement are de�ned as follows:

�.S/ ´ ¹z 2 U W 0 2 �.S.z//º; �ess.S/ ´ ¹z 2 U W 0 2 �ess.S.z//º;

�p.S/ ´ ¹z 2 U W 0 2 �p.S.z//º; �.S/ ´ ¹z 2 U W 0 2 �.S.z//º:

In the next proposition we describe the domain and the action of S.z/ explicitly.

Proposition 3.3. Suppose that Assumption 2.1 is satis�ed, let S be the Schur

complement from (3.3) and let � < min �.A/. For z 2 U we have

dom.S.z// D ¹x 2 dom.a/ W x C .A � �/�1B.D � z/�1B�x 2 dom.A/º;

S.z/x D .A � �/.x C .A � �/�1B.D � z/�1B�x/ C .� � z/x;

x 2 dom.S.z//:

Proof. For x; y 2 dom.a/ we obtain from (2.6) and (2.7) that

h.D � z/�1B�x; B�yi

D h.D � z/�1B�x; B�.A � �/�1=2.A � �/
1=2yi

D h.A � �/�1=2B.D � z/�1B�x; .A � �/
1=2yi

D h.A � �/
1=2.A � �/�1B.D � z/�1B�x; .A � �/

1=2yi:

(3.4)

Now let x 2 dom.S.z// and y 2 dom.a/. Then

hS.z/x; yi D s.z/Œx; y�

D aŒx; y� � zhx; yi C h.D � z/�1B�x; B�yi

D h.A � �/
1=2x; .A � �/

1=2yi C .� � z/hx; yi
C h.A � �/

1=2.A � �/�1B.D � z/�1B�x; .A � �/
1=2yi

D h.A � �/
1=2Œx C .A � �/�1B.D � z/�1B�x�; .A � �/

1=2yi
C .� � z/hx; yi:

It follows from [16, Theorem VI.2.1] that xC.A � �/�1B.D�z/�1B�x 2 dom.A/

and

.A � �/.x C .A � �/�1B.D � z/�1B�x/ D S.z/x � .� � z/x:
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Conversely, suppose that x 2 dom.a/ with x C .A � �/�1B.D � z/�1B�x 2
dom.A/. Then, for y 2 dom.a/, we obtain from (3.4) that

s.z/Œx; y�

D aŒx; y� � zhx; yi C h.D � z/�1B�x; B�yi
D h.A � �/

1=2Œx C .A � �/�1B.D � z/�1B�x�; .A � �/
1=2yi C .� � z/hx; yi

D h.A � �/Œx C .A � �/�1B.D � z/�1B�x�; yi C .� � z/hx; yi:

Now [16, Theorem VI.2.1 (iii)] implies that x 2 dom.S.z//. �

The next lemma gives a �rst connection between the operator M and the Schur

complement S .

Lemma 3.4. Let z 2 U.

(i) If x 2 dom.S.z//, then

�

x

.D � z/�1B�x

�

2 dom.M/

and

.M � z/

�

x

.D � z/�1B�x

�

D
�

S.z/x

0

�

:

(ii) If .x; y/T 2 dom.M/ and

.M � z/

�

x

y

�

D
�

u

0

�

with some u 2 H1, then x 2 dom.S.z//, S.z/x D u and y D .D�z/�1B�x.

Proof. (i) Let x 2 dom.S.z// and set y ´ .D�z/�1B�x. Then x 2 dom.s.z// D
dom.a/ and hence x 2 dom.B�/. Moreover, y 2 dom.D/. Now, combining

Theorem 2.4 and Proposition 3.3 we obtain that .x; y/T 2 dom.M/ and

.M � z/

�

x

y

�

D
�

.A � �/.x C .A � �/�1B.D � z/�1B�x/ C �x � zx

�B�x C .D � z/.D � z/�1B�x

�

D
�

S.z/x

0

�

:

(ii) The assumption implies that y D .D � z/�1B�x. The claim follows again

from Theorem 2.4 and Proposition 3.3. �
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Before we prove the spectral equivalence of M and S , we need a lemma about

approximative eigensequences, which is also used in later sections.

Lemma 3.5. Let z 2 C and let .xn; yn/T 2 dom.M/, n 2 N, such that

kxnk2 C kynk2 D 1 and .M � z/

�

xn

yn

�

�! 0 as n ! 1:

Then the following statements hold.

(i) The sequences aŒxn� and kB�xnk are bounded.

(ii) If z 2 �.D/, then

yn D .D � z/�1B�xn C wn with wn ! 0: (3.5)

(iii) If z 2 U, then

lim inf
n!1

kxnk > 0:

Moreover, if �n 2 dom.B�/, n 2 N, are such that .�n/ and .B��n/ are

bounded sequences, then

lim
n!1

s.z/Œxn; �n� D 0:

In particular,

lim
n!1

s.z/Œxn� D 0: (3.6)

(iv) If z 2 U and xn ! x0 for some x0 2 H1, then

x0 2 dom.a/ and B�xn �! B�x0:

Proof. For the �rst items we may assume that .xn; yn/T is only a bounded

sequence rather than a normalised one. This is used in the the proof of item (iv).

(i) Set
�

un

vn

�

´ .M � z/

�

xn

yn

�

D
�

.A � �/.xn C .A � �/�1Byn/ C .� � z/xn

�B�xn C .D � z/yn

�

: (3.7)

From (2.12) we obtain

aŒxn� � zkxnk2 C hyn; B�xni D hun; xni �! 0: (3.8)

This, together with (2.3) implies that, as n ! 1,

aŒxn� D �hyn; B�xni C O.1/

� kynk kB�xnk C O.1/

� kynk
p

baŒxn� C akxnk2 C O.1/:
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It follows that aŒxn� is bounded and, again by (2.3), that also kB�xnk is bounded.

(ii) Let z 2 �.D/. Comparing the second components in (3.7) we obtain

yn D .D � z/�1B�xn C .D � z/�1vn; (3.9)

which implies (3.5).

(iii) Let z 2 U and let �n be as in the statement of the lemma. Relations (2.11)

and (3.9) yield

�

.M � z/

�

xn

yn

�

;

�

�n

vn

��

D aŒxn; �n� � zhxn; �ni C hyn; B��ni � hB�xn; vni C h.D � z/yn; vni
D aŒxn; �n� � zhxn; �ni C h.D � z/�1B�xn; B��ni C h.D � z/�1vn; B��ni

� hB�xn; vni C hB�xn; vni C hvn; vni
D s.z/Œxn; �n� C h.D � z/�1vn; B��ni C kvnk2:

The left-hand side and the second and the third terms on the right-hand side

converge to 0 by the assumption on �n. Hence s.z/Œxn; �n� ! 0.

For �n D xn the assumptions on �n are satis�ed because of item (i); hence

s.z/Œxn� ! 0. Note that this remains true if .xn; yn/T is just bounded.

Before we prove the remaining items, let us show the following inequalities.

Let a 2 R, b � 0 such that (2.3) and (3.1) hold and let ˛� be as in (2.1). For

x 2 dom.a/ we obtain from (3.2) that

aŒx� �
ˇ

ˇaŒx�
ˇ

ˇ D js.z/Œx� C zkxk2 � h.D � z/�1B�x; B�xij
� js.z/Œx�j C jzj kxk2 C jh.D � z/�1B�x; B�xij

� js.z/Œx�j C jzj kxk2 C baŒx�

dist.z; �.D//
C akxk2

dist.z; �.D//

and hence

˛�

dist.z; �.D// � b

dist.z; �.D//
kxk2 � dist.z; �.D// � b

dist.z; �.D//
aŒx�

� js.z/Œx�j C
�

jzj C a

dist.z; �.D//

�

kxk2

(3.10)

In the following assume that kxnk2 Ckynk2 D 1. Next we show the �rst statement

of (iii), i.e. that lim infn!1 kxnk > 0. Suppose to the contrary that there exists a

subsequence .xnk
/ of .xn/ such that xnk

! 0. Then the left-hand and the right-

hand sides of (3.10) with x D xnk
converge to 0 as k ! 1 by the already proved
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relation (3.6). Hence aŒxnk
� ! 0 since dist.z; �.D// > b. From (2.3) we obtain

that .D � z/�1B�xnk
! 0, which is a contradiction to (3.5) and the relation

kynk
k ! 1.

(iv) Assume that xn ! x0. It follows from the already proved items, applied to

xn � xm instead of xn, that s.z/Œxn � xm� ! 0 as n; m ! 1. Hence the left-hand

and the right-hand sides of (3.10) with x D xn � xm converge to 0 as n; m ! 1,

and therefore also aŒxn � xm� ! 0. This means that xn
a�! x0 (see [16, §VI.3]),

which implies that x0 2 dom.a/ because a is closed. Again by (2.3) we obtain

that kB�xn � B�xmk ! 0 as n; m ! 1. Since B� is closed, it follows that

B�xn ! B�x0. �

The theorem below is analogous to [17, Proposition 2.2] which treats the self-

adjoint case. The last part of our proof is more involved in the sense that it uses

Lemma 3.5. This is due to the loss of self-adjointness and the possibility of non-

real spectrum. See also [15, Propositions 2.7 and 2.8] for a similar result under the

assumption that B� is A-form-compact.

Theorem 3.6. Suppose that Assumption 2.1 is satis�ed, let M be the operator as

in Theorem 2.4 and let S be its Schur complement as in (3.3). Then the following

relations hold:

�.S/ D �.M/ \ U; �p.S/ D �p.M/ \ U; (3.11)

nul.S.z// D nul.M � z/ for z 2 U: (3.12)

Proof. First we show (3.12). Let z 2 U and .x; y/T 2 ker.M�z/. It follows from

Lemma 3.4 (ii) that x 2 ker.S.z//. Hence nul.M � z/ � nul.S.z//.

Now let x 2 ker.S.z//. Lemma 3.4 (i) implies that

�

x

.D � z/�1B�x

�

2 ker.M � z/:

Therefore nul.S.z// � nul.M� z/, and (3.12) is proved. From this we also obtain

the second relation in (3.11).

It remains to show the �rst relation in (3.11). Let z 2 �.M/ \ U and u 2 H1.

Then there exists an .x; y/T 2 dom.M/ with

.M � z/

�

x

y

�

D
�

u

0

�

:

It follows from Lemma 3.4 (ii) that x 2 dom.S.z// and S.z/x D u. Hence S.z/

is surjective. By the already proved relation in (3.12) we obtain that z 2 �.S.z//.

Hence �.S/ � �.M/ \ U.
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Now let z 2 �.S/. ThenM�z is injective and therefore has an inverse. A direct

calculation establishes that this inverse, restricted to H1 � dom.B.D � z/�1/, is

given by

.M � z/�1 D
�

S.z/�1 �S.z/�1B.D � I /�1

F.z/ .D � z/�1 � F.z/B.D � I /�1

�

(3.13)

where F.z/ ´ .D � z/�1B�S.z/�1. The set H1 � dom.B.D � z/�1/ is dense in

H1 �H2: if Assumption 2.1.(I) is satis�ed, this follows from the fact that dom.B/

is a core for D; if Assumption 2.1.(II) is satis�ed, then dom.B.D � z/�1/ D H2.

It therefore su�ces to show that the operator on the right-hand side of (3.13) is

bounded. We suppose the contrary. Then there exists a sequence

�

xn

yn

�

2 dom.M/ with .M � z/

�

xn

yn

�

DW
�

un

vn

�

�! 0; (3.14)

kxnk2 C kynk2 D 1, vn 2 dom.B.D � z/�1/ and hence

�

xn

yn

�

D
�

S.z/�1un � S.z/�1B.D � z/�1vn

F.z/un C .D � z/�1vn � F.z/B.D � z/�1vn

�

: (3.15)

From [16, Theorem VI.2.5] we have S.z/� D S. Nz/ and therefore Nz 2 �.S/.

Further, dom.S. Nz// � dom.a/ � dom.B�/ and hence the operator B�S. Nz/�1

is bounded. Since .S.z/�1B/� D B�S. Nz/�1, it follows that S.z/�1B is bounded.

Then, using (3.15), we deduce that xn ! 0, which is a contradiction to

Lemma 3.5 (iii). Hence �.M/ \ U � �.S/. �

In Theorem 4.17 below we show the equivalence of essential spectra of S and

M in a certain interval.

In the next proposition we consider the situation where we can describe the

essential spectrum of M.

Proposition 3.7. Suppose that Assumption 2.1.(I) is satis�ed and that A has

compact resolvent. Then

�ess.M/ D �ess.D C B�.A � �/�1B/ � Œinf �ess.D/; sup �ess.D/ C b0� (3.16)

for any � < min �.A/.
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Proof. Since

B�.A � �/�1B D B�.A � �/�1=2.A � �/�1=2B

is bounded by (2.7) and its preceding paragraph and since

B�.A � �/�2B D B�.A � �/�1=2.A � �/�1.A � �/�1=2B

is compact, it follows that all assumptions of [5, Theorem 2.2] are satis�ed.

The latter yields the �rst equality in (3.16). Note that the essential spectrum of

D C B�.A � �/�1B is independent of � since di�erences of these operators for

di�erent � are compact.

To show the inclusion in (3.16), let a 2 R and b � 0 be any pair of numbers

such that (2.3) holds. Since B�.A � �/�1B � 0, we have

�ess.D C B�.A � �/�1B/ � Œinf �ess.D/; sup �ess.D/ C kB�.A � �/�1Bk �

(3.17)

for any � < min �.A/. Moreover, if � < 0, � < min �.A/ and x 2 H1, we obtain

from (2.3) that

kB�.A � �/�1=2xk2 � ak.A � �/�1=2xk2 C baŒ.A � �/�1=2x�

� ak.A � �/�1=2xk2 C b.a � �/Œ.A � �/�1=2x�

D ak.A � �/�1=2xk2 C bkxk2:

This implies that

lim inf
�!�1

kB�.A � �/�1Bk D lim inf
�!�1

kB�.A � �/�1=2k2 � b:

If we take the in�mum over all b > b0 and combine this relation with (3.17),

we obtain the inclusion in (3.16). �

Remark 3.8. If, in addition to the assumptions of Proposition 3.7, the operator

B�.A��/�1=2 is compact for some � < min �.A/, then B�.A � �/�1B is compact

as well, and hence �ess.M/ D �ess.D/.

4. The quadratic numerical range

The quadratic numerical range of a block operator matrix is a very useful tool

for proving spectral enclosures, it uses the block structure of the operator, and

the enclosures are tighter than those obtained from the numerical range. It was

introduced in [26] and later studied in various papers; see, e.g. [24, 21, 19, 29, 30].
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De�nition 4.1. Suppose that Assumption 2.1 is satis�ed and let M be the operator

as in Theorem 2.4. The quadratic numerical range of M, denoted by W 2.M/, is

de�ned as the set of eigenvalues of all 2�2-matrices

Mx;y ´

0

B

B

B

@

aŒx�

kxk2

hy; B�xi
kxk kyk

�hB�x; yi
kxk kyk

dŒy�

kyk2

1

C

C

C

A

; x 2 dom.a/n¹0º; y 2 dom.d/n¹0º;

i.e.

W 2.M/ ´ ¹z 2 CW there exist x 2 dom.a/n¹0º; y 2 dom.d/n¹0º
such that z 2 �.Mx;y/º:

The eigenvalues of Mx;y are

�˙

�

x

y

�

´ 1

2

�

aŒx�

kxk2
C dŒy�

kyk2
˙

s

�

aŒx�

kxk2
� dŒy�

kyk2

�2

� 4
jhy; B�xij2
kxk2 kyk2

�

:

Remark 4.2. (i) Note that our de�nition di�ers slightly from that in [30], where

x and y vary only in dom.A/ and dom.D/, respectively. However, in order to

have �˙

�

x
y

�

de�ned for all .x; y/T 2 dom.M/ with x; y ¤ 0, we chose the larger

sets dom.a/ and dom.d/. These sets were also used in [17] for self-adjoint block

operator matrices.

(ii) It is easy to see that W 2.M/ is symmetric with respect to the real axis and

it consists of at most two connected components. It follows in the same way as in

[19, Proposition 2.3] that if dimH > 2 and W 2.M/ contains at least one non-real

point, then W 2.M/ is connected.

We shall often use the following notation. Let x 2 dom.a/n¹0º and y 2
dom.d/n¹0º and set

˛ ´ aŒx�

kxk2
; ˇ ´ hy; B�xi

kxk kyk ; ı ´ dŒy�

kyk2
: (4.1)

Then

�˙

�

x

y

�

D ˛ C ı

2
˙

r

�˛ � ı

2

�2

� jˇj2 : (4.2)
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It follows from (2.3) that

jˇj2 D jhy; B�xij2
kxk2kyk2

� kB�xk2

kxk2
� baŒx� C akxk2

kxk2
D b˛ C a: (4.3)

First we show that W 2.M/ contains the eigenvalues of M.

Lemma 4.3. Suppose that Assumption 2.1 is satis�ed. Then �p.M/ � W 2.M/.

Proof. Let z 2 �p.M/. Then there exists a non-zero vector .x; y/T 2 ker.M� z/,

i.e.

.A � �/.x C .A � �/�1By/ C .� � z/x D 0; (4.4)

�B�x C .D � z/y D 0: (4.5)

It follows from (2.12) and (2.13) that

aŒx� � zkxk2 C hy; B�xi D 0; (4.6)

�hB�x; yi C dŒy� � zkyk2 D 0: (4.7)

Let us �rst consider the case when x D 0. Then dŒy� D zkyk2 by (4.7).

Moreover, (4.4) implies that .A � �/�1By D 0 and hence .A � �/�1=2By D 0

by (2.7). For any u 2 dom.a/n¹0º we have

hy; B�ui D hy; B�.A � �/�1=2.A � �/
1=2ui D h.A � �/�1=2By; .A � �/

1=2ui D 0

and hence

Mu;y D

0

@

aŒu�

kuk2
0

0 z

1

A ;

which shows that z 2 �.Mu;y/ � W 2.M/.

Next suppose that y D 0. Then x ¤ 0, B�x D 0 and .A � z/x D 0 by (4.4)

and (4.5). For any v 2 dom.d/n¹0º we have

Mx;v D

0

B

@

z 0

0
dŒv�

kvk2

1

C

A
;

which yields z 2 �.Mx;v/ � W 2.M/.
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Finally, we assume that x ¤ 0 and y ¤ 0. Then (4.6) and (4.7) imply that

.Mx;y � z/

�

kxk
kyk

�

D

0

B

B

B

@

aŒx�

kxk2
� z

hy; B�xi
kxk kyk

�hB�x; yi
kxk kyk

dŒy�

kyk2
� z

1

C

C

C

A

�

kxk
kyk

�

D

0

B

B

B

@

aŒx�

kxk � zkxk C hy; B�xi
kxk

�hB�x; yi
kyk C dŒy�

kyk � zkyk

1

C

C

C

A

D 0;

which shows that z 2 �.Mx;y/ � W 2.M/. �

The next lemma is shown in the same way as [29, Proposition 3.3].

Lemma 4.4. If dimH1 � 2, then W.D/ � W 2.M/. If dimH2 � 2, then

W.A/ � W 2.M/.

In the following de�nition we introduce a set, B, in which the quadratic

numerical range and the spectrum of M are contained, as we shall show in

Proposition 4.10 and Theorem 4.13 below. Moreover, we introduce condition (A)

under which W 2.M/ and �.M/ are contained in R. Some comments concerning

these de�nitions are given in Remark 4.6; see also Figure 1, which shows the set

B when D is bounded.

(a)

✲
� �C��

(b)

✲
��
�
��

�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
�

�
��

��
�� ���

�

Figure 1. The set B when D is bounded; (a) shows the case when (A) is satis�ed; (b) shows

the case when (A) is not satis�ed.

De�nition 4.5. Assume that Assumption 2.1 is satis�ed. Let a 2 R, b � 0

such that (2.3) holds and let ˛�, ıC as in (2.1). Moreover, if D is bounded, set

ı� ´ min �.D/; otherwise set ı� ´ �1.
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(i) We say that condition (A) is satis�ed if

bıC C b2 C a � 0 and b > 0 (4.8)

or
˛� � ıC

2
� b C

p

.bıC C b2 C a/C : (4.9)

(ii) Set

� WD ıC C b C
p

.bıC C b2 C a/CI (4.10)

�1 WD ˛� � max
°b

2
;
p

b˛� C a
±

I (4.11)

�2 WD

8

ˆ

<

ˆ

:

˛� C ı�

2
if D is bounded;

�1 otherwiseI
(4.12)

�� WD max¹�1; �2ºI (4.13)

�� WD min¹˛�; ı�ºI (4.14)

�C WD

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

�a

b
if (4.8) is satis�ed but (4.9) is not;

˛� � b �
p

.bıC C b2 C a/C if (4.9) is satis�ed but (4.8) is not;

max
°

�a

b
; ˛� � b

±

if (4.8) and (4.9) are satis�edI
(4.15)

� WD
r

�

bıC C b2 C a �
��˛� � ıC

2
� b

�

C

�2 �

C
: (4.16)

(iii) De�ne the sets

Bnr ´
°

z 2 C W �� � Re z � �; j Im zj � �
±

I (4.17)

B ´

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

Œ��; �� [ Œ�C; 1/ if (A) is satis�ed and D is bounded;

.�1; �� [ Œ�C; 1/ if (A) is satis�ed and D is unbounded;

Œ��; 1/ [ Bnr if (A) is not satis�ed and D is bounded;

R [ Bnr if (A) is not satis�ed and D is unbounded:

(4.18)
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Remark 4.6. (i) If B ¤ 0, then a ¤ 0 or b ¤ 0 and therefore the right-hand side

of (4.9) is positive and � > ıC (note that a > 0 if b D 0).

(ii) If B ¤ 0 and the �rst inequality in (4.8) is satis�ed, then automatically

b > 0 (since a > 0 if b D 0).

(iii) Assume that (A) is satis�ed and that B ¤ 0. Then

ıC < � � �C � ˛�: (4.19)

In particular, the spectra of A and D must be separated. The inequalities in (4.19)

are true because of the following considerations. If (4.8) holds, then b > 0, and

from (i), (4.8) and (2.5), we obtain

ıC < � D ıC C b � �a

b
� �C � ˛�:

If (4.9) holds, then

ıC < � � ˛� C ıC

2
� �C � ˛�: (4.20)

If (4.9) holds but (4.8) does not, then �C < ˛�. If the �rst inequality in (4.8) or

the inequality in (4.9) is strict, then � < �C. Moreover, if (4.9) is strict, then

ıC < � <
˛� C ıC

2
< �C � ˛�:

(iv) If (4.8) is satis�ed, it can happen that �C D ˛�. Consider, for instance the

situation when ˛� D 0 and (2.3) holds with a D 0 and b > 0. Then �C D 0. On

the other hand, if (4.8) is not satis�ed but (4.9) is, then always �C < ˛�.

(v) The number �C can also be characterised as

�C D max
®

�
.1/
C ; �

.2/
C

¯

where

�
.1/
C ´

8

ˆ

<

ˆ

:

�a

b
if (4.8) is satis�ed;

�1 otherwise;

�
.2/
C ´

8

<

:

˛� � b �
p

.bıC C b2 C a/C if (4.9) is satis�ed;

�1 otherwise:

(vi) If B is “small”, i.e. a and b are small, then in general �1 gives the better

lower bound for the real part of non-real elements from B. If D is bounded and B

is “large”, then �2 gives the better bound as it is independent of B .



158 M. Langer and M. Strauss

(vii) It is elementary to see that � D 0 if and only if (A) is satis�ed; moreover,

� D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

0 if (A) is satis�ed;

p

bıC C b2 C a if (A) is not satis�ed and b � ˛� � ıC

2
;

r

b˛� C a �
�˛� � ıC

2

�2

if (A) is not satis�ed and b <
˛� � ıC

2
:

(viii) If B is bounded, then one can choose a D kBk2 and b D 0, and hence

� D ıC C kBk; �1 D �C D ˛� � kBk; (4.21)

� D
r

�

kBk2 �
��˛� � ıC

2

�

C

�2 �

C
: (4.22)

Before we prove that B contains W 2.M/ and �.M/, we need some lemmas.

Lemma 4.7. Let b � 0 and a; t; ı 2 R, and assume that

� t � ı

2

�2

� bt C a: (4.23)

Then

bı C b2 C a � 0 and
t � ı

2
� b C

p

bı C b2 C a : (4.24)

If strict inequality holds in (4.23), then the inequalities in (4.24) are also strict.

Proof. Relation (4.23) is equivalent to

t2 � 2.ı C 2b/t C ı2 � 4a � 0:

The zeros of the polynomial in t on the left-hand side are

t˙ ´ ı C 2b ˙
p

.ı C 2b/2 � ı2 C 4a D ı C 2b ˙ 2
p

bı C b2 C a :

If (4.23) is satis�ed, then the discriminant is non-negative and t� � t � tC, which

yields (4.24). If the inequality in (4.23) is strict, then t� < t < tC and hence the

discriminant is strictly positive. �

Lemma 4.8. Assume that (A) is satis�ed and let x 2 dom.a/n¹0º and y 2
dom.d/n¹0º. Then �˙

�

x
y

�

2 R. Moreover, if (4.8) holds, then

�C

�

x

y

�

� �a

b
I (4.25)
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if (4.9) holds, then

�C

�

x

y

�

� ˛� � b �
p

.bıC C b2 C a/C : (4.26)

Proof. Let ˛, ˇ and ı be as in (4.1). Suppose that �˙

�

x
y

�

… R. Then, by (4.2)

and (4.3), we have
�˛ � ı

2

�2

< jˇj2 � b˛ C a:

This, together with Lemma 4.7, implies that

bı C b2 C a > 0 and
˛ � ı

2
< b C

p

bı C b2 C a :

By the de�nition of ˛� and ıC we obtain

bıC C b2 C a > 0 and
˛� � ıC

2
< b C

p

bıC C b2 C a ;

which is a contradiction to (A). Hence �˙

�

x
y

�

2 R.

It follows again from (4.2) and (4.3) that

�C

�

x

y

�

� ˛ C ı

2
C

r

�˛ � ı

2

�2

� b˛ � a: (4.27)

Assume that (4.8) holds. Then

bı C b2 C a � 0 (4.28)

and b > 0. De�ne the function

f .t/ ´ t C ı

2
C

r

� t � ı

2

�2

� bt � a; t 2 R;

which is real-valued by (4.28). Its derivative is

f 0.t / D 1

2
C

t�ı
2

� b

2

q

�

t�ı
2

�2 � bt � a

D f .t/ � .ı C b/

2

q

�

t�ı
2

�2 � bt � a

;

which implies that f 0.t / > 0 if and only if f .t/ > ı C b. From this it follows that

the sign of f 0 is constant on R. Since f .t/ ! 1 as t ! 1, we obtain that f is

increasing on R and f .t/ > ı C b for all t 2 R. Relations (2.5) and (4.28) imply

that

˛ � ˛� � �a

b
� ı C b � ı:
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Hence, by (4.27),

�C

�

x

y

�

� f .˛/ � f
�

�a

b

�

D �a

b
;

i.e. (4.25) holds.

Now assume that (4.9) is satis�ed. Note �rst that, for r; s 2 R such that r � 0

and r � s, one has

p
r � s �

p
r � p

sC ;

which is easy to see. From this and the relation ˛�ı
2

� b it follows that

�C

�

x

y

�

� ˛ C ı

2
C

r

�˛ � ı

2

�2

� b˛ � a

D ˛ C ı

2
C

r

�˛ � ı

2
� b

�2

� .bı C b2 C a/

� ˛ C ı

2
C

r

�˛ � ı

2
� b

�2

�
p

.bı C b2 C a/C

D ˛ � b �
p

.bı C b2 C a/C

� ˛� � b �
p

.bıC C b2 C a/C;

i.e. (4.26) holds. �

Lemma 4.9. Let x 2 dom.a/n¹0º and y 2 dom.d/n¹0º and let � be as in (4.10).

Then

Re ��

�

x

y

�

� �:

Proof. Let x 2 dom.a/n¹0º and y 2 dom.d/n¹0º and let ˛, ˇ and ı be as in (4.1).

Then

�� ´ ��

�

x

y

�

D ˛ C ı

2
�

r

�˛ � ı

2

�2

� jˇj2

and (4.3) is valid.
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Let us �rst consider the case when

� t � ı

2

�2

� bt C a for some t � ˛:

It follows from Lemma 4.7 that the inequalities in (4.24) hold, which imply

Re �� � ˛ C ı

2

� t C ı

2

� ı C b C
p

bı C b2 C a

� ıC C b C
p

bıC C b2 C a

D �:

Now we consider the case when

� t � ı

2

�2

> bt C a for all t � ˛: (4.29)

It follows from (4.29) and (4.3) that �� 2 R and

�� � ˛ C ı

2
�

r

�˛ � ı

2

�2

� b˛ � a : (4.30)

De�ne the function

f .t/ ´ t C ı

2
�

r

� t � ı

2

�2

� bt � a

for such t for which the expression under the square root is non-negative, i.e. either

dom.f / D R or dom.f / D .�1; t�� [ ŒtC; 1/ where t˙ are the zeros of the

polynomial under the square root:

t˙ D ı C 2b ˙ 2
p

bı C b2 C a :

The derivative of f is

f 0.t / D 1

2
�

t�ı
2

� b

2

q

�

t�ı
2

�2 � bt � a

D ı C b � f .t/

2

q

�

t�ı
2

�2 � bt � a

;

which implies that

f 0.t / > 0 () f .t/ < ı C b: (4.31)
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If a D b D 0, then ˇ D 0 and the assertion is clear since then �� D min¹˛; ıº.
So assume that a ¤ 0 or b ¤ 0. Then f is not constant. It follows from (4.31)

that the sign of f 0 is constant on each interval in the domain of f . Let us �rst

consider the case when dom.f / D R. Since f .t/ ! �1 as t ! �1, we have

f .t/ < ı C b for all t 2 R and hence (with (4.30))

�� � f .˛/ < ı C b � ıC C b � �:

Now consider the case when dom.f / ¤ R. It follows from (4.29) that ˛ 2 ŒtC; 1/.

Moreover,

f .tC/ D tC C ı

2
D ı C b C

p

bı C b2 C a � ı C b;

which, by (4.31), implies that f 0.t / � 0 on .tC; 1/. Hence (again with (4.30))

�� � f .˛/

� f .tC/

D ı C b C
p

bı C b2 C a

� ıC C b C
p

bıC C b2 C a

D �;

which proves the assertion also in this case. �

The next proposition shows that the closure of the quadratic numerical range

is contained in B.

Proposition 4.10. Suppose that Assumption 2.1 is satis�ed. Let M be the operator

as in Theorem 2.4, W 2.M/ as in De�nition 4.1 and B, �, �C as in De�nition 4.5.

Then W 2.M/ � B.

Moreover, if (A) is satis�ed, then W 2.M/ � R and

��

�

x

y

�

� �; �C

�

x

y

�

� �C for x 2 dom.a/n¹0º; y 2 dom.d/n¹0º: (4.32)

Proof. Since B is closed, it su�ces to prove that W 2.M/ � B. Let z 2 W 2.M/.

Then there exist x 2 dom.a/n¹0º and y 2 dom.d/n¹0º such that z D �C

�

x
y

�

or

z D ��

�

x
y

�

. Let ˛, ˇ and ı be as in (4.1).
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First assume that z 2 R. If condition (A) is satis�ed, then, by Lemmas 4.8

and 4.9, we have either z D �C

�

x
y

�

� �C or z D ��

�

x
y

�

� �, which also

shows (4.32). If D is bounded, then

z � ��

�

x

y

�

� ˛ C ı

2
�

ˇ

ˇ

ˇ

ˇ

˛ � ı

2

ˇ

ˇ

ˇ

ˇ

D min¹˛; ıº � min¹˛�; ı�º D ��;

which shows that z 2 B when z 2 R.

Now assume that z … R. Using (4.3) and the relation t2 � ..t /C/2 for t 2 R

we obtain for the imaginary part of z that

j Im zj D
r

�

jˇj2 �
�˛ � ı

2

�2�

C
�

r

�

b˛ C a �
�˛ � ı

2

�2�

C

D
r

�

bı C b2 C a �
�˛ � ı

2
� b

�2�

C

�
r

�

bı C b2 C a �
��˛ � ı

2
� b

�

C

�2�

C

�
r

�

bıC C b2 C a �
��˛� � ıC

2
� b

�

C

�2�

C
:

The upper bound for Re z follows directly from Lemma 4.9. For the lower bound

observe that

0 >
�˛ � ı

2

�2

� jˇj2 �
�˛ � ı

2

�2

� b˛ � a:

Hence b˛ C a > 0 and
˛ � ı

2
<

p

b˛ C a ;

which implies that

Re z D ˛ C ı

2
> ˛ �

p

b˛ C a : (4.33)

If b D 0, then the right-hand side of (4.33) is bounded from below by ˛� � p
a,

which is equal to �1 in that case. For the case b > 0 we consider the function

f .t/ ´ t �
p

bt C a ; t 2
h

�a

b
; 1

�

;

which attains its minimum at t0 ´ b
4

� a
b

. If t0 � ˛�, then

min
t2Œ˛�;1/

f .t/ D f .˛�/ D ˛� �
p

b˛� C a :
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If t0 > ˛�, then

min
t2Œ˛�;1/

f .t/ D f .t0/ D t0 � b

2
> ˛� � b

2
:

Hence Re z � �1 also in this case.

If D is bounded, then one also has ı � ı� and hence

Re z D ˛ C ı

2
� ˛� C ı�

2
D �2:

This shows that Re z � �� in all cases and hence z 2 B. �

Next we need an auxiliary lemma before we prove the spectral inclusion. For

a similar result for certain diagonally dominant block operator matrices we refer

to [29, Theorem 4.2].

Lemma 4.11. Suppose that Assumption 2.1 is satis�ed and let z 2 Cn.ıC; ıCCb0/.

Then z … W 2.M/ implies that M � z has closed range.

Proof. We show the contraposition. Let z 2 C n .ıC; ıC C b0/ and suppose

that ran.M � z/ is not closed. Then, z 2 �app.M/, i.e. there exists a sequence

.xn; yn/T 2 dom.M/ with

.M � z/

�

xn

yn

�

�! 0 and kxnk2 C kynk2 D 1 for all n 2 NI

see [16, Theorem IV.5.2]. We have to show that z 2 W 2.M/.

If dimH1 D 1 or dimH2 D 1, then B is bounded, and hence [29, Corol-

lary 4.3] implies that z 2 W 2.M/. If A is bounded, then B is bounded, and again

z 2 W 2.M/. For the rest of the proof assume that dimH1 � 2, dimH2 � 2 and

that A is unbounded.

It follows from (2.12) and (2.13) that

aŒxn� � zkxnk2 C hyn; B�xni �! 0; (4.34)

�hB�xn; yni C dŒyn� � zkynk2 �! 0: (4.35)

First we consider the case when z 2 CnR. Taking the imaginary parts of the

left and the right-hand sides of (4.34) and (4.35) we obtain

� Im zkxnk2 C Imhyn; B�xni �! 0 and � ImhB�xn; yni � Im zkynk2 �! 0:
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If we take the di�erence and observe that Im z ¤ 0, we get kxnk � kynk ! 0 and

thus

kxnk �! 1p
2

and kynk �! 1p
2

: (4.36)

Lemma 3.5 (i) implies that aŒxn� and hB�xn; yni are bounded. By (4.35) also dŒyn�

is bounded. From (4.34), (4.35), and (4.36) it follows that

�

Mxn;yn
� z

�

�

kxnk
kynk

�

D

0

B

B

B

@

aŒxn� � zkxnk2 C hyn; B�xni
kxnk

�hB�xn; yni C dŒyn� � zkynk2

kynk

1

C

C

C

A

�! 0: (4.37)

Since all entries of Mxn;yn
are bounded, (4.37) and (4.36) imply that

det.Mxn;yn
� z/ �! 0:

Hence there exists a sequence zn 2 �.Mxn;yn
/ � W 2.M/ such that zn ! z, which

shows that z 2 W 2.M/.

Now let z 2 R. Taking the sum of the real parts of the left-hand sides of (4.34)

and (4.35) we obtain

aŒxn� � zkxnk2 C dŒyn� � zkynk2 �! 0:

If z < ��, i.e. D is bounded and z < ˛� and z < ı�, then

aŒxn� � zkxnk2 C dŒyn� � zkynk2 � .˛� � z/kxnk2 C .ı� � z/kynk2

� max¹˛� � z; ı� � zº.kxnk2 C kynk2/

D max¹˛� � z; ı� � zº
< 0;

which is a contradiction.

If ı� � z � ıC, then z 2 W.D/; if z � ˛�, then z 2 W.A/ since we assumed

that A is unbounded. In both cases it follows from Lemma 4.4 that z 2 W 2.M/.

Finally, assume that z 2 .ıC C b0; ˛�/. Since z 2 U in this case, we have

lim infn!1 kxnk > 0 by Lemma 3.5 (iii). If ynk
! 0 for a subsequence ynk

,

then (4.34) implies that aŒxnk
��zkxnk

k2 ! 0, which is a contradiction to the fact

that kxnk
k ! 1 and z < ˛�. Hence also lim infn!1 kynk > 0 and we can argue

as in the case z 2 CnR to obtain that z 2 W 2.M/. �
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The next proposition shows that, essentially, the spectrum of M is contained

in the closure of the quadratic numerical range. Only in the interval .ıC; ıC C b0/

we are not able to prove such a spectral inclusion. For other types of block

operator matrices results about spectral inclusion were shown in many papers; see,

e.g. [26, Theorem 2.1], [24, Theorem 2.3], and [29, Theorem 4.2].

Proposition 4.12. Suppose that Assumption 2.1 is satis�ed and let M be the

operator as in Theorem 2.4. Moreover, let z 2 Cn.ıC; ıC C b0/. Then z 2 �.M/

implies that z 2 W 2.M/.

Proof. Assume that z … W 2.M/. It follows from Lemma 4.11 that ran.M � z/

is closed. Moreover, Lemma 4.3 applied to M and M
� yields nul.M � z/ D 0

and nul.M� � Nz/ D 0. The latter implies that def.M � z/ D 0; see, e.g. [16,

Theorem IV.5.13]. Hence z 2 �.M/. �

The next theorem shows that the spectrum of M is contained in B.

Theorem 4.13. Suppose that Assumption 2.1 is satis�ed, let M be the operator as

in Theorem 2.4 and let B as in (4.18). Then �.M/ � B. In particular, if condition

(A) is satis�ed, then �.M/ � R.

Proof. Let z 2 �.M/. If z 2 Cn.ıC; ıC C b0/, then z 2 W 2.M/ � B by

Propositions 4.12 and 4.10. If z 2 .ıC; ıC C b0/, then z 2 B since �� � ıC

and ıC C b0 � ıC C b � �. �

When B is a bounded operator, then �, which bounds the imaginary parts of

spectral points, is given by (4.22); this was proved in [29, Theorem 5.5 (iii)].

The above theorem shows that the spectrum is real provided the spectra of

the diagonal components are su�ciently separated and B is not “too large.”

As the following result shows, this can be particularly straightforward when B

is bounded; see also [30, Proposition 2.6.8] and [29, Theorem 5.5].

In the next corollary, which follows immediately from Theorem 4.13 and

Remark 4.6 (viii), we consider the situation when B is bounded. The estimate

for the imaginary part in (4.39) was also proved in [29, Theorem 5.5]. A slightly

better enclosure for �.M/ than (4.38) was obtained in [3, Theorem 5.8] and [4,

Theorem 5.4].
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Corollary 4.14. Suppose that Assumption 2.1 is satis�ed and that B is bounded.

If

kBk � ˛� � ıC

2
;

then

�.M/ �
�

�1; ıC C kBk
�

[
�

˛� � kBk; 1
�

: (4.38)

Otherwise,

�.M/ � R [
°

z 2 CnR W ˛� � kBk � Re z � ıC C kBk;

j Im zj �
r

kBk2 �
��˛� � ıC

2

�

C

�2 ±

:

(4.39)

If D is bounded with ı� D min �.D/, then .�1; ı�/ � �.M/ and Re z � ˛�Cı�

2

for z 2 �.M/nR.

Proof. Since B is bounded, we can chose a D kBk2 and b D 0. Under our

assumptions the inequality (4.9) is satis�ed. Hence (4.38) holds by Theorem 4.13

and the de�nition of B. �

Remark 4.15. Even if B is bounded, it may be possible to choose a and b such

that b > 0 to obtain better enclosures for the spectrum, in particular if �C D ˛�

with such a choice; see Remark 4.6 (iv).

Remark 4.16. Let us consider the family of operators

Mt ´
�

A tB

�tB� D

�

; t 2 Œ0; 1/;

which was also studied in [21]. Clearly, if Assumption 2.1 is satis�ed for t D 1,

then it is satis�ed for all t 2 Œ0; 1/. If ıC < ˛�, i.e. the spectra of A and D are

separated, then there exists a t0 > 0 such that, for t 2 Œ0; t0�, condition (A) is

satis�ed and hence �.Mt / � R. If ıC � ˛�, it may happen that the spectrum of

M is non-real for every positive t .

If ıC < ˛�, then, in general, the gap .ıC; ˛�/ in the spectrum closes from both

endpoints with increasing t . However, if, e.g. ˛� D 0 and a D 0, b > 0 in (2.3),

then �C D ˛� as long as (4.8) is satis�ed, i.e. the gap closes only from the left

endpoint.

If D is bounded and ı� D min �.D/, then for all t 2 Œ0; 1/, the set �.Mt /\R

is bounded from below by min¹˛�; ı�º and the real parts of points from �.Mt /nR
are bounded from below by ˛�Cı�

2
.
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In the next section we characterise elements from �.M/ in the interval .�; 1/

with variational principles. Since the proof uses the Schur complement, we must

ensure that S and M have the same essential spectrum in .�; 1/. Note that

.�; 1/ � U and hence S.�/ is well de�ned for � 2 .�; 1/.

Theorem 4.17. Suppose that Assumption 2.1 is satis�ed, let M be the operator as

in Theorem 2.4, let S be its Schur complement and let � be as in (4.10). Then

�ess.S/ \ .�; 1/ D �ess.M/ \ .�; 1/: (4.40)

Proof. Let z 2 �ess.S/\.�; 1/. Since 0 2 �ess.S.z// and S.z/ is self-adjoint, the

operator S.z/ is not semi-Fredholm with nul.S.z// < 1. By [10, Theorem IX.1.3]

there exists a singular sequence for S.z/ corresponding to 0, i.e. there exist

xn 2 dom.S.z//, n 2 N, such that

kxnk D 1; S.z/xn ! 0; xn * 0:

Set

yn ´ .D � z/�1B�xn; wn ´
�

xn

yn

�

; and Own ´ wn

kwnk :

From Lemma 3.4 (i) we obtain that Own 2 dom.M/ and

.M � z/ Own D 1

kwnk

�

S.z/xn

0

�

�! 0I

note that kwnk � 1. Moreover, for u in the dense set dom.B.D � z/�1/ we have

hyn; ui D hxn; B.D � z/�1ui ! 0:

Since yn is bounded by Lemma 3.5 (i), we have yn * 0 and therefore Own * 0.

Hence Own is a singular sequence for M corresponding to z. Again from [10,

Theorem IX.1.3] we obtain that z 2 �ess.M/. This shows the inclusion “�” in

(4.40).

Now let z 2 �ess.M/ \ .�; 1/ and suppose that z … �ess.S/. It follows from

Theorem 3.6 that z 2 �.S/ and that

0 < nul.S.z// D nul.M � z/ < 1: (4.41)

Since S.z/ is self-adjoint, we also have 0 2 �dis.S.z//. Suppose that M � z

has closed range. Then M � z is semi-Fredholm with def.M � z/ D 1. Let

zn D z C i=n, n 2 N. Then zn ! z, zn … B and hence zn 2 �.M/ by
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Theorem 4.13. It follows from [16, Theorem IV.5.17] that ind.M�zn/ D ind.M�z/

for large enough n, which is a contradiction since ind.M � zn/ D 0 for all n 2 N

and ind.M � z/ D �1. Hence ran.M � z/ is not closed. Therefore, by [16,

Theorem IV.5.2], there exists a sequence of vectors .xn; yn/T 2 dom.M/ with

�

xn

yn

�

? ker.M � z/ and kxnk2 C kynk2 D 1 for each n 2 N (4.42)

such that

�

un

vn

�

´ .M � z/

�

xn

yn

�

D
�

.A � �/.xn C .A � �/�1Byn/ C .� � z/xn

�B�xn C .D � z/yn

�

�! 0:

Let P be the orthogonal projection from H1 onto ker.S.z//, set Qxn D .I � P /xn

and let QS.z/ be the restriction of S.z/ to the Hilbert space .I � P /H1, which has

a bounded inverse since 0 2 �dis.S.z//. Set �n ´ QS.z/�1 Qxn. Since B� QS.z/�1

is a bounded operator by the closed graph theorem, the assumptions on �n in

Lemma 3.5 (iii) are satis�ed. The latter implies that

k Qxnk2 D s.z/Œxn; QS.z/�1 Qxn� �! 0:

Since ker.S.z// is �nite-dimensional, there exists a subsequence xnk
such that

xnk
! x 2 ker.S.z//. It follows from Lemma 3.5 (iv) that x 2 dom.a/ and

B�xnk
! B�x. Hence

�

xnk

ynk

�

�!
�

x

.D � z/�1B�x

�

2 ker.M � z/

by Lemma 3.4. As this contradicts (4.42), we have z 2 �ess.S/. Hence the reverse

inclusion in (4.40) is also shown. �

Corollary 4.18. If A has compact resolvent, then .�; 1/ \ �ess.M/ D ¿.

Proof. In view of Theorem 4.17, it is su�cient to show that .�; 1/\�ess.S/ D ¿.

Let z 2 .�; 1/ and x 2 dom.a/. It follows from (3.2) that

jh.D � z/�1B�x; B�xij � b

z � ıC

aŒx� C a

z � ıC

kxk2;

Since z � ıC > b, this, together with [16, Theorem VI.3.4], implies that S.z/ has

compact resolvent. �

Recall that under the extra assumption 2.1.(I) more can be said about �ess.M/;

see Proposition 3.7.
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5. Variational principles

In this section we prove variational principles that characterise eigenvalues of the

operator M and the Schur complement S in a certain interval. The functionals

in these variational principles are connected either with the Schur complement or

the quadratic numerical range of the operator M.

First we recall a property of operator functions that was used in [31, Lemma 2]

by A. Virozub and V. Matsaev for functions whose values are bounded operators;

see also, e.g. [20, 23]. In [27] this property was introduced for certain functions

whose values are unbounded operators. Here we formulate it for families of

quadratic forms and apply it then to holomorphic operator functions of type (B).

De�nition 5.1. Let � � R be an interval and let t.�/, � 2 �, be a family of

closed symmetric quadratic forms such that dom.t.�// is independent of � and

such that t.�/Œx� is di�erentiable for each x 2 dom.t.�//. We say that t.�/ satis�es

the condition (VM�) on the interval � if, for each compact subinterval I � �,

there exist "; ı > 0 such that, for all � 2 I and all x 2 dom.t.�//,

jt.�/Œx�j � "kxk2 H) t
0.�/Œx� � �ıkxk2: (5.1)

The condition implies in particular that if �0 is an inner point of � and

jt.�0/Œx�j is small enough, then t.�/Œx� must have a zero close to �0.

Lemma 5.2. Let s.�/, � 2 U, be the quadratic forms from De�nition 3.1 associ-

ated with the Schur complement of the operator M and let � be as in (4.10). Then

s satis�es the condition (VM�) on the interval .�; 1/.

Proof. First note that

s.�/Œx� D aŒx� � �kxk2 � k.� � D/�1=2B�xk2; (5.2)

s
0.�/Œx� D �kxk2 C k.� � D/�1B�xk2: (5.3)

Let " > 0 be arbitrary for the moment, let � 2 .�; 1/ and let x 2 dom.a/ D
dom.s.�// such that js.�/Œx�j � "kxk2. It follows from (2.3) and (5.2) that

k.� � D/�1=2B�xk2 � kB�xk2

� � ıC

� baŒx� C akxk2

� � ıC

D b.s.�/Œx� C �kxk2 C k.� � D/�1=2B�xk2/ C akxk2

� � ıC

:
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Rearranging this inequality we obtain

.��ıC �b/k.��D/�1=2B�xk2 � bs.�/Œx�C .b�Ca/kxk2 � .b"Cb�Ca/kxk2:

Since � > ıC C b, we have

s
0.�/Œx� � �kxk2 C k.� � D/�1=2k2 k.� � D/�1=2B�xk2

�
�

� 1 C 1

� � ıC

� b" C b� C a

� � ıC � b

�

kxk2

D .g.�/ C h.�/"/kxk2;

where

g.�/ ´ �1 C b� C a

.� � ıC/.� � ıC � b/
; h.�/ ´ b

.� � ıC/.� � ıC � b/
:

Moreover, g.�/ < 0 if and only if �2 � 2.ıC C b/� C ı2
C C bıC � a > 0; it

is easily seen that the latter inequality is true for � 2 .�; 1/. Now let I be a

compact subinterval of .�; 1/. Since g is continuous on .�; 1/ and I is compact,

there exists a c < 0 such that g.�/ � c for � 2 I . Choose " > 0 so small that

"h.�/ � c=2 for � 2 I . Then, with ı ´ c=2, we have s
0.�/Œx� � �ıkxk2 for

� 2 I . �

The previous lemma implies that if the function s.�/Œx�, for x 2 dom.a/n¹0º,
has a zero, then the derivative is negative at this zero. In particular, for each

x 2 dom.a/n¹0º the function s.�/Œx� is decreasing at value zero (in the terminology

of [7] and [12]) and hence has at most one zero in .�; 1/. Moreover, s.�/Œx� !
�1 as � ! 1.

Next we de�ne a generalised Rayleigh functional, which is used in the varia-

tional principle below. This functional generalises the Rayleigh quotient for linear

operators to the situation of an operator function; for more general operator func-

tions it has been de�ned in [7] and [12].

De�nition 5.3. We de�ne the generalised Rayleigh functional

pW dom.a/n¹0º �! R [ ¹�1º

as follows

p.x/ D �0 if s.�0/Œx� D 0 for a �0 2 .�; 1/;

p.x/ D �1 if s.�/Œx� < 0 for all � 2 .�; 1/:
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Remark 5.4. In the case when s.�/Œx� < 0 for all � 2 .�; 1/ one can also set

p.x/ equal to any number in .�1; �� (which may depend on x); see [14, §2].

Before we formulate the next theorem we introduce another notation that is

needed.

De�nition 5.5. For a self-adjoint operator T denote by ��.T / the dimension of

the spectral subspace for T corresponding to the interval .�1; 0/.

The next theorem contains a variational principle for eigenvalues of M in the

interval .�; 1/. Note that there is a shift in the index: in general, the index of

the eigenvalue does not match the dimension of the corresponding subspace in

the variation. For bounded A, B and D a similar but slightly weaker result was

proved in [7, §4.3].

Theorem 5.6. Suppose that Assumption 2.1 is satis�ed, let M be the operator as

in Theorem 2.4, let � be as in (4.10) and let p and �� be as in De�nitions 5.3

and 5.5. Assume that

there exists 
 2 .�; 1/ such that ��.S.
// < 1: (5.4)

Then

� < �e ´

8

<

:

inf.�ess.M/ \ .�; 1// if �ess.M/ \ .�; 1/ ¤ ¿;

1 otherwise:
(5.5)

Moreover, �.M/ \ .�; �e/ is at most countable, consists of eigenvalues only and

has �e as only possible accumulation point.

Let 
0 2 .�; �e/ be arbitrary and let .�j /N
j D1, N 2 N0 [ ¹1º, be the �nite

or in�nite sequence of eigenvalues of M in the interval Œ
0; �e/ in non-decreasing

order and repeated according to multiplicities. Then

� ´ ��.S.
0// < 1 (5.6)

and

�nD min
L�dom.a/

dimLD�Cn

max
x2Ln¹0º

p.x/ D max
L�H

dimLD�Cn�1

inf
x2dom.a/n¹0º

?L

p.x/ (5.7)

for n 2 N, n � N . Moreover, if N is �nite and H1 is in�nite-dimensional, then

�e < 1 and

�eD inf
L�dom.a/

dimLD�Cn

max
x2Ln¹0º

p.x/ D sup
L�H

dimLD�Cn�1

inf
x2dom.a/n¹0º

x?L

p.x/ (5.8)

for n > N .
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Proof. Note �rst that ��.M/\ .�; 1/ D ��.S/\ .�; 1/ for �� D �; �p; �ess; see

Theorems 3.6 and 4.17. Lemma 3.2 implies that the Schur complement S is a holo-

morphic operator family of type (B). Moreover, S satis�es the condition (VM�)

on .�; 1/ by Lemma 5.2. Hence the assumptions (i)–(v) in [12, §2] are satis�ed.

Suppose that �e D �. Then, for every " > 0, there exists a � 2 .�; � C "/ such

that � 2 �ess.S/. This, together with [12, Lemma 2.9], implies that ��.S.t// D 1
for all t > �, a contradiction. Hence �e > �. Now almost all remaining assertions

follow immediately from [12, Theorem 2.1]. We only have to show that �e < 1 if

N < 1 and dimH1 D 1. Suppose that �e D 1. Then, by [12, Theorem 2.1],

inf
L�dom.a/

dimLD�Cn

max
x2Ln¹0º

p.x/ D 1

for n > N , i.e. for every L � dom.a/ with dimL > � C N one has

maxx2Ln¹0º p.x/ D 1. By [12, Lemma 2.8] the maximum is attained and there-

fore p.x/ D 1 for some x 2 L. However, this is a contradiction to the de�nition

of p in our case and hence �e < 1. �

In the next corollary we consider again the case when A has compact resolvent.

Corollary 5.7. Suppose that Assumption 2.1 is satis�ed, let M be the operator

as in Theorem 2.4, let � be as in (4.10) and let p and �� be as in De�nitions 5.3

and 5.5. Assume that A has compact resolvent and that H1 is in�nite-dimensional.

Then ��.S.
// < 1 for every 
 2 .�; 1/. Moreover, �ess.M/ \ .�; 1/ D ¿

and hence �e D 1. Further, �.M/\.�; 1/ consists of in�nitely many eigenvalues

(i.e. N D 1), which accumulate only at 1, and (5.7) holds for all n 2 N.

Proof. It follows from Lemma 3.2 and the proof of Corollary 4.18 that S.
/ is

bounded from below and has compact resolvent. This implies that � < 1.

Moreover, �ess.M/ \ .�; 1/ D ¿ by Corollary 4.18. Finally, N D 1 because

otherwise �e < 1 by Theorem 5.6. �

The next simple lemma is used below and was proved in [21, Lemma 3.5] for

bounded B .

Lemma 5.8. Let x 2 dom.a/n¹0º such that B�x ¤ 0 and let � 2 U. With

y ´ .D � �/�1B�x we have

det.Mx;y � �/ D hB�x; .D � �/�1B�xi s.�/Œx�

kxk2kyk2
:



174 M. Langer and M. Strauss

Proof. Clearly, y ¤ 0. From the de�nition of Mx;y we obtain

kxk2kyk2 det.Mx;y � �/

D .aŒx� � �kxk2/.dŒy� � �kyk2/ C hy; B�xihB�x; yi
D .aŒx� � �kxk2/hB�x; .D � �/�1B�xi

C h.D � �/�1B�x; B�xihB�x; .D � �/�1B�xi
D hB�x; .D � �/�1B�xis.�/Œx�;

which proves the assertion. �

In the next proposition we consider the case when one of the inequalities (4.8),

(4.9) is strict. Then the index shift � is equal to 0 for appropriate 
0.

Proposition 5.9. Suppose that Assumption 2.1 is satis�ed, let M be the operator

as in Theorem 2.4, let a 2 R, b � 0 be such that (2.3) is satis�ed and let �, �C

be as in (4.10) and (4.15), respectively. Assume that

bıC C b2 C a < 0 or
˛� � ıC

2
> b C

q

�

bıC C b2 C a
�

C
: (5.9)

Then

ıC < � < �C � ˛�; (5.10)

and for each 
 2 .�; �C/ there exists a c > 0 such that

s.
/Œx� � ckxk2; x 2 dom.a/; (5.11)

and hence ��.S.
// D 0.

Proof. The inequalities in (5.10) follow from Remark 4.6 (iii). Let 
 2 .�; �C/

and x 2 dom.a/n¹0º. We �rst show that s.
/Œx� > 0. If B�x D 0, then

s.
/Œx� D aŒx� � 
kxk2 > 0 since 
 < ˛�. Now assume that B�x ¤ 0.

Set y ´ .D � 
/�1B�x. From Proposition 4.10 we obtain

��

�

x

y

�

� � < 
 < �C � �C

�

x

y

�

:

Now Lemma 5.8 implies that

0 >

�


 � �C

�

x

y

���


 � ��

�

x

y

��

D det.Mx;y � 
/

D hB�x; .D � 
/�1B�xi s.
/Œx�

kxk2kyk2
:
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Since 
 > ıC, this shows that s.
/Œx� > 0. Hence the operator S.
/ is non-

negative.

Further, .�; �C/ � �.M/ by Theorem 4.13 and therefore 0 2 �.S.
// by

Theorem 4.17. This proves that S.
/ is uniformly positive, i.e. (5.11) holds and

��.S.
// D 0. �

In Theorem 5.12 below we prove a variational principle with the functional �C.

To this end we need some lemmas to rewrite p.x/ in terms of �C.

Lemma 5.10. Let x 2 dom.a/ and assume that B�x ¤ 0. If s.�/Œx� � 0 for some

� 2 .�; 1/, then

�C

�

x

.D � �/�1B�x

�

� �: (5.12)

If s.�/Œx� D 0, then there is equality in (5.12).

Proof. Set y ´ .D � �/�1B�x, which is non-zero. From Lemma 5.8 we obtain

det.Mx;y � �/ D hB�x; .D � �/�1B�xi s.�/Œx�

kxk2kyk2
� 0

since � > ıC. By Lemma 4.9 we have ��

�

x
y

�

� � < �, which implies that

�C

�

x
y

�

� �. If s.�/Œx� D 0, then det.Mx;y � �/ D 0 and hence �C

�

x
y

�

D �. �

Lemma 5.11. Let x 2 dom.a/n¹0º.
(i) If s.�0/Œx� D 0 for some �0 2 .�; 1/, i.e. �0 D p.x/, then

�˙

�

x

y

�

2 R for all y 2 dom.d/n¹0º

and

min
y2dom.d/n¹0º

�C

�

x

y

�

D �0: (5.13)

(ii) If s.�/Œx� < 0 for all � 2 .�; 1/, i.e. p.x/ D �1, then

inf
y2dom.d/n¹0º

Re �C

�

x

y

�

� �: (5.14)
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Proof. If B�x D 0, then s.�/Œx� D aŒx� � �kxk2 and

�C

�

x

y

�

D max

²

aŒx�

kxk2
;
dŒy�

kyk2

³

for all y 2 dom.d/n¹0º:

Since dŒy�=kyk2 � ıC � �, the assertion follows in both cases (i) and (ii).

For the rest of the proof we assume that B�x ¤ 0.

(i) Suppose that s.�0/Œx� D 0 for some �0 2 .�; 1/. For any y 2 dom.d/n¹0º
we have

jhy; B�xij2 D jh.�0 � D/
1=2y; .�0 � D/�1=2B�xij2

� k.�0 � D/
1=2yk2 k.�0 � D/�1=2B�xk2

D .d � �0/Œy�h.D � �0/�1B�x; B�xi

and hence

det.Mx;y � �0/

D .a � �0/Œx�

kxk2
� .d � �0/Œy�

kyk2
C jhy; B�xij2

kxk2kyk2

�
.a � �0/Œx� � .d � �0/Œy� C .d � �0/Œy�

˝

.D � �0/�1B�x; B�x
˛

kxk2kyk2

D s.�0/Œx� � .d � �0/Œy�

kxk2kyk2

D 0:

(5.15)

Since det.Mx;y � �/ is a monic quadratic polynomial in � with real coe�-

cients, the inequality in (5.15) implies that its zeros �˙

�

x
y

�

are real and that

�C

�

x

y

�

� �0:

This, together with Lemma 5.10, proves (5.13).

(ii) Now assume that s.�/Œx� < 0 for all � 2 .�; 1/. For each � 2 .�; 1/

we obtain from Lemma 5.10 that there exists a y 2 dom.d/n¹0º such that

�C

�

x
y

�

� �, which implies (5.14). �
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The next theorem contains a variational principle with the functional �C that is

connected with the quadratic numerical range of M. It follows immediately from

Theorem 5.6, Remark 5.4 and Lemma 5.11. Similar results were obtained in [19,

Theorem 5.3] for bounded A, B , D and in [21, Theorem 4.2] when B is bounded

and W 2.M/ consists of two separated components and hence �.M/ is real.

Theorem 5.12. Suppose that Assumption 2.1 and (5.4) are satis�ed. Let 
0, �, �e,

N , .�j /N
j D1 be as in Theorem 5.6. Then

�n D min
L�dom.a/

dimLD�Cn

max
x2Ln¹0º

inf
y2dom.d/n¹0º

Re �C

�

x

y

�

D max
L�H

dimLD�Cn�1

inf
x2dom.a/n¹0º

x?L

inf
y2dom.d/n¹0º

Re �C

�

x

y

�

for n 2 N, n � N . Moreover, if N is �nite and H1 is in�nite-dimensional, then

�e < 1 and

�e D min
L�dom.a/

dimLD�Cn

max
x2Ln¹0º

inf
y2dom.d/n¹0º

Re �C

�

x

y

�

D max
L�H

dimLD�Cn�1

inf
x2dom.a/n¹0º

x?L

inf
y2dom.d/n¹0º

Re �C

�

x

y

�

for n > N .

6. Eigenvalue estimates and asymptotics

In this section we prove estimates for certain real eigenvalues of M. In particular,

we compare these eigenvalues with eigenvalues of A. To this end, we denote by

�1 � �2 � � � � the eigenvalues of A that lie below min �ess.A/ counted according to

multiplicities. If A has only �nitely many eigenvalues, say M , below its essential

spectrum and H1 is in�nite-dimensional, then set �k ´ min �ess.A/ for k > M .

In the case when A has compact resolvent we also show asymptotic estimates.

The following estimates are analogous to those found for upper dominant self-

adjoint matrices; see [17, Section 4.1]. The �rst inequality in (6.1) below and (6.4)

were proved in [21, Theorem 5.2] under the extra assumption that B is bounded

and W 2.M/ consists of two separated components and hence �.M/ is real.
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Corollary 6.1. Suppose that Assumption 2.1 and (5.4) are satis�ed. Let 
0, �, �e,

N , .�j /N
j D1 be as in Theorem 5.6. If N is �nite, then set �n ´ �e for n > N .

Moreover, let �k be as above. Then

��Cn C ıC

2
C

r

����Cn � ıC

2

�2

� b��Cn � a
�

C
� �n � ��Cn (6.1)

for n 2 N such that � C n � dimH1.

Assume, in addition, that D is bounded, set ı� ´ min �.D/, and let Oa 2 R

and Ob � 0 be such that

kB�xk2 � Oakxk2 C ObaŒx�; x 2 dom.a/: (6.2)

Then
���Cn � ı�

2

�2

� Ob��Cn � Oa � 0 (6.3)

and

�n � ��Cn C ı�

2
C

r

���Cn � ı�

2

�2

� Ob��Cn � Oa (6.4)

for n 2 N such that � C n � dimH1.

Proof. Throughout the proof let n 2 N such that � C n � dimH1. First we show

that

p.x/ � aŒx�

kxk2
; x 2 dom.a/n¹0º: (6.5)

If p.x/ D �1, then the statement is trivial. Otherwise, we have p.x/ > � � ıC,

and therefore

0 D s.p.x//Œx�

D aŒx� � p.x/kxk2 C h.D � p.x//�1B�x; B�xi
� aŒx� � p.x/kxk2;

which implies (6.5). Now (5.7), (5.8) and the standard variational principle for

self-adjoint operators imply that

�n D min
L�dom.a/

dimLD�Cn

max
x2Ln¹0º

p.x/ � min
L�dom.a/

dimLD�Cn

max
x2Ln¹0º

aŒx�

kxk2
D ��Cn;

which shows the second inequality in (6.1).
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If the expression
���Cn � ıC

2

�2

� b��Cn � a (6.6)

is negative, then the left-hand side of (6.1) is equal to .��Cn C ıC/=2, which, by

Lemma 4.7, satis�es

��Cn C ıC

2
� ıC C b C

p

bıC C b2 C a D � < �n:

Hence the �rst inequality in (6.1) is proved in this case.

Now assume that the expression in (6.6) is non-negative. Let x 2 dom.a/n¹0º
and � > �. From (2.3) we obtain

s.�/Œx� D aŒx� � �kxk2 � k.� � D/�1=2B�xk2

� aŒx� � �kxk2 � kB�xk2

� � ıC

� aŒx� � �kxk2 � baŒx� C akxk2

� � ıC

D .� � ıC � b/aŒx� � .�2 � ıC� C a/kxk2

� � ıC

:

It follows from the standard variational principle for self-adjoint operators that,

for every .� C n/-dimensional subspace L � dom.a/, there exists an xL 2 L such

that kxLk D 1 and aŒxL� � ��Cn. Then

s.�/ŒxL� � 1

� � ıC

Œ.� � ıC � b/��Cn � �2 C ıC� � a�

D � 1

� � ıC

Œ�2 � .��Cn C ıC/� C ıC��Cn C b��Cn C a�:

(6.7)

Since the expression in (6.6) is non-negative, the polynomial in � within the square

brackets has real zeros. The larger of these zeros is equal to the left-hand side

of (6.1), which we denote by �n. From (6.7) we obtain s.�n/ŒxL� � 0 and hence

p.xL/ � �n since s satis�es the condition (VM�). Now (5.7) and (5.8) imply that

�n D inf
L�dom.a/

dimLD�Cn

max
x2Ln¹0º

p.x/ � inf
L�dom.a/

dimLD�Cn

p.xL/ � �n;

which is the �rst inequality in (6.1).
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Now assume that D is bounded and that (6.2) is satis�ed. Let " > 0 be arbitrary.

By the standard variational principle applied to A there exists an L0 � dom.a/

with dimL0 D � C n such that aŒx� � .��Cn C "/kxk2 for all x 2 L0 (if ��Cn is

an eigenvalue, we could choose " D 0). From (5.7) and (5.8) we obtain that

�n D inf
L�dom.a/

dimLD�Cn

max
x2Ln¹0º

p.x/ � max
x2L0n¹0º

p.x/: (6.8)

For x 2 L0n¹0º and � 2 .�; 1/ we have

s.�/Œx� D aŒx� � �kxk2 �
˝

.� � D/�1B�x; B�x
˛

� aŒx� � �kxk2 � kB�xk2

� � ı�

� aŒx� � �kxk2 �
ObaŒx� C Oakxk2

� � ı�

� .� � ı� � Ob/.��Cn C "/ � �2 C ı�� � Oa
� � ı�

kxk2

D ��2 � .��Cn C " C ı�/� C ı�.��Cn C "/ C Ob.��Cn C "/ C Oa
� � ı�

kxk2:

(6.9)

Let O�n;";˙ be the zeros of the polynomial in � in the numerator of the fraction

in (6.9), i.e.

O�n;";˙ D ��Cn C " C ı�

2
˙

r

���Cn C " � ı�

2

�2

� Ob.��Cn C "/ � Oa :

If these zeros are non-real or O�n;";C � �, then s.�/Œx� < 0 for all � 2 .�; 1/ and

hence p.x/ D �1 for all x 2 L0n¹0º. This, together with (6.8), would imply that

�n D �1, a contradiction. Therefore O�n;";˙ 2 R and O�n;";C > �. In particular,

���Cn C " � ı�

2

�2

� Ob.��Cn C "/ � Oa � 0: (6.10)

Relation (6.9) yields that s.�/Œx� < 0 for all � 2 . O�n;";C; 1/ and hence p.x/ �
O�n;";C for all x 2 L0n¹0º. This, together with (6.8) implies that �n � O�n;";C.

If we take the limit as " ! 0 in the latter inequality and in (6.10), we obtain (6.3)

and (6.4). �

Under the extra assumption that A has compact resolvent we can obtain asymp-

totic estimates for the eigenvalues of M that lie in .�; 1/. Analogous estimates

for self-adjoint block operator matrices were shown in [17, Corollary 4.4].
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Corollary 6.2. Suppose that Assumption 2.1 is satis�ed, let M be the operator

as in Theorem 2.4, let � be as in (4.10) and let �k be as at the beginning of the

section. Assume that A has compact resolvent and that H1 is in�nite-dimensional.

Then .�; 1/ \ �.M/ consists of a sequence of eigenvalues that tends to 1. Let


0 2 .�; 1/, let � be as in (5.6) and let .�n/1
nD1 be the eigenvalues in Œ
0; 1/.

Then

��Cn � b � b2 C bıC C a

��Cn � ıC

C O

� 1

�2
�Cn

�

� �n � ��Cn; n ! 1: (6.11)

If, in addition, D is bounded with ı�, Oa and Ob as in Corollary 6.1, then

�n � ��Cn � Ob �
Ob2 C Obı� C Oa

��Cn � ı�

C O

� 1

�2
�Cn

�

; n ! 1: (6.12)

Proof. The �rst statements follow from Corollary 5.7. For the estimates we use

Corollary 6.1, which for su�ciently large n yields

�n � ��Cn C ıC

2
C

r

���Cn � ıC

2

�2

� b��Cn � a

D ��Cn C ıC

2
C

���Cn � ıC

2

�

s

1 �
� 2

��Cn � ıC

�2

.b��Cn C a/

D ��Cn � 1

2

� 2

��Cn � ıC

�

.b��Cn C a/ � 1

8

� 2

��Cn � ıC

�3

.b��Cn C a/2 � : : :

D ��Cn � b��Cn C a

��Cn � ıC

� .b��Cn C a/2

.��Cn � ıC/3
C O

� 1

�2
�Cn

�

D ��Cn � b � bıC C b2 C a

��Cn � ıC

C O

� 1

�2
�Cn

�

:

If D is bounded, we obtain from (6.4) in a similar way that

�n � ��Cn C ı�

2
C

r

���Cn � ı�

2

�2

� Ob��Cn � Oa

D ��Cn � Ob �
Obı� C Ob2 C Oa

��Cn � ı�

C O

� 1

�2
�Cn

�

: �
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7. Spectrum of positive type

In this section we consider properties of the operator M considered in the Krein

spaceK ´ H1˚H2 equipped with the inde�nite inner product (2.14). Recall that

a point � 2 �app.M/ is called spectral point of positive type if for every sequence

.xn; yn/T 2 dom.M/ such that

.M � �/

�

xn

yn

�

�! 0 and kxnk2 C kynk2 D 1 (7.1)

one has

lim inf
n!1

��

xn

yn

�

;

�

xn

yn

��

> 0: (7.2)

In the next theorem we consider spectral points in the interval .�; 1/. For

bounded operators M the result was shown in [19, Theorem 3.1].

Theorem 7.1. Suppose that Assumption 2.1 is satis�ed, let M be the operator as

in Theorem 2.4 and let � be as in (4.10). Then all points from �.M/ \ .�; 1/ are

spectral points of positive type.

Proof. Let � 2 �.M/\ .�; 1/ and let .xn; yn/T 2 dom.M/ such that (7.1) holds.

It follows from Lemma 3.5 that s.�/Œxn� ! 0, lim infn!1 kxnk > 0 and that

kB�xnk is bounded. Since s satis�es the condition (VM�) by Lemma 5.2, there

exist "; ı > 0 such that (5.1) holds. Hence there exists an N 2 N so that

s
0.�/Œxn� � �ıkxnk2; n � N:

Lemma 3.5 (ii) implies that yn D .D � �/�1B�xn C wn with wn ! 0. This,

together with (5.3), yields
��

xn

yn

�

;

�

xn

yn

��

D kxnk2 � kynk2

D kxnk2 �




.D � �/�1B�xn C wn







2

D kxnk2 �




.D � �/�1B�xn







2 � 2 Re
˝

.D � �/�1B�xn; wn

˛

� kwnk2

D �s
0.�/Œxn� C o.1/

� ıkxnk2 C o.1/:

Since lim infn!1 kxnk2 > 0, we obtain

lim inf
n!1

��

xn

yn

�

;

�

xn

yn

��

� ı lim inf
n!1

kxnk2 > 0;

which shows that � is a spectral point of positive type. �
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It follows from this theorem and [6, §8] (cf. also [22, Theorem 3.1] for bounded

operators) that the operator M has a local spectral function of positive type on the

interval .�; 1/.

In the following proposition we consider again the situation from Proposi-

tion 5.9, namely that in (4.8) or (4.9) strict inequality holds.

Proposition 7.2. Suppose that Assumption 2.1 is satis�ed, letM be the operator as

in Theorem 2.4 and assume that the condition in (5.9) is satis�ed. For 
 2 .�; �C/

the operator M � 
 is non-negative in the Krein space K and 
 2 �.M/.

Proof. Let .x; y/T 2 dom.M/. From (2.11) we obtain

�

.M � 
/

�

x

y

�

;

�

x

y

��

D
�

.M � 
/

�

x

y

�

;

�

x

�y

��

D aŒx� � 
kxk2 C hy; B�xi C hB�x; yi � hDy; yi C 
kyk2

D .a � 
/Œx� � .d � 
/Œy� C 2 Rehy; B�xi
� .a � 
/Œx� � .d � 
/Œy� � 2

ˇ

ˇhy; B�xi
ˇ

ˇ: (7.3)

If x D 0 or y D 0, then the expression in (7.3) is non-negative since ıC < 
 < ˛�.

Now assume that x; y ¤ 0. It follows from Proposition 4.10 that �˙

�

x
y

�

2 R and

��

�

x

y

�

� � < 
 < �C � �C

�

x

y

�

:

Therefore

.a � 
/Œx� � .d � 
/Œy� C jhy; B�xij2
kxk2kyk2

D det.Mx;y � 
/

D
�


 � �C

�

x

y

���


 � ��

�

x

y

��

< 0:

If we combine this with the inequality in (7.3), we obtain

�

.M�
/

�

x

y

�

;

�

x

y

��

� .a�
/Œx�C .
 �d/Œy��2
p

.a � 
/Œx� �
p

.
 � d/Œy� � 0:

Relation (5.11) implies also that 0 2 �.S.�//, which, by Theorem 3.6, yields that


 2 �.M/. �
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If (5.9) is satis�ed and D is bounded, then, by Proposition 7.2, all assumptions

of [28, Theorem 3.2] are satis�ed with 
 2 .�; �C/. The latter theorem implies,

e.g. that the spectral subspaces corresponding to .
; 1/ and .�1; 
/ are maximal

uniformly positive and negative, respectively.

A self-adjoint T operator in a Krein space is called de�nitisable if �.T / ¤ ¿

and there exists a real polynomial p such that

Œp.T /x; x� � 0 for all x 2 dom.T deg p/I

see, e.g. [18, p. 10]. In the next theorem we consider again the situation when A

has compact resolvent.

Theorem 7.3. Suppose that Assumption 2.1 is satis�ed and that A has compact

resolvent. Then M is de�nitisable, and hence the non-real spectrum of M is �nite.

Proof. That �.M/ ¤ ¿ follows from Theorem 4.13. Choose ˛0 so large that

the second inequality in (5.9) is satis�ed with ˛� replaced by ˛0. Let L be the

spectral subspace for A corresponding to Œ˛0; 1/, let yA be the restriction of A

to L \ dom.A/. Moreover, let P be the orthogonal projection in H1 onto L, set
yB ´ PB and

yM0 ´
� yA yB

� yB� D

�

;

and let yM be the closure of yM0; the operator yM0 is understood as an operator

in yK ´ L ˚ H2. It is not di�cult to see that Assumption 2.1 is satis�ed for
yM0 and that (2.3) holds with the same a and b. Clearly, Ǫ� ´ min �. yA/ � ˛0

and therefore the second inequality in (5.9) is satis�ed with ˛� replaced by Ǫ�.

Proposition 7.2 applied to yM yields that yM � 
 is non-negative in yK for some


 2 R. Since yK is �nite co-dimensional in K, this shows that M � 
 has �nitely

many squares, i.e. the form Œ.M� 
/ � ; �� is non-negative on a subspace with �nite

codimension. By [18, pp. 11–12] this implies that M is de�nitisable. It follows from

[18, Proposition II.2.1 (p. 28)] that hence the non-real spectrum of M is �nite. �

8. Examples

In this section we consider two examples where the entries of the block operator

matrix M0 are di�erential or multiplication operators. The �rst example was

studied in [21] for bounded w and in [15, 25] in the one-dimensional case.
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Example 8.1. Let n 2 N and let � � R
n be an arbitrary bounded domain (we do

not assume any smoothness of the boundary of �). Moreover, let u 2 L1.�/ and

w 2 Lp.�/ where

p D 1 if n D 1;

p > 1 if n D 2;

p D n

2
if n � 3;

and assume that u is real-valued and w � 0. Let H1 D H2 D L2.�/ and consider

the operators M0 and M where A D �� with Dirichlet boundary conditions, i.e.

A is the operator corresponding to the form

aŒy� D
Z

�

jryj2; y 2 dom.a/ D H 1
0 .�/;

and where B and D are the multiplication operators with the functions
p

w and

u, respectively.

By the Sobolev embedding theorem (see, e.g. [2, Theorem 4.12]) one has the

continuous embedding H 1
0 .�/ � Lq.�/ where q D 1 if n D 1; q < 1 arbitrary

if n D 2; and q D 2n=.n � 2/ if n � 3. Since 1
p

C 2
q

D 1 (where in the case n D 2

one chooses q accordingly for a given p), Hölder’s inequality yields

kB�yk2 D
Z

�

wjyj2 � kwkLp.�/kyk2
Lq.�/; y 2 Lq.�/:

Therefore

dom.a/ D H 1
0 .�/ � Lq.�/ � dom.B�/;

which shows that Assumption 2.1.(I) is satis�ed; note that D is bounded.

With CSob and CPoinc denoting the constants in the Sobolev and the Poincaré

inequalities, respectively, we obtain

kB�yk2 � kwkLp.�/kyk2
Lq.�/

� C 2
SobkwkLp.�/kyk2

H 1
0

.�/

� C 2
SobC 2

PoinckwkLp.�/aŒy�

for y 2 H 1
0 .�/, which yields a possible choice for b where a D 0.
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The Schur complement corresponds to the form

s.z/Œy� D
Z

�

�

jryj2 C
�

�z C w

u � z

�

jyj2
�

; y 2 dom.s.z// D H 1
0 .�/;

for dist.z; ess ran u/ > b0. As an operator it acts like

S.z/y D ��y C
�

�z C w

u � z

�

y:

The operator A has compact resolvent; let �1 � �2 � � � � be its eigenvalues

in non-decreasing order and set ı� ´ ess inf u, ıC ´ ess supu. Proposition 3.7

implies that �ess.M/ � Œı�; ıC C b0�, and Theorem 4.13 gives an enclosure for

�.M/. Moreover, Theorem 7.3 shows that the non-real spectrum is �nite, and

Corollaries 5.7, 6.1 and 6.2 yield that �.M/ \ .�; 1/ consists of a sequence of

eigenvalues that tends to 1 and satis�es (6.1) and (6.11).

If p > n=2 when n � 3 and p as above when n D 1; 2, then the embedding

H 1
0 .�/ ! Lq.�/ is even compact and hence B�.A � �/�1=2 is a compact

operator for � < min �.A/. By Remarks 2.3 and 3.8 one has b0 D 0 and

�ess.M/ D �ess.D/ D ess ran u.

Example 8.2. Let H1 D H2 D L2.0; 1/, let q; u; v 2 L1.0; 1/, where q and u

are real-valued, and consider the operators

Ay D �y00 C qy; dom.A/ D H 2.0; 1/ \ H 1
0 .0; 1/;

By D .vy/0; dom.B/ D H 1.0; 1/;

B�y D vy0; dom.B�/ � H 1
0 .0; 1/;

Dy D uy; dom.D/ D L2.0; 1/:

Assumption 2.1.(I) is satis�ed, and for y 2 dom.a/ D H 1
0 .0; 1/ we have

kB�yk2 D
Z 1

0

ˇ

ˇvy0
ˇ

ˇ

2 � sup jvj2
Z 1

0

jy0j2

D sup jvj2
Z 1

0

�

jy0j2 C qjyj2
�

� sup jvj2
Z 1

0

qjyj2

� sup jvj2
Z 1

0

�

jy0j2 C qjyj2
�

� sup jvj2 � inf q

Z 1

0

jyj2

D sup jvj2aŒy� � sup jvj2 � inf q � kyk2:

Hence a possible choice for a and b is

a D � sup jvj2 � inf q; b D sup jvj2:
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Clearly, D is bounded and ı� D inf u, ıC D sup u. Condition (4.8) is satis�ed if

and only if

v 6� 0 and sup u C sup jvj2 � inf q: (8.1)

If (8.1) holds, then ı� � ıC � inf q � ˛� and hence

�� D inf u; � D sup u C sup jvj2; �C � �a

b
D inf q:

This, together with Theorem 4.13, implies that

�.M/ � Œinf u; sup u C sup jvj2� [ Œinf q; 1/:

It follows from [5, Theorem 4.5] (cf. Proposition 3.7) that

�ess.M/ D ess ran.u C jvj2/:

It is easy to see that the Schur complement is given by

S.z/y D �
��

1 C jvj2
u � z

�

y0
�0

C qy � zy

for z with dist.z; ess ranu/ > b0. Note that �ess.M/ is the set of z 2 C for which

0 2 ess ran
�

1 C jvj2
u � z

�

:

In .�; 1/ the spectrum of M consists of a sequence of eigenvalues that tends to

1 and satis�es (6.1) and (6.11), e.g.

�n � ��Cn �sup jvj2 C
sup jvj2

�

inf q � sup u � sup jvj2
�

��Cn � sup u
CO

� 1

�2
�Cn

�

; n ! 1;

where �k are the eigenvalues of A. If inf jvj2 > 0, then (6.2) holds with

Oa D � inf jvj2 � sup q; Ob D inf jvj2;

and (6.4) and (6.12) are valid.
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