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1. Introduction

Let H; and 3, be Hilbert spaces and consider a block operator matrix acting in
the direct sum H := H; & H,, i.e. an operator of the form

Mo = (A b )
C D

where, e.g. A is an operator in H; and B an operator from H, to H;. Such
operators play an important role in many spectral problems and their applications;
see, e.g. the monograph [30] and the references cited therein. In recent years,
many papers have studied and described spectral properties of such block operator
matrices in terms of their entries A, B, C and D. In particular, spectral enclosures
and variational principles for characterising eigenvalues, often in a gap in the
essential spectrum, have received a great deal of attention; see, e.g. [1, 3, 4, 5, 9,
13,15,17,19, 21, 24, 25, 26, 28, 29]. In many of these papers the case was studied
when A and D are self-adjoint and C = B*, in which case My is a symmetric
operator in JH, and often even essentially self-adjoint.

In the present paper we consider the situation when A and D are self-adjoint
and C = —B*. In this case the operator My is J-symmetric where J = (4 % );
this means that J M is a symmetric operator in I, or in other words, the operator
My is symmetric in the Krein space K := H; @ H, with indefinite inner product
[x,y] := (Jx,y), where (-,-) denotes the inner product in the Hilbert space .
Every bounded self-adjoint operator in a Krein space can be written as a block
operator matrix with 4, D self-adjoint and C = —B*. However, this is not true
in general for unbounded operators. Moreover, for given self-adjoint A, D and
C = —B* it is not guaranteed that My has a closure that is self-adjoint in the
Krein space. Even if the latter is true, it is not clear whether this closure has non-
empty resolvent set.

We consider two classes of unbounded block operator matrices: certain upper
dominant matrices (where the operators in the top row, i.e. A and B are stronger
than those in the bottom row in the sense that the latter are relatively bounded
with respect to the former) and certain diagonally dominant matrices (where the
stronger operators are the diagonal operators A and D). In these situations the
operator My is closable, its closure M is J-self-adjoint, i.e. self-adjoint in the
Krein space, and it has non-empty resolvent set. Certain diagonally dominant J -
self-adjoint block operator matrices, often with bounded B or some other extra
assumptions, have been investigated, e.g. in [1, 3, 4, 15, 19, 20, 21, 29]. However,
to our knowledge, upper dominant J-self-adjoint block operator matrices have
been studied only in few papers; see [15, 28].
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Since in both cases that we consider (upper and diagonally dominant case)
the operator A is stronger in some sense than C = —B™, there exist a € R and
b > 0 such that | B*x||?> < a|x||> + b(Ax, x) for all x € dom(A). Using these
constants a, b and the location of the spectra of A and D we prove enclosures for
the spectrum of M. In particular, the non-real spectrum is always contained in a
compact set and hence the resolvent set is non-empty; see Theorem 4.13. We also
give a sufficient condition for the spectrum of M being real, namely condition
(A) introduced in Definition 4.5. In the latter situation we can give an enclosure
that consists of one interval (in a limiting case) or of two disjoint intervals (in
the generic case). The main tool for proving these enclosures is the quadratic
numerical range W2(M) C C, which was introduced in [26] and whose closure
contains the spectrum in many situations; see Definition 4.1 and Proposition 4.12.

The second set of results concerns the characterisation of certain eigenvalues
with variational principles. Instead of the classical Rayleigh quotient we use
either a functional that is connected with the quadratic numerical range (see
Theorem 5.12) or a generalised Rayleigh functional that is associated with the
Schur complement of the block operator matrix (see Theorem 5.6); the Schur
complement is formally given by

S(z)=A—z+ B(D —z)"'B*

and is an operator function acting only in the first component 3;. With the help of
these variational principles we also prove enclosures for eigenvalues of M as well
as asymptotic enclosures under the extra assumption that A has compact resolvent.

Further, we prove some results concerning the properties of M considered as an
operator in a Krein space. In particular, we prove that spectral points in a certain
interval are of positive type, and therefore there exists a local spectral function
for the operator M. If A has compact resolvent, then M is definitisable. Finally,
we discuss some examples with differential operators as entries to illustrate our
results.

Let us give a brief synopsis of the paper. In Section 2 we define the operator
M, which is the closure of the block operator matrix My, describe its domain
and action and show that it is J-self-adjoint. The Schur complement S of M
is introduced and studied in Section 3. In particular, in Theorem 3.6 we show
that the spectra of M and S coincide on the set where S is defined. In Section 4
the quadratic numerical range W?2(M) of M is introduced and used to show that
the spectrum of M is contained in the set B that is defined in Definition 4.5; see
Theorem 4.13. A number p € R also plays an important role in the definition of
B (real parts of non-real points in B are bounded from above by p) and in later
sections. Section 5 is devoted to the characterisation of eigenvalues in (u, co) via
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variational principles: Theorems 5.6 and 5.12 use functionals that are connected
with the Schur complement and the quadratic numerical range, respectively. These
characterisations are used in Section 6 to obtain enclosures for eigenvalues in the
interval (u, co). In Section 7 we prove that spectral points in (u, 0o) are of positive
type, we show that if a strict version of condition (A) is satisfied, then M—y is non-
negative in the Krein space for certain y, and we prove that M is definitisable if A
has compact resolvent. Finally, in Section 8 we apply our results to some examples
where the entries of the block operator matrix are differential and multiplication
operators.

Notation. For a linear operator 7 we denote its spectrum by o (7") and its resolvent
setby p(7T'). In addition, we define the essential spectrum, point spectrum, discrete
spectrum, approximate point spectrum and the numerical range as follows:

Oess(T) := {z € C: T — z is not Fredholm},
0p(T) :={z € C:ker(T —z) # {0}},
0dis(T) :={z € 0p(T) : T — z is Fredholm and z is isolated in o (T')},

oapp(T') := {z € C: there exist x,, € dom(7T’) such that
lxll =1, (T — 2)x, — 0},

W(T) == {{Tx,x):x € dom(T), ||x|] = 1}.

The square root of a real number is defined such that /z > 0 for ¢ € [0, c0) and
Im +/t > 0 for t € (—oo, 0). Moreover, we use the notation (¢) := max{¢, 0} for
t eR.

2. J-self-adjoint operator matrices

Throughout this paper let H; and 3, be Hilbert spaces with inner products (-, -);
we also denote the inner product in H := H; & H, by (-,-). Moreover, let A
be a self-adjoint operator acting in J{; which is bounded from below; let B be a
densely defined and closable operator acting from H, to Hy; and let D be a self-
adjoint operator acting in J{, which is bounded from above. Let a and d be the
closed quadratic forms associated with the operators A and D, respectively, and
set

a_ :=mino(A), &4 :=maxao(D). 2.1)
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We shall be concerned with the spectral properties of (the closure of) the block
operator matrix

A B

Mo := " HidHy — Hy @ H, 2.2)
—B* D

with dom(My) = (dom(A) Ndom(B*)) x (dom(B) Ndom(D)). We consider two

classes of matrices, which are introduced in the following assumption.

Assumption 2.1. Let A, B, D and M, be as above. We assume that one of the
following conditions is satisfied:

(I) dom(a) C dom(B*), dom(B) C dom(D), dom(B) s a core for D;
(II) dom(a) € dom(B*), dom(?d) C dom(B).

Under Assumption 2.1.(I) the block operator matrix My is upper dominant in
the sense that the operators in the second row are relatively bounded with respect
to the operators in the first row; see [30, Definition 2.2.1]. If Assumption 2.1.(II)
is satisfied, then M is diagonally dominant. As we shall see below, M is closed
in case (II) and closable in case (I). In both cases, we denote the closure of Mg
by M.

The condition dom(a) C dom(B*) (which is satisfied in both cases (I) and (II))
ensures the existence of constants a € R and b > 0 such that

|B*x||*> < a|x||* + ba[x] forall x € dom(a). (2.3)

Clearly, one can choose a and b such that both are non-negative, but we allow a
to be negative to have more flexibility in our estimates. Moreover, let by be the
relative bound, i.e.

bo :=inf{bh > 0 : there exists an a € R such that (2.3) holds}. (2.4)

However, for many theorems, in particular, in later sections, we fix one pair a, b
such that (2.3) holds.

Remark 2.2. Relation (2.3) implies that, for x € dom(a)\{0},

_IBmxP ) al]
= =a .
HE HE

Taking the infimum of the right-hand side over all x € dom(a)\{0} we obtain

a+ ba_ > 0. (2.5
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In the following we shall often use the boundedness of certain operators. Let
v < mino(A4). The condition dom(a) C dom(B*) and the closed graph theorem
imply that B*(4—v)~"/2 is bounded and everywhere defined. Hence (A —v)~"/?B
is bounded and densely defined and

(A=v)""*B)* = B*(4 —v)™'2, (2.6)
(A—v)"1B = (A—v)"*(4—v)~'>B (2.7)
hold.

Remark 2.3. If the operator B*(4 — v)~"/? is compact for some v < min o (4),
then B* is (4 — v)l/ 2-bounded with relative bound 0; see, e.g. [10, Corol-
lary II1.7.7]. This implies that (2.3) holds for arbitrary b > 0 (see, e.g. [16, §V.4.1])
and hence by = 0 in this case.

In the next theorem we explicitly describe the domain and the action of the
closure M of My. In the proof we reduce the problem to a situation with a self-
adjoint operator in a Hilbert space. To this end, define the matrix

7= ((’) _OI):H-CI @ FHy — Hy & Ko, 2.8)

Theorem 2.4. If Assumption 2.1.(1) is satisfied, then JMy is essentially self-
adjoint and My is closable with closure M.

If Assumption 2.1.(11) is satisfied, then JMy is self-adjoint and My is closed
with domain dom(A) x dom(D) and hence equal to M.

Let v < mino (A) be arbitrary. In both cases (1) and (I) we have

dom(M) = {(;) :yedom(D), x+(A—-v) 1By e dom(A)}, (2.9)
x\ _ [((A=v)(x+(A—v)"'By) + vx X
M(y) = ( _B*x + Dy ) (y) € dom(M). (2.10)

If (x,y)T € dom(M), then x € dom(a). Moreover, for (x,y)T € dom(M) and
(%, 9)T e dom(a) x H, we have

<M(’y‘) C)> = afx, %] + (v, B*%) — (B*x, ) + (Dy. ). (2.11)

Proof. For the self-adjointness of J My in Case (II) see [30, Theorems 2.2.7 and
2.6.6]. The other assertions in this case are straightforward.
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Now assume that Assumption 2.1.(I) is satisfied. We have

A B
IMo = (B* —D)

which, by [30, Theorem 2.3.6], is essentially self-adjoint with
dom(JMy) = {(;) y € dom(D), x + (A —v)" 1By € dom(A)}

and

W(x) _ ((A—v)(x +(A—v)"1By) + vx)
0 y) B*x — Dy

where v < mino(A) is arbitrary. Since J is an involution, My is closable and
M =My = JJMy = J J My, which shows (2.9) and (2.10).

It follows also from [30, Theorem 2.3.6] that (x, y)7 € dom(M) implies that
x € dom(a).

In order to show (2.11), let (x, y)T € dom(M) and (%, $)7 € dom(a) x H>.
From (2.10) and (2.7) we obtain

<M(;€)’ (;Af)> =((A=v)(x +(A4— U)—l/zmy) + vx, %)
+(=B"x + Dy, §)
= (A =v)x + (A—1)"7By. (4—1)""3)
+v(x,X) —(B*x,9) + (Dy, p)

= (@a—=V)[x, 2]+ {y, B* (A = v)"2(4 = v)'75)
+v{x,X) —(B*x,¥) + (Dy, )

= a[x, &] + (y, B*X) — (B*x, ) + (Dy, J),
which proves (2.11). O

From (2.11) we can deduce the following: if (x, y)T € dom()\) and M(G) = (),
then

a[x] + (y, B*x) = (u, x), (2.12)
—(B™x,y) + o[y = (v.y): (2.13)

this follows by setting (%, )7 = (x,0)7 and (%, 5)T = (0, y)7, respectively,
in (2.11).
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Remark 2.5. If we introduce the inner product

x\ (X x\ (X R R x\ (X
O G]=0C) G =tamen () () erooe
y y y y y y
(2.14)
with J from (2.8), then H; & H, becomes a Krein space with fundamental
symmetry J, and M is self-adjoint in this Krein space. This implies that o (M) is
symmetric with respect to the real axis; see, e.g. [8, Corollary VI.6.3]. We come

back to the properties of M in the Krein space in Section 7. For basic properties
of Krein spaces see, e.g. [8].

We can also describe the adjoint of the operator M in the Hilbert space J.

Corollary 2.6. The adjoint M* of the operator M from Theorem 2.4 is equal to
the closure of the operator
A -B
(s )

with domain (dom(A) N dom(B*)) x (dom(B) N dom(D)); the operator M* is
given explicitly by

dom(M*) = {(i) :yedom(D), x—(A—v)" 1By e dom(A)}, (2.15a)

A (x) _ ((A —v)(x —(A—v)"1By) + vx)’ (;) € dom(MC™).

y B*x + Dy
(2.15b)
Proof. We have
IMo = (JMo)* = (JMo)* = M*J* = M*J
and hence M* = JM,J . Therefore (2.15) holds. O

3. The Schur complement

In this section we define and study the (first) Schur complement S of the block
operator matrix M, which is an operator function acting in the first component
;. Formally, S is given by

S(zy=A—z+ B(D—2)"'B*, zepD).
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However, the domain of S(z) may be too small, and therefore we define S(z) via
quadratic forms and for z in a (possibly) smaller set. The main result of this section
is a spectral equivalence of the operator M and the operator function S, which is
explained further below.

Definition 3.1. Let by be as in (2.4) and set
U :={z € C:dist(z,a(D)) > bo}.

Moreover, define the family of sesquilinear forms

s@)[x.y] = alx.y] — z(x.y) +{(D — )7 B*x. B*)).
z €U, x,y € dom(s(z)) := dom(a).
Lemma 3.2. Suppose that Assumption 2.1 is satisfied. Then s(-) is a holomorphic

Sfamily of type (a), i.e. dom(s(z)) is independent of z, s(z) is sectorial and closed
for every z € U, and s(-)[x] is holomorphic on U for every x € dom(a).

Proof. Evidently, for any x € dom(a), the function s(-)[x] : U — C is holomor-
phic. We must show that s(z) is closed and sectorial for every z € U. Letz € U;
then there exist a € R, b > 0 such that (2.3) and

by < b < dist(z, g (D)) (3.1
hold. For x € dom(a) we obtain from (2.3) that

| < M
— dist(z,0(D))
-« *
~ dist(z, 0(D))

(D —2)""B*x, B*x)
(3.2)

]l + [x].

dist(z, 0 (D))"

This, together with (3.1), implies that ((D — z)~!B*., B*-) is relatively bounded
with respect to a with relative bound less than one. Hence s(z) is closed and
sectorial by [16, Theorem VI.1.33]. O

It follows from Lemma 3.2 and [16, Theorem VI.2.7] that, for each z € U,
there corresponds an m-sectorial operator S(z) to the form s(z) in the sense that

s5(2)[x,y] = (S(z)x,y), x € dom(S(z)) C dom(a), y € dom(a). (3.3)
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The family S(-) is called the Schur complement of M and is a holomorphic family
of type (B); see [16, Theorem VI.4.2]. The spectrum, essential spectrum, point
spectrum and resolvent set of the Schur complement are defined as follows:

0(S)={z€eU:0€0(S5(2)}, 0ess(S):={z€U:0€0e(S(2))},
0p(S) :={z € U:0e€0p(S(2))}, p(S):={zeU:0e€p(S(2))}.

In the next proposition we describe the domain and the action of S(z) explicitly.

Proposition 3.3. Suppose that Assumption 2.1 is satisfied, let S be the Schur
complement from (3.3) and let v < min o (A). For z € U we have

dom(S(z)) = {x € dom(a) : x + (4 —v)"1B(D —z) ' B*x € dom(4)},
SE)x =A—-v)(x+A—v)"IB(D —2)"'B*x) + (v — 2)x,
x € dom(S(z)).

Proof. For x,y € dom(a) we obtain from (2.6) and (2.7) that
(D —z)"'B*x, B*y)
= (D —z)"'B*x, B*(4 —v)~ (4 —v)'?y)
- (3.4)
= ((A—v)""2B(D —z)"'B*x, (A —v)"?y)

((4— V)l/zm(l) — Z)_IB*X’ (A— V)l/z)/).

Now let x € dom(S(z)) and y € dom(a). Then

(S(2)x.y) = s(2)[x. y]
= alx, y] = z{x,y) + (D —2)"' B*x, B"y)
= ((A=1)""x, (A=v)"y) + (V= 2)(x, y)
+{(A =)A= )TBD —2)7 B x. (4 - 0)"y)
= ((A=0)"lx + (A=) TB(D —2)7'B*x]. (4= )"2y)
+ (v —2){x, ).
It follows from [16, Theorem VI.2.1] that x + (A — v)~1 B(D—z) "' B*x € dom(A)

and
(A—v)(x 4+ (A—v)"1B(D —z)"'B*x) = S(z)x — (v — 2)x.
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Conversely, suppose that x € dom(a) with x + (A —v)"!B(D — z)"!B*x €
dom(A). Then, for y € dom(a), we obtain from (3.4) that

s(2)[x, y]
=alx,y] = z{x,y) + (D —z)"'B*x, B*y)
= ((A=v)"x + (A—V)TBD —2) ' B*x]. (4 = v)2y) + (v — 2){x. y)
=((A—=v)[x + (A —v)"1B(D —2)"!1B*x], y) + (v — 2){x, y).

Now [16, Theorem VI1.2.1 (iii)] implies that x € dom(S(z)). |

The next lemma gives a first connection between the operator M and the Schur
complement S.

Lemma 3.4. Letz € U.
(i) If x € dom(S(2)), then

((D B Z))C_IB*X) e dom(M)

(M—z)( X ) _ (S(z)x)
(D—z)"'B*x) \ 0o )

@) If (x,y)T € dom(W) and
X u
o=a(3) = (3)

with some u € Hy, then x € dom(S(z)), S(z)x =uandy = (D—z)"'B*x.

and

Proof. (i)Letx € dom(S(z))andsety := (D—z)"'B*x. Thenx € dom(s(z)) =
dom(a) and hence x € dom(B*). Moreover, y € dom(D). Now, combining
Theorem 2.4 and Proposition 3.3 we obtain that (x, y)” € dom(M) and

X (A=v)(x +(A—v)"1B(D —z)"'B*x) + vx —zx
ool |
y —B*x + (D —z)(D —z)"'B*x
_ ((S(2)x
_( 0 )

(ii) The assumption implies that y = (D — z)~! B*x. The claim follows again
from Theorem 2.4 and Proposition 3.3. O
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Before we prove the spectral equivalence of M and S, we need a lemma about
approximative eigensequences, which is also used in later sections.

Lemma 3.5. Let z € C and let (x,,, y,)T € dom(M), n € N, such that

n

[xXalI* + |yull®> =1 and (M—z)(;)—>0 asn — oo.
n

Then the following statements hold.

(i) The sequences a[x,] and || B*x,|| are bounded.
(ii) If z € p(D), then
o= (D —2)"'B*x, + w, with w, — 0. (3.5
(iii) If z € U, then
liminf ||x,|| > 0.
n—->oo

Moreover, if & € dom(B*), n € N, are such that (§,) and (B*&,) are
bounded sequences, then

nll)ngo 5(2)[xn, ] = 0.

In particular,
li)ngos(z)[xn] =0. (3.6)

(iv) If z € U and x,, — x¢ for some xo € H;, then
xo € dom(a) and B*x, — B*xg.
Proof. For the first items we may assume that (x,,y,)? is only a bounded

sequence rather than a normalised one. This is used in the the proof of item (iv).
(i) Set

(i) = o) = (UMt G B H O =), a)

From (2.12) we obtain
alxn] = zllxall® + (yns B*xn) = (un, x0) —> 0. (3.8)
This, together with (2.3) implies that, as n — oo,
a[xn] = —(yn, B*xn) + 0(1)
< ynll I1B*xall + O(1)
< [lynll Vhalxa] + allxall? + O(1).
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It follows that a[x,] is bounded and, again by (2.3), that also || B*x,|| is bounded.
(ii) Let z € p(D). Comparing the second components in (3.7) we obtain

yn = (D =2)"'B*xy + (D —2) "'y, (3.9)

which implies (3.5).
(iii) Let z € U and let &, be as in the statement of the lemma. Relations (2.11)
and (3.9) yield

=2 G:)-()

= alxn, Ex] — 2(xn, En) + (Yn, B*En) — (B*xn, vn) + ((D — 2)yn, vn)
= a[xp, §n] — z(xn, &) + (D _Z)_IB*xn’ B*&,) + (D — Z)_lvn’ B*E,)
— (B*Xn, Un) + (B*-xng Un) + (Un, Un)
= 5(2)[Xn, €] + (D —2) " v, B En) + ln]®.
The left-hand side and the second and the third terms on the right-hand side
converge to 0 by the assumption on &,. Hence s(z)[x,, £,] — 0.

For ¢, = x, the assumptions on £, are satisfied because of item (i); hence
s(z)[xs] — 0. Note that this remains true if (x,, y,)7 is just bounded.

Before we prove the remaining items, let us show the following inequalities.
Leta € R, b > 0 such that (2.3) and (3.1) hold and let «— be as in (2.1). For
x € dom(a) we obtain from (3.2) that

alx] < [a[x]| = |s(2)[x] + z[|x|> = (D — 2)7' B*x, B*x)]
< Is@)[x]l + 2| 1x]? + (D = 2)7' B*x, B*x)|

balx] allx|®
dist(z,a (D))  dist(z,o(D))

< Is@) ]l + Jz] flx ] +

and hence
dist(z,o(D))—=b ., - dist(z,o(D)) —b
asico0) M= GaGomy M

(3.10)

< Is()ll + (121 + )1

a
dist(z, o (D))
In the following assume that ||x, |2 + || y»||> = 1. Next we show the first statement
of (iii), i.e. that liminf, . ||xx|| > 0. Suppose to the contrary that there exists a
subsequence (xy, ) of (x,) such that x,, — 0. Then the left-hand and the right-
hand sides of (3.10) with x = x,, converge to 0 as k — oo by the already proved
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relation (3.6). Hence a[x,, ] — 0 since dist(z,o(D)) > b. From (2.3) we obtain
that (D — z)_lB*x,,k — 0, which is a contradiction to (3.5) and the relation
1l = 1.

(iv) Assume that x, — xg. It follows from the already proved items, applied to
Xn — X instead of x,, that s(z)[x, — x,] — 0 as n, m — oo. Hence the left-hand
and the right-hand sides of (3.10) with x = x,, — x,,, converge to 0 as n, m — oo,
and therefore also a[x, — x,,] — 0. This means that x, N xo (see [16, §VI.3]),
which implies that xo € dom(a) because a is closed. Again by (2.3) we obtain
that |B*x, — B*xn|| — 0as n,m — oo. Since B* is closed, it follows that
B*x,, — B*x,. O

The theorem below is analogous to [17, Proposition 2.2] which treats the self-
adjoint case. The last part of our proof is more involved in the sense that it uses
Lemma 3.5. This is due to the loss of self-adjointness and the possibility of non-
real spectrum. See also [15, Propositions 2.7 and 2.8] for a similar result under the
assumption that B* is A-form-compact.

Theorem 3.6. Suppose that Assumption 2.1 is satisfied, let M be the operator as
in Theorem 2.4 and let S be its Schur complement as in (3.3). Then the following
relations hold:

o(S)=ocM)NU, o0p(S)=0p(M)NT, (3.11)
nul(S(z)) = nulM —2z) forz e U. (3.12)

Proof. First we show (3.12). Let z € U and (x, y)T € ker(M —z). It follows from
Lemma 3.4 (ii) that x € ker(S(z)). Hence nul(M — z) < nul(S(z)).
Now let x € ker(S(z)). Lemma 3.4 (i) implies that

((D ~ ;)‘_IB*X) e ker(M — 2).

Therefore nul(S(z)) < nul(M —z), and (3.12) is proved. From this we also obtain
the second relation in (3.11).

It remains to show the first relation in (3.11). Let z € p(M) N U and u € H;.
Then there exists an (x, )7 € dom(M) with

()~

It follows from Lemma 3.4 (ii) that x € dom(S(z)) and S(z)x = u. Hence S(z)
is surjective. By the already proved relation in (3.12) we obtain that z € p(S(z)).
Hence o(S) Co(M) N U.
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Now let z € p(S). Then M—z is injective and therefore has an inverse. A direct
calculation establishes that this inverse, restricted to 3{; x dom(B(D — z)™ 1), is
given by

(3.13)

(M_Z)—l — (S(Z)_l _S(Z)_IB(D - 1)_1 )

F(z) (D—z)"'=F(z)B(D —1)"!

where F(z) := (D —z)"'B*S(z)~!. The set }{; x dom(B(D — z)~!) is dense in
Hi x Hy: if Assumption 2.1.(I) is satisfied, this follows from the fact that dom(B)
is a core for D; if Assumption 2.1.(II) is satisfied, then dom(B(D — z)™') = H,.
It therefore suffices to show that the operator on the right-hand side of (3.13) is
bounded. We suppose the contrary. Then there exists a sequence

(x”) e dom(M) with (M — z) (x") = (”") —0, (3.14)

n Yn Un
X212 + llynll> = 1, v, € dom(B(D — z)~1) and hence

xn\ S(z) Yy —SE)7'B(D —z2)" 1,
(yn) B (F(Z)un + (D —z) ", — F(z)B(D — z)_lvn)'

From [16, Theorem VI.2.5] we have S(z)* = S(Z) and therefore z € p(S).
Further, dom(S(Z)) € dom(a) C dom(B*) and hence the operator B*S(z)™!
is bounded. Since (S(z)"'B)* = B*S(%)7!, it follows that S(z)~! B is bounded.
Then, using (3.15), we deduce that x, — 0, which is a contradiction to
Lemma 3.5 (iii). Hence a(M) N U C o (S). O

(3.15)

In Theorem 4.17 below we show the equivalence of essential spectra of S and
M in a certain interval.

In the next proposition we consider the situation where we can describe the
essential spectrum of M.

Proposition 3.7. Suppose that Assumption 2.1.(1) is satisfied and that A has
compact resolvent. Then

Oess(M) = Oess(D + B*(A —v)~1B) C [inf 0¢ss(D), sup oess(D) + bo] (3.16)

for any v < mino (A).
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Proof. Since
B Ao TB = B (40 a0 TB
is bounded by (2.7) and its preceding paragraph and since
B (A—v) 2B = B (A—v)" (A~ )" (A—v) "B

is compact, it follows that all assumptions of [5, Theorem 2.2] are satisfied.
The latter yields the first equality in (3.16). Note that the essential spectrum of
D + B*(A —v)~1B is independent of v since differences of these operators for
different v are compact.

To show the inclusion in (3.16), leta € R and b > 0 be any pair of numbers
such that (2.3) holds. Since B*(4 — v)~1B > 0, we have

Oess(D + B*(A —v)~!B) C [inf 0ess (D), sup gess (D) + | B*(A —v)71 B[]
(3.17)
for any v < mino(A4). Moreover, if v < 0, v < mino(A4) and x € H;, we obtain
from (2.3) that

|B*(4—v)™"x||? < al|(4 = v)"2x || + ba[(4 — v) "]
< all (4 =) 2|2 4 b(a = v)[(4 =) x]
= a (A —v)"2x|? + b x|
This implies that
liminf | B*(A —v)~1B|| = liminf | B*(4 —v)~"?|* < b.
L lim inf

If we take the infimum over all » > by and combine this relation with (3.17),
we obtain the inclusion in (3.16). O

Remark 3.8. If, in addition to the assumptions of Proposition 3.7, the operator
B*(A—v)~"2 is compact for some v < min o (A4), then B*(A — v)~! B is compact
as well, and hence 0¢g5(M) = 0egs(D).

4. The quadratic numerical range

The quadratic numerical range of a block operator matrix is a very useful tool
for proving spectral enclosures, it uses the block structure of the operator, and
the enclosures are tighter than those obtained from the numerical range. It was
introduced in [26] and later studied in various papers; see, e.g. [24, 21,19, 29, 30].
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Definition 4.1. Suppose that Assumption 2.1 is satisfied and let M be the operator
as in Theorem 2.4. The quadratic numerical range of M, denoted by W2 (M), is
defined as the set of eigenvalues of all 2 x2-matrices

afx] (v, B*x)
x> Xy
My,y = ,  x € dom(a)\{0}, y € dom(2)\{0},
_(B*x.y) D]
Xl iyl Iy1?

i.e.

W2(M) := {z € C: there exist x € dom(a)\{0}, y € dom(d)\{0}
such that z € o (M)}

The eigenvalues of M, are
x L alx] | ofy] alx] [yl \2  {y, B*x)|?
Ai( ) = —( + + — —4 .
y 2\ x> v l? <|IXI|2 ||y||2) X112 1y 11

Remark 4.2. (i) Note that our definition differs slightly from that in [30], where
x and y vary only in dom(A) and dom(D), respectively. However, in order to
have Ai(i) defined for all (x, y)T € dom(M) with x, y # 0, we chose the larger
sets dom(a) and dom(d). These sets were also used in [17] for self-adjoint block
operator matrices.

(i) It is easy to see that W2 (M) is symmetric with respect to the real axis and
it consists of at most two connected components. It follows in the same way as in
[19, Proposition 2.3] that if dim 7 > 2 and W2(M) contains at least one non-real
point, then W?2(M) is connected.

We shall often use the following notation. Let x € dom(a)\{O} and y €
dom(9)\{0} and set

afx]

- g B0 g ]

BTN E N T E

X oa—+6 o —6\2
Ai(y)z . i\/( : ) - 18P (4.2)

4.1

Then
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It follows from (2.3) that

[(y. B*X)[> _ IB*x|I”> _ balx] +a|x]|?
2yl = x> — 111>

B> = —ba+a.  (43)

First we show that W2 (M) contains the eigenvalues of M.
Lemma 4.3. Suppose that Assumption 2.1 is satisfied. Then op(M) C W2(M).

Proof. Let z € op,(M). Then there exists a non-zero vector (x, )T e ker(M —z),
ie.

(A=v)(x+(A—-v)"IBy)+ (v—2z)x =0, 4.4)
—B*x +(D —z)y =0. 4.5)

It follows from (2.12) and (2.13) that

alx] = z|lx|> + (v, B*x) = 0, (4.6)
—(B*x,y) +oly] - zly|* = 0. (4.7)
Let us first consider the case when x = 0. Then d[y] = z||y|?* by (4.7).

Moreover, (4.4) implies that (4 —v)~!By = 0 and hence (4 —v)~'/2By = 0
by (2.7). For any u € dom(a)\{0} we have

(v, B*u) = (y, B*(A = v)"*(A = v)"?u) = (A = v)~2By, (4 = v)""u) = 0

a[u]2 0
J\/[u,y = ”u” ,
0 z

and hence

which shows that z € 6(My,y) C W2(M).
Next suppose that y = 0. Then x # 0, B*x = 0 and (A — z)x = 0 by (4.4)
and (4.5). For any v € dom(9)\{0} we have

z 0
Mx,v = D[v] s

vl

which yields z € o (M ) C W2(M).
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Finally, we assume that x # 0 and y # 0. Then (4.6) and (4.7) imply that

ol (. Bx)
x lx 112 Xy x
(M, _Z)(II II) _ (II II)
Iyl (B*x.y) oyl Iyl
— -z
Il iyl Iyl
afx] (v, B*x)
— —zlxll + ———
R [lx]l
(B*x,y) D]
——— + == —zllyl
Iyl ¥l
=0,
which shows that z € o(My y) C W2(M). O

The next lemma is shown in the same way as [29, Proposition 3.3].

Lemma 4.4. If dimX;, > 2, then W(D) C W?(M). If dim3, > 2, then
W(A) C W2(M).

In the following definition we introduce a set, B, in which the quadratic
numerical range and the spectrum of M are contained, as we shall show in
Proposition 4.10 and Theorem 4.13 below. Moreover, we introduce condition (A)
under which W?2(M) and o ()M) are contained in R. Some comments concerning
these definitions are given in Remark 4.6; see also Figure 1, which shows the set
B when D is bounded.

(a) (b)

M~ I U n— §- Iz

Figure 1. The set B when D is bounded; (a) shows the case when (A) is satisfied; (b) shows
the case when (A) is not satisfied.

Definition 4.5. Assume that Assumption 2.1 is satisfied. Leta € R, b5 > 0
such that (2.3) holds and let a—, 6+ as in (2.1). Moreover, if D is bounded, set
d_ := mino(D); otherwise set §_ := —oo.
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(i) We say that condition (A) is satisfied if

b6+ +b>+a<0 and b>0 4.8)
or
o_ — 5+
S zb+ Vs +b2+a),. (4.9)
(ii) Set
=208y +b+ (b6r +b2+a)y: (4.10)
b
&= a_—max{a,\/ba_—i-a}; “4.11)
o +6- .
if D is bounded,
£y = 2 (4.12)
—00 otherwise;
£— = max{§y, §2}; (4.13)
U— = min{a_, §_}; (4.14)
—% if (4.8) is satisfied but (4.9) is not,

py = 20— —b—/(bS4 + b2 +a)y if (4.9) is satisfied but (4.8) is not,

max{—%, a — b} if (4.8) and (4.9) are satisfied;
4.15)
p = \/(b8++b2+a—((a_;8+ —b)+)2)+. (4.16)

(iii) Define the sets

By 1= {ze@:é_fRezfu, |Imz|§n}; 4.17)

[—, ] U [pt+,00) if (A) is satisfied and D is bounded,
(—oo, u] U [p4,00) if (A) is satisfied and D is unbounded,
[—, 00) U By if (A) is not satisfied and D is bounded,

R U By, if (A) is not satisfied and D is unbounded.
(4.18)




Spectral properties of unbounded J-self-adjoint matrices 157

Remark 4.6. (i) If B # 0, then a # 0 or b # 0 and therefore the right-hand side
of (4.9) is positive and u > §4+ (note thata > 0if b = 0).

(i) If B # 0 and the first inequality in (4.8) is satisfied, then automatically
b > 0 (sincea > 0if b = 0).

(iii) Assume that (A) is satisfied and that B # 0. Then

Sy <p=<py=<a (4.19)

In particular, the spectra of A and D must be separated. The inequalities in (4.19)
are true because of the following considerations. If (4.8) holds, then b > 0, and
from (i), (4.8) and (2.5), we obtain

8+<M:8++b§—%§ﬂ+ <.
If (4.9) holds, then
_+4
Sp<p< T <y <al (4.20)

If (4.9) holds but (4.8) does not, then 4 < «—. If the first inequality in (4.8) or
the inequality in (4.9) is strict, then u < 4. Moreover, if (4.9) is strict, then

05—+5+
2

0y < < <y Zo-_.

(iv) If (4.8) is satisfied, it can happen that 4+ = «—. Consider, for instance the
situation when o— = 0 and (2.3) holds witha = 0 and b > 0. Then u4+ = 0. On
the other hand, if (4.8) is not satisfied but (4.9) is, then always 4 < a—.

(v) The number w4 can also be characterised as

g = max{p, n P}

where

~2if(4.8) is satisfied,
M. b
My

—oo otherwise,

@ o —b— /(b4 + b2+ a); if (4.9) is satisfied,
My =

—00 otherwise.
(vi) If B is “small”, i.e. a and b are small, then in general &; gives the better
lower bound for the real part of non-real elements from B. If D is bounded and B
is “large”, then &, gives the better bound as it is independent of B.
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(vii) It is elementary to see that n = 0 if and only if (A) is satisfied; moreover,

0 if (A) is satisfied,
2 . . . o— — 8+
n=4vVbit+b*+a if (A) is not satisfied and b > >
- —354\2 . . . o — 8y
bo_ +a— ( 7 ) if (A) is not satisfied and b < 7

(viii) If B is bounded, then one can choose @ = || B||? and b = 0, and hence

p=38r + 1Bl & =ps=a—|Bl. 421)

1= (5= (557),)) @22

Before we prove that B contains W2 (M) and o (M), we need some lemmas.

Lemma 4.7. Let b > 0and a,t,$ € R, and assume that
t—38\2
<T) < bt +a. (4.23)

Then 3
l‘_
b8 +b>+a>0 and T§b+\/b§+lﬂ+a. (4.24)

If strict inequality holds in (4.23), then the inequalities in (4.24) are also strict.
Proof. Relation (4.23) is equivalent to

12 -2 +2b)t +8%—4a <0.
The zeros of the polynomial in ¢ on the left-hand side are

ty :=8+2b+(§+2b)2—824+4a=58+2b+2y/b6+b2+a.

If (4.23) is satisfied, then the discriminant is non-negative and r— <t < ¢4, which
yields (4.24). If the inequality in (4.23) is strict, then 7 < ¢ < ¢4+ and hence the
discriminant is strictly positive. |

Lemma 4.8. Assume that (A) is satisfied and let x € dom(a)\{0} and y €
dom(0)\{0}. Then Ai(i) € R. Moreover, if (4.8) holds, then

A+(X) >_4. (4.25)
y
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if (4.9) holds, then

)L+(;C) >a_—b—+/(bS4 +b%+a)y. (4.26)

Proof. Let o, B and § be as in (4.1). Suppose that A1 (]) ¢ R. Then, by (4.2)
and (4.3), we have

(“;5)2 <P < ba+a.

This, together with Lemma 4.7, implies that

y
b§+b2+a>0 and aT<b+\/b8+b2+a.

By the definition of «_ and §4 we obtain

5
by +b*+a>0 and =—°F py /b, +Db%+a.

2
which is a contradiction to (A). Hence Ai(i ) € R.
It follows again from (4.2) and (4.3) that
X oa+6 o —5\2
A+(y)z : +\/( . ) —ba—a. 4.27)
Assume that (4.8) holds. Then
bS +b*+a <0 (4.28)

and b > 0. Define the function

1+ \/I—S 2
f([) = T+ (T) —bl—a, teR,

which is real-valued by (4.28). Its derivative is

P o N O b (2 2 B

2 (%)2—19[—41 2 (%)2—bl—a

N =

)=

which implies that f/(z) > 0 if and only if f(¢) > § + b. From this it follows that
the sign of f” is constant on R. Since f(¢) — oo ast — oo, we obtain that f is
increasing on R and f(¢) > § + b for all € R. Relations (2.5) and (4.28) imply
that

a>a->——>8+b>34.

SR
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Hence, by (4.27),

i.e. (4.25) holds.

Now assume that (4.9) is satisfied. Note first that, for r, s € IR such that r > 0
and r > s, one has

N EN Y

which is easy to see. From this and the relation "‘—25 > b it follows that

)L+(;C) = (x—2|—8 +\/<a;8>2—ba—a

:a+5+\/(a_5—b>2—(b8+b2+a)

2 2
Ol+8 06—8 2 \/—2
> ——+ ( : —b) = V@S TP T a):

=a—b—+(bS+b*+a)+

>a_ —b—+/(bS4 + b2 +a)y,

i.e. (4.26) holds. O

Lemma 4.9. Let x € dom(a)\{0} and y € dom(0)\{0} and let . be as in (4.10).
Then
ReA_ (x) < u.
y

Proof. Let x € dom(a)\{0} and y € dom(2)\{0} and let ¢, 8 and 6 be as in (4.1).

Then
o () Y e

and (4.3) is valid.
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Let us first consider the case when

t—38\2
(T> < bt +a forsomet > «.

It follows from Lemma 4.7 that the inequalities in (4.24) hold, which imply

ReA_

IA

o+38
2

t+46

S_

2

<8+b+VbS+b2+a
§8++b+\/b5++b2+a

Now we consider the case when

r—8\2
(T) > bt +a foralls > a. (4.29)
It follows from (4.29) and (4.3) that A_ € R and
o+6 o —38\2
A= —\/( : ) _ba—a. (4.30)

Define the function

=" () -

for such ¢ for which the expression under the square root is non-negative, i.e. either

dom(f) = R or dom(f) = (—o0,t_] U [t4, 00) where ¢+ are the zeros of the
polynomial under the square root:

t+ =8+2b+2Vb5+b>+a.

The derivative of f is

b 8+b—fO)

2/(F2) —bi—a  2y/(52) —bt—a

Ft)>0 & ft)<8+b. 4.31)

which implies that
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Ifa = b = 0, then § = 0 and the assertion is clear since then A = min{c, §}.
So assume that a £ 0 or b # 0. Then f is not constant. It follows from (4.31)
that the sign of f” is constant on each interval in the domain of f. Let us first
consider the case when dom( /) = R. Since f(t) - —o0 ast — —oo, we have
f() <8+ bforallt € R and hence (with (4.30))

A= fla)<$+b=<é4+b=p.

Now consider the case when dom( /) # R. It follows from (4.29) thata € [t4, 00).
Moreover,

f(l+)=t+2+8:8+b+\/b5+b2+a > 8+ b,

which, by (4.31), implies that f'(¢) < 0 on (¢4, c0). Hence (again with (4.30))
Ao = fla)
= f(ty)
=S+b+VbS+b2+a
<84y +b+ b3, +b2+a
=u,
which proves the assertion also in this case. O

The next proposition shows that the closure of the quadratic numerical range
is contained in B.

Proposition 4.10. Suppose that Assumption 2.1 is satisfied. Let M be the operator
as in Theorem 2.4, W2 (M) as in Definition 4.1 and B, 11, |1+ as in Definition 4.5.
Then W2 (M) C B.

Moreover, if (A) is satisfied, then W*(M) C R and

Ao (;C) < u, A+(;) > uy for x € dom(a)\{0}, y € dom(0)\{0}. (4.32)

Proof. Since B is closed, it suffices to prove that W2(M) C B. Let z € W2(M).
Then there exist x € dom(a)\{0} and y € dom(?d)\{0} such that z = )L+(’y‘) or
z = A_(i). Let o, B and § be as in (4.1).
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First assume that z € R. If condition (A) is satisfied, then, by Lemmas 4.8
and 4.9, we have either z = )L+(§) > g orz = A_(i) < 1, which also
shows (4.32). If D is bounded, then

z>)L_x >a+8_
> v) =2

which shows that z € B when z € R.
Now assume that z ¢ R. Using (4.3) and the relation 12 > ((¢)4+)? forz € R
we obtain for the imaginary part of z that

met= (18- (552)), =y (e v (55)),
- \/<b5+b2+a—<a;5—b>2)+
e (5T,
< \/(b8+ b2 ta— ((“‘;5+ _b)+)2)+_

The upper bound for Re z follows directly from Lemma 4.9. For the lower bound

observe that
0> (“;5)2— 1812 > (“g5)2—ba—a.

o—36
2

‘ = min{e, §} > min{a_,6_} = u_,

Hence ba + a > 0 and

a;S <+vba+a,

which implies that

o
Rez =

8>a—\/boz+a. (4.33)

If b = 0, then the right-hand side of (4.33) is bounded from below by a— — \/a,
which is equal to &; in that case. For the case b > 0 we consider the function

f@)=t—bt+a, te [—f,oo),

b

which attains its minimum at ¢o := % —£.Iftp < a_, then

min )f(t) = f(a-) =a- —vba_+a.

t€la—,00
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If to > a_, then

b b
i 1) = fty) =t — = _——.
te[rof‘_lf‘oo)f() Sf(to) = 1o 5>
Hence Re z > £&; also in this case.

If D is bounded, then one also has § > §_ and hence

a+6 a_+6-
> =
2~ 2

Rez =

&.
This shows that Re z > £_ in all cases and hence z € B. |

Next we need an auxiliary lemma before we prove the spectral inclusion. For
a similar result for certain diagonally dominant block operator matrices we refer
to [29, Theorem 4.2].

Lemma 4.11. Suppose that Assumption 2.1 is satisfied and let z € C\ (64, 6++bo).
Then z ¢ W2(M) implies that M — z has closed range.

Proof. We show the contraposition. Let z € C \ (§+,8+ + bp) and suppose
that ran(M — z) is not closed. Then, z € 0ypp(M), i.e. there exists a sequence
(xn, yn)T € dom(M) with

(J\/[—Z)(;") —0 and |x.)>+|ya?> =1 foralln e N;
n

see [16, Theorem IV.5.2]. We have to show that z € W2(M).

If dimH; = 1 or dimJ¥, = 1, then B is bounded, and hence [29, Corol-
lary 4.3] implies that z € W2(M). If A is bounded, then B is bounded, and again
z € W2(M). For the rest of the proof assume that dim H; > 2, dimH, > 2 and
that A is unbounded.

It follows from (2.12) and (2.13) that

alxn] = z[lxn 1> + (yn, B*xn) —> 0, (4.34)

—(B*Xn, yn) + 0[yn] =zl yull> — . (4.35)

First we consider the case when z € C\R. Taking the imaginary parts of the
left and the right-hand sides of (4.34) and (4.35) we obtain

—Imz|[x,||> + Im(y,, B*x,) — 0 and —Im(B*x,,y,) —Imz|y,||* — O.
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If we take the difference and observe that Im z # 0, we get || x,|| — || y»|| — 0 and
thus
1 1
Xu|| — — and —_— . (4.36)

Lemma 3.5 (i) implies that a[x,] and (B*x,, y,) are bounded. By (4.35) also 0[yy]
is bounded. From (4.34), (4.35), and (4.36) it follows that

alxn] — z[[xal* + (yn, B*xn)

[[xn I
(Mxn,yn - Z) (”xn”) = " — 0. (4.37)
yall —(B*Xn, yn) + 3[yn] — zllyn I
[yl

Since all entries of My, ,, are bounded, (4.37) and (4.36) imply that
det(My,,,y,, —z) — 0.

Hence there exists a sequence z, € 0(My,,,y,) C W?2(M) such that z,, — z, which
shows that z € W2(M).

Now let z € R. Taking the sum of the real parts of the left-hand sides of (4.34)
and (4.35) we obtain

a[xn] - Z”xn”2 + 0[yn] - Z||yn||2 — 0.
If z < u_,i.e. D isbounded and z < o— and z < §_, then

alxn] = zl1%all” + [yl = Zllynll* < (= = 2)[lxal® + (6= = 2) [ yal?
< max{o— —z,8- — z}([|xa > + [y ]1?)
= max{a_ —z,6_ —z}

<0,

which is a contradiction.

Ifé_ <z<44,thenz e W; ifz>a_,thenz € W since we assumed
that A is unbounded. In both cases it follows from Lemma 4.4 that z € W2(M).

Finally, assume that z € (64+ + bg,@—). Since z € U in this case, we have
liminf, o ||Xs]| > O by Lemma 3.5 (iii). If y,, — O for a subsequence y,,,
then (4.34) implies that a[x,, | —z||xn, ||> — 0, which is a contradiction to the fact
that ||x,, || = 1 and z < a—. Hence also liminf, .« ||y»| > 0 and we can argue
as in the case z € C\R to obtain that z € W2 (M). O
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The next proposition shows that, essentially, the spectrum of M is contained
in the closure of the quadratic numerical range. Only in the interval (6, 8+ + bg)
we are not able to prove such a spectral inclusion. For other types of block
operator matrices results about spectral inclusion were shown in many papers; see,
e.g. [26, Theorem 2.1], [24, Theorem 2.3], and [29, Theorem 4.2].

Proposition 4.12. Suppose that Assumption 2.1 is satisfied and let M be the
operator as in Theorem 2.4. Moreover, let z € C\(6+,8+ + bg). Then z € o (M)
implies that z € W2(M).

Proof. Assume that z ¢ W2(M). It follows from Lemma 4.11 that ran(M — z)
is closed. Moreover, Lemma 4.3 applied to M and M* yields nul(M —z) =0
and nul(M* — Z) = 0. The latter implies that def(M — z) = 0; see, e.g. [16,
Theorem IV.5.13]. Hence z € p(M). O

The next theorem shows that the spectrum of M is contained in B.

Theorem 4.13. Suppose that Assumption 2.1 is satisfied, let M be the operator as
in Theorem 2.4 and let B as in (4.18). Then o (M) C B. In particular, if condition
(A) is satisfied, then o (M) C R.

Proof. Let z € o(M). If z € C\(6+,8+ + by), then z € W2(M) C B by
Propositions 4.12 and 4.10. If z € (6+,6+ + bo), then z € B since u— < 54
and 64+ + by <64+ +b < . O

When B is a bounded operator, then 1, which bounds the imaginary parts of
spectral points, is given by (4.22); this was proved in [29, Theorem 5.5 (iii)].

The above theorem shows that the spectrum is real provided the spectra of
the diagonal components are sufficiently separated and B is not “too large.”
As the following result shows, this can be particularly straightforward when B
is bounded; see also [30, Proposition 2.6.8] and [29, Theorem 5.5].

In the next corollary, which follows immediately from Theorem 4.13 and
Remark 4.6 (viii), we consider the situation when B is bounded. The estimate
for the imaginary part in (4.39) was also proved in [29, Theorem 5.5]. A slightly
better enclosure for o (M) than (4.38) was obtained in [3, Theorem 5.8] and [4,
Theorem 5.4].



Spectral properties of unbounded J -self-adjoint matrices 167

Corollary 4.14. Suppose that Assumption 2.1 is satisfied and that B is bounded.

If
o_ —§
1Bl = — *
then
o(M) C (—oo,8+ + || B ] U [oz_ - ||B||,oo). (4.38)
Otherwise,

o(M) C RU {z e C\R:a_ — ||B|| <Rez <684 + | B,

Imz| < \/anZ— (=52),)}

If D is bounded with §— = mino (D), then (—o0,-) C p(M) and Re z > —"‘—*2'8—
for z € o (M)\R.

(4.39)

Proof. Since B is bounded, we can chose ¢ = ||B||? and b = 0. Under our
assumptions the inequality (4.9) is satisfied. Hence (4.38) holds by Theorem 4.13
and the definition of B. O

Remark 4.15. Even if B is bounded, it may be possible to choose a and » such
that b > 0 to obtain better enclosures for the spectrum, in particular if u4 = a—
with such a choice; see Remark 4.6 (iv).

Remark 4.16. Let us consider the family of operators

A tB
M, = ), t e [0, OO),
—tB* D

which was also studied in [21]. Clearly, if Assumption 2.1 is satisfied for t = 1,
then it is satisfied for all # € [0, 00). If 6+ < a—, i.e. the spectra of A and D are
separated, then there exists a typ > 0 such that, for ¢t € [0, #¢], condition (A) is
satisfied and hence o (M;) C R. If §+ > o, it may happen that the spectrum of
M is non-real for every positive 7.

If §+ < a_, then, in general, the gap (§+, @—) in the spectrum closes from both

endpoints with increasing ¢. However, if, e.g. «— = 0anda = 0, b > 0 in (2.3),
then 4y = o— as long as (4.8) is satisfied, i.e. the gap closes only from the left
endpoint.

If D is bounded and §— = min o (D), then for all ¢ € [0, o0), the set o (M;) N R
is bounded from below by min{«_, §_} and the real parts of points from o (M;)\R
are bounded from below by % .
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In the next section we characterise elements from o (M) in the interval (i, 00)
with variational principles. Since the proof uses the Schur complement, we must
ensure that S and M have the same essential spectrum in (u,00). Note that
(u, 00) € U and hence S(A) is well defined for A € (u, 00).

Theorem 4.17. Suppose that Assumption 2.1 is satisfied, let M be the operator as
in Theorem 2.4, let S be its Schur complement and let . be as in (4.10). Then

Oess (S) N (14, 00) = Oess (M) N (1, 00). (4.40)

Proof. Let z € 0ess(S) N (1, 00). Since 0 € oess(S(2)) and S(z) is self-adjoint, the
operator S(z) is not semi-Fredholm with nul(S(z)) < co. By [10, Theorem IX.1.3]
there exists a singular sequence for S(z) corresponding to O, i.e. there exist
x, € dom(S(z)), n € N, such that

|x.ll =1, S(z2)x, =0, x,—0.
Set
V= (D —2)"'B*x,, w,:= (x,,) and W, = Wn_ .
In | wh||

From Lemma 3.4 (i) we obtain that w, € dom(M) and

.1 (S(2)x, o
(M‘Z)“’"‘nwnu( 0 ) o

note that |w,| > 1. Moreover, for u in the dense set dom(B(D — z)~!) we have
(yn.u) = (xn, B(D — z)"'u) — 0.

Since yj, is bounded by Lemma 3.5 (i), we have y,, — 0 and therefore w, — 0.
Hence w, is a singular sequence for M corresponding to z. Again from [10,
Theorem IX.1.3] we obtain that z € 0ess(M). This shows the inclusion “C” in
(4.40).

Now let z € 0egs(M) N (1, 00) and suppose that z ¢ oess(S). It follows from
Theorem 3.6 that z € 6(S) and that

0 <nul(S(z)) = nul(M — z) < oo. 4.41)

Since S(z) is self-adjoint, we also have 0 € oygis(S(z)). Suppose that M — z
has closed range. Then M — z is semi-Fredholm with def(M — z) = oco. Let
zy = z+i/n,n € N. Then z, — z, z, ¢ B and hence z, € p(M) by
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Theorem 4.13. It follows from [16, Theorem IV.5.17] that ind(M—z,) = ind(M—z)
for large enough n, which is a contradiction since ind(M — z,) = O for alln € IN
and ind(M — z) = —oo. Hence ran(M — z) is not closed. Therefore, by [16,
Theorem IV.5.2], there exists a sequence of vectors (x,, y,)! € dom(M) with

(i") LkerOM—z) and |[x4]|> + [yu]> =1 foreachn e N  (4.42)
n

such that

(un) R (M _ Z)(xn) _ ((A - U)(Xn + (A - V)_lByn) + (V - Z)-xn) -0
. ) —B*xy + (D — 2)yn '

Let P be the orthogonal projection from H; onto ker(S(z)), set X, = (I — P)xp
and let S(z) be the restriction of S(z) to the Hilbert space (I — P)H,, which has
a bounded inverse since 0 € o0gis(S(z)). Set &, := S(z)~'%,. Since B*S(z)~!
is a bounded operator by the closed graph theorem, the assumptions on &, in
Lemma 3.5 (iii) are satisfied. The latter implies that

”)En”2 = 5(2)[)6", 5(2)_1)2;1] — 0.

Since ker(S(z)) is finite-dimensional, there exists a subsequence x,, such that
Xn, — x € ker(S(z)). It follows from Lemma 3.5(iv) that x € dom(a) and
B*x,, — B*x. Hence

(;:Z) — ((D _ z))c_lB*x) € ker(M — z)

by Lemma 3.4. As this contradicts (4.42), we have z € ges(S). Hence the reverse
inclusion in (4.40) is also shown. O

Corollary 4.18. If A has compact resolvent, then (&, 00) N Oess(M) = @.

Proof. In view of Theorem 4.17, it is sufficient to show that (i, 00) Noess(S) = 3.
Let z € (u, 00) and x € dom(a). It follows from (3.2) that

a

(D —2)"'B*x, B*x)| < alx] + [B3[5
zZ — 5+ - 8+
Since z — §4+ > b, this, together with [16, Theorem VI1.3.4], implies that S(z) has
compact resolvent. O

Recall that under the extra assumption 2.1.(I) more can be said about egs(M);
see Proposition 3.7.
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5. Variational principles

In this section we prove variational principles that characterise eigenvalues of the
operator M and the Schur complement S in a certain interval. The functionals
in these variational principles are connected either with the Schur complement or
the quadratic numerical range of the operator M.

First we recall a property of operator functions that was used in [31, Lemma 2]
by A. Virozub and V. Matsaev for functions whose values are bounded operators;
see also, e.g. [20, 23]. In [27] this property was introduced for certain functions
whose values are unbounded operators. Here we formulate it for families of
quadratic forms and apply it then to holomorphic operator functions of type (B).

Definition 5.1. Let A C R be an interval and let t(A), A € A, be a family of
closed symmetric quadratic forms such that dom(t(4)) is independent of A and
such that t(-)[x] is differentiable for each x € dom(t(1)). We say that t(-) satisfies
the condition (VM™) on the interval A if, for each compact subinterval I C A,
there exist ¢, § > 0 such that, for all A € I and all x € dom(t(1)),

(tA]] < ellx|? = CA)Ix] = =8]x]|*. (S.D

The condition implies in particular that if A¢ is an inner point of A and
[t(Ao)[x]| is small enough, then t(-)[x] must have a zero close to A¢.

Lemma 5.2. Let s(A), A € U, be the quadratic forms from Definition 3.1 associ-
ated with the Schur complement of the operator M and let i be as in (4.10). Then
s satisfies the condition (VM) on the interval (i1, 00).

Proof. First note that
s(V[x] = alx] = Allx[> = [(A = D)™ B*x|”, (5.2)
SAWX] = —lxII> + (A = D)™ B x| (5.3)
Let ¢ > 0 be arbitrary for the moment, let A € (u, co0) and let x € dom(a) =
dom(s(1)) such that |s(1)[x]| < &|x]||?. It follows from (2.3) and (5.2) that
_ 1B
- A-=64
2
_ balx] + aflx|
- A—3d4
_ bW+ AlxI* + |2 = D)~ 2 B*x|1?) + al| x|
N A—04 '

I(A — D)~"2B*x||?
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Rearranging this inequality we obtain
(A—=8:+=b)|[(A=D)""*B*x|> < bs(M)[x]+ (bA+a)|x|* < (bs+bA+a)| x|,
Since A > 64+ + b, we have

SW)[x] < —x|> + |(A = D)~ 2* | (. — D)~ "2B*x|]?

1 be +bA +a 2
: )il
A—8, A—684—b

= (g(0) +hM)e)|x]1%,

<(-1+

where

bA +a b

, hQd) := .
R vy Rl 3% Y7

g(h) = —1

Moreover, g(1) < 0 if and only if A> — 2(84 + b)A + 83 + b6y —a > 0 it
is easily seen that the latter inequality is true for A € (u,00). Now let / be a
compact subinterval of (i, oo). Since g is continuous on (@, co) and [ is compact,
there exists a ¢ < 0 such that g(1) < ¢ for A € I. Choose ¢ > 0 so small that
eh(A) < c¢/2 for A € I. Then, with § := ¢/2, we have s'(1)[x] < —§|x||? for
Ael. |

The previous lemma implies that if the function s(-)[x], for x € dom(a)\{0},
has a zero, then the derivative is negative at this zero. In particular, for each
x € dom(a)\{0} the function s(-)[x] is decreasing at value zero (in the terminology
of [7] and [12]) and hence has at most one zero in (u, c0). Moreover, s(A)[x] —
—oo as A — oo.

Next we define a generalised Rayleigh functional, which is used in the varia-
tional principle below. This functional generalises the Rayleigh quotient for linear
operators to the situation of an operator function; for more general operator func-
tions it has been defined in [7] and [12].

Definition 5.3. We define the generalised Rayleigh functional
p:dom(a)\{0} — R U {—o0}
as follows
p(x) = Ao if s(Ag)[x] =0fora Ao € (1, 00),

px) =—o0 if s(A)[x] < Oforall A € (u,c0).
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Remark 5.4. In the case when s(1)[x] < 0 for all A € (i, o) one can also set
p(x) equal to any number in (—oo, ] (which may depend on x); see [14, §2].

Before we formulate the next theorem we introduce another notation that is
needed.

Definition 5.5. For a self-adjoint operator T denote by x_(7") the dimension of
the spectral subspace for 7' corresponding to the interval (—oo, 0).

The next theorem contains a variational principle for eigenvalues of M in the
interval (u, 00). Note that there is a shift in the index: in general, the index of
the eigenvalue does not match the dimension of the corresponding subspace in
the variation. For bounded A, B and D a similar but slightly weaker result was
proved in [7, §4.3].

Theorem 5.6. Suppose that Assumption 2.1 is satisfied, let M be the operator as
in Theorem 2.4, let i be as in (4.10) and let p and k_ be as in Definitions 5.3
and 5.5. Assume that

there exists y € (ju, 00) such that k_(S(y)) < oo. 5.4)
Then

U< Ae 1= (5.5
00 otherwise.

Moreover, o (M) N (i, Ae) is at most countable, consists of eigenvalues only and
has A as only possible accumulation point.

Let yo € (1, Ae) be arbitrary and let (A‘,-)JI.VZI, N € Ny U {oco}, be the finite
or infinite sequence of eigenvalues of M in the interval [yy, Ae) in non-decreasing
order and repeated according to multiplicities. Then

K :=Kk-(S(y0)) < 00 (5.6)
and
Apn=  min max = ma inf 5.7
"= e cdom(a) xetatoy (x) 285 xedomenioy X (x) 5.7)
dim L=k+n dim L=k+n—1 14

forn € N, n < N. Moreover, if N is finite and H, is infinite-dimensional, then
Ae < 00 and

Ae= inf max x) = su inf X 5.8
7 £cdom(a) xeL\{O}p( ) chf xedom(a)\{o}p( ) (5-8)
dim L=k+n dim L=k+n—1 x1lC

forn > N.
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Proof. Note first that o, (M) N (1, 00) = 04 (S) N (1, 00) for o4 = 0, 0}, Tess; S€E
Theorems 3.6 and 4.17. Lemma 3.2 implies that the Schur complement S is a holo-
morphic operator family of type (B). Moreover, S satisfies the condition (VM™)
on (i, 00) by Lemma 5.2. Hence the assumptions (i)—(v) in [12, §2] are satisfied.

Suppose that A = p. Then, for every ¢ > 0, there exists a A € (i, 1 + €) such
that A € oess(S). This, together with [12, Lemma 2.9], implies that x_(S(¢)) = oo
forall ¢t > A, a contradiction. Hence A. > . Now almost all remaining assertions
follow immediately from [12, Theorem 2.1]. We only have to show that A, < oo if
N < oo and dim H; = oo. Suppose that A, = oco. Then, by [12, Theorem 2.1],

inf max p(x) = o0
L Cdom(a) xe£\{0}
dim £=x+n

for n > N, ie. for every L C dom(a) with dim£{ > « + N one has
maxyec\fo} P(x) = oo. By [12, Lemma 2.8] the maximum is attained and there-
fore p(x) = oo for some x € £. However, this is a contradiction to the definition
of p in our case and hence A, < oc. O

In the next corollary we consider again the case when 4 has compact resolvent.

Corollary 5.7. Suppose that Assumption 2.1 is satisfied, let M be the operator
as in Theorem 2.4, let i be as in (4.10) and let p and k_ be as in Definitions 5.3
and 5.5. Assume that A has compact resolvent and that H is infinite-dimensional.

Then k_(S(y)) < oo for everyy € (i, 00). Moreover, Oess(M) N (i, 00) = @
and hence A = oo. Further, o (M)N(u, 00) consists of infinitely many eigenvalues
(i.e. N = o0), which accumulate only at oo, and (5.7) holds for all n € IN.

Proof. It follows from Lemma 3.2 and the proof of Corollary 4.18 that S(y) is
bounded from below and has compact resolvent. This implies that x < oo.
Moreover, gess(M) N (u, 00) = @ by Corollary 4.18. Finally, N = oo because
otherwise A, < oo by Theorem 5.6. O

The next simple lemma is used below and was proved in [21, Lemma 3.5] for
bounded B.

Lemma 5.8. Let x € dom(a)\{0} such that B*x # 0 and let A € U. With
y := (D — L)~ B*x we have

(B*x,(D —A)"1B*x) s(A)[x]

detMy,, — A) = HIEHE
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Proof. Clearly, y # 0. From the definition of M , we obtain
X1y 1I” det(Mx,y — A)
= (alx] = AlIx[%) @] = Ay I%) + (v, B*x){B*x. )
= (alx] = Allx|*)(B*x, (D — 2)~'B*x)
+ (D —=A)"'B*x, B*x)(B*x,(D — 1) "' B*x)
= (B*x, (D — M) B*x)s(M)[x],
which proves the assertion. O

In the next proposition we consider the case when one of the inequalities (4.8),
(4.9) is strict. Then the index shift « is equal to 0 for appropriate yy.

Proposition 5.9. Suppose that Assumption 2.1 is satisfied, let M be the operator
as in Theorem 2.4, let a € R, b > 0 be such that (2.3) is satisfied and let u, L+
be as in (4.10) and (4.15), respectively. Assume that

a_—§
bir+ b +a<0 or T £ bt (085 + b2 +a),. (5.9)
Then
Sp <p < p4 <a-, (5.10)
and for each y € (i, L+ ) there exists a ¢ > 0 such that
s(y)[x] > c|lx]|*>, x € dom(a), (5.11)
and hence k—(S(y)) = 0.
Proof. The inequalities in (5.10) follow from Remark 4.6 (iii). Let y € (u, u+)
and x € dom(a)\{0}. We first show that s(y)[x] > 0. If B*x = 0, then

s(y)[x] = a[x] — y|x||> > 0 since y < a—. Now assume that B*x # 0.
Set y := (D — y)~! B*x. From Proposition 4.10 we obtain

X X
A_(y) SH<Y <Py fh(y)-

Now Lemma 5.8 implies that

G ) ()

= det(My,, — )
(B*x, (D =) B*x) s()[]
HREE
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Since y > &4, this shows that s(y)[x] > 0. Hence the operator S(y) is non-
negative.

Further, (u, u+) C p(M) by Theorem 4.13 and therefore 0 € p(S(y)) by
Theorem 4.17. This proves that S(y) is uniformly positive, i.e. (5.11) holds and
k- (S(y)) =0. O

In Theorem 5.12 below we prove a variational principle with the functional A 4.
To this end we need some lemmas to rewrite p(x) in terms of A .

Lemma 5.10. Let x € dom(a) and assume that B*x # 0. If s(A)[x] < 0 for some
A € (u, 00), then

X
At ((D - A)_IB*x) <A (5.12)

If s(A)[x] = O, then there is equality in (5.12).

Proof. Set y := (D — A)~! B*x, which is non-zero. From Lemma 5.8 we obtain

(B*x, (D~ )" B x)s(Wlx] _
1>y 11> -

since A > 8. By Lemma 4.9 we have A_(}) < p < A, which implies that
A+(5) = A If s(M)[x] = 0, then det(My,y — A) = 0 and hence )L+(’y‘) =1 O

detMyy — 1) =

Lemma 5.11. Let x € dom(a)\{0}.
(1) If s(Lo)[x] = O for some Ay € (u,0), i.e. Ag = p(x), then

Ai(’y“) eR forall y € dom(®)\{0}

and

X
in A = Jo. 513
yedom(®)\ {0} +(y) 0 ©-13)

(i) If s(A)[x] <O forall A € (1, 00), i.e. p(x) = —o0, then

X
inf Re A < u. 5.14
yedom@©\0} T (y) =K G149
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Proof. If B*x = 0, then s(1)[x] = a[x] — A||x||?> and

] 2D
() = moc{ i g foraty € domno,

Since ?[y]/||¥||*> < 8+ < . the assertion follows in both cases (i) and (ii).
For the rest of the proof we assume that B*x # 0.

(1) Suppose that s(Ag)[x] = 0 for some Ag € (1, o0). For any y € dom(0)\{0}

we have
(v, B*x)* = [((Ro — D)2y, (2o = D)™ B*x)|?
< [l(to = D)y | |I(ro — D)~"*B*x|?
= (@ —20)[YI(D —10)"'B*x, B*x)
and hence

det(My,, — Ao)
_ (a=2o)lx] @—=2A0)ly] . Ky.B*x)?

x> Iy 112 x>y 11
_a=2)b]- @A)yl + @~ Ao)[YI((D — Ao) "' B*x, B*x)
B x>y 11

_ s(Ao)[x]- @ —=40)[Y]
X1l 112

=0.
(5.15)

Since det(My,, — A) is a monic quadratic polynomial in A with real coeffi-
cients, the inequality in (5.15) implies that its zeros A 4 (i) are real and that

X
A > Jo.
+(y)_ °

This, together with Lemma 5.10, proves (5.13).

(i) Now assume that s(1)[x] < O for all A € (u,00). For each A € (u,c0)
we obtain from Lemma 5.10 that there exists a y € dom(9)\{0} such that
A+(§) < A, which implies (5.14). O
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The next theorem contains a variational principle with the functional A ; that is
connected with the quadratic numerical range of M. It follows immediately from
Theorem 5.6, Remark 5.4 and Lemma 5.11. Similar results were obtained in [19,
Theorem 5.3] for bounded A4, B, D and in [21, Theorem 4.2] when B is bounded
and W2(M) consists of two separated components and hence o (M) is real.

Theorem 5.12. Suppose that Assumption 2.1 and (5.4) are satisfied. Let yo, k, Ae,
N, (Aj)j.vzl be as in Theorem 5.6. Then

X
An = min max inf Re A+
LCdom(a) xeL\{0} yedom(2)\{0} y
dim L=k+n
. . x
= max inf inf Re A,
LCH xedom(a)\{0} yedom(d)\{0} y
dim L=k+n—1 x1lL

forn € N, n < N. Moreover, if N is finite and H, is infinite-dimensional, then
Ae < 00 and

Ae = min max inf ReAt (x)
LCdom(a) xeL£\{0} yedom(?)\{0} y
dim L=k+n

= max

inf inf Re A4 (x)
LCH xedom(a)\{0} yedom(d)\{0} y
dim L=k+n—1 x1z

forn > N.

6. Eigenvalue estimates and asymptotics

In this section we prove estimates for certain real eigenvalues of M. In particular,
we compare these eigenvalues with eigenvalues of A. To this end, we denote by
v < vy <--- the eigenvalues of A4 that lie below min gegs(A) counted according to
multiplicities. If A has only finitely many eigenvalues, say M, below its essential
spectrum and J; is infinite-dimensional, then set vg := min oegs(A) for k > M.

In the case when A has compact resolvent we also show asymptotic estimates.
The following estimates are analogous to those found for upper dominant self-
adjoint matrices; see [17, Section 4.1]. The first inequality in (6.1) below and (6.4)
were proved in [21, Theorem 5.2] under the extra assumption that B is bounded
and W2(M) consists of two separated components and hence o (M) is real.
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Corollary 6.1. Suppose that Assumption 2.1 and (5.4) are satisfied. Let yy, k, Ae,
N, ()Lj);vzl be as in Theorem 5.6. If N is finite, then set A,, == A¢ forn > N.
Moreover, let vy be as above. Then

% + \/((#)2 —bvgtn — a)+ < An < Vitn 6.1)

forn € N such that k + n < dim H;.
Assume, in addition, that D is bounded, set 5— := mino (D), and let a € R
and b > 0 be such that

IB*x||? > a||x||* + bafx], x € dom(a). (6.2)
Then
(L= =)~ bven— = 0 63)
and
A < V/c+n2+ 5— N \/( Vx—i—nz_ 5_)2 3 Bvx+n 4 6.4)

Jorn € N such that k +n < dim H;.

Proof. Throughout the proof let n € IN such that ¥ + n < dim H;. First we show

that
[x]

p(x) < ||ax||2 . x € dom(a)\{0}. 6.5)
If p(x) = —o0, then the statement is trivial. Otherwise, we have p(x) > u > 45,

and therefore
0 =s(p(x))[x]
= alx] = p) | x[I> + ((D = p(x)™' B*x, B*x)

< alx] = p(0)llx[|,

which implies (6.5). Now (5.7), (5.8) and the standard variational principle for
self-adjoint operators imply that

. . afx]
Ay = min max p(x) < min max -—= = Vg4,
£cdom(a) xel\{0} £cdom(a) xes\{o} |x]|?
dim L=k+n dim L=k+n

which shows the second inequality in (6.1).
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If the expression

(V/c+n — 84

2
: ) — BVesn—a (6.6)

is negative, then the left-hand side of (6.1) is equal to (v, + 8+)/2, which, by
Lemma 4.7, satisfies

%§8++b+\/ly8++b2+a:u<kn.

Hence the first inequality in (6.1) is proved in this case.

Now assume that the expression in (6.6) is non-negative. Let x € dom(a)\{0}
and A > u. From (2.3) we obtain

s()[x] = a[x] = Allx[|* = (A — D)~ "2B*x|]?

B* 2
R

b 2
> ] - Al f? - 22 D
=8y —b)aly] = (2 = 84 + )
= r—5, ‘

It follows from the standard variational principle for self-adjoint operators that,
for every (k + n)-dimensional subspace £ C dom(a), there exists an x; € £ such
that || xz|| = 1 and a[xz] > ve+4n. Then

s(Dlxc] = 5[0k =81 —B)uin — A% + 64 —a]

— 84

1
= _l — 5, [Az — (Wetn +00)A + 84 vietn + bvieyn + al.

(6.7)

Since the expression in (6.6) is non-negative, the polynomial in A within the square
brackets has real zeros. The larger of these zeros is equal to the left-hand side
of (6.1), which we denote by u,. From (6.7) we obtain s(u,)[xz] > 0 and hence
p(xg) > uy since s satisfies the condition (VM™). Now (5.7) and (5.8) imply that

An = inf max x) > inf Xz) > n,
"7 tcdom(a) xel\{o} p(x) = £cdom(a) P(X2) = fn
dim L=k+n dim L=k+n

which is the first inequality in (6.1).
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Now assume that D is bounded and that (6.2) is satisfied. Lete > 0 be arbitrary.
By the standard variational principle applied to A there exists an £y C dom(a)
with dim £y = « + n such that a[x] < (ve4n + €)||x||? for all x € Lo (if vy is
an eigenvalue, we could choose ¢ = 0). From (5.7) and (5.8) we obtain that

An = inf max x) < max X). 6.8
"7 Lcdom(a) xeL\{0} p( )_xeLO\{O} p(x) ©.8)
dim L=k+n

For x € £Lo\{0} and A € (u, o0) we have

s(M[x] = alx] — Allx] — (A — D)™ B*x, B*x)

IB*x]?
—Allxl? =
= alx] = Aflx[|" = ——"
balx] + a|lx||?
< —A e
< afx] [y A5
(A =8-—b)Vein +8) A2 +5_A—a
- +)L — 1)1
— _)L2 - (Uk+n +e+ 5—)A + 5—(”K+n + 8) + bA(v'H_n + 8) a ||X||2
= A—d- .
(6.9)

Let fi, ¢+ be the zeros of the polynomial in A in the numerator of the fraction
in (6.9), i.e.

Vietn + &+ 06— " \/<vk+n +e—4_
2 2

If these zeros are non-real or fi, .+ < i, then s(A)[x] < O forall A € (u, co) and
hence p(x) = —oo for all x € Ly\{0}. This, together with (6.8), would imply that

2 A
finot = ) — h(vean +8) —a.

An = —00, a contradiction. Therefore i, + € R and i, ¢+ > w. In particular,
v e—6-\2 -
(%) b (Vesn +€) —a = 0. (6.10)

Relation (6.9) yields that s(A)[x] < O for all A € (i, +,00) and hence p(x) <
[n e+ for all x € Lo\{0}. This, together with (6.8) implies that A, < [, +.
If we take the limit as ¢ — 0 in the latter inequality and in (6.10), we obtain (6.3)
and (6.4). O

Under the extra assumption that A has compact resolvent we can obtain asymp-
totic estimates for the eigenvalues of M that lie in (u, co). Analogous estimates
for self-adjoint block operator matrices were shown in [17, Corollary 4.4].
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Corollary 6.2. Suppose that Assumption 2.1 is satisfied, let M be the operator
as in Theorem 2.4, let 1 be as in (4.10) and let vy be as at the beginning of the
section. Assume that A has compact resolvent and that H is infinite-dimensional.
Then (u, 00) N o (M) consists of a sequence of eigenvalues that tends to oo. Let
Yo € (1, 00), let k be as in (5.6) and let (A,);2, be the eigenvalues in [yg, 00).
Then

b% + b8y + 1
22 4o

2

) < An < Vitn, N — 0. (6.11)
Vict+n

Vetn —b —
Vietn — 6+

If, in addition, D is bounded with _, a and b as in Corollary 6.1, then

< B+ bs_+a 1
AnSUK—l—n_b—i‘i‘O(2—

, . 6.12
U/c+n_8— UK+n) oo ( )

Proof. The first statements follow from Corollary 5.7. For the estimates we use
Corollary 6.1, which for sufficiently large n yields

v +6 v —84\2
A, > l<+n2 + + \/( lc+n2 +> — bV —a
_ Vkan 84 (Vien — 04 2 2
=Ty ( . )\/1 - (7‘%” - 5+) (DVetn + a)

1 2 1 2 3
= Vk+n — s\ 7/ b/cn — =\ bK n 2—...
Vet 2(Vlc+n_8—l—)( et +a) 8(Vl<+n_5+> ( et +a)

bvesn +a  (bvesn + a)? 1
+ _ (bvey )3 4 o( )
Vetn — 8+ (Ven — 84)

= Vik+n —

:vx+n—b—b8++b2+a+(‘)( 1 )
v

2
vK+n - 8+ K+n

If D is bounded, we obtain from (6.4) in a similar way that

2 2
~ bhS_+b%+a 1
= ven b= = +o(2 ) O

vlc-i—n
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7. Spectrum of positive type

In this section we consider properties of the operator M considered in the Krein
space X := H; ®H, equipped with the indefinite inner product (2.14). Recall that
apoint A € oypp(M) is called spectral point of positive type if for every sequence
(xn, y)T € dom(M) such that

(M—A)(}‘”)—w and  [xall® + [yll® = 1 1)

liminf[(x”), (X”)} > 0. (7.2)

In the next theorem we consider spectral points in the interval (u, co). For
bounded operators M the result was shown in [19, Theorem 3.1].

one has

Theorem 7.1. Suppose that Assumption 2.1 is satisfied, let M be the operator as
in Theorem 2.4 and let |1 be as in (4.10). Then all points from o (M) N (u, 00) are
spectral points of positive type.

Proof. Let A € (M) N (i, 00) and let (x,, y,)T € dom(0) such that (7.1) holds.
It follows from Lemma 3.5 that s(1)[x,] — 0, liminf,_ [|xx|| > O and that
| B*x,|| is bounded. Since s satisfies the condition (VM™) by Lemma 5.2, there
exist ¢, 8 > 0 such that (5.1) holds. Hence there exists an N € IN so that

s’ (M) [xn] < =8|lxall>, n>N.

Lemma 3.5 (i) implies that y, = (D — A)"!B*x, + w, with w, — 0. This,
together with (5.3), yields

[(2). ()] = b

= lxal® = [(D = 1) B*xy + wy |

= ol = (D = A B3 |2 = 2Re{(D — )7 B0, ) — 2
= —s'(M)[xa] + o(1)

> 8]|xall* + o(1).
12

Since liminf, o || xn ||* > 0, we obtain

liminf[(x"), (x")] > § liminf ||x,||*> > 0,
n—o00 Yn Yn n—0o0

which shows that A is a spectral point of positive type. |
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It follows from this theorem and [6, §8] (cf. also [22, Theorem 3.1] for bounded
operators) that the operator M has a local spectral function of positive type on the
interval (@, 00).

In the following proposition we consider again the situation from Proposi-
tion 5.9, namely that in (4.8) or (4.9) strict inequality holds.

Proposition 7.2. Suppose that Assumption 2.1 is satisfied, let M be the operator as
in Theorem 2.4 and assume that the condition in (5.9) is satisfied. Fory € (i, i+)
the operator M — y is non-negative in the Krein space X and y € p(M).

Proof. Let (x,y)T € dom(M). From (2.11) we obtain
on(3)-()]
Y y
X X
<(M e (y) (—y)>

= afx] — ylIx[I> + (v, B*x) + (B*x.y) = (Dy.y) + vly|?
= (a—p)[x] = (@ —=y)[y] + 2Re(y, B*x)
> (a—y)x]— @ =y —2[(y. B*x)|. (7.3)

If x = 0or y = 0, then the expression in (7.3) is non-negative since §+ < y < a—.
Now assume that x, y # 0. It follows from Proposition 4.10 that A1 (]) € R and

X X
A_(y) SH<Y <Pyt fh(y)-

Therefore
(a—p)x]- @—y)y] + [{y, B*x)|?
= det(M, , —
HEEE Oy =)
X X
- (V - M(y)) (V - L(y))
< 0.

If we combine this with the inequality in (7.3), we obtain

o= (%) (3] @+ o= o1-2va= il Vo= = o

Relation (5.11) implies also that 0 € p(S(1)), which, by Theorem 3.6, yields that
y € p(M). O
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If (5.9) is satisfied and D is bounded, then, by Proposition 7.2, all assumptions
of [28, Theorem 3.2] are satisfied with y € (u, i+). The latter theorem implies,
e.g. that the spectral subspaces corresponding to (), oo) and (—oo, y) are maximal
uniformly positive and negative, respectively.

A self-adjoint T operator in a Krein space is called definitisable if p(T) # @
and there exists a real polynomial p such that

[p(T)x,x] >0 forall x € dom(T9eP);

see, e.g. [18, p. 10]. In the next theorem we consider again the situation when A
has compact resolvent.

Theorem 7.3. Suppose that Assumption 2.1 is satisfied and that A has compact
resolvent. Then M is definitisable, and hence the non-real spectrum of M is finite.

Proof. That p(M) # @ follows from Theorem 4.13. Choose ¢ so large that
the second inequality in (5.9) is satisfied with «_ replaced by «y. Let £ be the
spectral subspace for A corresponding to [og, 00), let A be the restriction of A
to £ N dom(A). Moreover, let P be the orthogonal projection in H; onto £, set

B := PB and
~ A B
Mo = (—E* D)’

and let M be the closure of J\A/Eo; the operator 3\7[0 is understood as an operator
in X := £ & Hy. It is not difficult to see that Assumption 2.1 is satisfied for
3\7[0 and that (2.3) holds with the same a and b. Clearly, &— := min a(/f) > g
and therefore the second 1nequahty in (5. 9) is satisfied with o— replaced by &_.
Proposition 7.2 applied to M yields that M— y is non-negative in X for some
y € R. Since X is finite co-dimensional in X, this shows that M — y has finitely
many squares, i.e. the form [(M — y) -, ] is non-negative on a subspace with finite
codimension. By [18, pp. 11-12] this implies that M is definitisable. It follows from
[18, Proposition II.2.1 (p. 28)] that hence the non-real spectrum of M is finite. [

8. Examples

In this section we consider two examples where the entries of the block operator
matrix My are differential or multiplication operators. The first example was
studied in [21] for bounded w and in [15, 25] in the one-dimensional case.
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Example 8.1. Letn € IN and let 2 C R” be an arbitrary bounded domain (we do
not assume any smoothness of the boundary of ©2). Moreover, let u € L°°(2) and
w € LP(Q2) where

p=1 iftn=1,

p>1 ifn=2,

n
= — ifn >3,

p=3 ifnz

and assume that u is real-valued and w > 0. Let 3{; = H, = L?(R2) and consider

the operators My and M where A = —A with Dirichlet boundary conditions, i.e.
A is the operator corresponding to the form

aly] = /Q VyP. € dom(a) = HL(Q).

and where B and D are the multiplication operators with the functions /w and
u, respectively.

By the Sobolev embedding theorem (see, e.g. [2, Theorem 4.12]) one has the
continuous embedding H |} (2) C L7(Q) where ¢ = oo if n = 1; g < oo arbitrary
ifn =2;andg =2n/(n—2) if n > 3. Since % +§ = 1 (where in the case n = 2
one chooses ¢ accordingly for a given p), Holder’s inequality yields

1B*y]? = /Q wiyP < lwlzo@lyPeq. ¥ € LIQ).
Therefore
dom(a) = Hy(Q) C LY(Q) C dom(B*),

which shows that Assumption 2.1.(I) is satisfied; note that D is bounded.

With Csop and Cpoine denoting the constants in the Sobolev and the Poincaré
inequalities, respectively, we obtain

1B*717 < lwllze@ o)
< Cowlwlr@ Iy g,

= Cszobcfgoinc ” w ”LP(Q) a[y]

for y € Hj (), which yields a possible choice for b where a = 0.
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The Schur complement corresponds to the form

sl = [ (9P + (= + ) bP). v e domeete)) = H (@)

for dist(z, essranu) > by. As an operator it acts like

w
S(z)y =—Ay—|—(—z+ )y.
u—z
The operator A has compact resolvent; let vi < v, < -.- be its eigenvalues
in non-decreasing order and set §_ := essinfu, §4 := esssupu. Proposition 3.7

implies that oegs(M) C [6—, 84+ + bo], and Theorem 4.13 gives an enclosure for
o(M). Moreover, Theorem 7.3 shows that the non-real spectrum is finite, and
Corollaries 5.7, 6.1 and 6.2 yield that o()M) N (u, co) consists of a sequence of
eigenvalues that tends to co and satisfies (6.1) and (6.11).

If p > n/2 whenn > 3 and p as above when n = 1,2, then the embedding
H}(Q) — L%(Q) is even compact and hence B*(A — v)~/2 is a compact
operator for v < mino(A4). By Remarks 2.3 and 3.8 one has by = 0 and
Oess (M) = 0ess(D) = essranu.

Example 8.2. Let H; = 3, = L?(0,1), let g, u,v € L>®(0, 1), where ¢ and u
are real-valued, and consider the operators

Ay =—y"+qy, dom(4) = H?*(0,1) N Hy(0, 1),

By = (vy), dom(B) = H'(0, 1),
B*y =71y, dom(B*) D H, (0, 1),
Dy = uy, dom(D) = L%(0, 1).

Assumption 2.1.(I) is satisfied, and for y € dom(a) = H, (0, 1) we have
1 5 1
1B*y]? = / oy 2 < sup|v|2/ VP
0 0
1 1
=sup|v|2/0 (|y’|2+qr|y|2)—sup|v|2/0 gy
1 1
SSUP|U|2/0 (|y’|2+q|y|2)—sup|v|2-infq/0 P
— sup[v[2aly] — sup v]? - infq - 7[>

Hence a possible choice for @ and b is

a=—sup|v|®>-infq, b =sup|v|°.
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Clearly, D is bounded and §_ = infu, 6+ = supu. Condition (4.8) is satisfied if
and only if
v#0 and supu +sup|v|® <infgq. (8.1)

If (8.1) holds, then §_ < §4+ < infg < a— and hence
p_ =infu, p=supu+sup|v|®>, g > —% = inf g.
This, together with Theorem 4.13, implies that
o(M) C [infu, supu + sup |[v]|?] U [inf ¢, c0).
It follows from [5, Theorem 4.5] (cf. Proposition 3.7) that
Oess(M) = essran(u + |v|?).
It is easy to see that the Schur complement is given by

Sy = —((1 + u|v—|22)y/)/ +qy—zy

for z with dist(z, essranu) > bg. Note that g5 (M) is the set of z € C for which

v
0 € ess ran(l + )
U—z

In (u, 0o) the spectrum of M consists of a sequence of eigenvalues that tends to
oo and satisfies (6.1) and (6.11), e.g.

sup |v|?(inf ¢ — sup u — sup |v|? 1
An > Vx+n-—Sup|v|24— p| | ( 1 P p| | )'+(9(

Vitn — SUPU 2

), n — oo,
vx+n

where vy are the eigenvalues of A. If inf |v|? > 0, then (6.2) holds with
4 = —inf|v|?-supg, b = inf|v|,
and (6.4) and (6.12) are valid.
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