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A solvability condition for a tokamak problem

Amin Boumenir

Abstract. By using the matrix representation of the Laplacian, under Dirichlet and Robin
boundary conditions, we recast a boundary inversion problem for the tokamak into a simple
algebraic system. The solution is then obtained explicitly in terms of the Fourier coefficients
of the observation.
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1. Introduction

We are concerned with a boundary inversion problem related to the tokamak
problem. As treated by Demidov and Moussaoui in [6], the question is to evaluate,
if possible, the constants a and b in

Au=au+b>0 onQ CcR?, d=>2,

u =0and (d,u = ®) on IR,

(1.1

from a single reading of the outer normal derivative d,u = ® € L! () of the
solution. Here €2 is an open bounded connected Lipschitz domain in R¢. We shall
refer to @ # 0 as an observation, as it comes from a nontrivial solution generated
by the real constants a and b. By using conformal mappings and asymptotics of
the solution near a singularity, such as a corner, Demidov and Moussaoui show
that partial data of ® on one side of a corner is sufficient to compute the values a
and b. Although this seems to be a simple question, it is related to the Pompeiu
problem and subsequently to the geometry of 2, see [1, 3, 4, 5, 7, 13, 14].

One of the open questions raised in [6] is the computation of the values {a, b}
in the case of a smooth boundary with no corners. In this note, we answer this
question by making use of pseudo-spectral methods. Note that although this
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boundary inversion problem originated from the physics of plasma, magnetohy-
drodynamics also has interesting applications in medical imaging (cf. [11]).

2. Preliminaries

Let Q is be an open bounded connected Lipschitz domain in R?, d > 2, whose
boundary d€2 satisfies the strong local Lipschitz condition [12]. Denote by (¢,)
and () the eigenbases generated by the Dirichlet and Robin Laplacian, with
norms [|gn || = [|¥all = 1,

D) —App = Anon,
on(x) =0, x €092,

and
—-A n = UnVn,
®) Yn = Un¥
anwn(x) + p(xX)Yn(x) =0, x€ 02,

where 0 < p(x) € L'(dL). Since the solution satisfies u € H} () C HY(Q),
its expansion in both eigenbases reads as

U= Capn =) dn¥nin L7 (Q), 2.1

n>1 n>1

and since {¢,} and {V,,} are also bases in H! (), we deduce that

X:)L,,|c,,|2 <oo and 2:,11,,|al,,|2 < 0.

n>1 n>1

Multiplying (1.1) by ¢, and v, and integrating by parts leads to
(L+alg)c +blp =0,
(2.2)

M+aly)d +blg =,

where ¢ = (¢,),d = (d,) € £? are defined by (2.1), L = diag(1,), M = diag(u,),
and

T = (/m @(x)lpn(x)ds), 1p = (/Q(pn(x)dx), 1z = (/Qlﬂn(x)d)(cz)é)

Note that ¢;(x) # 0 for any x € €, as it is the principal Dirichlet eigenfunc-
tion [9].
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Observe that (2.1) generates a transition operator, mapping Dirichlet to Robin
Fourier coeflicients

d = Ac (2.4)

with entries A = (¢x, Yn)ak. It follows from (2.1) that ||ju|* = D ons1 lenl? =
Y ons1ldn | and so the operator A: 2 — ¢2 is an isometry, and unitary. Combin-
ing (2.2), (2.4), and the fact that 1x = Alp, we get a linear system with unknown
(a,b,c)

AlLc + aAc + bAlp =0,
MAc¢ + alAc + bAlp = 1.

(2.5)

In order to reduce (2.5) to a system of only two unknowns @ and b, we need to
find ¢, which is obtained by elimination,

Te =t, where T =MA — AL. (2.6)
To solve (2.6) we need to study the invertibility of T as an operator acting in £2.

Remark 1. In [2] it is shown that the spectrum of the map: A — T, see (2.6)
is explicilty given by {A,} — {1« }, and so has an inverse if and only if A,, # .
However it does not tell us whether T is invertible, which we examine now.

For a fixed a and b, define the solutions set to be
Sab = 1{(cn) € :u =" capn € Hy(R) is solution of (L.1)}.
We now show that T'g, the restriction of T to S,p, is always invertible.

Proposition 1. Let Q be a bounded Lipschitz domain in Re, d > 2, then Tgl
exists.

Proof. Otherwise, we would have two distinct solutions #; and u, € Sgp, that
would correspond to the same observation ®. Obviously the difference w =
U, — uy # 0 satisfies

Aw = aw onQ CRY, d>2,

w=0 and 9,0 =0 ondL.

This implies that @ < 0 and by Green’s formula, [1, (2.22)], we must have v = 0
in €, that is, the null space N(Ts) = {0}, implying that Tg' exists. O
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Thus, to solve (2.6) for ¢, it is sufficient to confirm that T € R (Ts), since t is
an observation with equations (2.6) and (2.5) being equivalent under A. Thus, as
T € R(Ts), we can find a unique ¢ = (Tg)~ !t which reduces the first equation
in (2.2) to two unknowns only, namely ac + blp = —ILc. Next, we study the
solvability of this infinite system in (a, b),

acy + by, = —Ayc, forn>1, 2.7

where the sequences A,, cn = [q u(x)@n(x)dx and y, = [o ¢n(x)dx are known
for all n > 1. We use the following lemma:

Lemma 1. If ® # 0, then the system (2.7) contains at least two independent
equations.

Proof. To find a and b, we need two independent equations, that is, their 2 x 2
determinant is nonzero, implying that the corresponding rank equals 2. If all
possible 2 x 2 determinants vanish, it would mean that the vectors ¢ = (c,) and
1p = (y») are proportional, implying (2.7) has rank one. In other words, there
exists § # 0 such that

/ u(x)pn(x)dx = 8/ ¢n(x)dx foralln > 1.
Q Q

In this case, the solution ¥ must be constant in 2,

u(x)chnwn(x)erZ/Qw(n)dn on(x) = 81p(x),

n>1 n>1

and so ¥ = Au = 0 from (1.1), which means that » = 0 and ® = d,u = 0 almost
everywhere on d2. This contradicts the fact that u is not trivial and thus there
is at least one nonzero 2 x 2 determinant, which would deliver a unique solution
(a, b). O

Thus by Proposition 1 and the above lemma we have proved the following
result:

Proposition 2. Let Q be a bounded Lipschitz domain in RY,d > 2,thena single
measurement ® # 0 suffices to compute the values of a and b.

Below we illustrate this idea with two simple examples.
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3. Example on the square

We now provide a simple example where the condition A, # ux holds for a
square Q = [0, 7] x [0, 7] in R2. It is easily seen that the eigenfunctions of
the Dirichlet Laplacian are ¢;,,(x,y) = %sin(lx) sin(my) and the spectrum
op ={I>+m?*: 1 <I,meN}.

Example 1. For the Robin boundary condition we take
dyu(x,0) =0, dyu(x,m) =0, 0du(0,y) =0, du(w y)+u(r,y) =0,
where 0 < x, y < &, implying

1 fory e (0,7)and0
p(m,y) =
otherwise on 9€2.

Thus the Robin eigenfunctions are yg; (x,y) = % cos(&jx) cos(ky), where &; are
roots of

cos(§jm) —§&;sin(§;m) =0 (3.1)

and the spectrum equals og = {7 +k?:1 < j,k € N}. To see that og Nop = 4,
write § = j — 1 +¢; for j > 1andso0 < ¢ < 1/2, and a closer look at
equation (3.1), or x tan (wx) = 1, reveals that

40, and =m(j—1e <1 forj>1. (3.2)

Thus if og N op # @ then there is at least one 51.2 € IN, which is impossible
given (3.2). We have

1
0<&<-
<& < 1
and
2 . 2 . 2 2 1 .
0<& -G -D"=2-Dgi+e5<=-+—5<1 forj=2
A
and, by Proposition 1, ¢ =T~ !z is known. Thus (2.7) yields

acy + by, = —Ayc, forn>1, (3.3)
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where, for A, = [% + m?,

W=A%@W

b3 T 2
/ / — sin(/x) sin(my)dxdy
o Jo T

i if both / and m are odd,
wlm

0 otherwise.

By Lemma 1, we know there are two independent equations in (3.3), which can
be used to compute the values a and b.

Example 2. Partial data. Since the square 2 has four corners, one might ask
if our method can reproduce the result by Demidov and Moussaoui in a simpler
way. In other words, is the knowledge of ® on one side of the square only sufficient
to compute a and b? For this case use the following mixed boundary conditions
instead of the Robin boundary condition,

yu(x,0) =0, u(x,7) =0, u(0,y) =0, u(w,y) =0, where 0 <x, y <m.

The new eigenfunctions are

Vi (e,3) = = sin (k) cos(( +1/2))

and the new spectrum is oy = {pjx = k> + j2+j + 1/4k > 1, j > 0}.
It is easily seen that the condition opy N op = @ in Remark 1 holds since
inf|A, — wjx| = 1/4. The fact that only partial data on the lower side of the
square is used can be seen from

T = (/m D(x, )Yk (x, y)ds) = (% /On d(x,0) sin(kx)dx).

Acknowledgement. The author sincerely thanks the referee for providing numer-
ous valuable comments.
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