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Abstract. We prove that a dense subset of limit periodic operators have spectra which are

homogeneous Cantor sets in the sense of Carleson. Moreover, by using work of Egorova,

our examples have purely absolutely continuous spectrum. The construction is robust

enough to extend the results to arbitrary p-adic hulls by using the dynamical formalism

proposed by Avila. The approach uses Floquet theory to break up the spectra of periodic

approximants in a carefully controlled manner to produce Cantor spectrum and to establish

the lower bounds needed to prove homogeneity.
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1. Introduction

We are interested in spectral characteristics of self-adjoint operators on `2.Z/ of

the form

.HV /.n/ D  .n� 1/C  .nC 1/C V.n/ .n/; n 2 Z; (1)

where V 2 `1.Z/ plays the role of an electrostatic potential. In particular, opera-

tors of the form (1) model one-dimensional one-body tight binding Hamiltonians,

and thus, they provide a rich class of toy models in quantum mechanics and spec-

tral theory. If V is a periodic sequence, then the spectral theory of HV is quite

well-understood by way of Floquet–Bloch theory. Indeed, any spectral-theoretic

object (the spectrum, the density of states, the spectral measures, etc.) can be de-

scribed quite explicitly; an inspired reference for this subject is [21, Chapter 5].

1 The author was supported in part by NSF grant DMS–1067988.
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As soon as V departs from the class of periodic potentials, the spectral character-

istics of HV become signi�cantly more subtle and elusive.

In this paper, we focus on the class of limit-periodic operators, that is, operators

of the form (1) for which the potential can be written as an `1-limit of periodic

sequences; see [1, 4, 5, 6, 10, 11]. A typical example of such a potential is furnished

by

V.n/ D

1
X

j D1

2�j 2

cos
�2�n

j Š

�

:

More speci�cally, we are concerned with homogeneity of the spectra of limit-

periodic operators. Loosely speaking, a homogeneous closed subset of R is one

which has a uniform positive density in arbitrarily small neighborhoods of each

of its points. The precise de�nition follows (compare [3]).

De�nition. We say that a closed set K � R is homogeneous (in the sense of

Carleson) if there exist �; ı0 > 0 such that

jBı.x/ \Kj � �ı for every 0 < ı � ı0 and x 2 K; (2)

where Bı.x/ D .x � ı; x C ı/ denotes the ı-neighborhood of x. If we want

to emphasize the relative density of K, we will say that a compact set which

satis�es (2) for some ı0 > 0 is �-homogeneous.

Homogeneity of closed subsets of R is important from the point of view of

inverse spectral theory. In particular, if K is a homogeneous compact set, then

the space of Jacobi matrices which have spectrum K and are re�ectionless there-

upon is known to consist of almost-periodic operators by a theorem of Sodin and

Yuditskii [23]; moreover, Poltoratski and Remling have proved that the spectral

measures of such Jacobi matrices will be purely absolutely continuous [16]. There

are analogous results for the inverse spectral theory of continuum Schrödinger op-

erators and CMV matrices in [12, 22] and [13], respectively.

Generically, the spectra of limit-periodic operators are of zero Lebesgue mea-

sure and so cannot be homogeneous in this sense [1, Corollary 1.2]. On the other

hand, the spectrum corresponding to any periodic potential will be a �nite union

of closed, bounded intervals; such a set is clearly 1-homogeneous. In order to

examine the interplay between inverse and direct spectral perspectives, it is of

interest to apply direct spectral methods to construct almost-periodic examples

with more exotic spectra which are nonetheless homogeneous in the sense of Car-

leson and which have purely absolutely continuous spectrum. This goal has been
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pursued in the setting of continuum quasi-periodic potentials in the regime of

small coupling [7]. We can accomplish this in the class of limit-periodic operators

because they are approximated by periodic operators in the operator norm topol-

ogy. It turns out that a careful perturbative argument proves that the set of poten-

tials with homogeneous Cantor spectrum is dense in the space of limit-periodic

potentials. Moreover, by using work of Egorova, we are able to control the spectral

type and produce purely absolutely continuous spectrum [9].

In fact, we will prove a more general result. Since spectral homogeneity is of

interest from the point of view of inverse spectral theory, the natural family of tri-

diagonal operators with which one should work is that of Jacobi operators, i.e.,

operators of the form J D Ja;b W `2.Z/ ! `2.Z/, de�ned by

.J /.n/ D a.n � 1/ .n � 1/C a.n/ .nC 1/C b.n/ .n/; n 2 Z; (3)

where a and b are bounded sequences of real numbers; see [24]. We will also

always assume that a is positive and bounded away from zero. In this context, our

main theorem takes the following form.

Theorem 1.1. Fix a periodic sequence a > 0, let L denote the set of real-valued

limit-periodic sequences, and denote by Ha
� the set of b 2 L so that �.Ja;b/ is a

�-homogeneous Cantor set and such that the spectrum of Ja;b is purely absolutely

continuous. Then Ha
� is dense in L for every � < 1.

Remark. By a Cantor set, we mean a totally disconnected compact set with no iso-

lated points. In particular, each element of Ha
� is obviously aperiodic. Moreover,

a Cantor set clearly cannot be 1-homogeneous, so Theorem 1.1 is optimal.

As an immediate corollary, we see that the set of limit-periodic Jacobi pa-

rameters which produce purely absolutely continuous spectrum supported on a

homogeneous Cantor set is dense in the natural space of Jacobi parameters. More

precisely, de�ne

JC D ¹.a; b/WC�1 � a.n/ � C; �C � b.n/ � C for all n 2 Zº

for each C > 0, and endow JC with the relative topology that it inherits as a

subspace of `1.Z/ � `1.Z/. Let LC � JC denote the set of Jacobi parameters

which are limit-periodic (i.e. a and b are both limit-periodic sequences). One then

has the following corollary of Theorem 1.1.

Corollary 1.2. For each � < 1, H�;C is dense in LC with respect to the `1

topology, where H�;C denotes the set of .a; b/ 2 LC for which �.Ja;b/ is a

�-homogeneous Cantor set and Ja;b has purely absolutely continuous spectrum.



204 J. Fillman

By taking a � 1 in Theorem 1.1, we obtain the �rst claimed result – the set of

limit-periodic Schrödinger operators with purely absolutely continuous spectrum

supported on a Carleson-homogeneous Cantor set is `1-dense in the space of all

limit-periodic potentials.

Corollary 1.3. For each � < 1, let HS
� � L be the set of V 2 L such that �.HV / is

a �-homogeneous Cantor set andHV has purely absolutely continuous spectrum.

Then HS
� is `1-dense in L for every � < 1.

If one considers inverse spectral theory of unitary operators on the circle rather

than the inverse spectral theory of self-adjoint operators on the real line, one is

naturally led to the class of CMV operators. Speci�cally, given a sequence ˛ of

complex numbers such that ˛.n/ 2 D D ¹z 2 C W jzj < 1º for every n 2 Z, the

associated CMV operator E D E˛ is de�ned by the matrix representation

E˛ D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

: : :
: : :

: : :

a.0/ b.1/ d.1/

c.0/ a.1/ c.1/

b.2/ a.2/ b.3/ d.3/

d.2/ c.2/ a.3/ c.3/

b.4/ a.4/ b.5/

d.4/ c.4/ a.5/

: : :
: : :

: : :

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

with respect to the standard basis of `2.Z/, where

�.n/ D
p

1� j˛.n/j2;

a.n/ D �˛.n/˛.n� 1/;

b.n/ D ˛.n/�.n� 1/;

c.n/ D ��.n/˛.n� 1/;

d.n/ D �.n/�.n� 1/:

See [19, 20] for more detailed information. By straightforward modi�cations to

the proof of Theorem 1.1, one obtains the following analog in the realm of CMV

operators. Notice that we do not claim to produce purely absolutely continuous

spectrum in this setting. It is likely true that our construction gives purely abso-

lutely continuous spectrum in the CMV setting, but the paper of Egorova on which

we rely to control the spectral type focuses on the Jacobi case.
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Theorem 1.4. Let LD denote the set of limit-periodic complex-valued sequences

˛ with ˛.n/ 2 D for every n 2 Z, and, for each � < 1, denote by HCMV
� the set

of ˛ 2 LD such the that �.E˛/ is a �-homogeneous Cantor set.1 Then HCMV
� is

dense in LD for every � < 1.

It is frequently pro�table to imbed limit-periodic sequences into a dynamical

context. Speci�cally, any limit-periodic sequence is Bohr almost-periodic, and

so its hull naturally enjoys the structure of a compact abelian topological group.

Moreover, it is well-known that an almost-periodic sequence is limit-periodic if

and only if its hull is totally disconnected; a detailed discussion of this may be

found in [1, Section 2]. In light of this, the following de�nition is natural.

De�nition. A Cantor group is a compact, abelian, totally disconnected topolog-

ical group. A monothetic group is a topological group which contains a dense

cyclic subgroup. A generator of this dense subgroup is referred to as a topologi-

cal generator of the monothetic group.

Standard examples of monothetic Cantor groups include the additive group

of p-adic integers and the pro�nite completion of Z. More generally, the class

of Cantor groups precisely coincides with the class of in�nite pro�nite abelian

groups; see [17, 25], for example.

As a consequence of this characterization of limit-periodic sequences via

their hulls, it follows that limit-periodic sequences are precisely those which

can be generated by continuously sampling along orbits of a minimal translation

of a monothetic Cantor group; compare [1, Lemma 2.2]. More precisely, a

complex-valued sequence s is limit-periodic if and only if one can produce a

monothetic Cantor group �, a topological generator � of �, an element ! 2 �,

and f 2 C.�;C/ such that

s.n/ D sf
! .n/ WD f .n� C !/; n 2 Z: (4)

Given f 2 C.�;R/ and a p-periodic positive sequence a, one obtains Jacobi

operators J
f
a;! with Jacobi parameters .a; b

f
! /, where b

f
! D s

f
! , as in (4). By a

standard argument using minimality and strong operator convergence, there exists

a deterministic compact set †
f
a � R with †

f
a D �.J

f
a;!/ for every ! 2 �.

1 We call a closed subset K � @D �-homogeneous if and only if it satis�es a bound of the

form (2) with j � j interpreted as arc-length measure on @D.
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Similarly, if we take g 2 C.�;D/, then, for each ! 2 �, we obtain a limit-

periodic CMV operator E
g
! de�ned by ˛

g
! D s

g
! with s de�ned by (4). As in the

Jacobi case, there is a �xed compact set †g � @D with �.E
g
!/ D †g for every

! 2 �.

This point of view is particularly pleasant, since one may �x the underlying

dynamics (i.e. � and �) and consider the dependence of spectral properties on

f; g 2 C.�/. Our proofs of homogeneity are robust enough to pass to this setting

and produce a dense set of elements of C.�/ which produce �-homogeneous

Cantor spectrum.

Theorem 1.5. Fix a monothetic Cantor group �, a topological generator � 2

�, a positive periodic sequence a, and � < 1. Then there is a dense subset

Ha
� � C.�;R/ such that †

f
a is a �-homogeneous Cantor set and J

f
a;! has purely

absolutely continuous spectrum for every f 2 Ha
� and every ! 2 �.

Theorem 1.6. Fix a monothetic Cantor group �, a topological generator � , and

denote by HCMV
� � C.�;D/ the set of g such that†g is a �-homogeneous Cantor

set. For each � < 1, HCMV
� is dense in C.�;D/.

The structure of the paper is as follows. In Section 2, we recall a few standard

facts from functional analysis and some necessary pieces of Floquet theory and

use these ingredients to prove a gap-opening lemma. This lemma is then used

in Section 3 to prove Theorems 1.1 and 1.5. Clearly, these theorems imply Corol-

laries 1.2 and 1.3. Finally, Section 4 discusses the necessary modi�cations to the

proofs in the CMV case to obtain Theorems 1.4 and 1.6. The appendix proves

a version of a band length estimate for periodic Jacobi matrices which is due to

Deift–Simon and Avila in the Schrödinger case.
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2. Preliminaries

2.1. The Hausdor� metric. For our proof of Theorem 1.1, we will make use of

two facts about the Hausdor� metric, whose de�nition we brie�y recall. Given

two compact subsets F;K � R, put

dH.F;K/ WD inf¹" > 0WF � B".K/ and K � B".F /º; (5)

where B".X/ denotes the open "-neighborhood of the set X � R. The function

dH de�nes a metric on the space of compact subsets of R, known as the Hausdor�

metric. The following propositions are standard. Since the proofs are short, we

include them for the convenience of the reader.

Proposition 2.1. Suppose that .Fn/
1
nD1 and .Kn/

1
nD1 are sequences of compact

subsets of R. If there exist compact sets F andK such that Fn ! F andKn ! K

with respect to dH as n ! 1, then

jF \Kj � lim sup
n!1

jFn \Knj:

Proof. Given " > 0, we may use compactness of F \ K to choose �nitely many

open intervals I1; : : : ; Im with F \K � O WD
Sm

j D1 Ij and jOj < jF \Kj C "=2.

Now, take

ı D
"

4m
:

It is easy to see that Fn \ Kn � Bı.F \ K/ for all su�ciently large n. For such

large n, one then has Fn \Kn � Bı.O/, which yields

jFn \Knj � jBı.O/j � jOj C 2mı < jF \Kj C ":

This argument clearly implies the desired semicontinuity statement. �

Proposition 2.2. If S and T are bounded self-adjoint operators on a Hilbert space

H, then

dH.�.S/; �.T // � kS � T k: (6)

Proof. Let ı D kT � Sk, and suppose x 2 R satis�es d.x; �.T // > ı.

In particular, T � x is invertible and, by the spectral theorem, one has

k.T � x/�1k�1 D d.x; �.T // > ı:
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By an easy geometric series argument, it follows that

S � x D .T � x/C .S � T / D .T � x/.I C .T � x/�1.S � T //

is invertible, i.e., x … �.S/. Thus, the ı-neighborhood of �.T / contains �.S/.

By symmetry, one may run the previous argument with the roles of S and T

reversed, which su�ces to establish (6). �

2.2. Floquet theory. In order to describe our main gap-opening lemma, we give

a very brief overview of the necessary highlights of Floquet theory for periodic

Jacobi operators and prove a minor variant of a gap-opening lemma due to Avila.

Suppose a; b 2 `1.Z/ are p-periodic for some p 2 ZC, that is,

a.nC p/ D a.n/; b.nC p/ D b.n/ for all n 2 Z:

Given E 2 R, the study of the eigenvalue equation

a.n� 1/u.n � 1/C a.n/u.nC 1/C b.n/u.n/ D Eu.n/ for all n 2 Z (7)

leads one to de�ne the transfer matrices TE D T
.a;b/
E and AE D A

.a;b/
E via

TE .n/ D
1

a.n/

�

E � b.n/ �1

a.n/2 0

�

;

AE .n/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

TE .n/ � � �TE .1/ n � 1;

I n D 0;

TE .nC 1/�1 : : : TE .0/
�1 n � �1:

Speci�cally, a complex-valued sequence u satis�es (7) if and only if

�

u.nC 1/

a.n/u.n/

�

D AE .n/

�

u.1/

a.0/u.0/

�

for every n 2 Z:

The monodromy matrix of Ja;b is the transfer matrix over a full period; more

precisely,

ˆE D A
.a;b/
E .p/ D TE .p/ : : : TE .1/:

The discriminant of Ja;b is de�ned by D.E/ D tr.ˆE /.
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One can also consider restrictions of Ja;b with suitable periodic or antiperiodic

boundary conditions. Speci�cally, let

J
p;˙

a;b
D

0

B

B

B

B

B

B

@

b.1/ a.1/ ˙a.p/

a.1/ b.2/ a.2/

: : :
: : :

: : :

a.p � 2/ b.p � 1/ a.p � 1/

˙a.p/ a.p � 1/ b.p/

1

C

C

C

C

C

C

A

: (8)

It is easy to see that E is an eigenvalue of J
p;C

a;b
if and only if there is a nontrivial

p-periodic solution u of (7) and E is an eigenvalue of J
p;�

a;b
if and only if there

is a nontrivial p-antiperiodic solution of (7). Speci�cally, if u is a nontrivial

eigenvector of J
p;˙

a;b
with eigenvalue E, then u can be extended to a two-sided

sequence on Z such that (7) holds and u.nC p/ D ˙u.n/ for all n 2 Z.

It is well-known that the spectrum of Ja;b can be determined either from the

polynomialD or from the matrices J
p;˙

a;b
. We summarize the relevant facts in the

following theorem. Proofs and further details can be found in [21, Chapter 5].

Theorem 2.3. If a 2 .�2; 2/, then all solutions of the equationD.z/ D a are real

and simple. If a D ˙2, then all solutions ofD.z/ D a are real and of multiplicity

at most two. A solution E of D.E/ D ˙2 is of multiplicity two if and only if

ˆE D ˙I . If j̨ and ǰ denote the solutions of D D ˙2 (with multiplicity),

ordered so that

˛1 � ˇ1 � ˛2 � ˇ2 � � � � � p̨�1 � p̌�1 � p̨ � p̌;

then j̨ < ǰ for each 1 � j � p, and

�.Ja;b/ D

p
[

j D1

Œ j̨ ; ǰ � D ¹E 2 RW jD.E/j � 2º:

Moreover, the ˛’s and ˇ’s comprise the set of all eigenvalues of J
p;˙

a;b
. Speci�cally,

the eigenvalues of J
p;C

a;b
are p̌; p̨�1; p̌�2; p̨�3; : : : , while the eigenvalues of

J
p;�

a;b
are p̨; p̌�1; p̨�2; p̌�3; : : : .

De�nition. We call intervals of the form Œ j̨ ; ǰ � with 1 � j � p bands of

�.Ja;b/, while intervals of the form . ǰ ; j̨ C1/ with 1 � j � p � 1 are called

gaps of the spectrum. Notice that the unbounded components of the resolvent set

are not considered gaps. If ǰ D j̨ C1, we say that the j th gap of �.Ja;b/ is closed.
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To avoid repeating the phrase “with all gaps open,” we will say that Ja;b is

p-generic if both a and b are p-periodic and �.Ja;b/ has precisely p connected

components. The band-interior of the spectrum will be de�ned by

�int.Ja;b/ D

p
[

j D1

. j̨ ; ǰ /:

Of course, this is di�erent from the topological interior of �.Ja;b/ whenever the

spectrum has closed gaps.

Since we �x a periodic o�-diagonal sequence a, we will think of genericity of

Ja;b as a property of b; speci�cally, we will say that b is a .p; a/-generic potential

if Ja;b is p-generic.

The following gap-opening lemma is a straightforward modi�cation of [1,

Claim 3.4]. We include the proof with cosmetic alterations to the Jacobi case

for the convenience of the reader.

Lemma 2.4. Suppose b is a .p; a/-generic potential and k � 2. For each t 2 R,

de�ne a kp-periodic sequence bt by

bt .n/ D

8

<

:

b.n/ 1 � n � kp � 1;

b.kp/C t n D kp

Then bt is .kp; a/-generic for all but �nitely many choices of t 2 R. In particular,

for any ı > 0, there exists a .kp; a/-generic potential b0 with kb � b0k1 < ı, so

the generic potentials are dense in the space of periodic potentials.

Proof. If �.Ja;bt
/ has a closed gap at energy Et 2 R, then it follows from

Theorem 2.3 that the matrix A
.a;bt /
Et

.kp/ must be equal to ˙I . In particular,

examining the unperturbed transfer matrices, we have

A
.a;b/
Et

.kp/ D
1

a.kp/

�

Et � b.kp/ �1

a.kp/2 0

�

� A
.a;b/
Et

.kp � 1/

D

�

Et � b.kp/ �1

a.kp/2 0

��

Et � b.kp/� t �1

a.kp/2 0

��1

� A
.a;bt /
Et

.kp/

D ˙

�

1 t

0 1

�

:
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In particular, if t ¤ t 0, this forces A
.a;b/
Et

.kp/ ¤ A
.a;b/
Et 0

.kp/ and hence Et ¤ Et 0 .

Moreover, if t ¤ 0, then the above implies that

A
.a;b/
Et

.p/ D

�

˙1 �

0 ˙1

�

;

which implies that the discriminant of Ja;b is ˙2 at Et . Since the discriminant of

Ja;b is a polynomial of degree p in E, there can be at most 2p distinct values of

E for which it attains the values ˙2, and hence the lemma follows. �

Let us set up a bit of terminology. The idea here is the following: we start with

a .p; a/-generic potential b and then perform a small perturbation of b to produce

a .kp; a/-generic potential b0. Of course, if the perturbation is small enough, then

the spectrum of Ja;b0 will inherit p � 1 gaps from the spectrum of Ja;b and will

produce .k � 1/p new gaps. We want to control the locations at which these new

gaps form. From the point of view of logarithmic potential theory, it is natural

to partition �.Ja;b/ into kp subintervals, each of which has harmonic measure
1

kp
; compare [21, Section 5.5]. The following de�nition precisely describes the

endpoints of these subintervals.

De�nition. Let J D Ja;b be a periodic Jacobi matrix with corresponding discrim-

inant D (recall that we have �xed the periodic background o�-diagonal sequence

a). We say that E 2 R is a k-break point of J if it satis�es

D.E/ D 2 cos
��j

k

�

for some integer 0 � j � k: (9)

We say thatE is a proper break point if 1 � j � k�1; equivalently, the improper

break points of J are simply the edges of bands of the spectrum of J .

By Theorem 2.3, a p-periodic Jacobi operator will have precisely .k � 1/p

proper k-break points. It is not hard to see that every solution of (7) is kp-periodic

whenever E is a proper k-break point of J with j even; similarly, every solution

of (7) is kp-antiperiodic wheneverE is a proper k-break point of J with odd j . In

particular, the k-break points of J are precisely the eigenvalues of J restricted to

Œ1; kp� with periodic or antiperiodic boundary conditions. More precisely, the set

of k-break points of J is precisely the set of eigenvalues of J
kp;˙

a;b
(where J

kp;˙

a;b

is de�ned as in (8)). Moreover, from the discussion above, it is easy to see that

any proper k-break point of J is a doubly degenerate eigenvalue of one of J
kp;˙

a;b
.



212 J. Fillman

As the name suggests, when we perturb b slightly to produce b0, then the

.k � 1/p new small gaps form near the proper break points, provided b0 is suf-

�ciently close to b. This is a relatively straightforward consequence of standard

eigenvalue perturbation theory, since the band edges of �.Ja;b0/ are precisely the

eigenvalues of J
kp;˙

a;b0 by Theorem 2.3. The precise statement follows.

Lemma 2.5. Suppose J D Ja;b is a p-generic Jacobi operator and k � 2.

If " > 0 is su�ciently small, b0 is .kp; a/-generic, and

kb � b0k1 < ";

then, for each proper k-break point E of J , there exists a gap of �.Ja;b0/ entirely

contained within B".E/. Each of the remaining p�1 gaps of �.Ja;b0/ is contained

in a "-neighborhood of a gap of �.J /. Indeed, this conclusion holds as soon as "

is less than one-half the minimum distance between distinct k-break points of J .

Remark. If one does not assume that b0 is .kp; a/-generic, the proof still provides

useful information about the structure of �.Ja;b0/. Speci�cally, if b0 is simply kp-

periodic and kb�b0k < ı, then the proof shows that b0 has at least p�1 gaps, each

of which is contained in an "-neighborhood of a gap of �.J /, while any other gaps

of �.Ja;b0/must form in "-neighborhoods of proper break points, with at most one

new gap in each "-neighborhood of a proper break point of J .

Proof of Lemma 2.5. Let " > 0 be given as in the statement of the lemma. Notice

that the condition on " means that the "-neighborhoods of the k-break points

(of J ) are pairwise disjoint. Now, suppose that b0 is .kp; a/-generic and satis�es

kb� b0k1 < ". Applying Proposition 2.2 to J
kp;C

a;b
and J

kp;C

a;b0 (resp., to J
kp;�

a;b
and

J
kp;�

a;b0 ), we see that each eigenvalue of J
kp;˙

a;b0 must be within " of an eigenvalue of

J
kp;˙

a;b
. Using this, disjointness of the " neighborhoods of eigenvalues of J

kp;˙

a;b
,

and Theorem 2.3, the lemma follows easily. �

3. Proofs of Theorems 1.1 and 1.5

Proof of Theorem 1.1. Fix a .p0; a/-generic potential b0 and constants � < 1,

" > 0. By Lemma 2.4, the generic potentials are dense in L, so, to prove the

theorem, it su�ces to construct an element of Ha
� in B".b0/. To that end, let �0 be

the minimal length of a band of �0 WD �.Ja;b0
/, and let 0 be the minimal length of
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a gap of �0. Put "0 D min.0; 4"/ and �x a sequence2 of integers k1; k2; : : : � 2.

The k’s will control the periods of approximants viz. pn D knpn�1 for each

n 2 ZC. Now, let t0 be the minimal distance between consecutive k1-break points

of Ja;b0
and choose a sequence r1 > r2 > � � � > 0 so that

1
X

`D1

r` < 1� �: (10)

Now, we will inductively choose a sequence of positive numbers ."j /
1
j D1 and

a sequence of potentials .bj /
1
j D1 in such a way that the bands of �.Ja;bj

/ are very

long relative to the spectral gaps which are introduced in passing from bj �1 to

bj . First, for the sake of notation, denote by �j the length of the shortest band of

�j D �.Ja;bj
/, let j be the minimal gap length of �j , and denote by tj the minimal

distance between consecutive kj C1-break points of Ja;bj
. In this notation, we may

choose the sequences ."j /
1
j D1 and .bj /

1
j D1 so that the following properties hold:

� one has

"j < min
�j �1

5
;
"j �1

5
;
tj �1

2
;
rj tj �1

2rj C 5
; e�j �pj C1

�

(11)

for all j � 1;

� for every j 2 ZC, bj is .pj ; a/-generic;

� for all j , kbj � bj �1k1 < "j .

We begin by noticing several consequences of these conditions. First, the

condition "j < tj �1=2 means that the conclusion of Lemma 2.5 holds with

b D bj �1, b0 D bj , and " D "j . More precisely, pj �1 � 1 gaps of �j are contained

in "j -neighborhoods of gaps of �j �1, each "j -neighborhood of a proper kj -break

point of Ja;bj �1
contains exactly one gap of �j , and this is an exhaustive list of all

gaps of �j .

As a consequence of the preceding paragraph, the assumptions on bj , and

Lemma 2.5, we get �j � tj �1 � 2"j for each j � 1. In particular, using this

and the fourth condition in (11), we obtain

"j �
"j�j

tj �1 � 2"j
<
�j rj

5
(12)

for all j 2 ZC.

2 For this theorem, it is not necessary to use an arbitrary sequence of k’s. However, we will

need this freedom to prove Theorem 1.5, since not all periodic potentials �ber over an arbitrary

Cantor group.
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To establish the desired spectral homogeneity, we will prove the estimate

jBı.E/ \ �nj � ı
�

1�

n
X

`D1

r`

�

for all 0 < ı � �0; E 2 �n (13)

for all n 2 ZC. Fix n 2 ZC, E 2 �n, and 0 < ı � �0. If ı � �n, then Bı.E/

contains a subinterval of length ı which is completely contained in �n, which

implies

jBı.E/ \ �nj � ı:

Next, assume that �j < ı � �j �1 for some 1 � j � n. By Proposition 2.2, there

exists E0 2 �j �1 with jE �E0j � "j;n WD "j C � � � C "n. The key inequality in this

step is

"j;n C

n
X

`Dj

2"`

� ı

�`

C 1
�

< ı

n
X

`Dj

r`; (14)

which follows from (12), and ı > �j (hence ı > �` for every ` � j ). It is easy to

see that there exists an interval I0 of length ı � "j;n which contains E0 such that

I0 � �j �1 \ Bı.E/. Consequently, we have the following estimates:

jBı.E/ \ �nj � jI0 \ �nj

� jI0 \ �j �1j �

n
X

`Dj

jI0 \ .�`�1 n �`/j

D .ı � "j;n/ �

n
X

`Dj

jI0 \ .�`�1 n �`/j:

The third line uses I0 � �j �1. Obviously, I0 completely contains fewer than ı=�`

bands of �` for each j � ` � n, so, by Proposition 2.2 and Lemma 2.5, we have

.ı � "j;n/ �

n
X

`Dj

jI0 \ .�`�1 n �`/j � .ı � "j;n/ �

n
X

`Dj

2"`

� ı

�`

C 1
�

> ı
�

1�

n
X

`Dj

r`

�

� ı
�

1�

n
X

`D1

r`

�

;

where the penultimate line follows from (14). Thus, (13) holds for every n 2 ZC.
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Consequently, by (11) and our choice of "0, we have a limiting potential b1 WD

lim bn with

kb0 � b1k1 <

1
X

`D1

"` < "0

1
X

`D1

5�` D
"0

4
� ":

Moreover, with �1 WD �.Ja;b1
/, we have

jBı.E/ \ �1j � ı
�

1�

1
X

`D1

r`

�

> ı�

for all E 2 �1 and 0 < ı � �0 by (13) and Propositions 2.1 and 2.2. Thus, �1 is

�-homogeneous.

To see that �1 is a Cantor set, it su�ces to check that it is nowhere dense,

since it cannot have isolated points by general principles [15, Theorem 1]. To that

end, let U � R be an open interval, and choose n so that 4�A2=pn < jU j, where

A D max.1; kak1/. By Theorem A.1, U must contain an open subinterval G of

length n with G \ �n D ;, since bn is .pn; a/-generic. Notice that (11) implies

that

kJa;bn
� Ja;b1

k D kbn � b1k1 <

1
X

`DnC1

"` < n

1
X

kD1

5�k D
n

4
:

Consequently, if c denotes the center ofG, then c … �1 by Proposition 2.2. Thus,

�1 is nowhere dense, as desired.

Finally, purely absolutely continuous spectrum is an immediate consequence

of (11) and a discrete analog of the theorem of Pastur–Tkachenko due to Egorova,

see [9]. Speci�cally, (11) implies that

kJa;b1
� Ja;bn

k � e�n�pnC1 �

1
X

j D1

5�j < e�npnC1 :

Consequently, one obtains

lim
n!1

e
zCpnC1kJa;b1

� Ja;bn
k D 0

for every zC > 0, which implies that Ja;b1
has purely absolutely continuous

spectrum by [9]. �
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To prove Theorem 1.5, we need to introduce some more machinery. For the

remainder of the section, assume that � is a �xed monothetic Cantor group with

topological generator � . We say that f 2 C.�;R/ is a p-periodic sampling

function if f ı T p D f , where T W x 7! x C � . This is obviously equivalent

to the statement that s
f
! is a p-periodic sequence for every ! 2 �, where s

f
! is

de�ned as in (4). Since � is pro�nite and monothetic, there exists a sequence

�1 � �2 � � � � of compact �nite-index subgroups of � with the property that

1
\

j D1

�j D ¹0º:

Let nj denote the index of�j in�. The following proposition is not hard to prove;

compare [1, Section 3].

Proposition 3.1. Let f 2 C.�;R/. Then f is an nj -periodic sampling function if

and only if it descends to a well-de�ned function on the quotient�=�j . Moreover,

any periodic sampling function is de�ned over some quotient of the form �=�j

with j � 1. Consequently, if b is a periodic sequence with period p which divides

nj for some j , then b D b
f
0 for suitable f 2 C.�;R/, where b

f
0 .n/ D f .n�/, as

usual.

Proof of Theorem 1.5. Suppose " > 0 and f is an .nq ; a/-generic sampling func-

tion for some q � 1. As before, the generic sampling functions are dense, so

it su�ces to �nd an element of Ha
� in B".f /. Let b0 D s

f
0 as in (4). De�ne

kj D nqCj =nqCj �1 so that pj D nqCj , and choose pj -generic potentials bj ex-

actly as in the proof of Theorem 1.1. In particular, b1 D lim bj is such that Ja;b1

has all of the desired properties. By Proposition 3.1, there exist fj 2 C.�;R/ such

that bj D b
fj

0 for each j . It is not hard to see that f1 D lim fj exists and that

b
f1

0 D b1, so the theorem is proved. �

4. The CMV Case

In this section, we discuss the modi�cations to the proofs of Theorems 1.1 and 1.5

necessary to obtain Theorems 1.4 and 1.6. In essence, no extra work is needed – one

simply needs to �nd suitable replacements for the various pieces which comprise

the proofs and then re-run the entire machine.
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First, we replace Lebesgue measure on R with arc-length measure on @D, that

is, the pushforward of Lebesgue measure on Œ0; 2�/ under the map t 7! exp.i t /.

Equivalently, arc-length measure on @D can simply be thought of as one-dimen-

sional Hausdor� measure. Clearly, there is a version of the Hausdor� metric for

compact subsets of @D, also de�ned by the formula (5). Here, the "-neighborhoods

of sets should of course be thought of as "-neighborhoods with respect to the usual

metric on C. It is then trivial to modify Propositions 2.1 and 2.2 to �t this setting.

The precise statements follow.

Proposition 4.1. If .An/
1
nD1 and .Bn/

1
nD1 are sequences of compact subsets of @D

such that An ! A and Bn ! B with respect to the Hausdor� metric, then

jA \ Bj � lim sup
n!1

jAn \ Bnj;

where j � j denotes arc-length measure on @D.

Proposition 4.2. If U and V are unitary operators, then

dH.�.U /; �.V // � kU � V k:

One also has a version of Floquet theory for periodic CMV matrices; that is, if

˛ 2 DZ is p-periodic, then the spectrum of E D E˛ consists of p nonoverlapping

closed subarcs of @D, which can be found by examining a degree p-polynomial

D, just as in the Jacobi case. As before, we say that E is p-generic if �.E/

consists of precisely p connected components. In this setting, it is known that the

p-generic CMV operators are dense in the space of all p-periodic CMV operators

[20, Theorem 11.13.1]. There is a slight combinatorial di�erence here, namely, that

p-generic CMV matrices have p spectral gaps, not p � 1.

The analog of the band-length estimate in Theorem A.1 is proved in [14,

Lemma 5]. Speci�cally, if ˛ is p-periodic, then

jAj �
2�

p
(15)

for each band A � �.E˛/. Using Floquet theory for periodic CMV matrices, we

can de�ne k-break points of E in exactly the same way, namely, by partitioning

each band of the spectrum into k closed subarcs, each of which has harmonic

measure 1
kp

. One can then prove a straightforward modi�cation of Lemma 2.5.
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Lemma 4.3. Suppose E D E˛ is a p-generic CMV matrix and k � 2. For all

" > 0 su�ciently small, there exists ı > 0 such that if ˛0 is kp-generic and

k˛ � ˛0k < ı;

then, for each proper k-break point z of E, there exists a gap of �.E˛0/ entirely

contained within B".z/. Each of the remaining p gaps of �.E/ is contained in an

"-neighborhood of some gap of �.E/.

The proof is essentially the same as before, with mostly cosmetic variations

on the main theme. There is one minor annoyance in this case. Speci�cally, in the

Jacobi case, we (implicitly) used the obvious identity

kJa;b � Ja;b0k D kb � b0k1

when we invoked Proposition 2.2, and this does not translate directly to the CMV

context. Instead, one has

kE˛ � E˛0k2 � 72k˛ � ˛0k1; (16)

by [19, (4.3.11)]. This simply introduces some constants which have no qualitative

impact on the structure of the proof. With this variant of Lemma 2.5 in hand, the

proofs from Section 3 can be rerun with minor changes.

Appendix. A band length estimate for periodic Jacobi operators

In this appendix, we provide a proof of a band length estimate for periodic Jacobi

operators which is analogous to (15) and [1, Lemma 2.4(1)]. Speci�cally, we have

the following upper bound.3

Theorem A.1. Suppose J is a p-periodic Jacobi matrix, and let

A D max.1; a1; : : : ; ap/:

The Lebesgue measure of any band of �.J / is bounded above by 2�A2

p
.

In order to prove the desired band length estimate, we need to discuss the

integrated density of states for periodic Jacobi operators. In particular, we will

elucidate a point of view on the IDS of periodic operators discussed in [2]. This is

3 During the review of this paper, L. Golinskii kindly pointed out the work of Shamis and

Sodin, which deduces a superior estimate of this type [18, Theorem 1.2].
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a special case of general, powerful formulas for absolutely continuous spectrum;

see [8]. The material in this appendix is standard and well-known within the

community, but we opted to present it here, since [1] and [2] do not work out the

details explicitly, and these references work exclusively in the discrete Schrödinger

setting, where a � 1 (except [8], which also works out a similar framework for

continuum Schrödinger operators).

In general, for a Jacobi matrix J , the corresponding integrated density of states,

k, is de�ned by the limit

k.E/ D lim
N !1

1

2N C 1
#¹� 2 �.JN / W � � Eº; (17)

whenever the limit exists, where JN denotes the restriction of J to the interval

Œ�N;N � with Dirichlet boundary conditions, i.e.

JN D

0

B

B

B

B

B

B

@

b.�N/ a.�N/

a.�N/ b.�N C 1/ a.�N C 1/

: : :
: : :

: : :

a.N � 2/ b.N � 1/ a.N � 1/

a.N � 1/ b.N/

1

C

C

C

C

C

C

A

:

It is a well-known fact that the the limit on the right-hand side of (17) exists

wheneverJ is ap-periodic Jacobi matrix. Using Floquet theory, one can explicitly

describe k in terms of the discriminant, D. The following theorem is standard;

see [21, Theorem 5.4.5].

Theorem A.2. Suppose J is a p-periodic Jacobi matrix, with corresponding

discriminant D and integrated density of states k. Then k is di�erentiable on

on the interior of the spectrum. We have

dk

dE
D

1

�p

ˇ

ˇ

ˇ

ˇ

d�

dE

ˇ

ˇ

ˇ

ˇ

; (18)

where � D �.E/ is chosen continuously so that

2 cos.�/ D D.E/ (19)

for E 2 �int.H/. In particular, if B is any band of the spectrum,

Z

B

dk.E/ D
1

p
: (20)



220 J. Fillman

Recall that any A 2 SL.2;R/ induces a linear fractional transformation on the

upper half-plane CC D ¹z 2 C W Im.z/ > 0º via

�

a b

c d

�

� z D
az C b

cz C d
:

For � 2 R, de�ne

R� D

�

cos.�/ � sin.�/

sin.�/ cos.�/

�

Obviously,

SO.2/ D ¹R� W 0 � � < 2�º D ¹R 2 SL.2;R/WR � i D iº: (21)

Lemma A.3. A matrix A 2 SL.2;R/ satis�es j tr.A/j < 2 if and only if its action

on CC has a unique �xed point. Whenever j tr.A/j < 2, there existsM 2 SL.2;R/

such that

MAM�1 D R� 2 SL.2;R/;

where 2 cos.�/ D tr.A/. Moreover, such a conjugacy is unique modulo left-

multiplication by an element of SO.2/.

Proof. This is a consequence of straightforward calculations. �

Now, for E in the interior of a band, jD.E/j < 2, so the monodromy matrix is

conjugate toR� , where � satis�es 2 cos.�/ D D.E/. From Theorem A.2, we know

that the derivative of the integrated density of states can be related to jd�=dEj,

so we would like to �nd some other way to recover this derivative. By way of

motivation, suppose � is a smooth function of t . It is then easy to check that

R�1
�

dR�

dt
D

�

0 �d�=dt

d�=dt 0

�

:

This motivates us to de�ne the anti-trace of a 2 � 2 matrix by

atr

�

a b

c d

�

D c � b:

Like the usual trace, the anti-trace is a linear functional in the sense that

atr.AC �B/ D atr.A/C � atr.B/

for all � 2 R and all A;B 2 R
2�2. However, unlike the trace, the anti-trace is

not cyclic, i.e., one can have atr.AB/ ¤ atr.BA/. Despite this, we still have the

following weakened variant of cyclicity.
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Lemma A.4. If R 2 SO.2/ and A 2 R
2�2,

atr.R�1AR/ D atr.A/: (22)

Proof. This is an easy calculation. �

Lemma A.5. Suppose I is an open interval and ˆW I ! SL.2;R/ is a smooth

map such that j tr.ˆ.t//j < 2 for all t 2 I . Under these conditions, there exists a

smooth choice of M 2 SL.2;R/ such that

MˆM�1 D R� ; (23)

where 2 cos.�/ D tr.ˆ/. Moreover, the angle � can be chosen to be a smooth

function of t ; in this case, it satis�es

d�

dt
D
1

2
atr

�

Mˆ�1 dˆ

dt
M�1

�

;

Proof. To construct the conjugacy M , �rst notice that the unique �xed point

z D z.t/ 2 CC of ˆ varies smoothly with t . We then de�ne

M.t/ D .Im.z.t///�1=2

�

1 �Re.z.t//

0 Im.z.t//

�

;

Evidently, the linear fractional transformation corresponding to MˆM�1 �xes i ,

which implies MˆM�1 2 SO.2/. By cyclicity of the trace, MˆM�1 must be

of the claimed form. Di�erentiating the relation (23) using the product rule, one

obtains

dM

dt
ˆM�1 CM

dˆ

dt
M�1 CMˆ

dM�1

dt
D
dR

dt
D R

�

0 �d�=dt

d�=dt 0

�

:

Multiply on the left by R�1 and simplify using (23) to obtain

R�1dM

dt
M�1RCMˆ�1 dˆ

dt
M�1 CM

dM�1

dt
D

�

0 �d�=dt

d�=dt 0

�

: (24)

By (22), linearity of the anti-trace, and the product rule,

atr
�

R�1dM

dt
M�1RCM

dM�1

dt

�

D atr
�dM

dt
M�1 CM

dM�1

dt

�

D atr
� d

dt
.MM�1/

�

D 0:

Thus, (23) follows by taking the anti-trace of (24). �
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We can use the preceding lemma to �nd another way to view the integrated

density of states of a periodic Jacobi operator via Hilbert-Schmidt norms of

conjugacies between monodromy matrices and rotations. Speci�cally, suppose

J is p-periodic and denote

Tj D
1

a.j /

�

E � b.j / �1

a.j /2 0

�

; Aj D Tj : : : T1; ĵ D Aj �1ApA
�1
j �1;

for j � 1, where we adopt the convention A0 D I in the j D 1 case of the

�nal de�nition and suppress the dependence of all quantities on E for notational

simplicity. For E 2 �int.H/, choose Mj 2 SL.2;R/ such that Mj ĵM
�1

j 2

SO.2/.

Theorem A.6. Let J be a p-periodic Jacobi operator with corresponding inte-

grated density of states k, and put

A D max.a1; : : : ; ap; 1/:

We have

dk

dE
�

1

4�A2p

p
X

j D1

kMj k2
2

on �int.H/, where kMk2 D
p

tr.M�M/ denotes the Hilbert-Schmidt norm of M .

Proof. First, notice that kMj k2 does not depend on the choice of conjugacy, for

any other conjugacy from ĵ to a rotation must take the form OMj for some

O 2 SO.2/ by Lemma A.3. Since we may take Mj to be given by the explicit

formula

Mj D
�

Im.zj /
��1=2

�

1 �Re.zj /

0 Im.zj /

�

we see that

kMj k2
2 D

1C jzj j2

Im.zj /
;

where zj is the unique �xed point of the action of ĵ on CC. Notice that

Tj zj D zj C1 and hence Mj C1TjM
�1

j �xes i , so Mj C1TjM
�1

j DW Qj 2 SO.2/.

One can easily compute

T �1
j

dTj

dE
D

�

0 0

�1 0

�

;

Thus, by the product rule, we have

ˆ�1
1

dˆ1

dE
D

p
X

j D1

A�1
j �1

�

0 0

�1 0

�

Aj �1:
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With Rj D Qj : : :Q1 and R0 D I , we have

ˆ�1
1

dˆ1

dE
D

p
X

j D1

M�1
1 R�1

j �1Mj

�

0 0

�1 0

�

M�1
j Rj �1M1 (25)

To �nd the rate of change of � with respect to E, we apply Lemma A.5 and

compute

d�

dE
D
1

2
atr

�

M1ˆ
�1
1

dˆ1

dE
M�1

1

�

D
1

2
atr

� p
X

j D1

Mj

�

0 0

�1 0

�

M�1
j

�

D �
1

2

p
X

j D1

jzj j2

Im.zj /
:

The second line follows from (25) and Lemma A.4, and the �nal line is a straight-

forward computation from the explicit form of Mj . An easy calculation using

Tj zj D zj C1 reveals

Im.zj C1/ D Im
�E � bj

a2
j

�
1

a2
j zj

�

D
Im.zj /

a2
j jzj j2

;

which implies

ˇ

ˇ

ˇ

ˇ

d�

dE

ˇ

ˇ

ˇ

ˇ

D
1

2

p
X

j D1

jzj j2

Im.zj /

D
1

4

p
X

j D1

� 1

a2
j �1Im.zj /

C
jzj j2

Im.zj /

�

�
1

4A2

p
X

j D1

1C jzj j2

Im.zj /

D
1

4A2

p
X

j D1

kMj k2
2:

Thus, the conclusion of the Theorem follows from Theorem A.2. �
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With this fact in hand, the desired estimate on the bands is easy.

Proof of Theorem A.1. Let B denote a band of �.J /. Using (20) and Theo-

rem A.6, one has

1

p
D

Z

B

dk.E/ �

Z

B

� 1

4�A2p

p
X

j D1

kMj k2
2

�

dE �
jBj

2�A2
;

where we have used the bound kMk2
2 � 2 which holds for any M 2 SL.2;R/ (by

Cauchy–Schwarz) in the �nal inequality. The theorem follows. �
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