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Abstract. We study multi-particle interactive quantum disordered systems on a polynomi-

ally growing countable connected graph .Z;E/. The main novelty is to give localization

bounds uniform in �nite volumes (subgraphs) in ZN as well as for the whole of ZN . Such

bounds are proved here by means of a comprehensive �xed-energy multi-particle multi-

scale analysis. We consider – for the �rst time in the literature – a discreteN -particle model

with an in�nite-range, sub-exponentially decaying interaction, and establish (1) exponen-

tial spectral localization, and (2) strong dynamical localization with sub-exponential rate

of decay of the eigenfunction correlators with respect to the natural symmetrized distance

in the multi-particle con�guration space.
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1. Introduction. The model and results

Until recently, the rigorous Anderson localization theory focused on single-

particle models. (In the physical community, notable papers on multi-particle

systems with interaction appeared as early as in 2005–2006; see [25, 6].)

Initial rigorous results on multi-particle lattice localization for a �nite-range

two-body interaction potential were presented in [16, 17, 18] and [4, 5]; contin-

uous models in the Euclidean space have been considered in [8, 15]. In these

papers, both Spectral Localization (SL) and Dynamical Localization (DL) have

been established. A considerable progress was made in [27, 28], with the help of

an adapted bootstrap variant of the Multi-Scale Analysis (MSA) developed in the

earlier works [23, 24]. The resulting bootstrap multi-particle MSA (MPMSA)

was applied in [27, 28] to multi-particle systems in the lattice and in the Eu-

clidean space, respectively. More recently, a very important step was made in

the paper [22] which extended the multi-particle Fractional-Moment Method

(MPFMM) from the lattice case [4, 5] to the continuous one, with an in�nite-range

two-body interaction potential. As usual, (MP)FMM provides exponential1 decay

bounds upon the eigenfunction correlators (EFCs), while the bootstrap MPMSA

achieves only a sub-exponential decay of the EFCs at large distances.

The main motivation for the present work comes from the fact that in all above-

mentioned mathematical works the decay bounds on the eigenfunctions and EFCs

were proved in the so-called Hausdor� distance (HD) which is actually a pseudo-

distance in the multi-particle con�guration space. In the context of the multi-

particle Anderson localization, the HD appears explicitly in [4, 5] (as well as in

[27, 28]), while in [16, 17, 18] it was used implicitly, through the notion of separated

cubes. The point is that there are arbitrarily distant loci in the multi-particle space

which might support quantum tunneling between them, and the HD bounds do

not re�ect this possibility. As a result, the SL and DL have been proved so far in

an in�nitely extended physical con�guration space, but some tunneling processes

could not be completely ruled out in arbitrarily large, yet bounded domains. The

existence of e�cient multi-particle localization estimates – even for a bounded

number of particlesN � 3 – remained a challenging open question. These aspects

of the rigorous multi-particle localization theory were analyzed by Aizenman and

Warzel in [4, 5]; a partial solution was given in [10, 13, 14]. The mathematical

core of the problem is an eigenvalue concentration (EVC) bound for two distant

1 In Ref. [22], exponential decay of the EFC is proved for the models in Rd with exponential

decay of the interaction potential U.r/; sub-exponential decay of U.r/ results in sub-exponential

decay of the EFC.
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loci in the multi-particle space. In the current paper we employ a probabilistic

result from [14] and prove a suitable EVC bound (cf. Theorem 2.2) for a class

of su�ciently regular marginal probability distributions of IID external random

potentials. It has to be emphasized that the problem in question appears only for

the number of particles N � 3, and the proof of localization for two-particle

systems given in [17] operates with the (symmetrized) norm-distance in the two-

particle space. As a result, the two-particle localization holds also in �nite (but

arbitrarily large) regions of the physical con�guration space, under mild regularity

conditions upon the random potential; see [19].

In the present paper we focus on an interactive N -particle Anderson model,

on a countable connected graph .ZIE/ with a polynomially growing size of a ball

when the radius increases to in�nity. The main method used is a new variant of

the MPMSA. The results are summarized as follows.

� We prove uniform localization bounds, in terms of decay of eigenfunctions

(EFs) and eigenfunction correlators (EFCs) valid for �nite or in�nite sub-

graphs of ZN , including the whole ZN . The uniform decay is established

with respect to the natural symmetrized max-distance in the multi-particle

con�guration space, and this makes the new bounds suitable for applica-

tions to physical models where quantum particles evolve in a sample of disor-

dered media of �nite size. Previously published results provided less e�cient

bounds in �nite volumes (for N � 3).

� As in [22], we treat systems with in�nite-range interaction potentials (but

in a countable graph instead of Rd ). Speci�cally, we consider a two-body

potential decaying at a large distance r as e�r�

where � > 0. Surprisingly,

the SL holds here with an exponential rate (e�mr , m > 0) even if 0 < � < 1.

Note that an exponential decay of EFs was proved in [11] under the assumption

of decay of the interaction with rate e�r�
, but only for � 2 .0I 1� su�ciently

close or equal to 1. Paper [22] treats the EFC decay (in continuous models)

in several cases, including the following:

– the interaction potential decays at an exponential rate e�ar ; in this case

the EFCs also decay exponentially fast;

– the interaction potential decays sub-exponentially, as e�r�

with � 2
.0; 1/; in this case the EFCs also decay sub-exponentially.

We present competing bounds for the EFCs (in the discrete model). As was

said, in contrast to Ref. [22], we also establish exponential decay of the EFs,

thanks to the logical independence of the (exponential) decay analysis of the EFs

from that of the EFCs.
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The rest of the paper is devoted to the proof of Theorem 1.1. In particular, in

Section 2 we establish the crucial ingredient of the proof: eigenvalue concentra-

tion (EVC) bounds. The bulk of the work is about the proof of assertion (A): it

is carried in Section 3. The main strategy here is the induction on the number of

particlesN , initially developed in [17, 18]. Each stepN �1 N ,N D 2; : : : ; N �,

employs the multi-scale analysis of multi-particle Hamiltonians. Unlike Ref. [18],

in Section 3, we make use of a more e�cient scaling technique, essentially going

back to the work [23] and recently adapted in Ref. [27] to multi-particle systems.

However, the scaling scheme used in Ref. [18] (and going back to [20]) is required

in Section 4 to prove exponential decay of the EFs.

At several points, our strategy deviates from the bootstrap MPMSA developed

in [27]. In particular, we avoid the actual energy-interval MSA stage of the boot-

strap and employ some general functional-analytic results to derive the energy-

interval bounds (more di�cult to prove directly) from their simpler, �xed-energy

counterparts. Speaking informally, we carry out (independently) two separate

scaling analyses analogous (but not identical) to two of the four phases of the

bootstrap method. We do not perform, either, several geometrical optimizations

making the bootstrap possible. This results in a shorter proof of sub-exponential

decay of the EFCs, although we have to emphasize that the complete bootstrap

scheme would undoubtedly result in stronger probabilistic estimates. Note also

that the base of induction (N D 1) requires a proof of localization for single-

particle systems on graphs with a polynomial growth of the size of a ball with the

radius. The required estimates were proved in Ref. [12] following the techniques

from Ref. [23].

1.1. The multi-particle Hamiltonian. Consider a �nite or locally �nite, con-

nected, non-oriented graph .Z;E/, with the vertex set Z and the edge set E.

(For brevity, we often refer to Z only.) We assume that E does not include cyclic

edges x $ x and denote by d. � ; � / the graph distance on Z: d.x; y/ equals the

length of the shortest path x! y over the edges. (By de�nition, d.x; x/ D 0.)

We assume that graph .Z;E/ belongs to a class G.d; Cd / for some d; Cd > 0,

meaning that the size of a ball B.x; L/ WD ¹yW d.x; y/ � Lº is polynomially

bounded:

sup
x2Z

]B.x; L/ � CdL
d ; L � 1: (1.1)

Notice that the property (1.1) is inheritable by inclusion, so any connected sub-

graph of Z 2 G.d; Cd /, �nite or in�nite, also belongs to the class G.d; Cd /.

Physically, Z represents the con�guration space of a single quantum particle.
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The con�guration space of N distinguishable particles is the graph .ZN ;EN /,

where ZN is the Cartesian power, and the edge set EN is de�ned as follows. Given

two vertices, x D .x1; : : : ; xN /, y D .y1; : : : ; yN / 2 ZN , the edge x $ y exists if,

for some j D 1; : : : ; N , there exists an edge xj $ yj in E while for i ¤ j we have

xi D yi . We refer to x and y as N -particle con�gurations (brie�y, con�gurations)

on Z and use the same notation d.x; y/ for the graph distance on ZN .

Apart from the distance d.� ; �/ on ZN , it will be convenient to use the max-

distance � and the symmetrized max-distance �S, de�ned as follows:

�.x; y/ D max
1�j �N

d.xj ; yj /I �S.x; y/ D min
�2SN

�.x; �.y//: (1.2)

Here the symmetric group SN acts on ZN by permutations of the coordinates.

In the case where Z D Z
d , one obtains ZN Š .Zd /N , �.x; y/ D jx � yj1 D

maxi d.xi ; yi/, d.x; y/ D jx � yj1 D
P

i jxi � yi j.
Next, B.N /.x; L/ denotes the ball of radius L in ZN centered at x D .x1; : : : ;

xN / in the metric � (below often called an N -particle ball):

B.N /.x; L/ WD ¹yW�.x; y/ � Lº D
N�

j D1
B.xj ; L/: (1.3)

It will be often convenient to omit the superscriptN and use the boldface notation:

Z D ZN , E D EN , B.x; L/ D B.N /.x; L/, etc.

The graph Laplacian �Z on Z is given by

.�Zf /.x/ D
X

hx;yi
.f .y/ � f .x// D �nZ.x/f .x/C

X

hx;yi
f .y/; x 2 ZI (1.4)

here nZ.x/ D ]¹yW d.x; y/ D 1º, and hx; yi stands for a pair .x; y/ 2 Z � Z with

d.x; y/ D 1. Similarly, the Laplacian on Z is de�ned by

.�Zf /.x/ D
X

1�j �N

.�
.j /
Z
f /.x/

D
X

hx;yi
.f .y/� f .x//

D �nZ.x/f .x/C
X

hx;yi
f .y/; x 2 Z:

(1.5)

Here �
.j /
Z

denotes the Laplacian acting on the j th component of x, hx; yi stands

for a pair .x; y/ 2 Z � Z with d.x; y/ D 1, and nZ.x/ D ] ¹yW d.x; y/ D 1º.
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For ƒ � Z, ƒ � Z, the Laplacians �ƒ and �ƒ (with Dirichlet’s boundary

condition) are introduced as follows:

�ƒ D 1ƒ�Z1ƒ � `
2.ƒ/; �ƒ D 1ƒ�Z1ƒ � `

2.ƒ/:

The N -particle Hamiltonian H
.N /
ƒ

D H
.N /
ƒ
.!/ in a domain ƒ � Z acts as

.H
.N /
ƒ
‰/.x/ D .��ƒ‰/.x/C g

X

1�j �N

V.xj I!/‰.x/

C
X

1�i<j �N

U.d.xi ; xj //‰.x/; x D .x1; : : : ; xN / 2 ƒ:
(1.6)

Here V represents an external potential given by a random �eld V WZ � � ! R

relative to a probability space .�;B;P/, andU a two-body interaction; see below.

The constant g 2 R is referred to as the coupling amplitude. Under the imposed

conditions, with probability one, the operator H
.N /

ƒ
.!/ is bounded and self-adjoint

in `2.ƒ/.

As usual, the complement of a subset A � A0, with A0 clearly identi�ed from

the context, will be often denoted by A{.

1.2. The assumptions and results. Our goal is to prove that, for su�ciently

large values of the disorder amplitude jgj, the (random) eigenfunctions of H
.N /
ƒ

in

`2.ƒ/ feature strong decay properties, stated in appropriate terms. We stress that

we establish the threshold for jgj uniformly in ƒ for a bounded range of values

of N . Formal statements are given in Theorem 1.1 below.

First, introduce the following condition for a probability measure � on R.

(V1) The probability measure � has bounded support, supp � D ŒaV ; bV �, and

admits smooth probability density p� satisfying the following conditions:

0 <
N
p � p�.t / � Np < 1; jp0

�.t /j � Cp < 1; for all t 2 .aV ; bV /:

(1.7)

Our condition upon V is the following one.

(V2) The random �eld V WZ �� ! R, relative to a probability space .�;B;P/,

is IID, with marginal probability measure of the form � D �1 � �2, where

supp �2 � R is bounded and �1 ful�lls the condition (V1).

A prototypical example is the uniform distribution in Œ0; 1�; here �1 D
Unif.Œ0; 1�/, �2 D ı0. One can also take the convolution powers � D ��n

1

of �1 D Unif.Œ0; 1�/; for n � 2, the density of � vanishes at the edges:

p.t/ D O.tn�1/, p.t/ D O..n� t /n�1/.
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Remark 1.1. Our methods apply also to the Gaussian distribution �1 and its

convolutions� D �1��2 with arbitrary probability measures�2; in this particular

case, some auxiliary estimates become slightly simpler. The basis for such an

extension is the main result of Ref. [9]. On the other hand, the spectral reduction

presented in Sect. 3.3 requires some additional arguments in the case of unbounded

random potentials; this explains the condition of boundedness of supp �2 in (V2).

We omit the adaptation to unbounded potentials only for the sake of brevity.2

The expectation relative to .�;B;P/ is denoted by EŒ � �.
We assume the following condition upon U .

(U) There exist �; C D CU 2 .0;C1/ such that

jU.r/j � C e�r�

; r � 1: (1.8)

The values � > 1 do not give rise to a qualitatively faster decay of EFCs and EFs

than for � D 1. Indeed, one cannot achieve the decay of the EFCs faster than

exponential, established by Aizenman and Warzel [4] for compactly supported

interaction potentials.

Let B1 denote the set of all continuous functions f WR ! C with kf k1 � 1.

The results of this paper are presented in Theorem 1.1.

Theorem 1.1. Assume conditions (V2) and (U) and �x an integer N � � 2. There

exists � D �.�; N �/ 2 .0; �/ with the following property. For any � > 0, there is a

value g0 D g0.N
�; �/ > 0 such that for all N D 1; : : : ; N � and jgj � g0.N

�; �/
the following conditions are satis�ed

(A) There exist a constant C D CEFC > 0 such that for all x; y 2 Z,

EŒ sup
f 2B1

jh1y j f .H.N /
Z
/ j 1xij � � C e��.�S.x;y//�

: (1.9)

(B) With probability one, H
.N /
Z
.!/ has pure point spectrum,3 and all its eigen-

functions ‰j .xI!/ decay exponentially fast: there exists a nonrandom num-

ber m D mN > 0 such that for all ‰j there exist a constant Cj D Cj .!/

and a site yxj D yxj .!/ 2 Z (a localization center) such that

j‰j .x; !/j � Cj .!/ e�m�S.x;yxj /; x 2 Z: (1.10)

2 An example of such adaptation, in a slightly di�erent situation, is given in our book [19,

Sect. 2.5.3], where we assumed a power-law decay of the the tail probabilities: P¹jV .0I !/j > tº
� Ct�a, a > 0.

3 Naturally, this statement is trivial for a �nite graph Z. The assertion (B) addresses essen-

tially the case of an in�nite graph, albeit our probabilistic bounds on the EFs are useful for �nite

graphs, too.
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The conventional form of strong dynamical localization follows from (1.9) by

taking the functions f D ft W� 7! e�it�, t 2 R.

Compared with [4, 18, 27], the equations (1.9)–(1.10) show the decay in a more

suitable form involving the metric �S rather than the Hausdor� distance. In (1.10),

�S can be replaced by �, thanks to the random factor Cj .!/. In (1.9), using �

instead of �S would result in a factor C D C.x/. We stress that �S is a physically

natural distance in Z
N.

I Some comments are in order here. The bootstrap MPMSA developed by Klein

and Nguyen [27] allows one to prove the bound of the form

EŒ sup
f 2B1

jh1y j f .H.N /
Z
/ j 1xij � � C e��.dH.x;y//�

; (1.11)

where dH is the Hausdor� distance in Z
N de�ned as follows: with x D .x1; : : :,

xN /, y D .y1; : : : ; yN /, let …x WD ¹x1; : : : ; xN º, …y WD ¹y1; : : : ; yN º, and

dH.x; y/ D maxŒmax
i

dist.xi ;…y/; max
i

dist.yi ;…x/�:

In other words, this is the usual Hausdor� distance between the sets…x and…y in

the metric space .Z; d/. For the �nite-range interactions, Aizenman and Warzel [4]

proved even exponential decay bounds, also in the Hausdor� distance. But the

problem with this pseudo-distance can be seen in the formula

dH.x; y/ � �S.x; y/� minŒdiam…x; diam…y�;

which suggests that dH.x; y/ could be small even for the points x; y with large

values of �S.x; y/. Indeed, let N D 3, d D 1, x D .0; 0; L/ and y D .0; L; L/.

Then �S.x; y/ ! C1 asL ! 1, while dH.x; y/ � 0. Furthermore, taking in this

example Z D ZL D Œ0; L� \ Z
1, we see that the localization bounds established

in terms of the Hausdor� distance cannot rule out the quantum particle transfer

processes between the points 0 and L in arbitrarily large but �nite domains ZL in

the physical space. J

The rest of the paper is devoted to the proof of Theorem 1.1. In particular,

in Section 2 we establish an important ingredient of the proof: the eigenvalue

concentration (EVC) bounds. The bulk of the work is about the proof of asser-

tion (A): it is carried in Section 3. The main strategy here is the induction on the

number of particles N , initially developed in [17, 18]. Each step N � 1  N ,

N D 2; : : : ; N �, employs the multi-scale analysis of multi-particle Hamiltonians.

Unlike Ref. [18], we make use of a more e�cient scaling technique, essentially

going back to the deep work by Germinet and Klein [23] and recently adapted by

Klein and Nguyen [27] to the multi-particle systems.
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As was already said, the base of induction (N D 1) requires a proof of

localization bounds for single-particle systems on graphs of polynomial growth

of balls, and we cannot simply refer to [27] where, formally speaking, only the

lattice systems (on Z
d , d � 1) were studied (this is of course a pure formality).

The required estimates for the 1-particle Anderson models on graphs were proved

in Ref. [12], where it was emphasized that the main scaling technique was due to

Germinet and Klein [23]. In fact, our arguments also cover the case N D 1 (and

become simpler in this situation).

The proof of assertion (B) is contained in Section 4; it makes use of a number

of facts established in other sections. This proof is based on a modi�ed version

of the MPMSA presented in [19]. In particular, the case of the two-body potential

U satisfying (U) is treated as a small perturbation of a �nite range interaction

(obtained by a suitable truncation of U ). Some technical proofs are presented

in the Appendix. Others repeat arguments published elsewhere (sometimes with

minor changes) and are omitted.

From here on, we �x a positive integer N � � 2 and consider N D 1; : : : ; N �

without stressing it every time again. The dependence of various quantities upon

N � is not emphasized but of course is crucial throughout the whole construction.

The analysis (which we omit from our paper) of the formulae for the key exponents

mN , �N andP.N/ given in (3.2) and (4.1) shows that in the strong disorder regime,

the disorder amplitude jg.N/j required for the N -particle localization is to be of

order of eabN
, with some a > 0; b > 1.

2. Eigenvalue concentration bounds

2.1. The resolvent inequalities. Singular and resonant sets. The main tool in

the proof of Theorem 1.1 are the decay properties of the Green functions (GFs) of

the operator H
.N /

ƒ
, .x; y/ 2 ƒ � ƒ 7! Gƒ.x; yIE/; for a �nite set ƒ � Z and

E 62 †.H
.N /
ƒ
/; here †.H

.N /
ƒ
/ is the spectrum of the �nite-dimensional operator

H
.N /
ƒ

, i.e., the collection of its eigenvalues (EVs) counting multiplicity. As usual,

Gƒ.x; yIE/ denotes the matrix entry of the resolvent Gƒ.E/ D G
.N /
ƒ
.EI!/ in

the delta-basis:

Gƒ.x; yIE/ D h1x; .H
.N /
ƒ

�EI/�11yi;

(here I is the identity operator and h� ; �i stands for the canonical scalar product
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in `2.ƒ/), and the base for the argument is the Geometric Resolvent Inequality

(GRI): for any subsetƒ0 � ƒ and con�gurations x 2 ƒ0, y 2 ƒ nƒ0,

jGƒ.x; yIE/j �
X

hu;vi2@ƒƒ0

jGƒ0.x; uIE/j jGƒ.v; yIE/j : (2.1)

Here @ƒƒ
0 stands for the edge-boundary of ƒ0 relative to ƒ:

@ƒƒ
0 D ¹.u; v/W u 2 ƒ0; v 2 ƒ nƒ0; d.u; v/ D 1º:

Note that for Z 2 G.d; Cd /, one has a crude upper bound ] @B.N /.x; L/ �
CZ;NL

Nd , with some CZ;N depending upon d; Cd ; N . The inner boundary @�ƒ
is determined by

@�ƒ D ¹u 2 ƒW�.u;Z nƒ/ D 1º:

The distance dist.� ; �/ below refers to the standard metric on the line R.

De�nition 2.1. Given E 2 R, ˇ 2 .0; 1/, ı 2 .0; 1� and m > 0, an N -particle ball

B.N /.x; L/ � Z is called

� .E; ˇ/-resonant (.E; ˇ/-R, in short), if

dist.†.H
.N /

B.N/.x;L/
/; E/ < 2e�Lˇ

; (2.2)

and .E; ˇ/-nonresonant (.E; ˇ/-NR), otherwise;

� .E; ı; m/-nonsingular (.E; ı; m/-NS), if

max
y2@�B.N/.x;L/

jG.N /

B.N/.x;L/
.x; yIE/j � .CZ;NL

Nd /�1e�mLı

; (2.3)

and .E; ı; m/-singular (.E; ı; m/-S), otherwise.

Here and below, the implicit constant CZ;N is used in the quantities like

CZ;NL
Nd to avoid more cumbersome expressions of the form

sup
x2ZN

]@B.N /.x; L/:

Typically, the properties .E; ı; m/-NS and .E; ı; m/-S will be used with m D
mN where N 7! mN varies in a certain speci�ed manner (see (3.2) and (4.1)).

2.2. One- and two-volume EVC bounds. We start with a one-volume EVC

bound that is an analog of the well-known Wegner estimate [30], used in the proof

of Theorems 3.1 and 4.1:
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Theorem 2.1. Fix ˇ 2 .0; 1/. Under the assumption (V2), there exists a constant

C D C.ˇ; V / such that for all E 2 R, 1 � N � N �, x 2 Z and integer L > 1,

sup
E2R

P¹ B.N /.x; L/ is .E; ˇ/-R º � C e�Lˇ=2

: (2.4)

The proof is omitted: it repeats the one given in [19, Theorem 3.4.1]. Note also

that under the assumption of existence and boundedness of the marginal prob-

ability density, the one-volume multi-particle EVC bound with optimal volume

dependence, as in the original Wegner bound, was proved by Kirsch [26]. Un-

der a more restrictive assumption of analyticity of the probability density, it was

established in our earlier works; cf. [19] and references therein. In [19, Theorem

3.4.1], the assertion of Theorem 2.1 is actually inferred from a much more general

EVC bound valid for arbitrary continuous (not necessarily absolutely continuous)

marginal probability distributions, but having a non-optimal volume dependence.

A suitable one-volume EVC estimate is su�cient for the proof of fast decay

of the Green functions which, owing to a result by Martinelli and Scoppola [29],

implies a.s. absence of a.c. spectrum.

A (new) two-volume EVC bound is the subject of Theorem 2.2 below; this is

the crucial statement making possible the e�cient, uniform decay bounds on the

EF correlators with respect to the symmetrized max-distance.

Given an integer R � 0, we will say that two balls B.N /.x; L/, B.N /.y; L/ are

R-distant i�

�S.x; y/ � R: (2.5)

Theorem 2.2. Under the assumption (V2), there exist some constants A D
A.N; d/, C.V;N; d/ 2 .0;C1/ such that for all s > 0, integer L > 1 and any

pair of 4NL-distant balls B.N /.x; L/, B.N /.y; L/, the spectra †x WD †.H
.N /

B.x;L/
/,

†y WD †.H
.N /

B.y;L/
/ obey

P¹dist.†x; †y/ � sº � C LAs2=3: (2.6)

Remark 2.1. For the Gaussian distribution, the results of Ref. [10] imply a

stronger version of Theorem 2.2, with the RHS of (2.6) of the form CLAs, i.e.,

with optimal s-dependence.

Remark 2.2. While the “one-volume” bound of the form (2.4) can indeed be

quali�ed as an eigenvalue concentration bound, extending the celebrated Weg-

ner estimate [30], its “two-volume” counterpart (2.6) is actually an eigenvalue

comparison bound, measuring the distance between the spectra of two possibly
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correlated random operators. The non-triviality of the bound (2.6) for the pairs of

balls BL.x/, BL.y/, distant in �S but not in dH, resides in the fact that the respec-

tive operators HBL.x/ and HBL.y/ can be stochastically correlated in a very strong

way: every value of the random potential V a�ecting HBL.x/ a�ects also HBL.y/,

and vice versa. For the pairs BL.x/, BL.y/ su�ciently distant in the Hausdor� dis-

tance dH, one of the operators HBL.x/, HBL.y/ is not a�ected by some sub-sample

of the random potential, a�ecting the other one (cf. [17, 18], [27, 28]).

Klein and Nguyen [27, 28] proved both the one-volume and two-volume multi-

particle EVC bound with optimal volume dependence, but their analog of Theo-

rem 2.2 is established for the balls separated in Hausdor� distance and not just

in the symmetrized distance �S. This is why we need Theorem 2.2 replacing [17,

Theorem 2]. Both dH and �S are pseudo-distances in the con�guration space of

N > 1 distinguishable particles (considered in the present paper), but �S becomes

a bona �de metric in the physically more relevant case of indistinguishable quan-

tum particles. Notice that the notions of the Hausdor� and symmetrized distance

become equivalent in the particular case where N D 2. The crucial di�erence

between them appears only for N � 3, thus settings apart the class of two-particle

Anderson models.

Proof. The proof of Theorem 2.2 will be obtained by collecting the assertions

of Lemmas 2.1, 2.3, and 2.4 (in the latter, # 0 D # 00 D 2=3 by Lemma 2.1) and

Corollary 2.2. �

Given a random �eld V.xI!/, x 2 Z, and a �nite subset Q � Z, consider the

sample mean �Q and the �uctuations of V jQ relative to �Q:

�Q.!/ WD .]Q/�1
X

x2Q
V.xI!/; �x.!/ D �x;Q.!/ D V.xI!/� �Q.!/; (2.7)

and the sigma-algebra FQ � B generated by the �uctuations ¹�x; x 2 Qº and by

¹V.yI!/; y 62 Qº.
We use the following property re�ecting regularity of the conditional mean.

(RCM) There exist constants C 0; C 00; A0; A00; # 0; # 00 2 .0;C1/ such that for

any �nite subset Q � Z, the (random) continuity modulus sQ.�/ of the

conditional distribution function F�.� jFQ/ of the sample mean �Q, de�ned

by

sQ.s/ WD inf
b2QWb>s

sup
a2Q

.F�.aC b jFQ/ � F�.a jFQ/ /; (2.8)

satis�es for all s 2 .0; 1�

P¹sQ.sI!/ � C 0.]Q/A
0

s#0º � C 00.]Q/A
00

s#00

: (2.9)
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The property (RCM) is shaped to be used in the context of IID random �elds V ,

but it can be reformulated in terms of diam Q instead of jQj. In any case, the

independence of values of V is not formally required, but, clearly, for an IID

random �eld V WZ � � ! R the condition (RCM) is simply a property of the

single-site marginal distribution. Bearing this in mind, below we sometimes refer

to (RCM) as a property of, or a condition for, a probability measure on R. It is

ful�lled – deterministically, i.e., with C 00 D 0 – for an IID Gaussian �eld, e.g.,

with zero mean and a unit variance; in this case the sample mean is independent

of the �uctuations �� and has a normal distribution with variance �2 D .]Q/�1.

The form of the property (RCM) actually used in the key Lemma 2.4 stated

below is as follows; it does not refer directly to the conditional continuity modu-

lus sQ.

Let be given n > 1 IID r.v. X1; : : : ; Xn; introduce [as before] the sample

mean �, the �uctuations �i D Xi � �, and the sigma-algebra F� generated by

the �uctuations [the direct analog of FQ when X� are labeled by the points of

a �nite set Q, jQj D n]. Then for any s 2 .0; 1� there is a measurable subset
zSs � � with P¹zSsº � C 00nA00

s#00

such that for any F�-measurable real-valued r.v.

�, setting I.sI!/ WD Œ�.!/; �.!/C s� � R, one has

P¹1�.!/2I.sI!/ 1�nzSs
jF�º � C 0nA0

s#0

; (2.10)

and consequently,

P¹�.!/ 2 I.sI!/º � C 0nA0

s#0 C C 00nA00

s#00

: (2.11)

Lemma 2.1 ([14, Theorem 4]). If the marginal probability measure � of an IID

random �eld V WZ � � ! R obeys (V1), then V ful�lls property (RCM) with

# 0 D # 00 D 2=3.

The values of the constants A0; A00; C 0; C 00 �guring in (RCM) are of minor, if

any, importance for our proofs. For the reader’s convenience, we summarize in

Appendix D the proof of Lemma 2.1.

Corollary 2.2. Let the probability measureP of an IID random �eldV WZ��! R

have the single-site marginal measure � D �1 ��2, where �1 satis�es (V1). Then

P ful�lls the condition (RCM).

Proof. First, notice that adding a non-random background potential, V.xI!/  
V.xI!/ C W.x/, preserves the property (RCM). Further, the representation � D
�1 � �2 implies that V is the sum of two independent, IID random �elds Vi ,
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i D 1; 2, where the marginal measure of Vi is �i . Conditioning on V2 renders

the latter non-random. Therefore, the required probability bound is obtained by

conditioning on V2, since V1 satis�es (RCM). �

Before we move further, let us introduce some notation. In (2.12) we de�ne

the support (or projection) …x of the con�guration x D .x1; : : : ; xN / 2 ZN , the

support …B of the ball B D B.N /.x; L/, and – given a subset J � ¹1; N º – the

partial supports (projections) …Jx and …JB:

…x D
[

1�i�N

¹xiº � Z; …B D
[

1�j �N

B.xj ; L/ � Z; (2.12a)

…Jx D
[

j 2J
¹xj º � Z; …JB D

[

j 2J
B.xj ; L/ � Z; (2.12b)

with …¿x D ¿ (for J D ¿).

De�nition 2.2. A ball B.N /.x; L/ is called weakly separated from B.N /.y; L/ if

there exists a bounded subset Q � Z of the single-particle con�guration space,

with diam Q � 2NL, and subsets J1; J2 � ¹1; : : : ; N º such that ]J1 > ]J2

(possibly, with J2 D ¿) and

.…J1
B.N /.x; L/[…J2

B.N /.y; L// � Q; (2.13a)

.…Jc
1
B.N /.x; L/[…Jc

2
B.N /.y; L// � Z n Q: (2.13b)

A pair of balls B.N /.x; L/, B.N /.y; L/ is called weakly separated if at least one of

the balls is weakly separated from the other.

To stress the role of the set Q, we will say, where appropriate, that B.N /.x; L/

and B.N /.y; L/ are weakly Q-separated.

I The notion of weak separation and its role can be explained as follows.

If B.N /.x; L/ is weakly Q-separated from B.N /.y; L/, then there are more par-

ticles in Q from the con�gurations z 2 B.N /.x; L/ than from z 2 B.N /.y; L/, and

this makes the EVs of HB.N/.x;L/ more sensitive to the �uctuations of the ran-

dom potential in Q than the EVs of HB.N/.y;L/. However, even a weakly separated

pair of balls can have …B.N /.x; L/ D …B.N /.y; L/ (for N � 3), and then every

V.uI!/ a�ecting HB.N/.x;L/ a�ects also HB.N/.y;L/, and vice versa. (This is why

we qualify the above form of separation” as “weak.”) J

Lemma 2.3 ([13, Lemma 8]). Any pair of 4NL-distant balls B.N /.x; L/,

B.N /.y; L/ is weakly separated.
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Lemma 2.4. Let V WZ�� ! R be a random �eld satisfying the condition (RCM).

Assume that the balls B.N /.x; L/, B.N /.y; L/ are weakly separated. Then for

any s > 0 the following bound holds for the spectra †x WD †.H
.N /

B.x;L/
/ and

†y WD †.H
.N /

B.y;L/
/:

P¹dist.†x; †y/ � sº � zC 0
La0

s#0 C zC 00
La00

s#00
(2.14)

for some a0; a00; zC 0
; zC 00

and the same # 0; # 00 2 .0;1/ as in (2.9).

Proof. LetQ be a set satisfying the conditions (2.13) for some J1; J2 � ¹1; : : : ; N º
with ] J1 D n1 > n2 D ] J2. Introduce the sample mean � D �Q of V over Q, and

the conditional continuity modulus sQ.�/ as in (2.8). We have ]Q � Cd .2NL/
d �

constLd , thus with a0 D a0.A0; N; d/, a00 D a00.A00; N; d/ and some zC 0
; zC 00

,

we have (cf. (2.9) and (1.1))

]B.N /.x; L/ C 0.]Q/A
0 � zC 0

La0

; (2.15a)

]B.N /.y; L/C 00.]Q/A
00 � zC 00

La00

: (2.15b)

It follows from V.xI!/ D �Q.!/ C �x.!/ (cf. (2.7)) that H
.N /

B.x;L/
.!/ and

H
.N /

B.y;L/
.!/ admit the representations

H
.N /

B.x;L/
.!/ D n1�.!/ I C A0.!/; (2.16a)

H
.N /

B.y;L/
.!/ D n2�.!/ I C A00.!/; (2.16b)

where the operators A0.!/ and A00.!/ are FQ-measurable. Let†x D ¹�1; : : : ; �K0º
and †y D ¹�1; : : : ; �K00º, be the spectra of H

.N /

B.x;L/
and H

.N /

B.y;L/
, counting multi-

plicity, with K 0 D ]B.x; L/ and K 00 D ]B.y; L/.

Owing to (2.16), we have �i .!/ D n1�.!/ C �
.0/
i .!/, �j .!/ D n2�.!/ C

�
.0/
j .!/, where the random variables �

.0/
i .!/ and �

.0/
j .!/ are FQ-measurable.

Therefore,

�i.!/ � �j .!/ D .n1 � n2/�.!/C .�
.0/
i .!/ � �

.0/
j .!//;

with n1 � n2 � 1, owing to our assumption. Further, we can write

P¹dist.†x; †y/ � sº �
X

1�i�K0

X

1�j �K00

EŒP¹j�i � �j j � s jFQº�:
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Note that for all i and j we have (cf. (2.8))

P¹j�i � �j j � s jFQº D P¹j.n1 � n2/� C �
.0/
i � �.0/

j j � s jFQº
� sQ.2jn1 � n2j�1s jFQ/

� sQ.2s jFQ/:

Set

DL D ¹!W sup
t2R

jF�.t C s jFQ/ � F�.t jFQ/j � zC 0
La0

s#0º:

By (RCM) (cf. also (2.15)), P¹DLº � zC 00
La00

s#00º. Thus,

P¹dist.†x; †y/ � sº � EŒ1�nDL
P¹dist.†x; †y/ � s jFQº�C P¹DLº

� zC 0
La0

s#0 C zC 00
La00

s#00

;
(2.17)

as claimed in (2.14). This �nishes the proof of Lemma 2.4. �

I By (V2), Lemma 2.1 and Corollary 2.2, (RCM) is ful�lled with # 0 D # 00 D 2=3,

thus the RHS in (2.17) is bounded by CLAs2=3 (cf. Lemma 2.4), for any pair

of 4NL-distant balls of radius L (cf. Lemma 2.3). This completes the proof of

Theorem 2.2.J

Theorem 2.2 is crucial in the proof of Lemma 3.7. Namely, it allows us to in-

fer from the �xed-energy decay bounds (simpler to establish) their energy-interval

counterparts, required for the proof of spectral and dynamical localization, with-

out an additional energy-interval scaling analysis employed in the bootstrap multi-

scale approach (cf. [27] and [23]).

2.3. Weakly interactive balls. In presence of a decaying interaction, the balls

in theN -particle con�guration space can be classi�ed in terms of their distance to

the sites where the interaction potential takes the largest values. For our purposes,

the following simple classi�cation su�ces.

De�nition 2.3. An N -particle ball B.N /.u; L/, with N � 2, u D .u1; : : : ; uN /,

is called weakly interactive (WI) if

diam.…u/ WD max
1�i<j �N

d.ui ; uj / > 3NL; (2.18)

and strongly interactive (SI), otherwise.

The meaning of De�nition 2.3 is that a particle system in a WI ball can be

decomposed into distant subsystems that interact “weakly” with each other, while

for an SI ball such a decomposition may be impossible. See Lemma 2.5.
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Lemma 2.5. For any WI ball B.N /.u; L/ there exists a decomposition ¹1; : : : ; N º
D J t J{, such that,

d.…JB.N /.u; L/;…
J{B.N /.u; L// > L: (2.19)

Proof. Suppose that diam.…u/ > 3NL; we have to show that the projection

…B.u; 3L=2/ is a disconnected subset of Z.

Assume otherwise; then every nontrivial partial projection …Ju, ¿ � J �
¹1; : : : ; N º, is at distance � 2 � 3L

2
D 3L from …

J{u. Then a straightforward

induction in N � 2 shows that diam …u � .N � 1/ � 3L < 3NL, contrary to our

hypothesis.

Now, as …B.u; 3L=2/ is disconnected, there is a nontrivial decomposition

¹1; : : : ; N º D J t J{ for which

d.…JB.u; 3L=2/;…
J{B.u; 3L=2// > 0

H) d.…JB.u; L/;…
J{B.u; L// >

1

2
LC 1

2
L D L;

as asserted in (2.19). �

The decomposition .J; J{/ �guring in Lemma 2.5 may be not unique. We will

assume that such a decomposition (referred to as the canonical one) is associated in

some unique way with every N -particle WI ball. Accordingly, we �x the notation

N 0 D ]J, N 00 D ]J{ D N � N 0, and further, for x D .x1; : : : ; xN / 2 B.u; L/,

xJ D .xi1 ; : : : ; xiN 0 /; x
J{ D .xj1

; : : : ; xjN 00 / (2.20)

where J D ¹i1; : : : ; iN 0º and J{ D ¹j1; : : : ; jN 00º, with 1� i1 < � � �< iN 0 �N and

1 � j1 < � � � < jN 00 � N . This gives rise to the Cartesian product representation

B.N /.u; L/ D B0 � B00; (2.21)

with B0 D B.N 0/.uJ; L/ and B00 D B.N 00/.u
J{ ; L/, which we call the canonical

factorization. Consequently, the operator H
.N /

B in a WI ball B D B.u; L/ can be

represented in the following way:

H
.N /

B D H
.N 0/

B0 ˝ I.N 00/ C I.N 0/ ˝ H
.N 00/

B00 C UB0;B00 : (2.22)

Here the summand UB0;B00 takes into account only the interaction between subsys-

tems in the balls B0 and B00 and has a small norm for L large.
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Lemma 2.6. Let B.N /.x; L/, B.N /.y; L/ be a pair of SI balls with �.x; y/ > 8NL.

Then

…B.N /.x; L/\…B.N /.y; L/ D ¿ (2.23)

and, therefore, the random operators HB.N/.x;L/.!/ and HB.N/.y;L/.!/ are inde-

pendent.

Proof. By de�nition, for any SI balls B.N /.x; L/, B.N /.y; L/ we have

max
i;j

d.xi ; xj / � 3NL; max
i;j

d.yi ; yj / � 3NL;

and it follows from the assumption�.x; y/ > 8NL that for some i 0; j 0 2 ¹1; : : : ; N º
d.xi 0 ; yj 0/ > 8NL; thus for any i; j 2 ¹1; : : : ; N º

d.xi ; yj / � d.xi 0; yj 0/ � d.xi 0 ; xi / � d.yj 0 ; yj / > 8NL � 6NL D 2NL:

Respectively, for the balls BL.x/, BL.y/ of radius L we have, with N � 1,

dist.…BL.x/;…BL.y// > 2.N � 1/L � 0;

so …B.N /.x; L/\…B.N /.y; L/ D ¿. Hence the samples of the random potential

in HB.N/.x;L/.!/ and HB.N/.y;L/.!/ are independent. �

Throughout the paper we consider a sequence of integers Lk > 1 (length

scales) of one of the two forms:

.a/ Lk WD L0Y
k; k D 0; 1; : : : ; (2.24a)

or

.b/ LkC1 D bL˛
kc; k D 0; 1; : : : (2.24b)

with given initial integer values L0 � 1; Y > 1 and a scaling exponent ˛ > 1.

3. Fixed-energy and energy-interval estimates

The aim in this section is to prove the assertion (A) of Theorem 1.1. Until

subsection 3.3 we work with much simpler �xed-energy estimates, preparing the

grounds for the passage to the variable-energy (energy-interval) ones.
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Throughout the section we use the conditions, listed in the table (3.2), imposed

upon the key parameters of the inductive scheme involved. A few comments are

in order:

(i) Y and L0 are positive integers determining the length scales Lk D L0Y
k;

(ii) � 2 .0; �/ measures the rate of sub-exponential decay of the EFCs;

(iii) ˇ 2 .0; 1/ is a resonance/nonresonance threshold value, emerging in (2.2);

(iv) m� � 1 and ı 2 .0; 1/ are the parameters �guring in (2.3) and measuring the

rate of sub-exponential decay of the GFs; we also use a sequence

mN WD m� .1C 3L
�ıCˇ
0 /N

��N I (3.1)

(v) �� � 1, used in (3.4) through the scaled value �N , plays a role similar to that

of m�, but controls the EFC (not GF) decay.

Recall that N ranges in ¹1; : : : ; N �º.

m�; �� � 1 Lk D L0Y
k, Y � 51N �

0 < ˇ < ı ı < min
�

1 � ln 12

ln Y
; �

�

; hence 1
4
Y 1�ı � 3

0 < � < min
�

�;
ˇ

2
;

ln 4
3

Y

� �N D �� .2Y �/N
��N ;

mN D m� .1C 3L
�ıCˇ
0 /N

��N

(3.2)

We assume (3.2) to be satis�ed throughout the whole Section 3; this will not

be reminded every time again. (Some technical statements remain valid under

broader restrictions than those from (3.2).)

3.1. Scaling the GFs. Property S.N; k/. Before we start the scaling procedure,

we would like to stress that we consider from the beginning an underlying con-

nected graph Z 2 G.d; Cd /, with some d; Cd 2 .0;C1/, which can be �nite

or in�nite. Observe that the growth property G.d; Cd / is inheritable by inclu-

sion, and as we shall see, all our bounds ultimately depend upon the graph Z only

through the parameters d and Cd . Naturally, for a �nite graph Z, the induction in

the length scales Lk is to be stopped as soon as Lk � diam Z. With this observa-

tion in mind, below we proceed, formally, as if Z were in�nite.

De�nition 3.1. Let be given a real number E 2 R, positive real numbers ˇ; ı 2
.0; 1/, m� � 1, and an integer k � 0. An N -particle ball B D B.N /.u; LkC1/ is

called .E;mN /-good if it contains no pair of 8NLk-distant .E; ı; mN /-S balls of

radius Lk .
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The notion de�ned in the next de�nition appears in the formulation of

Lemma 3.1 and in an important ingredient of its proof, Lemma C.2 (see the proof

of Lemma C.2 in Appendix C).

De�nition 3.2. Given E 2 R and ˇ 2 .0; 1/, a ball B.N /.x; Lk/, k � 1, is called

.E; ˇ/-completely non-resonant (.E; ˇ/-CNR) if for all Lk�1 � ` � Lk one has

dist.†.B.N /.x; `//; E/ � 2e�L
ˇ

k :

The following statement will be used in the proof of Lemma 3.4 and 3.1.

To keep clear the main �ow of argument, we prove separately (in Appendix C) two

key ingredients of its proof, Lemma C.1 and Lemma C.2. Another pre-requisite

for the proof of Lemma 3.1 is De�nition C.1.

Lemma 3.1. Suppose that a ball B.N /.u; LkC1/ is .E; ˇ/-CNR and .E;mN /-

good. If L0 is large enough, then B.N /.u; LkC1/ is also .E; ı; mN /-NS.

Proof. Let ƒ D B.N /.u; LkC1/, B D B.N /.u; LkC1 � 1/ (cf. De�nition C.1), and

�x any point y 2 @�ƒ, so that y 62 B. To prove the claim, we have to assess the

Green functions G
.N /
ƒ
.x; yIE/ � G

.N /

BLkC1.u/
.x; yIE/ for x 2 B.

By hypothesis, eitherƒ contains no .E; ı; mN /-S ball of radiusLk , or there is a

ball B.N /.w; Lk/ � B such that any ball B.N /.v; Lk/with v 2 BnB.N /.w; 8NLk/

is .E; ı; mN /-NS. Bearing in mind Lemma C.2, with L D LkC1 � 1, denote by S

the union of all spherical layers Lr .u/ such that Lr .u/\ B.N /.w; 8NLk/ ¤ ¿. It

follows from the relation ˇ < ı (cf. (3.2)) that, for L0 or mN large enough,

mN � 2L�ı
k L

ˇ

kC1
D mN .1 � 2m�1

N L
�ıCˇ

k
Y ˇ / � 3

4
mN > 0: (3.3)

By Lemma C.2, for any with a �xed y 2 @�ƒ (thus y 62 B), the function f W x 2
B 7! jG.N /

ƒ
.x; yIE/j is .Lk ; q; S/-dominated in B, in the sense of De�nition C.1,

with q � e� 3
4 mN Lı

k .

Owing to Lemma C.1, we can write, with the convention � ln 0 D C1, that

� lnf .x/ � � ln
°

eL
ˇ
kC1 exp

h

� 3mN

4
Lı

k

.LkC1 � 1/ � .2 � 8NLk C 1/Lk � Lk

Lk C 1

i±

;
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thus by virtue of the conditions in the table (3.2) (viz. L0 � 3, 1
4
Y 1�ı � 3,

mN � 1, ˇ < ı, Y � 51N � � 51N ), one obtains

� lnf .x/ � 3

4
mNL

ı
k

.Y � 17N/Lk

Lk C 1
� Lˇ

kC1

� 3

4
mNL

ı
kC1

�Y � 17N
Y ı

.1� L�1
k / � 4

3
L

ˇ�ı

kC1

�

� mNL
ı
kC1

3

4

�1

3
Y 1�ı � 1

�

� mNL
ı
kC1

�1

4
Y 1�ı � 1

�

� 2mNL
ı
kC1

� mNL
ı
kC1 C ln.CZ;NL

Nd
kC1/;

provided L0 is large enough. �

Given L0; Y; ı; �; m
�; ��, consider the following property S.N; k/ depending

upon N and k (S stands for “singularity”):

S.N; k/ for all E 2 R, 1 � n � N and con�guration u 2 Z

P¹ B.n/.u; Lk/ is .E; ı; mn/-S º � e��nL�
k : (3.4)

Recall (cf. (3.2)) that �n � ��.2Y �/N
��n. The MPMSA inductive scheme

consists in checking S.N; k/ for all N 2 ¹1; : : : ; N �º and k � 0. The initial length

scale bound S.N; 0/, for all 1 � N � N � with a �xed N � � 2, follows directly

from Lemma 3.2.

Lemma 3.2. Suppose a positive integerM and anM�M Hermitian matrix A are

given, as well as real-valued random variables (not assumed to be independent)

W1, : : :, WM , with continuous distribution functions FWi
, 1 � i � M . Let W.!/

be the diagonal random matrix diag.W1.!/; : : : ; WM .!//. For any s > 0 and

� 2 .0; 1/, there exists g� < 1 such that if jgj � g� then

sup
E2R

P¹k.A C gW �EI/�1k > sº � �:

Consequently, for all ı 2 .0; 1/, � 2 .0; �/ and m�; �� � 1, there exists

g0 2 .0;1/ such that for all 1 � N � N � and positive integer L0, property

S.N; 0/ holds true for jgj � g0.
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The proof is omitted; it is based on a well-known argument employed in

a number of papers on the MSA (cf., e.g., [20, Proposition A.1.2]) and is not

contingent upon the single- or multi-particle structure of the random diagonal

entries of the matrix A.

3.2. The GFs in WI balls. The MPMSA induction

Lemma 3.3. Fix ˇ; ı 2 .0; 1/, m� � 1 and E 2 R. Suppose that a WI ball

B.N /.u; Lk/ is .E; ˇ/-NR and satis�es the two following conditions:

for all �0 2 †.H.N 0/

B0 /B00 is .E � �0; ı; mN 00/ � NS; (3.5)

for all �00 2 †.H.N 00/

B00 /B0 is .E � �00; ı; mN 0/ � NS: (3.6)

If L0 is large enough then B.N /.u; Lk/ is .E; ı; mN /-NS.

Proof. See Appendix A. �

Lemma 3.3 is used in the proof of Lemma 3.4.

Lemma 3.4. Assume property S.N � 1; k/ for some given L0; Y > 1, ı 2 .0; 1/,
� 2 .0; �/ andm�; �� � 1 (see eq. (3.4)). If L0 is large enough then for anyE 2 R

and WI ball B.N /.u; Lk/,

P¹ B.N /.u; Lk/ is .E; ı; mN /-S º � e� 3
2

�N L�
kC1 : (3.7)

Consequently, for L0 large enough, for all x 2 Z,

P¹B.N /.x; LkC1/ contains a WI .E; ı; mN /-S ball B.N /.u; Lk/º

� CN
Z L

Nd
kC1 � e� 3

2
�N L�

kC1 � 1

4
e��N L�

kC1 :
(3.8)

Proof. Denote by S the event in the LHS of (3.7). Let B D B.N /.u; Lk/, with

the canonical factorization B D B0 � B0, and denote H0 D H
.N 0/

B0 , H00 D H
.N 00/

B0

(cf. (2.21), (2.22)). We have

P¹Sº < P¹ B is not E-NR º C P¹ B is E-NRand .E; ı; mN /-S º: (3.9)

The �rst term in the RHS is assessed in Theorem 2.1 and bounded by e�L
ˇ=2
kC1 <

1
2
e� 3

2 �N L�
kC1 , since � < ˇ=2 (cf. (3.2)), so we focus on the second summand.
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Introduce the events

S0 WD ¹!W (3.5) is wrongº;
S00 WD ¹!W (3.6) is wrongº:

Then, with m0 WD mN 0 , by virtue of Lemma 3.3,

P¹S0º D EŒP¹there exists �00 2 †.H00/W B0 is .E � �00; ı; m0/-S jF00º� ;
where the sigma-algebra F00 is generated by the sample of the random potential

V in …B00. Conditioning by F00 renders †.H00/ nonrandom. By de�nition of the

canonical decomposition,…B0 \…B00 D ¿, and since the random �eld V is IID,

we have

ess supP¹ B0 is .E � �00; ı; m0/-S jF00 º � sup
E 002R

P¹ B0 is .E 00; ı; m0/-S º:

Further, by the assumed property S.N � 1; k/, for N 0 � N � 1,

P¹ B0 is .E 00; ı; m0/-Sº � e��N�1L�
k D e�2�N L�

kC1 (3.10)

(cf. the de�nition of �N in (3.2)). Thus we obtain that

P¹S0º � ] B00 sup
E 002R

P¹B0 is .E 00; ı; m0/-Sº

� CN
Z L

Nd
k exp¹�2�NL

�
kC1º � 1

2
exp

°

� 3

2
�NL

�
kC1

±

I
(3.11)

here the last inequality holds for L0 large enough. Similarly, with m00 WD mN 00 ,

P¹S00º � 1

2
exp

°

� 3

2
�NL

�
kC1

±

: (3.12)

Collecting (2.4), (3.9), (3.11) and (3.12), the assertion (3.7) follows.

To prove (3.8), notice that the number of WI balls of radius Lk inside

B.N /.x; LkC1/ is bounded by ]B.N /.x; LkC1/, and the probability for a WI ball

to be .E; ı; mN /-S satis�es (3.7), so the last inequality in (3.8) follows, again for

L0 large enough. �

Now, given k D 0; 1; : : :, consider the following probabilities:

Pk D sup
u2Z

P¹ B.N /.u; Lk/ is .E; ı; mN /-Sº;

QkC1 D sup
u2Z

P¹B.N /.u; LkC1/ is not .E; ˇ/-CNRº;

SkC1 D sup
x2ZN

P¹BN /.x; LkC1/ contains a WI .E; ı; mN /-S ball B.N /.u; Lk/º:

Note that

for N D 1, SkC1 D 0 (1-particle balls cannot be WI). (3.13)
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Theorem 3.1. Suppose that, for some given Y � 2, ı 2 .0; 1/, � 2 .0; �/ and

m�; �� � 1, the property S.N; 0/ holds true with L0 large enough. Then S.N; k/

holds true for all k � 0 with the same L0; Y; ı; �; m
� and ��.

Consequently, by the second assertion of Lemma 3.2, S.N; k/ holds true for

arbitrarily largem� and ��, provided that jgj � g0.m
�; ��/ with g0.m

�; ��/ large

enough.

Proof. It su�ces to derive S.N; k C 1/ from S.N; k/, so assume the latter.

By virtue of Lemma 3.1, if a ball B.N /.x; LkC1/ is .E; ı; mN /-S, then it is either

not .E; ˇ/-CNR(with probability � QkC1) or .E;mN /-bad.

By (3.8), the probability of having at least one weakly interacting .E;mN /-S

ball B.N /.u; Lk/ � B.N /.x; LkC1/ obeys: SkC1 � 1
4

e��N L�
kC1 .

Note that this is the only point where the inductive hypothesis S.N � 1; k/ is

actually required, for N � 2, while SkC1 D 0 for N D 1, because of (3.13).

Therefore, it remains to assess the probability of having at least 2 balls of

radius Lk inside B.N /.u; LkC1/ which are SI, .E; ı; mN /-S and 8NL-distant.

The number of such pairs is � C 2N
Z
L2Nd

kC1
, thus, owing to Lemma 2.6, we have4

PkC1 � 1

2
C 2N
Z L2Nd

kC1 P2
k C SkC1 C QkC1:

It follows from Theorem 2.1 that QkC1 � C LNdC1
kC1

e�L
ˇ=2

kC1 , ˇ=2 > �, so with L0

large enough,Qk � 1
4
e��N L�

kC1 for any k � 0. Finally,

PkC1 � 1

2
C 2N
Z L2Nd

kC1 P2
k C 1

4
e��N L�

k C 1

4
e��N L�

k : (3.14)

The assertion of the theorem will follow if we show that, for L0 large enough,

PkC1 � e��N L�
k , i.e., C 2N

Z
L2Nd

kC1
P2

k
� e��N L�

kC1 . The last fact follows from (3.2).

Indeed, for any �nite C;A and L0 large enough, with � � Y �1 ln.4=3/ (cf. (3.2)),

� ln.CLA
kC1P2

k/ � 2�NL
�
k � C 0 lnLkC1

D �NL
�
kC1

� 2

Y �
� C 0 lnLkC1

�NL
�
k

�

� �NL
�
kC1

�3

2
� C 0 lnLkC1

�NL
�
k

�

> �NL
�
kC1:

This completes the proof of Theorem 3.1. �

Theorem 3.1 allows us to complete the MPMSA inductive scheme.

4 A statement like Lemma 2.6 is not required for N D 1, if the random potential is IID, since

disjoint 1-particle balls give rise to independent Hamiltonians.
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Indeed, owing to Lemma 3.2, for any given L0; ı; �; m
� and ��, the property

S.N; 0/ holds true for su�ciently large jgj and all N D 1; :::; N �. The scale

induction step k kC1 is provided by Lemmas 3.1, 3.3 and 3.4 and Theorem 3.1.

By induction in k, this proves S.N; k/ for 1 < N � N � and all k � 0, provided

that S.N � 1; k/ is proved for all k � 0. The base of induction in N is obtained in

a similar (in fact, simpler) manner.

3.3. From �xed-energy to energy-interval estimates. The core of the technical

argument in this section relies upon the two-volume EVC bound (Theorem 2.2).

Given a positive integer L and u 2 Z, de�ne the quantity Fu.E/ D F
.N /
u;L.E/:

Fu.E/ D CZ;NL
Nd max

z2@�B.u;L/
jG.N /

B.u;L/
.u; zIE/j : (3.15)

For brevity, we denote by †u the spectrum of the operator H
.N /

B.u;L/
. Owing to

assumption (V2), for N � N �, the norms of the operators H
.N /

B.u;L/
are uniformly

bounded, and so are their spectra. Therefore, the spectral analysis of these oper-

ators can be restricted, without loss of generality, to some �nite interval I � R

independent of k � 0.

Lemma 3.5 (as well as Lemma 3.6) encapsulates a probabilistic estimate es-

sentially going back to the work [21] by Elgart et al. Here we follow closely the

book [19].

Lemma 3.5 ([19, Theorems 2.5.1 and 4.3.11]). Let be given an integerL � 1, balls

B.N /.L; x/, B.N /.L; y/, an interval I � R of length jI j < 1 and real numbers

aL; bL; cL; qL > 0 satisfying

bL � min¹M�1aLc
2
L; cLº: (3.16)

with M WD maxŒ]B.N /.L; x/; ]B.N /.L; y/�. Suppose in addition that

maxŒP¹Fx.E/ � aLº; P¹Fy.E/ � aLº� � qL: (3.17)

Assume also that for some A;C;> 0 and � 2 .0; 1�, for all � > 0

P ¹dist.†x; †y/ � �º � CLA�� : (3.18)

Then one has, with A0 D AC 2Nd and some C 0 < 1,

P¹there exists E 2 I W minŒFx.E/;Fy.E/� � aLº � 2jI jqL

bL

C C 0LA0

c�
L: (3.19)



294 V. Chulaevsky and Y. Suhov

The proof of Lemma 3.5 relies upon a more general result, Lemma 3.6.

A similar assertion was proved earlier for the balls in Z
d (cf. [19, Theorem 2.5.1])

and adapted to more general graphs (cf. [12, Theorem 2]). The single- or multi-

particle nature of the random potential is irrelevant here. Below we state it for a

ball B.u; L/, mainly to set up a framework for the proof of Lemma 3.5.

Lemma 3.6 ([12, Theorem 2]). Given a positive integer L and a ball B D
B.N /.u; L/, set M D ]B and consider a random operator HB D H

.N /

B
.!/ of

the form

.HB‰/.x/ D .��B‰/.x/CW.xI!/‰.x/; x 2 B; (3.20)

where .x; !/ 7! W.xI!/ 2 R is a given random function. (No a priori condition

is imposed upon the distribution of W.xI!/.) Let Ej D Ej .!/, 1 � j � M , be

the (random) eigenvalues of HB listed in some measurable way. Take a bounded

interval I � R and let the numbers aL; bL; cL; qL > 0 satisfy

bL � min¹M�1aLc
2
L; cLº (3.21)

and for all E 2 I
P¹Fu.E/ � aLº � qL; (3.22)

where Fu.E/ is as in (3.15). Then there is an event Bu of probability P¹Buº �
jI jb�1

L qL such that for all ! 62 Bu

Eu.2aL/ WD ¹E 2 I W Fu.E/ � 2aLº � [M
j D1Ij ; (3.23)

where Ij WD .Ej � 2cL; Ej C 2cL/.

Proof of Lemma 3.5. Let Bx and By be the events introduced in Lemma 3.6 for

the balls B.N /.L; x/ and B.N /.L; y/, and let B D Bx [ By. As in Lemma 3.6,

denote by Ex.2aL/, Ey.2aL/ the energy sets related to B.N /.L; x/, B.N /.L; y/,

and introduce the event Sx;y D ¹!WEx.2aL/ \ Ey.2aL/ ¤ ¿º. Then we have

P¹Sx;yº � P¹Bº C P¹Sx;y n Bº � 2b�1
L qLjI j C P¹Sx;y n Bº: (3.24)

For any ! 62 B, each of the energy subsets Ex.2a/, Ey.2a/ is covered by intervals

of length 4cL centered at the respective EVs of H
.N /

B.x;L/
and H

.N /

B.y;L/
.

Recall that we have assumed5 the two-volume EVC estimate (3.18) (with

an exponent � > 0) for the pair B.N /.x; L/, B.N /.y; L/. Thus, with †x WD

5 In the application of Lemma 3.5 to the proof of Lemma 3.7, we rely on Theorem 2.2 actually

proving (3.18) with # D 2=3.
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†.H
.N /

B.x;L/
/, †y WD †.H

.N /

B.y;L/
/, and some C 0; A0 2 .0;C1/,

P¹Sx;y n Bº � P¹dist.†x; †y/ � 4cLº
� CLA.4cL/

� � C 0LA0

c�
L:

(3.25)

Collecting (3.24) and (3.25), the assertion of Lemma 3.5 follows. �

We use Lemma 3.5 in the proof of Lemma 3.7, with qL D e��N L�

, L D Lk .

Lemma 3.7. Assuming L0 large enough, for any k � 0 and any pair of 4NLk-

distant balls B.N /.x; Lk/, B.N /.y; Lk/, the following bound holds true:

P¹there exists E 2 RW minŒFx.E/;Fy.E/� > e� �N
3

L�
k º � e� �N

11
L�

k ; (3.26)

where �N � �� can be made arbitrarily large for jgj large enough.

Proof. As was noted, the spectrum †x is contained in a �xed bounded interval

I � R. For k � 0, we have, by S.N; k/, that, with a D e� �N
3 L�

k > e�mN Lı
k

(recall: � < ˇ=2 < ı=2)

P¹Fx.E/ > aº;P¹Fy.E/ > aº � e��N L�
k :

The LHS of (3.18) can be assessed with the help of Theorem 2.2:

P¹dist.†x; †x/ � �º � CLA
k �

2=3:

A direct inspection shows that the quantities

aL D e� �N
3 L�

; bL D e� 2�N
3 L�

; cL D e� �N
7 L�

; qL D e��N L�

; (3.27)

satisfy the conditions (3.21)–(3.22), hence Lemma 3.5 applies, with L D Lk , and

we obtain that, with some A < C1 and L0 large enough,

P¹sup
E2I

minŒFx.E/;Fy.E/� > e� �N
3

L�
k º � 2jI je� �N

3
L�

k C C 0LAe� 2
3

� �N
7

L�
k

� e� �N
11 L�

k ;

as asserted. �
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Lemma 3.7 is an important ingredient of the proof of Theorem 3.2.

3.4. Strong dynamical localization. Now we are going to complete the proof

of the assertion (A) of Theorem 1.1. The staple here is Lemma 3.8 presenting a

more general result6, under the key assumption (3.30).

Given a �nite subset ƒ � Z, we deal with a �nite-dimensional random

Hamiltonian Hƒ D H
.N /
ƒ
.!/ in `2.ƒ/:

.Hƒf / .x/ D .��ƒf / .x/CW.xI!/f .x/; x 2 ƒ: (3.28)

Here .x; !/ 7! W.x; !/ is a bounded real-valued random �eld on ƒ. (As in

Lemma 3.6, no assumption is made about the distribution of W.x; !/.) At the

same time, we consider Hamiltonians H
.N /

B.u;L/
in the balls B.N /.u; L/ � ƒ. As

in (3.15), let

Fu.E/ D CZ;NL
d max

z2@�B.u;L/
jGB.u;L/.u; zIE/j: (3.29)

Like before, denote by B1.R/ the set of continuous functions �WR ! C with

k�k1 � 1.

Lemma 3.8 ([9, Lemma 9]). Given a positive integerL, assume that the following

bound holds true for a pair of balls B.x; L/;B.y; L/ � Z with �.x; y/ � L C 2

and some positive functions u; h:

P¹there exists E 2 RW minŒFx.E/;Fy.E/� > u.L/º � h.L/: (3.30)

Then for any �nite connected subsetƒ � B.x; LC 1/ [ B.y; LC 1/ one has

EŒ sup
�2B1.R/

jh1xj�.Hƒ/j1yij � � 4u.L/C h.L/: (3.31)

Proof. The proof repeats verbatim that of Lemma 9 in [9], except for the quantity

u.L/ replacing an explicit expression e�mL. �

6 We emphasize that the main idea of the simpli�ed derivation of the strong dynamical

localization from the energy-interval MSA bounds is due to Germinet and Klein [23].
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For a �nite ƒ, Assertion (A) of Theorem 1.1 now follows from

Theorem 3.2. Given � > 0, there exist g�.�/, C�.�/ 2 .0;1/ such that, for

jgj � g�.�/, and 1 � N � N �, for all x; y 2 Z and a �nite ƒ � Z with ƒ 3 x; y,

‡x;y WD EŒ sup
�2B1.R/

jh1xj�.Hƒ/j1yij � � C�.�/e�� .�S.x;y//�

: (3.32)

Proof. Without loss of generality, it su�ces to prove the assertion for the pairs

of points with �S.x; y/ > 4NL0. Indeed, the EFC correlator is always bounded

by 1, so for pairs x; y with �S.x; y/ � 4NL0 the bound in (3.32) can be attained

by taking a su�ciently large constant C�.

Thus, �x points x; y 2 Z with R WD �S.x; y/ > 4NL0. There exists k � 0

such that R 2 .4NLk ; 4NLkC1�. Arguing as above, it su�ces to consider a �nite

ƒ � Z such that B.N /.x; Lk C 1/ [ B.N /.y; Lk C 1/ � ƒ:

Since R � 4NLkC1 D 4NYLk , we have Lk � R=.4NY /. Combining

Theorem 3.1 and Lemmas 3.7 (cf. (3.26)) and 3.8, we obtain, with � < ı,

‡x;y � 4e
� �N

3.4NY /� R� C e
� �N

11.4NY /� R�

: (3.33)

Furthermore, by the second assertion of Theorem 3.1 (cf. also Lemma 3.2), given

an arbitrary � > 0, we can choose a su�ciently large7 jgj, so that the initial scale

estimate S.N; 0/ in (3.4) is ful�lled with �N � 44NY�. Then we obtain

‡x;y � 5e��R� D 5e��.�S.x;y//�

:

This completes the proof of Theorem 3.2. �

The case of an in�nite ƒ � Z requires an additional limiting procedure

(making use of Fatou’s lemma applied to the EF correlators), developed earlier

by Aizenman et. al.; cf., e.g., [1], [2, Appendix A], [3, Sect. 2]. As the argument

can be repeated here without any signi�cant change, we omit it from the paper.

4. Exponential decay of eigenfunctions

The aim of this section is to prove the assertion (B) of Theorem 1.1. This is achieved

along a scheme developed in [16, 17, 18, 19] and modi�ed to include the case of a

graph Z 2 G.d; Cd / and an in�nite-range interaction potential U .

7 One can also take a slightly smaller � > 0 and consider only R � Lk with k large enough.
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The following table summarises the relations between various parameters,

assumed throughout the entire Section 4:

� > max
�

��1; 1
�

N 3 ˛ > 2� (hence ˛ > 2)

0 < ˇ < min

�

1

2
; �;

7

8˛

�

N 3 K C 1 � 2˛

mN D m� .1C 3L
�1Cˇ
0 /N

��N m� � 1

P.N/ D P � .2˛/N
��N P � > 12N �d˛

(4.1)

Observe that

for all N D 1; : : : ; N � P.N/ � P � > max.24Nd; 2Nd˛/: (4.2)

Compared to the scheme used in Section 3, the main distinction is that here we

adopt a super-exponential scaling scheme where

Lk D bL˛
k�1c � .L0/

˛k

; (4.3)

with the exponent ˛ satisfying the conditions (4.1); it depends upon the value of �

in condition (U) (cf. eq. (1.8)). (The smaller � > 0, the larger is ˛.) This scheme,

going back to Ref. [20], provides weaker (power-law) probabilistic bounds than

in Section 3, but allows one to establish exponential decay of the GFs, resulting in

exponential decay of the EFs, instead of the sub-exponential one, stemming from

the analysis of the EFCs in Section 3.

The property S.N; k/ will be replaced in this section by its counterpart,

Sexp.N; k/, presented in (4.9), adapted to the exponential decay bounds.

The base of induction onN , Sexp.1; k/, was established in Ref. [12] where one-

particle disordered systems on a graph of the class G.d; Cd / were studied in the

strong disorder regime. Like in Section 3, it also follows from our scaling analysis.

4.1. The analytic step: scaling the GFs. The following de�nitions are modi�-

cations of De�nitions 2.1 and 3.1.

De�nition 4.1. Given E 2 R and m� � 1, an N -particle ball B D B.N /.u; L/ is

called .E;mN /-nonsingular (.E;mN /-NS), if for all y 2 @�B,

CZ;NL
Nd � jG.N /

B
.x; yIE/j � e�.mN ;L/L; (4.4)

where

.mN ; L/ WD mN .1C L�1=8/: (4.5)

Otherwise, B is called .E;mN /-singular (.E;mN /-S).
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As was said in Section 2.1 (see the paragraph after De�nition 2.1), the constant

CZ;N is chosen so as to guarantee supx2ZN ]@B.N /.x; L/ � CZ;NL
Nd for all

L � 1.

De�nition 4.2. An N -particle ball B.N /.u; L/, with N � 2, u D .u1; : : : ; uN /, is

called weakly interactive (WI) if

diam.…u/ > 3NL� ; (4.6)

and strongly interactive (SI), otherwise.

The two following statements, Lemma 4.1 and 4.2, are analogous to Lem-

mas 2.5 and 2.6, and so are their proofs which will be omitted.

Lemma 4.1. For any WI ball B.N /.u; L/ there exists a decomposition ¹1; : : : ; N º
D J t J{, such that,

d.…JB.N /.u; L/;…
J{B.N /.u; L// > L� : (4.7)

Lemma 4.2. Let B.N /.x; L/, B.N /.y; L/ be a pair of SI balls with �.x; y/ > 8NL� .

Then

…B.N /.x; L/\…B.N /.y; L/ D ¿ (4.8)

and, therefore, the random operators HB.N/.x;L/.!/ and HB.N/.y;L/.!/ are inde-

pendent.

De�nition 4.3. Given E 2 R, � > 0, m� � 1 and integers k;K � 0, we say that

a ball B.N /.u; LkC1/ is .E;mN ; K; �/-good if it contains no collection of K C 1

(or more) pairwise 8NL�
k
-distant .E;mN /-S balls of radius Lk .

Notice that if B.N /.u; LkC1/ is not .E;mN ; K; �/-good, then it contains

� either at least one .E;mN /-S WI ball of radius Lk,

� or at least K C 1 pairwise 8NL�
k
-distant, SI, .E;mN /-S balls of radius Lk.

A pre-requisite for the proof of the following statement is Appendix C. This is

a standard result of the MSA with length scales Lk � L˛k

0 , ˛ > 1 (cf., e.g., [20]).

Lemma 4.3 (Lemma 3.1). If B.N /.u; LkC1/ is .E; ˇ/-CNRand .E;mN ; K; �/-

good and L0 is large enough, then B.N /.u; LkC1/ is .E;mN /-NS.

Proof. Set ƒ D B.N /.u; LkC1/, B D B.N /.u; LkC1 � 1/ and �x y 2 @�B,

so y 2 ƒ n B (the latter is required for the application of Lemma C.2, with

L D LkC1 � 1). Let

fyW z 7�! jG.N /
ƒ
.z; yIE/j:
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By assumption, there is a (possibly empty) collection of balls B.uj ; L
�
k
/ � ƒ, 1 �

j � K 0, withK 0 � K, such that any ball B.v; Lk/with v 2 Bn
SK0

j D1 B.uj ; 8NL
�
k
/

is .E;mN /-NS. Fix such a collection. As in De�nition C.1, item (2), denote by

Lr.u/ the spherical layer ¹z 2 ZW�.z; u/ D rº, r � 0, and set

S WD
°

x 2 BLkC1�Lk�1.u/WLd.u;x/.u/ \
K0
[

j D1

B8NL�
k
.uj / ¤ ¿

±

(here S stands for “singular”). Then any ball B.v; Lk/ � B with v 2 B n S is

.E;mN /-NS, and S is covered by a family of � K annuli with center u and total

width � K.2 � 8NL�
k

C 1/ � 17NKL�
k
, with L0 large enough. By Lemma C.2 fy

is .Lk ; q; S/-dominated in B; here (cf. (C.8) with ı D 1)

� ln q D mN .1C L
�1=8

k
/Lk � L

ˇ

kC1
� ln.CN

Z L
Nd
kC1/

� mNLk C .mNL
7=8

k
� 2L˛ˇ

k
/

� LkmN .1C 1
2
L

�1=8

k
/;

where the last inequality follows from the assumptions ˛̌ < 7=8 andmN �m� �1
listed in (4.1). By virtue of Lemma C.1 (cf. eq. (C.5), with L D LkC1 � 1),

fy.u/ � q
.LkC1�1/�17NKL�

k
�1

1CLk M.fy;B/ � q
LkC1�18NKL�

k
1CLk M.fy;B/:

One can see that, with ˛ > 2� , ˇ < 1=2, mN � 1,

� lnfy.u/ � � ln¹.e�mN .1C 1
2

L
�1=8

k
/Lk /

LkC1�18NKL�
k

1CLk eL
ˇ
kC1º

D mN .1C 1
2
L

�1=8

k
/Lk

LkC1.1� 18NKL�1C �
˛

kC1
/

1C Lk

� Lˇ

kC1

� mNLkC1¹.1C 1
4
L

�1=8

k
/.1� L�1=2

kC1
/ � L�1=2

kC1
º

� LkC1mN .1C 2L
�1=8

kC1
/

� .mN ; LkC1/LkC1 C ln.CZ;NL
Nd
kC1/;

assuming L0 is large enough. This leads to the assertion of Lemma 4.3. �
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4.2. Localization in WI balls. The main result of Section 4.2 is Lemma 4.5.

We begin with an analog of Lemma 3.3, proved in Appendix B.

Lemma 4.4. FixE 2 R and consider a WI ball B D B.N /.u; Lk/with a canonical

factorization B D B0 � B00 and the respective reduced Hamiltonians H0 D H
.N 0/

B0

and H00 D H
.N 00/

B00 . Assume B is .E; ˇ/-NR. Suppose in addition that for all

�00 2 †.H00/ the N 0-particle ball B0 is .E � �00; mN 0/-NS and for all �0 2 †.H0/
the N 00-particle ball B00 is .E � �0; mN 00/-NS. Then the ball B is .E;mN /-NS.

Consider the following property (replacing S.N; k/; cf. eq. (3.4)).

Sexp.N; k/ For all E 2 R, 1 � n � N and u 2 Z
n, with P.n/ as in (4.1),

P¹ B.n/.u; Lk/ is .E;mn/-S º � L
�P.n/

k
: (4.9)

Lemma 4.5. Suppose that the property Sexp.N � 1; k/ holds for any E 2 R and

some given L0; ˛; ˇ; � and m�; P � � 1 and P.n/ as in (4.1). Take L0 large

enough. Then for any E 2 R and any WI ball B.N /.u; Lk/,

P¹ B.N /.u; Lk/ is .E;mN /-S º � L
� 3

2 P.N /

kC1
: (4.10)

Consequently, if L0 is large enough then for any E 2 R and any u 2 Z,

P¹B.N /.u; LkC1/ contains a WI .E;mN /-S ball of radius Lkº

� CN
Z L

Nd
kC1 � L� 3

2 P.N /

kC1

� 1

4
L

� 5
4 P.N /

kC1
:

(4.11)

Proof. First, we prove the bound (4.10). As in the proof of Lemma 3.4, set

B D B.N /.u; Lk/ and consider the canonical factorization B D B0 � B00, with the

reduced Hamiltonians H0 and H00. GivenE 2 R, introduce the event S D S.E;N/:

S D ¹!W B is WI and .E;mN /-Sº:

We assess its probability with the help of the inequality

P¹Sº < P¹ B is not E-NRº C P¹ B is E-NRand .E;mN /-S º: (4.12)

As earlier, the �rst term in the RHS of (4.12) can be assessed with the help of

Theorem 2.1 and is bounded by 1
4
L

� 3
2

P.N /

kC1
, so we focus on the second summand.

According to Lemma 4.4,

P¹ B is E-NRand .E;mN /-S º � P¹S0º C P¹S00º; (4.13)
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where

S0 D ¹there exists �00 2 †.H00/ the ball B0 is .E � �00; mN 0/-Sº;

S00 D ¹there exists �0 2 †.H0/ the ball B00 is .E � �0; mN 00/-Sº:

Further, we have

P¹S0º D EŒP¹there exists �00 2 †.H00/W B0 is .E � �00; mN 0/-S jF00º�;

where the sigma-algebra F00 is generated by the sample of the random potential

V in …B00. Conditioning by F00 renders †.H00/ nonrandom. By de�nition of the

canonical decomposition,…B0 \…B00 D ¿, and since the random �eld V is IID,

we have

ess sup P¹ B0 is .E � �00; mN 0/-S jF00º � sup
E 002R

P¹ B0 is .E 00; mN 0/-Sº;

and by the assumed property S.N � 1; k/,

P¹ B0 is .E 00; mN 0/-Sº � L
�P.N �1/

k
: (4.14)

Therefore,

P¹S0º � ] B00 sup
E 002R

P¹B0 is .E 00; mN /-Sº � CN
Z L

Nd
k L

�P.N �1/

k
I (4.15)

after the substitution P.N � 1/ D 2˛P.N/ (cf. (4.1)), the RHS can be made

� 1
4
L

� 3
2 P.N /

kC1
, provided P.N/ > 2Nd˛ (and L0 is large enough). The latter

inequality follows from a bound in (4.1).

Summarising this calculation, we obtain

P¹S0º � 1

4
L

� 3
2 P.N /

kC1
: (4.16)

Similarly,

P¹S00º � 1

4
L

� 3
2 P.N /

kC1
: (4.17)

Collecting (2.4), (4.12), (4.13), (4.16), and (4.17), the assertion (4.10) follows.

To prove (4.11), notice that the number of WI balls of radius Lk inside

B.N /.x; LkC1/ is bounded by the cardinality ]B.N /.x; LkC1/, and the probabil-

ity that a given WI ball is .E;mN /-S satis�es (4.10). Therefore, the probability in

the LHS of (4.11) is upper-bounded, for L0 large enough, by

CN
Z L

Nd
kC1L

� 3
2 P.N /

kC1
D L

� 5
4 P.N /

kC1
� CN

Z L
� 1

4 P.N /CNd

kC1
� 1

4
L

� 5
4 P.N /

kC1

since P.N/ � P.N �/ > 4Nd , by virtue of (4.1) (cf. also (4.2)). �
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4.3. The probabilistic scaling step. As in Section 3.2, we introduce the proba-

bilities Pk, QkC1 and SkC1:

Pk D sup
u2Z

P¹B.N /.u; Lk/ is .E;mN /-Sº;

QkC1 D sup
u2Z

P¹B.N /.u; LkC1/ is not .E; ˇ/-CNRº;

SkC1 D sup
u2ZN

P¹BN /.u; LkC1/ contains a WI .E;mN /-S ball B.N /.x; Lk/º:

Theorem 4.1 is an analog of Theorem 3.1.

Theorem 4.1. Suppose that, for some given ˛, � , ˇ, m�, P � as in (4.1), the

property Sexp.N; 0/ is satis�ed with L0 large enough. Then Sexp.N; k/ holds true

for all k � 0 with the same parameters.

Proof. It su�ces to derive Sexp.N; k C 1/ from Sexp.N; k/, so assume the latter.

By virtue of Lemma 4.3, if a ball B.u; LkC1/ is .E;mN /-S, then

(a) either B.u; LkC1/ is not .E; ˇ/-CNR(with probability � QkC1),

(b) or it contains

(b1) either at least one WI .E;mN /-NS ball of radius Lk ,

(b2) .b2/ or K 0 � K C 1 pairwise 8NL�
k
-distant, SI, .E;mN /-S balls of

radius Lk .

By (4.11), the probability of the event (b1) is bounded by SkC1 � 1
4
L

�P.N /

kC1
.

Therefore, it remains to assess the probability of the event .b2/.

By Lemma 4.2, since the Lk-balls from this singular collection, say, BLk
.vi /,

1 � i � KC 1, are pairwise 8NL�
k
-distant and SI, the Hamiltonians HBLk

.vi /.!/,

1 � i � K C 1, are independent. The number of such collections is

� C
.KC1/N
Z

L
.KC1/Nd

kC1
, thus

PkC1 � 1

2
C

.KC1/N
Z

L
.KC1/Nd

kC1
PKC1

k
C SkC1 C QkC1:

It follows from Theorem 2.1 that QkC1 � C LNdC1
kC1

e�L
ˇ=2

kC1 where ˇ > 0 , thus for

L0 large enough,Qk � 1

4
L

�P.N /

kC1
for all k � 0. Therefore, we can write

PkC1 � 1

2
C 2N
Z L

.KC1/Nd

kC1
PKC1

k
C 1

4
L

�P.N /

kC1
C 1

4
L

�P.N /

kC1
; (4.18)
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and the RHS can be made < L
�P.N /

kC1
, whenever

.K C 1/P.N/ � .K C 1/Nd˛ > ˛P.N/;

e.g., with K C 1 � 2˛ and Nd˛ < 1
2
P.N/, provided L0 is large enough. Again,

the conditions K C 1 � 2˛ and P.N/ > 2Nd˛ follow from (4.1) and (4.2). �

4.4. Conclusion: exponential decay of eigenfunctions. In this section, as be-

fore, the condition (V2), as well as the property (RCM) stemming from it (cf.

Lemma 2.1), is always assumed, so we do not repeat it in the formulations of

Lemmas 4.6 and 4.7.

Recall that under the assumption (V2), the spectrum of the Hamiltonian H.!/

is a.s. bounded by a value O.jgj; N; d/, and so are the spectra of its restrictions

to arbitrary �nite balls, hence we can restrict our analysis to a compact energy

interval I�
g D I�

g .N; d/ � R of length jI�
g j. Below we assume that such an

interval is �xed.

An analog of Lemma 3.5 is the following

Lemma 4.6. Suppose we are given two 4NL-distant balls BL.x/, BL.y/, and

numbers aL; qL > 0 such that

sup
E2R

maxŒP¹Fx.E/ > aLº;P¹Fy.E/ > aLº� � qL;

with Fx;Fy de�ned as in (3.15). Then for any b > 0, one has

P¹there exists E 2 I�
g W min.Fx.E/;Fy.E// � aLº

� 2jI�
g jb�1qL C C 000L4Ndb2=3:

(4.19)

The reason why we need a separate bound (4.19) is that the derivation of the

variable-energy estimates based on Lemma 3.5 gives rise to exponential decay

of eigenfunctions only if the probabilistic bounds obtained by the �xed-energy

analysis in the balls of size L are also exponential in L (which is never the case in

the MSA); this can be seen in the condition (3.16).

In the proof given below, we will use the following auxiliary result, which,

unlike Lemma 3.5, is better adapted to the proof of exponential decay of the EFs

in a situation where the variable-energy MSA bounds (on the GFs) at the scale L

decay slower than exponentially in L.
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Lemma 4.7 ([12, Theorem 4]). Let be given a ball BL.x/, a bounded interval

I � R and numbers aL; qL > 0 such that

sup
E2I

P¹Fx.E/ > aLº � qL: (4.20)

Set K D ]BL.x/. Then the following properties (A), (B) hold true.

(A) For any b > qL there exists an event Sb with P¹Sbº � b�1jI j qL and such

that for any ! 62 Sb, the set of energies

Ex.aL/ D Ex.aLI!/ WD ¹Fx.E/ � aLº

is covered by K 0 < 3K2 intervals Jx;i D ŒE�
x;i ; E

C
x;i �, of total length

P

i jJx;i j � b.

(B) Consider the parametric operator family A.t / D Hƒ C t1, t 2 R. The

endpoints E˙
x;i .t / for the operators A.t / (replacing HBL.x//) have the form

E˙
x;i .t / D E˙

x;i C t; t 2 R:

Proof of Lemma 4.7. (A) Set for brevity B D BL.x/. We have that

Fx D max
y2@�B

jFx;yj; where Fx;y WD Gƒ.x; yIE/:

Fix y; the derivative of the rational function

Fx;yWE 7!
K

X

kD1

ck

Ek �E D
K

X

kD1

h1xj ki h k j1yi
Ek �E (4.21)

is a ratio of two real polynomials (we choose the EFs real):

d

dE
Fx;y.E/ D �

X

k

ck.Ek �E/�2 DW P.E/=Q.E/;

with degP � 2K � 2. Hence, it has � 2K � 2 zeros and � K poles, so Fx;y has

< 3K intervals of monotonicity. Then the total number of monotonicity intervals

for all functions Fx;y is upper-bounded by .] @�BL.u// � 3K � 3K2. Admitting

the value C1 for the functions jFx;yj, we can write

[

y

¹EW jFx;y.E/j � aº �
3K2
[

iD1

Jx;i ; Jx;i D ŒE�
x;i ; E

C
x;i � � I:
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Introduce the event Sb;x D ¹!W mes¹E 2 I W Fx.E/ � aº � bº. By the Chebychev

inequality and the Fubini theorem, we have

P¹Sb;xº � b�1
EŒ

Z

I

1¹Fx.E/�aº dE�

D b�1

Z

I

EŒ1¹Fx.E/�aº� dE

D b�1

Z

I

P¹Fx.E/ � aº dE

� b�1jI jqL:

(4.22)

So, for all ! 62 Sb;x,
P

i jJx;i j � mes¹E 2 I W Fx � aº � b. This yields (A).

(B) The operators A.t / share common eigenvectors; the latter determine the

coe�cients ck in (4.21), so we can choose the eigenfunctions  k.t / constant in

t and obtain ck.t / � ck.0/. The eigenvalues of A.t / have the form Ex;i .t / D
Ex;i C t . Thus Fx;y.EI t / D Fx;y.E � t I 0/, and Jx;i .t / D ŒE�

x;i C t; EC
x;i C t �. �

Proposition 4.7 operates with an arbitrary interval I � R; we proved the �xed-

energy bounds on the GFs for all E 2 R, so we are entitled to apply below the

assertion of Proposiiton 4.7 with I D I�
g containing the spectrum of H.!/.

Proof of Lemma 4.6. Fix b > 0 and let Sb;z D ¹!W mes¹EW Fz.E/ � aº � bº for

z 2 ¹x; yº, Sb D Sb;x [ Sb;y. Let S be the event �guring in the LHS of (4.19).

Using the bounds of the form (4.22) on P¹Sb;xº and P¹Sb;yº, we have

P¹Sº � P¹Sbº C P¹S \ S{
bº � 2jI�

g jb�1qL C P¹S \ S{
bº:

It remains to asses P¹S \ S{
b
º.

By Lemma 2.3, the 4NL-distant balls BL.x/, BL.y/ are weakly Q-separated

for some Q � Z. As in the de�nition of weak separation, we associate with these

balls the integers (“occupation numbers”) n1 > n2 � 0. Consider the random

variables � D �Q D hV.�I!/iQ, �z.!/ D V.zI!/ � �.!/, z 2 Q, and let FQ

be the sigma-algebra generated by ¹�z; z 2 QIV.uI �/; u 62 Qº. Introduce the

continuity modulus sQ.�jFQ/ of the conditional probability distribution function

F�.t jFQ/ D P¹� � t jFQº; it satis�es the condition (RCM) with � 0 D � 00 D
2=3; C 0 D 1; A0 D 0; A00 D 2. The representation V.zI!/ D �.!/ C �z.!/

for z 2 Q implies HB.x;L/ D n1�.!/C A1.!/, HB.y;L/ D n2�.!/C A2.!/, where

A1, A2 are FQ-measurable.
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For any ! 62 Sb, the energies E where Fx.E/ � a are covered by a union of

intervals Jx;i with jJx;i j DW �x;i �
P

j �x;j � 2b. By assertion (B) of Lemma 4.7,

we have

Jx;i .!/ D ŒE�
x;i C n1�.!/; E

C
x;i C n1�.!/�;

where E˙
x;i are FQ-measurable.

Similarly, introduce the intervals Jy;j with jJy;j j DW �y;j ,
P

j �y;j � 2b, and

Jy;j .!/ D ŒE�
y;j C n2�.!/; E

C
y;j C n2�.!/�; n2 < n1:

It is readily seen that

¹!W Jx;i \ Jy;j ¤ ¿º \ S{
b � ¹!W jEx;i � Ey;j j � �x;i C �y;j º \ S{

b

� ¹!W j.n1 � n2/� � �i;j .!/j � 4bº;

with some FQ-measurable �i;j . Let s D 4b and recall that n1 � n2 � 1. For any

given pair of indices .i; j /,

P¹j.n1 � n2/� � �i;j j � sº � EŒP¹j.n1 � n2/� � �i;j j � s jFQº� (4.23)

For any ! such that sQ.s jFQ/ � C 0.]Q/A
0

s#0 � s2=3, the internal conditional

probability in the RHS of (4.23) is obviously bounded by the latter value, s2=3 ,

for each pair .i; j /, while the probability of the complementary event (which is

the same for all pairs .i; j /) is bounded by C 00.]Q/2
0

s2=3. Taking the sum over

all pairs .i; j / and using (1.1) to bound the cardinality of the set Q of diameter

� 2NL, we obtain, with s D 4b,

P¹S \ S{
bº � s2=3 C ]B.x; L/ ]B.y; L/C 00.]Q/2s2=3

� C 000L4Ndb2=3;

yielding the asserted bound. �

Setting L D Lk, k � 0, and

aLk
D e�mN Lk ; qLk

D L
�P.N /

k
; b D bLk

D L
�P.N /=2

k
; (4.24)

we come to the following result, marking the end of the proof of our main theorem.

The assertion on the p.p. spectrum becomes trivial for �nite graphs Z, but the

bound (4.25) is useful in this case, too.
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Corollary 4.8. For k � 0 and any pair of 4NLk-distant balls BLk
.x/, BLk

.y/ the

following bound holds true:

P¹there exists E 2 RW BLk
.x/ and BLk

.y/ are .E;mN /-Sº � CL
� 1

6 P.N /

k

� CL�4Nd
k :

(4.25)

Consequently, for jgj large enough, with probability one, the operator H.N /.!/

has pure point spectrum, and all its eigenfunctions obey (1.10).

Proof. The �rst assertion follows from Lemma 4.6, with aLk
; qLk

; b D bLk
given

in (4.24):

P¹Sº �
2jI�

g jqL

bLk

C C 000L4Ndb
2=3
Lk

� C1L
�P.N /C 1

2 P.N /

k
C C2L

4Nd
k L

� 2
3 � 1

2 P.N /

k

� C3L
� 1

3
P.N /C4Nd

k

� C3L
� 1

6 P.N /

k

� C3L
�4Nd
k I

in the last line we used that P.N/ � P� � 24Nd (cf. (4.1)).

The second assertion is a well-known result going back to [20]. In fact, the

proof of Lemma 3.1 from [20] can be adapted to the pairs of balls BLk
.x/;BLk

.y/ �
ZN at distance � CLk , with C 2 .0;C1/. The key point is that structure of the

random potential (single- or multi-particle) becomes irrelevant to the proof of [20,

Lemma 3.1], once the “double singularity” bound of the form (4.25) is proved, with

P.N/ large enough. �

Appendices

A. Proof of Lemma 3.3

Step 1. Approximate decoupling. Consider a WI ball B D B.u; Lk/ with

the canonical factorization B D B0 � B00, where B0 D B.N 0/.u0; Lk/ and

B00 D B.N 00/.u00; Lk/, with u D .u0; u00/, u0 D uJ, u00 D u
J{ , J � ¹1; : : : ; N º,

cf. (2.20)–(2.21). We have the representation (2.22)

H
.N /

B D Hni
B C UB0;B00 ; (A.1a)

Hni
B D H

.N 0/

B0 ˝ I.N 00/ C I.N 0/ ˝ H
.N 00/

B00 : (A.1b)
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The interaction energy UB0;B00 has the following form:

UB0;B00.x/ D
X

i2J; j 2J{

U.d.xi ; xj //: (A.2)

By Lemma 2.5, for any con�guration x 2 B the graph distance between the pro-

jected sub-con�gurations (in Z) satis�es d.…Jx;…
J{x/ > Lk; thus by assump-

tion (U), the norm of the multiplication operator UB0;B00 obeys

kUB0;B00k � C N 0N 00 e�L
�

k � CN 2e�L
�

k ; (A.3)

with C D CU as in (1.8).

The eigenvalues of Hni
B are the sums Ea;b D �a C �b, where �a form the

spectrum †0 WD †.H
.N 0/

B0 / and �b the spectrum †00 WD †.H
.N 00/

B00 /. The EFs of

Hni
B

can be chosen in the form �a ˝  b where ¹�aº are EFs of H
.N 0/

B0 and ¹ bº
of H

.N 00/

B00 .

Step 2. Nonresonance properties. By the min-max principle, the assumed

.E; ˇ/-NR property of B (with regard to G
.N /

B
.E/ D .H

.N /

B
� EI/�1) implies

a slightly weaker property for Gni.E/ D .Hni
B

� EI/�1:

dist.†.Hni
B /; E/ � dist.†.H

.N /

B
/; E/ � kUB0;B00k

� 2e�L
ˇ

k � C e�L
�

k

� e�L
ˇ

k ;

(A.4)

provided that ˇ < � (which is one of conditions (3.2)) and L0 is large enough. In

terms of the resolvents G
.N /

B
.E/ and Gni

B
.E/ we then have

kG
.N /

B
.E/k � 1

2
eL

ˇ

k < eL
ˇ
k ; kGni

B .E/k � eL
ˇ

k : (A.5)

Step 3. Analytic perturbation estimates. We begin with the following identities

for the GF Gni
B .u; yIE/:

Gni
B .u; yIE/ D

X

�a2†0

�a.u
0/�a.y

0/G
.N 00/

B00 .u00; y00IE � �a/ (A.6)

D
X

�b2†00

 b.u
00/ b.y

00/G
.N 0/

B0 .u0; y0IE � �b/: (A.7)
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By assumptions of the lemma,

� for all �b 2 †00, the ball B0 is .E � �b; ı; mN 0/-NS, (A.8a)

� for all �a 2 †0, the ball B00 is .E � �a; ı; mN 00/-NS. (A.8b)

For any y 2 @�B, either �.N 0/.u0; y0/ D Lk or �.N 00/.u00; y00/ D Lk . In the �rst

case we infer from (A.7), combined with .E��b; ı; mN 0/-NS property of ball B0,
that

jGni
B .u; yIE/j � ]B00 e�mN 0 Lı

k
C2L

ˇ

k : (A.9)

Similarly, in the second case we obtain with the help of (A.6) that

jGni
B .u; yIE/j � ]B0 e�mN 00 Lı

k
C2L

ˇ

k : (A.10)

By (3.1), mN 0 ; mN 00 � mN �1 D mN .1 C 3L
�ıCˇ
0 /; in either case, the LHS is

bounded by

CN
Z L

Nd
k e�mN�1Lı

k
C2L

ˇ

k � e�mN Lı
k

�L
ˇ

k � 1
2
e�mN Lı

k ; (A.11)

provided that L0 is large enough.

To assess G
.N /

B .u; yIE/, we use the second resolvent equation and write

kG
.N /

B
.E/ � Gni

B .E/k � kGni
B .E/k kUB0;B00k kG

.N /

B
.E/k

� C e2L
ˇ

k
�L

�

k

� e� 1
2 L

�

k

� 1

2
e�mN Lı

k ;

(A.12)

provided that ˇ < ı < � and L0 large enough.

Collecting (A.6), (A.7), (A.11), and (A.12), we get

max
y2@�B

jG.N /

B
.u; yIE/j � 1

2
e�mN Lı

k C 1

2
e�mN Lı

k D e�mN Lı
k : (A.13)

Thus the ball B is .E; ı; mN /-NS.

B. Proof of Lemma 4.4

Step 1. Approximate decoupling. We start as in the proof of Lemma 3.3, but have

to achieve an exponential bound upon the GFs. The de�nitions of the operators Hni
B
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and UB0;B00 (see (A.1) (A.2)) remain in force. The bound on the interaction (A.3)

is to be modi�ed: since � .…JB;…JcB/ � L�
k

and �� > 1 (cf. (4.1)), we have

kUB0;B00k � CUN
2e�L

��
k � e� zmLk (B.1)

where zm > 0 can be chosen arbitrarily large, provided L0 is large enough.

Speci�cally, we require that zm � 2m1, hence zm � 2mN for 1 � N � N �,

cf. (4.1).

Step 2. Nonresonance properties. A direct analog of (A.4) is

distŒ†.Hni
B /; E� � 2e�L

ˇ

k � e� zmLk � e�L
ˇ

k I (B.2)

it implies, as before, that

kG
.N /

B
.E/k � 1

2
eL

ˇ

k < eL
ˇ

k ; kGni
B .E/k � eL

ˇ

k : (B.3)

Step 3. Analytic perturbation estimates. We can use again the general iden-

tities (A.6)–(A.7) and the assumed properties (A.8) (this time, with ı D 1).

The estimates (A.9)–(A.9) are to be modi�ed as follows.

Given y 2 @�B, we have two possibilities.

(i) �.N 0/.u0; y0/ D Lk , in which case we deduce from (A.7), combined with

.E � �b; mN 0/-NS property of the ball B0 (for all EVs �b), that

jGni.u; yIE/j � ]B00 e�mN 0 LkC2L
ˇ

k : (B.4)

(ii) �.N 00/.u00; y00/ D Lk . Then we obtain a similar bound, using the assumed

exponential bounds on the GF in the ball B00:

jGni
B .u; yIE/j � ]B0 e�mN 00 LkC2L

ˇ
k : (B.5)

In either case,mN 0 ; mN 00 � mN �1 D mN .1C 3L
�1Cˇ
0 /, so that we have

mN �1Lk D mN .1C 3L
�1Cˇ
0 /Lk � mNLk C 3L

ˇ

k
;

thus for L0 large enough, we obtain from (A.6)–(A.7)

jGni
B .u; yIE/j � CN

Z L
Nd
k e�mN�1LkC2L

ˇ

k

� e�mN Lk�3L
ˇ

k
C2L

ˇ

k

� e�mN Lk�L
ˇ

k :

(B.6)
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Next, by virtue of the second resolvent identity and (B.1), we have

kG
.N /

B
.E/ � Gni

B .E/k � kGni
B .E/k kUB0;B00k kG

.N /

B
.E/k

� e� 3
2 mN Lk ;

(B.7)

since zm � 2mN , L0 > 1, ˇ < 1=2. Collecting the bounds (B.6)–(B.7),

we obtain

max
y2@�B

jG.N /

B
.u; yIE/j � e�mN Lk�L

ˇ

k C e� 3
2 mN Lk

� .CZ;NL
Nd
k /�1e�mN Lk ;

for L0 large enough. Therefore, the ball B is .E;mN /-NS.

C. Dominated decay of functions on Z

In this section we establish Lemmas C.1 and C.2 applicable to �nite connected

subgraphs of arbitrary locally �nite, connected graphs, includingZ D ZN ,N � 2.

These lemmas are used in the proofs of Lemmas 3.1 and 4.3. The argument here is

nothing more than a variant of the one used in the proof of [20, Lemma 4.2] and

in a number of subsequent papers; in the case where Z D Z
d , it was presented in

[19, Sect. 2.6].

De�nition C.1 ([19, De�nition 2.6.1]). Let be given a �nite connected subgraph

ƒ � Z, a non-negative function f Wƒ ! Œ0;1/, a number q 2 .0; 1/, two integers

L � ` � 1, and a ball B.u; L/ ¨ ƒ.

(1) A point x 2 B.u; L� `/ is called .`; q/-regular for the function f , if

f .x/ � qM.f;B.x; `C 1//: (C.1)

Here and below, we set M.f;W/ WD sup Œf .y/W y 2 W�; W � ƒ: The set

of all .`; q/-regular points x 2 B.u; L/ for f is denoted by Rf .u/.

(2) A spherical layer Lr .u/ D ¹yW d.u; y/ D rº is called regular if Lr .u/ �
Rf .u/.

(3) For x 2 B.u; L� `/, set

Nr.x/ WD

8

ˆ

ˆ

<

ˆ

ˆ

:

minŒr � d.u; x/WLr .u/ � Rf .u/�;

if a regular layer Lr.u/ exists, with r � d.u; x/,

C1; if no such layer Lr.u/ exists,

(C.2)
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and

Rf .x/ D
´

Nr.x/C `; Nx < C1;

C1; otherwise.
(C.3)

(4) Given a set S � ƒ, the function f is called .`; q; S/-dominated in B.L; u/

if B.L; u/ n S � Rf .u/, and for any x 2 B.u; L� `/ with Rf .x/ < C1, one

has

f .x/ � qM.f;B.u;Rf .x///: (C.4)

Lemma C.1 ([19, Theorem 2.6.1]). Let a function f Wƒ ! RC be .`; q; S/-

dominated in an N -particle ball B.u; L/, where L � ` � 0. Assume that the

set S is covered by a union U of concentric annuli B.u; bj / n B.u; aj � 1/, with

total width w.U/ WD
P

j .bj � aj C 1/ � L � `. Then

f .u/ � q
L�`�w.U/

`C1 M.f;B.u; LC 1//: (C.5)

The proof of Lemma C.1 repeats almost verbatim that of Theorem 2.6.1 in [19],

and we omit it from the paper. The following result is a minor modi�cation of

[19, Theorem 2.6.2], adapted to the sub-exponential decay bounds. It explains the

relevance of Lemma C.1 in the context of the MSA.

Lemma C.2. Fix 0 < ˇ; ı � 1, m > 0 and E 2 R. Suppose that, for some

integer L � 1 and u 2 ZN , the N -particle ball B.u; L/ is .E; ˇ/-CNR. Take a

�nite connected subgraph ƒ � ZN such that ƒ � B.u; L/ and y 2 ƒ n B.u; L/,

and consider the function f D fyW x 2 ƒ ! RC given by

f W x 7�! jG.N /
ƒ
.x; yIE/j: (C.6)

Given ` D 0; : : : ; L � 1, let S D S.E/ � B.u; L � ` � 1/ be a (possibly empty)

subset such that any ball B.x; `/ with x 2 B.u; L� ` � 1/ n S is .E; ı; m/-NS. If

m`ı > 2Lˇ > Lˇ C ln.CZL
Nd /; (C.7)

then for all y 2 @�B.u; L/, the function f is .`; q; S/-dominated in B.u; L/, with

q D e�m0`ı

; where m0 WD m � 2`�ıLˇ : (C.8)

Proof. First, note that for any x 2 B.u; L� `/ n S we have

f .x/ � e�m`ı

M.f;B.x; `// � qM.f;B.x; `//;

since ball B.x; `/must be .E; ı; m/-NS, by de�nition of the set S.
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Further, de�ne the functions x 7! Nr.x/ , x 7! Rf .x/ in the same way as in

(C.2)–(C.3). Suppose that x 2 S and Rf .x/ < 1, i.e., each point y 2 L Nr.x/.u/ is

regular. Applying the GRI (2.1) to the ball B.u; Nr.x/� 1/, we get, by the assumed

.E; ˇ/-CNRproperty of the ball B.u; L/,

f .x/ � CZ. Nr/Nd kGB.u; Nr.x/�1/.E/k max
z2LNr .u/

jGƒ.z; yIE/j

� CZL
Nd eLˇ

M.f;L Nr .u//:

Next, applying the GRI to each ball B.z; `/ with z 2 L Nr .u/, we obtain

f .x/ � CZL
Nd eLˇ

e�m`ı

M.f;B.u; Nr C `// � e�m0`ı

M.f;B.u;Rf .x///;

with m0 given by (C.8), provided that the condition (C.7) is ful�lled. Thus f is

indeed .`; q; S/-dominated in B.u; L/, with q given by (C.8). �

Remark C.1. Lemma C.2 is used in the proof of Lemmas 3.1 and 4.3. In the

scaling procedure with LkC1 D YLk, the condition upon the key exponents in

(C.7) becomes (with ` D Lk, L D YLk) ˇ < ı, which is assumed in (3.2).

In the case where (as in Section 4) LkC1 � L˛
k

and ı D 1, it is required that

ˇ < ı=˛ D 1=˛, which follows from the assumption ˇ < 7=.8˛/ speci�ed in the

table (4.1).

D. Proof of Lemma 2.1

1. First, we establish the property (RCM) for the uniform marginal distribution

Unif.Œ0; `�/, ` > 0, which is the prototypical example. It will be extended to the

case of smooth positive density by simple approximation arguments.

Let be given an integer n > 1 and IID random variables (r.v.) X1; : : : ; Xn

uniformly distributed in Œ0; `�. For brevity, below we use notation X for the real

vector .X1; : : : ; Xn/, uniformly distributed in the cube C` D C
.n/

`
D Œ0; `�n.

Recall: n corresponds in (RCM) to the cardinality jQj of a �nite set Q.

Next, make an orthogonal change of variables in R
n, taking as the �rst co-

ordinate Q� WD p
n � (the factor

p
n is required for the Euclidean normalization)

and choosing in some way (irrelevant for further considerations) complementary

coordinates Y1; : : : ; Yn�1; denote Y D .Y1; : : : ; Yn�1/. When X varies in the cube

C`, the range Y of Y is a polyhedron (obtained by projecting C` onto the subspace

orthogonal to .1; : : : ; 1/). The Euclidean space R
n is strati�ed into a�ne lines

L.y/ parallel to .1; : : : ; 1/ labeled by their projections y onto the latter hyperplane.
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We set Jy WD L.y/ \ C`. The uniform probability distribution on C` induces

marginal distributions for the r.v. � (resp., Q�) and Y. The distribution of Q�
conditional on Y D y is a uniform distribution on the interval Jy, of length

l.y/ WD jJyj, with constant density jJyj�1 – except, of course, for a �nite number

of projection points y where jJyj D 0; these points can be safely ignored.

Due to the Euclidean normalization Q� D p
n � varies in some interval of length

s
p
n when � varies in an interval of length s. For the original form of (RCM)

(cf. (2.9)), we have to assess the conditional measure of arbitrary sub-intervals

X.y/ � Jy of length s
p
n; for the modi�ed form suitable for the proof of

Lemma 2.4, we �x �rst a measurable family of sub-intervals X.y/ D Xs.y/ D
Œ�.y/; �.y/C s

p
n� with F�-measurable �; they play the role of I.sI!// �guring

in (2.10). The rest of the argument is essentially analytic and applies to both

settings; for de�niteness, we will assess the probability of a set As D ¹�.!/ 2
I.sI!/º � ¹�.x/ 2 X.y/º, with jX.y/j D s

p
n, s > 0.

Using the Fubini theorem for integration in variables . Q�;Y/, we obtain

P¹Asº D
Z

Y

dypY.y/ l
�1.y/ jX.y/j D E

YŒl�1.y/ jX.y/j�: (D.1)

Further, since jX.y/j � l.y/, we have for any ı > 0

jX.y/j
l.y/

� jX.y/j
l.y/

1l�ı
p

n C 1l<ı
p

n � s
p
n

ı
p
n

1l�ı
p

n C 1l<ı
p

n;

hence, denoting Sı WD ¹l < ıpnº,

P¹Asº � sı�1 C EŒ1l<ı
p

n� D sı�1 C P¹Sıº: (D.2)

It remains to assess the probability P¹Sıº (with a speci�c choice ı D s1=3 made

below, this is the analog of the exceptional set zSs �guring in (2.10)).

Let
x
X D min¹X1; : : : ; Xnº, xX D max¹X1; : : : ; Xnº. It is straightforward that

jX.Y/j D p
n.

x
X C .1� xX//, thus Sı is equivalently determined by the condition

x
X C .` � xX/ < ıpn=pn D ı, and we have

Sı �
[

i;j

Aij .ı/; Aij .ı/ D ¹XW 0 � Xi C .` �Xj / � ıº:

For any ı < `=2, Ai i .ı/ D ¿, while for i ¤ j , by independence of .Xi /, we have

a crude estimate P¹Aij .ı/º � .ı=`/2 (a more accurate calculation improves it by

the factor 1=2, irrelevant for our purposes), hence, counting the pairs .i; j /, we

get

P¹Sıº � n.n � 1/ ı
2

`2
<
n2ı2

`2
: (D.3)



316 V. Chulaevsky and Y. Suhov

Collecting (D.2)–(D.3) and setting ı D s1=3, we come to the asserted bound, with

# 0 D # 00 D 2=3, in the case of a uniform marginal distribution Unif.Œ0; `�/, ` D c.

2. The next step is mainly a preparation for the �nal one, but it can also be used

alone to extend the above result to a larger class of probability distributions.

Consider a probability distribution supported by a �nite of in�nite number of

intervals ¹Jk; k 2 Kº, K 2 Z, with probability density constant on each interval

Jk: p.x/ D
P

k2K ck1Jk
. Given an integer n > 1, the sample space of n IID r.v.

Xi with density p is a union of parallelepipeds

� Š
[

k2KDKn

Jk; Jk D
n�

iD1
Jki
; k D .k1; : : : ; kn/;

and the restriction of the joint density of the r.v. X1; : : : ; Xn on each parallelepiped

Jk is constant. Obviously, for any measurable subset A � �,

P¹Aº D EŒP¹A jFKº� � sup
k2K

P¹A j Jkº:

Since the conditional distribution on Jk has constant density, one can easily

adapt the results of the �rst step to the product of intervals of di�erent lengths.

Below we consider a probability measure with support Œ0; c�, as in (V1), and

partition Œ0; c� into n sub-intervals of identical length, Jk D Œkc=n; .k C 1/c=n�,

k 2 K D ¹0; : : : ; n�1º. In terms of the estimates obtained at the step 1, one has the

length ` D cn�1, resulting in factors polynomially bounded in n, thus contributing

only to the pre-factor C jQjA in (RCM), without changing the s-dependence of the

regularity bound (2.9).

3. Whenever the density p is non-constant, hence takes at least two values

0 < �1 < �2, we cannot reduce the analysis to that performed for the uniform

distribution, by formally using the fact that the product measure with density

p˝n is absolutely continuous with respect to the normalized Lebesgue measure.

Indeed, p˝n takes at least two values with ratio .�2=�1/
n exponentially large

in n, and this would ruin all applications to the EVC estimation we are aiming

at. However, dividing the interval Œ0; c� into sub-intervals Jk D Œkc=n; .k C
1/c=n�, we infer from the uniform boundedness of the logarithmic derivative of p

(stemming directly from (V1)) that the restriction of the joint density p˝n to any

sub-cube Jk of Œ0; c�n of side length O.n�1/ admits the representation

p˝n.x/ D zC
n

Y

j D1

.1CO.n�1// D zC � e˛.x/; (D.4)
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where j˛.x/j � c1 < C1 and 0 < zC < C1. Indeed, let Jk D �n
iD1Œai ; ai C

cn�1�, a D .a1; : : : ; an�, then for any point x; y in a cube of side length c=n

˛.x/ WD
n

X

iD1

j lnp.xi / � lnp.ai /j � nC 0 max
i

jxi � ai j � C 0cn=n D C 00;

where C 0 is determined by the upper bound on p0.x/=p.x/ stemming from (V1).

In fact, all we need from (V1) is uniform boundedness of the logarithmic derivative

p0.x/=p.x/ on the segment supporting the marginal measure (except for the neg-

ligible endpoints of the segment). Hence we get (D.4) with zC WD p.a1/ � � �p.an/.

The factor zC is eliminated by normalization of the conditional distribution on the

sub-cube Jk:

pk.x/ D p˝n.x/
R

Jk
p˝n.y/ dy

D jJkj�1 ea.x/

jJkj�1
R

Jk
ea.y/ dy

D O.1/ jJkj�1;

thus the conditional measure on the sub-cube Jk has bounded Radon-Nikodym

derivative with respect to the normalized Lebesgue measure on Jk. Hence for any

measurable subset A � Jk, one has
Z

Jk

1A.x/ pk.x/ dx � Const jJkj�1

Z

Jk

1A.x/ dx;

where the RHS can be assessed with the help of the bounds from step 1. Now the

asserted general bound follows by combining the results of steps 1 and 2.
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